
Dual Approximation Policy Optimization

Zhihan Xiong
University of Washington
Seattle, WA 98195, USA

zhihanx@cs.washington.edu

Maryam Fazel
University of Washington
Seattle, WA 98195, USA

mfazel@uw.edu

Lin Xiao
FAIR at Meta

Seattle, WA 98109, USA
linx@meta.com

Abstract

We propose Dual Approximation Policy Optimization (DAPO), a framework that
incorporates general function approximation into policy mirror descent methods.
In contrast to the popular approach of using the L2-norm to measure function
approximation errors, DAPO uses the dual Bregman divergence induced by the
mirror map for policy projection. This duality framework has both theoretical and
practical implications: not only does it achieve fast linear convergence with general
function approximation, but it also includes several well-known practical methods
as special cases, immediately providing strong convergence guarantees.

1 Introduction

Policy gradient methods represent a paradigm shift in reinforcement learning from value-based
methods [Watkins, 1989, Puterman, 1994, Bertsekas, 2015] to a more direct approach of policy opti-
mization [Williams, 1992, Sutton et al., 1999, Konda and Tsitsiklis, 1999]. In particular, the natural
policy gradient (NPG) method of Kakade [2001] inspired later development of trust region policy
optimization (TRPO) [Schulman et al., 2015] and proximal policy optimization (PPO) Schulman
et al. [2017], both with great empirical success.

These successes ignited considerable efforts to understand policy gradient methods from a theoretical
perspective. Among them, Neu et al. [2017] first connected NPG with the mirror descent (MD) algo-
rithm [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003], which led to a more general class of
policy mirror descent (PMD) methods. Convergence guarantees for tabular PMD methods progressed
from sublinear convergence [Shani et al., 2020a, Agarwal et al., 2021] to linear convergence [Xiao,
2022, Lan, 2023, Johnson et al., 2023]. Then the linear convergence results were extended to PMD
methods with linear function approximation [Yuan et al., 2022], and more recently with general
function approximation [Alfano et al., 2023].

However, the progresses of PMD on the empirical and theoretical fronts are more or less disjoint,
especially concerning general function approximation. One one hand, Tomar et al. [2020] and
Vaswani et al. [2021] derived practical algorithms from the MD principle, but with no or limited
convergence guarantees. On the other hand, Alfano et al. [2023] proposed Approximate Mirror
Policy Optimization (AMPO), a PMD framework that has linear convergence guarantee with general
function approximation, but has limited empirical success (see our empirical study in Section 5).

In this paper, we aim to bridge this gap between theory and practice by proposing Dual Approximation
Policy Optimization (DAPO), a new PMD framework that incorporates general function approxima-
tion. In contrast to AMPO, which uses the squared L2-norm to measure the function approximation
error and tries to minimize it for policy update, DAPO uses the dual Bregman divergence generated
by the mirror map used for policy projection.

We present several instantiations of DAPO using different mirror maps and prove linear convergence
rates for two variants, DAPO-L2 equipped with the squared L2-norm as mirror map, and DAPO-
KL with the negative entropy. We show that DAPO-KL includes two state-of-the-art practical

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).



algorithms as special cases: Soft Actor-Critic (SAC) of Haarnoja et al. [2018a] and Mirror Descent
Policy Optimization (MDPO) of Tomar et al. [2020], thus immediately providing them with strong
convergence guarantees. We compare DAPO with SAC and AMPO on several standard MuJoCo
benchmark tasks to demonstrate the effectiveness of this duality framework.

In addition, in order to work with negative entropy restricted on the simplex in the setting of general
function approximation, we extend the MD theory to work with mirror maps whose gradient mapping
and conjugate mapping are not inverses of each other, a technical contribution of independent interest.

2 Preliminaries

We first review the background of Markov decision processes (MDPs) and the general MD algorithm.

2.1 Markov Decision Processes

Let ∆(X ) =
{
p ∈ R|X | |∑x∈X px = 1 and px ≥ 0,∀x

}
denote the probability simplex over an

arbitrary finite set X . We consider an infinite-horizon Markov Decision Process (MDP), denoted as
M = (S,A,P, c, γ), where S is a finite state space,A is a finite action space, P : S ×A 7→ ∆(S) is
the transition kernel, c : S ×A 7→ [0, 1] is the single-step cost function and γ ∈ (0, 1) is the discount
factor. A stationary policy is defined as a function π : S 7→ ∆(A) such that πs is a probability
distribution over A for each s ∈ S. At each time t, an agent with policy π takes an action at ∼ πst ,
which sends the MDP to the new state st+1 ∼ P(st, at) and incurs a single-step cost c(st, at).

Our main objective is to find a policy that minimizes the accumulated, discounted cost starting from
an initial state distribution ρ ∈ ∆(S). Formally, it is defined as V πρ = Es∼ρ [V πs ], where

V πs = Eat∼πst

[∑∞
t=0 γ

tc(st, at) | s0 = s
]
. (1)

The corresponding Q-value function under policy π and state-action pair (s, a) is defined as
Qπs,a = Eat∼πst

[∑∞
t=0 γ

tc(st, at) | s0 = s, a0 = a
]
. (2)

We use Qπs ∈ R|A| to denote the vector
[
Qπs,a

]
a∈A and we immediately have V πs = ⟨Qπs , πs⟩.

With initial distribution ρ ∈ ∆(S), we define the discounted state-visitation distribution under π as
dπρ,s = (1− γ)∑∞

t=0 γ
t Pπs0∼ρ (st = s) , (3)

where Pπs0∼ρ (st = s) represents the probability that st = s if the agent follows policy π and the
initial state s0 is sampled from distribution ρ. We can easily verify that

∑
s∈S d

π
ρ,s = 1 and thus

dπρ ∈ R|S| is a valid probability distribution. Meanwhile, by truncating all terms with t ≥ 1 in the
sum in (3), we obtain dπρ,s ≥ (1− γ)ρs for any s ∈ S.

The gradient of V πρ with respect to π is given by the policy gradient theorem [Sutton et al., 1999] as

∇sV πρ :=
∂V π

ρ

∂πs
= 1

1−γ d
π
ρ,sQ

π
s ∈ R|A|. (4)

Then, we define ∇V πρ ∈ R|S|×|A| as the concatenation of∇sV πρ for all s ∈ S.

2.2 Mirror Descent

Mirror descent (MD) is a general framework for the construction and analysis of optimization
algorithms [Nemirovski and Yudin, 1983]. Its key machinery is a pair of conjugate mirror maps that
map the iterates of an optimization algorithm back-and-forth between a primal space and a dual space.
We follow the common practice of defining the mirror maps with the gradient mapping of a convex
function of Legendre-type [Rockafellar, 1970, Section 26].

Let’s first define Bregman divergence and Bregman projection. Suppose that Ψ is a convex function
of Legendre type. It induces a Bregman divergence between any x ∈ domΦ and y ∈ int (domΦ):

DΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩ . (5)
Let C ∈ domΦ be a closed convex set. The Bregman projection of any y ∈ int (domΦ) onto C is

projΦC (y) = argmin
x∈C

DΦ(x, y). (6)

Properties of Bregman projection can be found in, e.g., Bauschke and Borwein [1997].

2



Now consider the problem of minimizing a convex function f : X → R ∪ {∞} over a closed convex
set C ⊂ domΦ. We use the presentation of MD given by Bubeck [2015]: at each iteration k,

1. Given x(k), find y(k+1) such that

∇Φ(y(k+1)) = ∇Φ(x(k))− ηkg(k). (7)

where ηk is the step size and g(k) is the gradient∇f(x(k)) or a sub-gradient of f at x(k).

2. Compute x(k+1) = projΦC (y
(k+1)).

Define the conjugate function of Φ as Φ∗(x∗) = supx∈domΦ {⟨x, x∗⟩ − Φ(x)}. Then, using the
definition in (6) and the identity∇Φ∗(∇Φ(x)) = x, we can express it more compactly as

x(k+1)= argmin
x∈C

DΦ

(
x,∇Φ∗(∇Φ(x(k))−ηkg(k))) , (8)

which can be further simplified to [Beck and Teboulle, 2003, Bubeck et al., 2012]

x(k+1)= argmin
x∈C

{
ηk
〈
g(k), x

〉
+DΦ(x, x

(k))
}
. (9)

Next we discuss three examples of the MD algorithm for solving minx∈∆ f(x), where ∆ is the
simplex. Each leads to a variant of the DAPO method we will present in Section 3.

Example 2.1 (Squared L2-norm). Let Φ(x) = 1
2∥x∥22, which is Legendre type with int (domΦ) =

domΦ = Rn. We have Φ∗(x∗) = 1
2∥x∗∥22, ∇Φ(x) = x, ∇Φ∗(x∗) = x∗, and DΦ(x, y) =

1
2∥x− y∥22. In this case, the MD algorithm (8) becomes the classical projected gradient method

x(k+1) = argmin
x∈∆

∥∥x− (x(k) − ηk∇f(x(k)))∥∥22.
Example 2.2 (Negative entropy on Rn+). Consider the negative entropy Φ(x) =

∑
i(xi log(xi)−xi)

with domΦ = Rn+ (and the convention 0 log 0 = 0). It is of Legendre type, with Φ∗(x∗) =∑
i exp(x

∗
i ), ∇Φ(x) = log(x) and∇Φ∗(x∗) = exp(x∗), where log and exp apply component-wise

to vectors. For any x ∈ Rn+ and y ∈ Rn++, their Bregman divergence is the KL-divergence:
DΦ(x, y) =

∑
i(xi log(xi/yi)− xi + yi). (10)

In this case, the Bregman projection of y ∈ Rn++ onto ∆ is projΦ∆(y) = y/∥y∥1 and (8) becomes

x(k+1) = x(k) exp(−ηkg(k))/∥x(k) exp(−ηkg(k))∥1. (11)
Example 2.3 (Negative entropy on ∆). Let ϕ(x) =

∑
i(xi log(xi) − xi) and define Φ(x) =

ϕ(x) + δ(x|∆), where δ(·|∆) is the indicator function of ∆, i.e., δ(x|∆) = 0 if x ∈ ∆ and +∞
otherwise. Apparently domΦ = ∆, which has an empty interior. As a result, Φ is not of Legendre
type and in fact is not differentiable (see Appendix B). However, the MD algorithm is still well-
defined. Specifically, in (7) we interpret∇Φ(x(k)) as any subgradient in the subdifferential ∂Φ(x(k)),
and find y(k+1) such that there exists some∇Φ(y(k+1)) ∈ ∂Φ(y(k+1)) to make the equality hold.

Despite∇Φ(y) being multi-valued as a subgradient, the Bregman divergence (5) is still well defined
(Corollary B.3). As a result, DΦ is the same as (10). Using the fact x, y ∈ ∆, it can be simplified as

DΦ(x, y) =
∑
i xi log(xi/yi). (12)

In addition, we have Φ∗(x∗) = log (
∑
i exp(x

∗
i )) with domΦ∗ = Rn [Rockafellar, 1970, Sec-

tion 16]. Clearly, Φ∗ is a differentiable function throughout Rn and
∇Φ∗(x∗) = exp(x∗)/∥ exp(x∗)∥1.

In this case, the MD algorithm (8) yields the same update as (11). However, the projection step is no
longer needed because the range of∇Φ∗ is the interior of ∆ and we can simply express MD as

x(k+1) = ∇Φ∗(∇Φ(x(k))− ηkg(k)).
Remark 2.4. Although Examples 2.2 and 2.3 give the same update (11), there are subtle differences
in the theory. In particular, we have∇Φ∗ = (∇Φ)−1 in Example 2.2 and the equivalence between (8)
and 9 is easily established. However, this is not the case for Example 2.3 because Φ is not Legendre
and nondifferentiable. Consequently, we can no longer leverage the convex optimization machinery
as in the tabular case [e.g., Xiao, 2022, Lan, 2023] for convergence analysis with general function
approximation. Instead, we extend the classical MD theory to work with mirror maps whose gradient
mapping and conjugate mapping are not inverses of each other; see Appendix B, Lemma B.2.

3



Algorithm 1 Dual Approximation Policy Optimization (DAPO)

1: Input: Initialize policy π(0) with parameters θ(0); mirror map Φ
2: for k = 0, . . . ,K − 1 do
3: Find Q̂(k) that approximates Q(k) (Critic Update)
4: Find θ(k+1) that (approximately) solves the problem

min
θ∈Θ

E
s∼d(k)

ρ

[
DΦ∗

(
∇Φ(π(k)

s )− ηkQ̂(k)
s , fθs

)]
5: Assign π(k+1)

s = projΦ∆(A)

(
∇Φ∗(fθ

(k+1)

s )
)
, s ∈ S

6: end for

3 Policy Optimization with Dual Function Approximation

Recall the setting of MDP in Section 2.1. In the tabular case, the policy mirror descent (PMD) method
[Shani et al., 2020a, Lan, 2023, Xiao, 2022] takes the form of (9):

π(k+1)
s = argmin

πs∈∆(A)

{
ηk
〈
Q̂(k)
s , πs

〉
+DΦ(πs, π

(k)
s )
}
, s ∈ S, (13)

where Q̂(k) is some approximation ofQ(k). We note thatQ(k) is not the gradient of the value function
V πρ at π(k), which is given in (4); rather, it is a preconditioned gradient [Kakade, 2001].

When the size of the state-action space becomes large (possibly infinite), we have to resort to function
approximation. Specifically, let πθ be a differentiable mapping from the set of parameters Θ ⊂ Rn to
the set of stochastic policies. The parameter update step corresponding to (13) becomes

θ(k+1)= argmin
θ∈Θ

E
s∼d(k)

ρ

[
Ea∼πθ

s

[
Q̂(k)
s,a

]
+DΦ(π

θ
s , π

(k)
s )
]
, (14)

where π(k) means πθ
(k)

, and d(k)ρ and Q̂(k)
s,a are simple notations for dπ

(k)

ρ and Q̂π
(k)

s,a respectively. This
approach is adopted by, e.g., Tomar et al. [2020] and Vaswani et al. [2021]. However, the optimization
problem is no longer convex in θ, and its convergence analysis becomes more challenging.

Alfano et al. [2023] introduced Approximate Mirror Policy Optimization (AMPO), a framework that
incorporates general parametrization into PMD with convergence guarantees. A key instrument they
introduced is the Bregman projected policy class. The idea is to use a parametrized function fθ :

S×A → R to approximate the dual update in (7), which in the context of PMD is∇Φ(π(k))−ηkQ̂(k).
Then follow the second step in MD to define the policy class{

πθ : πθs = projΦ∆(A)

(
∇Φ∗(fθs )

)
, s ∈ S

}
, θ ∈ Θ.

For example, using the negative-entropy (Example 2.2 or 2.3), it leads to the softmax policy class:

πθs,a = exp(fθs,a)/∥ exp(fθs )∥1, (s, a) ∈ S ×A. (15)

While such policy classes are widely used in both theory and practice, recognizing them as the com-
position of a Bregman projection, a conjugate mirror map and a generic function approximation fθ
(such as neural networks) allows more structured and sharper convergence analysis.

Facilitated with the Bregman projected policy class, extending PMD with function approximation
rests upon how we approximate ∇Φ(π(k))− ηkQ̂(k) (existing in the dual space) using fθ. AMPO
[Alfano et al., 2023] proposes to minimize the expected L2-distance between them, i.e.,

min
θ

E
s∼d(k)

ρ

[∥∥fθs − (∇Φ(π(k)
s )− ηkQ̂(k)

s

)∥∥2
2

]
. (16)

On the other hand, Lan [2022] tries to minimize the expected (in state distribution) L∞-norm of the
difference between fθs and∇Φ(π(k)

s )− ηQ̂(k)
s .

In contrast, we propose to use the corresponding dual Bregman divergence DΦ∗ to measure their
similarity in the dual space. In particular, Our method finds θ(k+1) by (approximately) solving

min
θ∈Θ

E
s∼d(k)

ρ

[
DΦ∗

(
∇Φ(π(k)

s )− ηkQ̂(k)
s , fθs

)]
, (17)

4



where d(k)ρ can be replaced with other distributions to accommodate the scenario of off-policy training.
Here, we can see that the similarity between the two dual vectors fθs and ∇Φ(π(k)

s ) − ηQ̂(k)
s are

measured by the Bregman divergence of Φ∗, which naturally lives in the dual space. Together with
the Bregman divergence of Φ used in policy projection, they form a complete duality framework.
A complete description of our method is given as Algorithm 1, and we call it Dual Approximation
Policy Optimization (DAPO).

3.1 Instantiations of DAPO

We give three instantiations of DAPO using the three mirror maps given in Examples 2.1-2.3. In
deriving these instantiations as well as implementing the algorithms, instead of directly using the
dual Bregman divergence DΦ∗ , it is often more convenient to use the following identity:

DΦ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s , fθs

)
= DΦ

(
∇Φ∗(fθs ), ∇Φ∗(∇Φ(π(k)

s )− ηkQ̂(k)
s )
)
. (18)

See Corollary B.4 for a proof. This identity will also facilitate our convergence analysis later.

DAPO-L2. With Φ being the squared L2-norm mirror map described in Example 2.1, the approxima-
tion problem in (17) (same as line 4 in Algorithm 1) becomes

min
θ

E
s∼d(k)

ρ

[∥∥fθs − π(k)
s + ηkQ̂

(k)
s

∥∥2
2

]
, (19)

and Line 5 of Algorithm 1 is the Euclidean projection

π(k+1)
s = argmin

π∈∆(A)

∥∥π − f (k+1)
s

∥∥2
2
.

Here we have used the simpler notation f (k+1)
s for fθ

(k+1)

s .

DAPO-KL∗. With Φ being the negative entropy defined on R|A|
+ (see Example 2.2), we have

∇Φ∗(f (k+1)
s ) = exp(fθs,a),

∇Φ∗(∇Φ(π(k))− ηkQ̂(k)
)
= π(k)

s exp
(
−ηkQ̂(k)

s

)
.

Using the identity (18), we can write the loss in the approximation problem (17) as

E
s∼d(k)

ρ

[
DKL

(
exp(fθs )

∥∥π(k)
s exp

(
−ηkQ̂(k)

s

))]
, (20)

where DKL is given by (10). Policy projection as in (15) is necessary to obtain π(k+1) because
∇Φ∗(f

(k+1)
s ) is not in the simplex in general. DAPO-KL∗ has disadvantages in both theory and

practice compared with its close variant DAPO-KL, which we will explain next.

DAPO-KL. With Φ being the negative entropy restricted on ∆(A) (see Example 2.3), the range of
∇Φ∗ is ∆(A), thus the projection step (Line 5 of Algorithm 1) becomes redundant. Here, we have

π(k+1)
s = ∇Φ∗(f (k+1)

s ) = exp(fθs,a)/∥ exp(fθs )∥1,
∇Φ∗(∇Φ(π(k))− ηkQ̂(k)

)
= π(k)

s exp
(
−ηkQ̂(k)

s

)
/Z(k)

s ,

where Z(k)
s =

∥∥π(k)
s exp

(
−ηkQ̂(k)

s

)∥∥
1
. Again using (18), the loss in (17) becomes

E
s∼d(k)

ρ

[
DKL

(
πθs

∥∥∥π(k)
s exp

(
−ηkQ̂(k)

s

)
/Z(k)

s

)]
, (21)

where DKL is given by (12). There are several distinctions between DAPO-KL and DAPO-KL∗.

• The approximation loss in (21) is in terms of the full policy parametrization πθ (normalized
over the simplex), matching the implementation of several popular algorithms [Tomar et al.,
2020, Vaswani et al., 2021]. In contrast, the loss in (20) is in terms of the unnormalized
entity exp(fθ), which will suffer additional loss after policy projection.

• In theory,we are able to provide a competitive convergence analysis of DAPO-KL (see
Section 4.1) thanks to the fact that the two arguments inDKL in (21) are both on the simplex,
which is not the case in (20).

For these reasons, we will only consider DAPO-KL from now on. However, we think it is necessary
to expose the subtleties between the two variants, because many works on policy mirror descent
methods [e.g. Alfano et al., 2023], assumes∇Φ∗ = (∇Φ)−1. We demonstrate that the more nuanced
extension of the MD theory (Lemma B.2) is crucial for developing and analyzing practical algorithms.

5



3.2 Comparison with AMPO, MDPO and FMA-PG

AMPO [Alfano et al., 2023] replaces the minimization problem in Line 4 of Algorithm 1 by (16)
regardless of the mirror map used in policy projection. More concretely, let Φ1 be the negative
entropy on Rn+ and Φ2 be the squared L2 norm. Then AMPO’s approximation loss can be written as

E
s∼d(k)

ρ

[
DΦ∗

2

(
∇Φ1(π

(k)
s )− ηkQ̂(k)

s , fθs

)]
, (22)

and Φ1 is again used in the policy projection step. In theory, as long as the approximation error is
small, it is possible to establish convergence of the method [Alfano et al., 2023]. However, such a
mismatch, or inconsistency, between approximations in primal and dual spaces may cause problems
when the approximation error cannot be made sufficiently small. This is precisely the case in practice,
where we can only afford to run at most a few steps of the stochastic gradient method to reduce the
approximation error. The importance of the consistency between the two mirror maps has also been
pointed out by Tomar et al. [2020].

In Section 5, we demonstrate that on standard benchmarks DAPO-KL obtains state-of-the-art per-
formance with only one step of stochastic gradient method in reducing the approximation loss (17),
comparable to SAC [Haarnoja et al., 2018b]. On the other hand, we could not get AMPO competitive
with many numbers of stochastic gradient steps.

The Mirror Descent Policy Optimization (MDPO) method of Tomar et al. [2020] is based on
minimizing over θ directly in the formulation (14). If πθ belongs to the softmax class of (15) and
DΦ is the KL-divergence, then it is equivalent to DAPO-KL. Therefore, our convergence analysis in
Section 4.1 directly applies to MDPO, which is not provided by Tomar et al. [2020].

The Functional Mirror Ascent (FMA-PG) framework of Vaswani et al. [2021] also takes the form (14).
However, similar to MDPO, Vaswani et al. [2021] did not exploit any composition structure of the
parametrization πθ or the MDP structure. Rather, they conducted convergence analysis based on the
general theory for smooth, non-convex optimization, which leads to considerably weaker results.

3.3 SAC as a special case of DAPO-KL

Soft Actor-Critic (SAC) [Haarnoja et al., 2018a] is a very popular reinforcement learning algorithm,
which was developed under the framework of entropy-regularized reinforcement learning. Tomar
et al. [2020] compared SAC’s actor update loss function with (21) and pointed out that SAC is similar
to MDPO (same as DAPO-KL, as we discussed above) by replacing the previous iterate π(k) with
the uniform distribution. Here, we will prove a much stronger result, showing that by choosing the
learning rate ηk appropriately, Equation (21) become exactly SAC’s policy update rule.

To prove this, we will first briefly introduce the framework of entropy-regularized reinforcement
learning and then derive the corresponding DAPO-KL algorithm under this framework. 1 With a
regularization parameter τ > 0, the regularized value function in this framework is

V πτ,ρ = Eat∼πst

[∑∞
t=0 γ

t (c(st, at) + τ log π(at | st)) | s0 ∼ ρ
]
.

Then, we can similarly define the Q-value function as

Qπτ (s, a) = Eat∼πst

[∑∞
t=0 γ

t (c(st, at) + τ log π(at | st)) | s0 = s, a0 = a
]
. (23)

As shown in Cayci et al. [2021], the policy gradient for this entropy-regularized value function is

∇sV πτ,ρ = 1
1−γ d

π
ρ,sQ

π
τ,s ∈ R|A|.

Therefore, we can obtain the corresponding DAPO algorithm by using this policy gradient. Setting Φ
as the negative entropy, we obtain the corresponding DAPO-KL update rule as

θ(k+1) ∈ argmin
θ

E
s∼d(k)

ρ

[
DKL

(
πθs

∥∥∥ π(k)
s exp

(
−ηkQ(k)

τ,s

)
/Z(k)

s

)]
, (24)

where Z(k)
s is the normalization factor and we take the exact Q-value function for simplicity.

1See Cen et al. [2022] and Cayci et al. [2021] for backgrounds on entropy-regularized reinforcement learning.

6



Now, we switch our attention to the SAC algorithm in Haarnoja et al. [2018a]. The subtlety is
that the soft Q-value function used in Haarnoja et al. [2018a] is defined differently from the one in
equation (23). To be more clear, we denote it as qπτ , which for any (s, a) ∈ S ×A is defined as{

qπτ (s, a) = c(s, a) + γEs′∼P(s,a) [V
π
τ (s′)] ,

V πτ (s) = Ea′∼πs [τ log π(a
′ | s) + qπτ (s, a

′)] .
(25)

Note that the definition of V πτ remains unaffected. Then, we can immediately obtain the relation
qπτ (s, a) = Qπτ (s, a)− τ log π(a | s). As a result, the policy update rule in SAC is2

θ(k+1) ∈ argmin
θ

E
s∼d(k)

ρ

[
DKL

(
πθs

∥∥∥ exp (−q(k)
τ,s/τ

)
/Z(k)

s

)]
=argmin

θ
E
s∼d(k)

ρ

[
DKL

(
πθs

∥∥∥ exp(−Q(k)
τ,s/τ + log π(k)

s

)
/Z(k)

s

)]
=argmin

θ
E
s∼d(k)

ρ

[
DKL

(
πθs

∥∥∥ π(k)
s exp

(
−Q(k)

τ,s/τ
)
/Z(k)

s

)]
,

which is exactly the same as the update rule in Eq. (24) if we take ηk = 1
τ for any k. Therefore,

we conclude that SAC’s update rule can be obtained by taking ηk = 1
τ for any k in DAPO-KL for

an entropy-regularized MDP. As an immediate consequence, we can have a tight convergence rate
analysis for SAC, as given in Section 4.2.

4 Convergence Analysis

In this section, we present the convergence analysis of DAPO-KL and SAC. These results are
nontrivial extensions of similar results for PMD method in the tabular case [Xiao, 2022] and with the
log-linear policy class [Yuan et al., 2022]. The analysis of DAPO-L2 is deferred to Appendix C.

4.1 Analysis of DAPO-KL

We make following three assumptions about running Algorithm 1, with initial distribution ρ ∈ ∆(S).

(A1) There exist constants ϵcritic, ϵactor > 0 such that for every iteration k, it holds that

E
s∼d(k)

ρ

[∥∥Q̂(k)
s −Q(k)

s

∥∥
∞

]
≤ ϵcritic,

E
s∼d(k)

ρ

[
DKL

(
π(k+1)
s

∥∥∥π(k)
s exp

(
−ηkQ̂(k)

s

)
/Z(k)

s

)]
≤ ηkϵactor

(26)

(A2) There exists a constant ϑρ ≥ 1 such that for any k,

max


∥∥∥∥∥ d⋆ρ

d
(k+1)
ρ

∥∥∥∥∥
∞

,

∥∥∥∥∥d(k+1)
ρ

d
(k)
ρ

∥∥∥∥∥
∞

,

∥∥∥∥∥∥
d
(k+1)
d⋆ρ

d
(k)
ρ

∥∥∥∥∥∥
∞

,

∥∥∥∥∥∥
d
(k+1)
d⋆ρ

d⋆ρ

∥∥∥∥∥∥
∞

 ≤ ϑρ.
(A3) There exists a constant Cρ > 0 such that for any k,

max
s∈supp

(
d
(k)
ρ

)
{∥∥∥∥ π⋆s

π
(k+1)
s

∥∥∥∥
∞
,

∥∥∥∥∥ π
(k)
s

π
(k+1)
s

∥∥∥∥∥
∞

}
≤ Cρ.

Here, in (A1), we assume that Q̂(k) is a good enough approximation of Q(k), which is a problem
that has been extensively studied both theoretically and empirically [Li and Lan, 2023, Chen et al.,
2022a, Fujimoto et al., 2018]. We also assume that the parameterized function fθ is powerful enough
to approximate the dual vector ∇Φ(π(k)) − ηkQ̂(k), which is a common assumption for studying
function approximation [Alfano et al., 2023, Lan, 2022, Agarwal et al., 2021].

Then, (A2) assumes that the distribution mismatch coefficient is bounded, which is often needed for
analyzing policy gradient methods [Xiao, 2022, Yuan et al., 2022] and can be satisfied if we take

2The original proposition of SAC in Haarnoja et al. [2018a] uses exp(q
(k)
τ,s/τ) instead of exp(−q(k)τ,s/τ)

because it considers reward maximization instead of cost minimization.

7



ρ = Unif(S) (see Lemma D.7). Meanwhile, (A3) is an assumption on policy evolution. It holds, for
example, when we apply DAPO-KL with entropy regularization [Cayci et al., 2021, Cen et al., 2022]
and it covers the case of SAC (see discussion in Section 3.2).

Under these assumptions, we have the following theorem and the proof is given in Appendix D.

Theorem 4.1 (Linear Convergence of DAPO-KL). Consider Algorithm 1 with initial policy π(0),
initial distribution ρ ∈ ∆(S) and Φ being the negative entropy restricted on ∆(A). Suppose
Assumptions (A1), (A2) and (A3) hold and the step sizes satisfy η0 > 1 and ηk+1 ≥ (ϑρ/(ϑρ − 1)) ηk
for all k ≥ 0. Then, for any comparator policy π⋆, we have

V (K)
ρ − V ⋆ρ ≤

(
1− 1

ϑρ

)K (
V (0)
ρ − V ⋆ρ +

D⋆
0/(ϑρ − 1)

(1− γ)η0

)
+
ϑ2ρψ(ϵactor) + 2ϑρϵcritic

1− γ ,

where ψ(x) = (1 + Cρ)
(
x+
√
2x
)

for x ≥ 0.

Remark 4.2. Theorem 4.1 obtains linear convergence (up to an error floor dictated by ϵactor and
ϵcritic) by employing a geometrically growing learning rate. We can also obtain O(1/K) sublinear
rates with a constant step size following similar proof techniques. We omit the details as such results
can be found in, for example, Xiao [2022], Yuan et al. [2022], Alfano et al. [2023].

4.2 Analysis of SAC

Although we have shown that SAC is a special case of DAPO-KL in Section 3.2, its convergence
analysis is somewhat different from the above, as it is formulated under the framework of entropy-
regularized reinforcement learning. Specifically, the key difference in analysis lies in the following
modified performance difference lemma.

Lemma 4.3 (Modified Performance Difference Lemma). For any two policies π, π̃ : S 7→ ∆(A),
initial distribution ρ ∈ ∆(S) and regularization strength τ > 0, it holds that

V πτ,ρ − V π̃τ,ρ =
1

1− γEs∼dπρ
[〈
Qπ̃τ,s, πs − π̃s

〉
+ τDKL(πs∥π̃s)

]
=

1

1− γEs∼dπ̃ρ
[〈
Qπτ,s, πs − π̃s

〉
− τDKL(π̃s∥πs)

]
.

The proof is given in Appendix E. Using Lemma 4.3, the convergence guarantee of DAPO-KL with
entropy regularization (and thus SAC) is summarized in the following theorem.

Theorem 4.4 (Sublinear Convergence of SAC). Consider running Algorithm 1 for entropy-regularized
reinforcement learning with initial policy π(0), regularization strength τ , initial distribution ρ ∈ ∆(S)
and Φ being the negative entropy restricted on ∆(A). Suppose Assumptions (A1), (A2) and (A3)
hold and the step sizes satisfy ηk = η ≤ 1

τϑρ
for any k. Then, for any comparator policy π⋆, we have

1

K

K−1∑
k=0

(
V (k)
τ,ρ − V ⋆τ,ρ

)
≤ 1

K

(
D⋆

0

(1− γ)η +
V

(0)
τ,d⋆ρ

1− γ

)
+
ϑρψ(ϵactor) + (2− γ)ϑρϵcritic

(1− γ)2 ,

where D⋆
0 = Es∼d⋆ρ

[
DKL

(
π⋆s ∥ π(0)

s

)]
and ψ(x) = (1 + Cρ)

(
x+
√
2x
)

for x ≥ 0.

The full proof is given in Appendix E. To the best of our knowledge, this is the first convergence rate
analysis of the SAC algorithm under general function approximation.

5 Experiments

In this section, we present our experiment results on several standard MuJoCo benchmark tasks
[Todorov et al., 2012]. We compare the performance of DAPO-KL, SAC [Haarnoja et al., 2018b],
and AMPO [Alfano et al., 2023].

In order to demonstrate the importance of having primal-dual consistency, we modify AMPO to
enforce it albeit in a naive way. Specifically, as discussed in Section 3.2, AMPO’s approximation loss

8



0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 R
et

ur
n

HalfCheetah-v4 (m = 1)

SAC DAPO-KL AMPO MAMPO

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

500

1000

1500

2000

2500

3000

3500

Hopper-v4 (m = 1)

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

1000

2000

3000

4000

5000

Walker2d-v4 (m = 1)

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

1000

2000

3000

4000

5000

Ant-v4 (m = 1)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

2000

4000

6000

8000

10000

A
ve

ra
ge

 R
et

ur
n

HalfCheetah-v4 (m = 10)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

500

1000

1500

2000

2500

3000

3500

Hopper-v4 (m = 10)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

4000

5000
Walker2d-v4 (m = 10)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

4000

5000

Ant-v4 (m = 10)

Figure 1: Average return curves on MuJoCo benchmarks. Each curve is averaged over 5 random
seeds and the shaded area represents the 95% confidence interval. Here m represents the number of
stochastic gradient steps in each policy update iteration.

can be expressed as (22) with Φ1 being negative entropy and Φ2 being squared L2-norm. Therefore,
a naive way to enforce primal-dual consistency is to replace Φ1 by Φ2 in (22), which gives

E
s∼d(k)

ρ

[∥∥fθs − (π(k)
s − ηkQ̂(k)

s

)∥∥2
2

]
. (27)

We call this algorithm Modified AMPO (MAMPO). Note that in MAMPO, Φ1 (negative entropy) is
still used in the policy projection step, which is different from DAPO-L2.

Although in theory we assume that the policy optimization loss is approximately minimized in each
iteration, in practice, it may be only feasible to run a few steps of the stochastic gradient method to
reduce the loss. Therefore, the number of stochastic gradient steps per iteration can be an important
hyper-parameter for the algorithm. In experiments, all algorithms are evaluated under both m = 1
and m = 10 stochastic gradient step per iteration. Implementation details are given in Appendix F.

The results are summarized in Fig. 1. From the plots, we can see that DAPO-KL performs about
the same as SAC on all tasks, which is expected as we have shown that SAC is a special case of
DAPO-KL. Meanwhile, they are not sensitive to number of stochastic gradient steps per iteration.

On the other hand, AMPO fails to learn anything non-trivial on all tasks no matter it uses m = 1 or
m = 10 stochastic gradient steps. Nevertheless, we retain the possibility that our implementation of
AMPO may not be the optimal and provide more details of its hyperparameter tuning in Appendix G.
In contrast, MAMPO is able to complete non-trivial learning among three tasks and gets better with
more gradient steps, indicating the benefit of the primal-dual consistency in (27). However, it is still
far inferior to DAPO-KL and SAC.

6 Conclusions

DAPO is a novel duality framework for incorporating general function approximation into policy
mirror descent methods. Besides the mirror map in policy projection, it uses the dual mirror map for
measuring the function approximation error. We establish linear and sublinear convergence rates of
DAPO under different step size rules and show that it incorporates state-of-the-art algorithms like
SAC as a special case, immediately providing them with strong convergence guarantees.

For future directions, DAPO paves the way for exploring new variants of PMD methods based
on different mirror maps, e.g., with the negative Tsallis entropy. Another interesting question to
investigate is how to characterize the effects of using inconsistent mirror maps in AMPO.

9



References
Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed exploration

for provable policy gradient learning. Advances in neural information processing systems, 33:
13399–13412, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res., 22(98):
1–76, 2021.

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A novel framework for policy mirror descent with
general parametrization and linear convergence. arXiv preprint arXiv:2301.13139, 2023.

Pierre-Cyril Aubin-Frankowski, Anna Korba, and Flavien Léger. Mirror descent with relative smooth-
ness in measure spaces, with application to sinkhorn and em. arXiv preprint arXiv:2206.08873,
2022.

Heinz G. Bauschke and Jonathan M. Borwein. Legendre functions and the method of random
bregman projections. Journal of Convex Analysis, 4(1):27–67, 1997.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Dimitri Bertsekas. Convex optimization theory, volume 1. Athena Scientific, 2009.

Dimitri P Bertsekas. Dynamic programming and optimal control 4th edition, volume ii. Athena
Scientific, 2015.

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for finite
mdps. In International Conference on Artificial Intelligence and Statistics, pages 2386–2394.
PMLR, 2021.

Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Number 8:3-4 in Foundations
and Trends in Machine Learning. now Publishers Inc., 2015.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

Semih Cayci, Niao He, and Rayadurgam Srikant. Linear convergence of entropy-regularized natural
policy gradient with linear function approximation. arXiv preprint arXiv:2106.04096, 2021.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

Zaiwei Chen and Siva Theja Maguluri. Sample complexity of policy-based methods under off-policy
sampling and linear function approximation. In International Conference on Artificial Intelligence
and Statistics, pages 11195–11214. PMLR, 2022.

Zaiwei Chen, John Paul Clarke, and Siva Theja Maguluri. Target network and truncation overcome
the deadly triad in q-learning. arXiv preprint arXiv:2203.02628, 2022a.

Zaiwei Chen, Sajad Khodadadian, and Siva Theja Maguluri. Finite-sample analysis of off-policy
natural actor–critic with linear function approximation. IEEE Control Systems Letters, 6:2611–
2616, 2022b.

Casey Chu, Jose Blanchet, and Peter Glynn. Probability functional descent: A unifying perspective on
gans, variational inference, and reinforcement learning. In International Conference on Machine
Learning, pages 1213–1222. PMLR, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pages 1587–1596. PMLR,
2018.

10



Jakub Grudzien, Christian A Schroeder De Witt, and Jakob Foerster. Mirror learning: A unifying
framework of policy optimisation. In International Conference on Machine Learning, pages
7825–7844. PMLR, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal convergence rate for exact
policy mirror descent in discounted markov decision processes. arXiv preprint arXiv:2302.11381,
2023.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja Maguluri. On
the linear convergence of natural policy gradient algorithm. In 2021 60th IEEE Conference on
Decision and Control (CDC), pages 3794–3799. IEEE, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Guanghui Lan. Policy optimization over general state and action spaces. arXiv preprint
arXiv:2211.16715, 2022.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106,
2023.

Guanghui Lan, Yan Li, and Tuo Zhao. Block policy mirror descent. SIAM Journal on Optimization,
33(3):2341–2378, 2023.

Yan Li and Guanghui Lan. Policy mirror descent inherently explores action space. arXiv preprint
arXiv:2303.04386, 2023.

Yan Li, Guanghui Lan, and Tuo Zhao. Homotopic policy mirror descent: Policy convergence, implicit
regularization, and improved sample complexity. arXiv preprint arXiv:2201.09457, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region policy optimization
attains globally optimal policy. arXiv preprint arXiv:1906.10306, 2019.

Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh, Csaba Szepesvári, and Dale
Schuurmans. Ordering-based conditions for global convergence of policy gradient methods. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Arkadi Semenovič Nemirovski and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

11



Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. The Journal of
Machine Learning Research, 22(1):12348–12355, 2021.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

Ralph Tyrrell Rockafellar. Conjugates and legendre transforms of convex functions. Canadian
Journal of Mathematics, 19:200–205, 1967.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
convergence and faster rates for regularized mdps. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5668–5675, 2020a.

Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization with
bandit feedback. In International Conference on Machine Learning, pages 8604–8613. PMLR,
2020b.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033.
IEEE, 2012.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. arXiv preprint arXiv:2005.09814, 2020.

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist,
Marlos C Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surrogate
functions for stable and efficient reinforcement learning. arXiv preprint arXiv:2108.05828, 2021.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in rl. arXiv preprint arXiv:2003.14089,
2020.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning
Research, 23(282):1–36, 2022.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural)
actor-critic algorithms. Advances in Neural Information Processing Systems, 33:4358–4369, 2020.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies. arXiv preprint arXiv:2210.01400, 2022.

12



Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. Cautiously optimistic policy optimization
and exploration with linear function approximation. In Conference on Learning Theory, pages
4473–4525. PMLR, 2021.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy mirror
descent for regularized reinforcement learning: A generalized framework with linear convergence.
SIAM Journal on Optimization, 33(2):1061–1091, 2023.

13



A Related Work

PG and PMD in tabular MDPs. Although the proposal of policy gradient theorem and natural
policy gradient (NPG) can be traced back to around 2000s or even before [Williams, 1992, Konda
and Tsitsiklis, 1999, Sutton et al., 1999, Kakade, 2001], the study of its convergence to the global
optimum only started in recent years. On the other hand, mirror descent algorithm [Nemirovski and
Yudin, 1983] has been extensively studied for a long time as an online learning algorithm Bubeck
et al. [2012]. To connect these two, Neu et al. [2017] first shows that NPG can be viewed as a special
case of policy mirror descent (PMD) and most of the following convergence analyses are based
on this viewpoint. For tabular MDPs, Shani et al. [2020a] shows that unregularized NPG with a
softmax policy has a O(1/

√
K) convergence rate. Agarwal et al. [2021], Vieillard et al. [2020], Xu

et al. [2020] then improve it to the O(1/K) convergence rate under different settings. After that,
Khodadadian et al. [2021], Bhandari and Russo [2021], Xiao [2022] prove the linear convergence
rate for the NPG method. Very recently, Johnson et al. [2023] shows that a linear convergence rate
is optimal for NPG in tabular MDPs and Mei et al. [2023] provides a new perspective by proving a
necessary and sufficient ordering-based condition for NPG convergence in bandit setting.

PG and PMD in regularized MDPs. Another parallel line of work analyzes applying NPG method
to maximum entropy reinforcement learning. Cayci et al. [2021], Cen et al. [2022] show that NPG
with softmax policies can converge linearly in entropy-regularized MDPs while Lan [2023] also
shows general PMD method converges linearly. Then, the linear convergence of PMD is extended to
MDPs with general convex regularizers by Zhan et al. [2023]. Meanwhile, Li et al. [2022] and Lan
et al. [2023] also propose other variants of PMD methods that converge linearly in entropy-regularized
MDPs.

PG and PMD with function approximation. Agarwal et al. [2021] shows Q-NPG with log-linear
policies achieves O(1/

√
K) convergence rate while Cayci et al. [2021] and Yuan et al. [2022]

show that NPG with log-linear policies can converge linearly in entropy-regularized MDPs and
unregularized MDPs. Meanwhile, Chen et al. [2022b] and Chen and Maguluri [2022] show similar
O(1/K) and linear convergence result under different assumptions, respectively. For more general
function approximation setting, Wang et al. [2019] shows that NPG with two-layer neural network has
O(1/

√
K) convergence rate and Liu et al. [2019] shows that NPG with multi-layer neural network

achieves O(1/
√
K) convergence rate. Recently, Alfano et al. [2023] shows PMD method with

general function approximation can converge linearly. The main difference between Alfano et al.
[2023] and our work lies on how we define approximation, as discussed in Section 3.2.

Applications of PG. Together with the rise of deep Q-learning [Mnih et al., 2013], PG methods
have also inspired many successful practical algorithms for real-world control task, including DDPG
in Lillicrap et al. [2015], TRPO in Schulman et al. [2015], PPO in Schulman et al. [2017] and SAC in
Haarnoja et al. [2018b,a]. Recently, Tomar et al. [2020] and Vaswani et al. [2021] propose general
policy optimization algorithms based on mirror descent that are similar to ours. However, both of
them treat policy parameterization as a black box and neither provides a convergence rate analysis.

Other related work. The capability of policy gradient methods to do exploration in MDPs is also
studied in Cai et al. [2020], Agarwal et al. [2020], Shani et al. [2020b], Zanette et al. [2021]. Grudzien
et al. [2022] proposes an abstract framework called mirror learning for both tabular and continuous-
space MDPs that includes mirror descent as a special case. It provides an asymptotic convergence
analysis but does not consider any function approximation setting. Finally, for optimization in
functional space, Chu et al. [2019] provides a framework setup that unifies variational inference and
reinforcement learning. More recently, Aubin-Frankowski et al. [2022] studies mirror descent in
general functional space and provides a rigorous convergence rate analysis. However, it only focuses
on the primal space.

B Legendre Function and Relaxations

Let X be a normed vector space, possibly of infinite dimension, and Φ : X → R ∪ {+∞} a proper,
closed convex function with domΦ = {x ∈ X |Φ(x) < +∞}.

14



Definition B.1. The function Φ is of Legendre type if

(a) The interior of domΦ, denoted by D, is nonempty;

(b) Φ is differentiable and strictly convex on D;

(c) For any sequence {xn} ⊂ D which converges to a boundary point of D, it holds that
limn→∞ ∥∇Φ(xn)∥ =∞.

Let X ∗ be the dual vector space of X . The (Legendre) conjugate of Φ is defined as follows: for any
x⋆ ∈ X ⋆,

Φ∗(x∗) = sup
x∈domΦ

{⟨x, x∗⟩ − Φ(x)} . (28)

Similarly, domΦ∗ = {x∗ ∈ X ∗ |Φ∗(x∗) < +∞} and D∗ = int (domΦ∗). If Φ is of Legendre
type, then its gradient∇Φ is one-to-one from D to D∗ and ∇Φ∗ = (∇Φ)−1; in other words, for any
x ∈ D and x∗ ∈ D∗,

∇Φ∗(∇Φ(x)) = x, ∇Φ(∇Φ∗(x∗)) = x∗. (29)
See Rockafellar [1970, Theorem 26.5] for further details.

However, if Φ is not of Legendre type, then (29) may not hold. In particular, this is the case if
the domΦ is the simplex ∆ = {x ∈ Rn+ |

∑
i xi = 1}, which has an empty interior. In fact, such

functions are not even differentiable. To see this, let Φ(x) = ϕ(x) + δ(x|∆) where ϕ is convex
and differentiable over Rn, and δ(·|∆) is the indicator function of ∆, i.e., δ(x|∆) = 0 if x ∈ ∆
and +∞ otherwise. Then Φ is not a differentiable function. However, it is subdifferentiable with
subdifferential

∂Φ(x) = {∇ϕ(x) + c1 | c ∈ R}, (30)

where 1 = [1 . . . 1]
⊤. Given the importance of simplex in studying MDPs, we present the

following relaxation of (29), which is crucial for our main results.
Lemma B.2. Suppose Φ(x) = ϕ(x) + δ(x|L) where ϕ is a convex function of Legendre type and L
is an affine subspace. Assume that int (domϕ) ∩ L ≠ ∅. Then we have

∇Φ∗(∇Φ(x)) = x, ∀x ∈ int (domϕ) ∩ L.
And for any x∗ ∈ int (domΦ∗) and any x, y ∈ domΦ,〈

∇Φ(∇Φ∗(x∗)), x− y
〉
= ⟨x∗, x− y⟩,

where∇Φ(x) denotes any subgradient in ∂Φ(x).

Proof. Let L = x0 + V where V is a subspace, and denote V⊥ its orthogonal complement. First,
it is commonly known that the subdifferential of an indicator function is a normal cone [Bertsekas,
2009]. Thus, we have ∂δ(x | L) = NL(x)

def
= {g′ | ⟨g′, v + x0 − x⟩ ≤ 0,∀v ∈ V}. That is, for any

g′ ∈ NL(x), we have ⟨g′, v⟩ ≤ ⟨g′, x− x0⟩ for any v ∈ V . Since V is a subspace, for any v ∈ V , we
have αv ∈ V for any α ∈ R. Therefore, we must have ⟨g′, v⟩ = 0 for any v ∈ V and g′ ∈ NL(x).
That is, we have NL(x) = V⊥. (The reverse side is straightforward.)

Suppose x ∈ int (domϕ) ∩ L. Then, according to the subdifferential calculus rule, we must have
∇Φ(x) = ∇ϕ(x) + ξ for some ξ ∈ NL(x) = V⊥. Let x′ ≜ ∇Φ∗(∇Φ(x)). By definition of Φ∗ and
strict convexity of ϕ, we have

x′ = argmax
z∈L∩domϕ

{⟨z,∇ϕ(x) + ξ⟩ − ϕ(z)} .

The optimality condition of the above problem is

∇ϕ(x) + ξ −∇ϕ(x′) ∈ NL∩domϕ(x
′) = V⊥ +Ndomϕ(x

′),

where the last equality above holds because NL(x) = V⊥. Note that x′ = ∇Φ∗(∇Φ(x)) implies
∇Φ(x) ∈ ∂Φ(x′) = ∂ϕ(x′) + ∂δ(x′|L). As shown in Rockafellar [1967], ∂ϕ(x) = ∅ for any
x ∈ bd domϕ for a Legendre type function ϕ. Therefore, we must have x′ ∈ int (domϕ), which
then implies Ndomϕ(x

′) = {0}. Thus, we have

∇ϕ(x) + ξ −∇ϕ(x′) ∈ V⊥

15



Since ξ ∈ V⊥, we conclude that ∇ϕ(x) − ∇ϕ(x′) ∈ V⊥. On the other hand, we have x, x′ ∈ L,
which implies that x− x′ ∈ V . Therefore,

⟨∇ϕ(x)−∇ϕ(x′), x− x′⟩ = 0.

Since ϕ is strictly convex, we must have x = x′, thus proving ∇Φ∗(∇Φ(x)) = x.

To prove the second statement, let x′ ≜ ∇Φ∗(x∗), i.e.,

x′ = argmax
z∈L∩domϕ

{⟨z, x∗⟩ − ϕ(z)} .

By similar reasoning, we have x′ ∈ int (domϕ). Thus, the optimality condition is x∗−∇ϕ(x′) ∈ V⊥,
meaning ∇ϕ(x′) = x∗ + ξ for some ξ ∈ V⊥. Meanwhile,

∇Φ(∇Φ∗(x∗)) = ∇Φ(x′) = ∇ϕ(x′) + ξ′ = x∗ + ξ + ξ′,

where ξ′ ∈ V⊥. Since ξ, ξ′ ∈ V⊥ and x− y ∈ V , we have

⟨∇Φ(∇Φ∗(x∗)), x− y⟩ = ⟨x∗, x− y⟩.
This finishes the proof.

Notice that if domϕ = Rn+ and L = {x ∈ Rn|1Tx = 1}, then domΦ = domϕ ∩ L = ∆. This is
how we will invoke Lemma B.2 with ϕ being the negative entropy function. We call Φ(x) defined in
Lemma B.2 as relaxed Legendre-type function.

Furthermore, we have the following corollary so that the Bregman divergence in Eq. (5) is also
well-defined for the relaxed Legendre-type function.
Corollary B.3. In the setting of Lemma B.2, for any x, y, z ∈ domΦ and g ∈ ∂Φ(z), we have

⟨g, x− y⟩ = ⟨∇ϕ(z), x− y⟩ ,
which makes expression ⟨∇Φ(z), x− y⟩ well-defined for x, y ∈ domΦ.

Proof. Again let L = x0 + V . As shown in the proof of Lemma B.2, we have ∂Φ(z) = ∇ϕ(z) +
∂δ(z | L) and ∂δ(z | L) = V⊥. Then, since domΦ ⊆ L, we have x− y ∈ V , which means to have
⟨g′, x− y⟩ = 0 for any g′ ∈ ∂δ(z | L). Therefore, we have

⟨g, x− y⟩ = ⟨∇ϕ(z), x− y⟩+ ⟨g′, x− y⟩ = ⟨∇ϕ(z), x− y⟩ .

The following corollary gives a dual relationship between Φ’s and Φ∗’s Bregman divergences.
Corollary B.4. In the setting of Lemma B.2, for x∗, y∗ ∈ int (domΦ∗), we have

DΦ∗(x∗, y∗) = DΦ(∇Φ∗(y∗),∇Φ∗(x∗)).

Proof. By definition of the Bregman divergence in Eq. (5), we have

DΦ∗(x∗, y∗)−DΦ(∇Φ∗(y∗),∇Φ∗(x∗))

=Φ∗(x∗)− Φ∗(y∗)− ⟨∇Φ∗(y∗), x∗ − y∗⟩
− [Φ(∇Φ∗(y∗))− Φ(∇Φ∗(x∗))− ⟨∇Φ(∇Φ∗(x∗)),∇Φ∗(y∗)−∇Φ∗(x∗)⟩]

= [Φ∗(x∗) + Φ(∇Φ∗(x∗))]− [Φ∗(y∗) + Φ(∇Φ∗(y∗))]

− ⟨∇Φ∗(y∗), x∗ − y∗⟩+ ⟨x∗,∇Φ∗(y∗)−∇Φ∗(x∗)⟩
(By Lemma B.2 and∇Φ∗(y∗),∇Φ∗(x∗) ∈ domΦ.)

= ⟨x∗,∇Φ∗(x∗)⟩ − ⟨y∗,∇Φ∗(y∗)⟩ − ⟨∇Φ∗(y∗), x∗ − y∗⟩+ ⟨x∗,∇Φ∗(y∗)−∇Φ∗(x∗)⟩
(By Bertsekas [2009, Proposition 5.4.3].)

= ⟨∇Φ∗(x∗), x∗ − x∗⟩+ ⟨∇Φ∗(y∗),−y∗ + y∗ − x∗ + x∗⟩
=0.

16



C Analysis of DAPO-L2

The analysis of DAPO-KL requires a slightly modified assumption (A1’) compared with DAPO-KL.

(A1’) Under the same setting as (A1), we instead have

E
s∼d(k)

ρ

[∥∥f (k+1)
s −

(
π(k)
s + ηkQ̂

(k)
s

)∥∥2
2

]
≤ 2η2kϵactor.

The scaling coefficient η2k is consistent with Assumption (A1’) in Alfano et al. [2023] as they assume
the L2-error for approximating Meanwhile, notice that in (A1) at Eq. (26), the upper bound of the
approximation error is ηkϵactor and is different from (A1’). This is the result of considering the
growth rate of the approximation error in ηk for different Bregman divergences. Specifically, if we
keep f (k+1), f (k) and Q̂(k) fixed, then the L2-error in (A1’) satisfies

E
s∼d(k)

ρ

[∥∥f (k+1)
s −

(
π(k)
s + ηkQ̂

(k)
s

)∥∥2
2

]
∝ η2k.

However, the KL-divergence in (A1) satisfies

E
s∼d(k)

ρ

[
DKL

(
π(k+1)
s

∥∥∥π(k)
s exp

(
−ηkQ̂(k)

s

)
/Z(k)

s

)]
∝ ηk.

Then, we have the following theorem.
Theorem C.1 (Linear Convergence of DAPO-L2). Consider Algorithm 1 with initial policy π(0),
initial distribution ρ ∈ ∆(S) and Φ being the squared L2-norm. Suppose Assumptions (A1’) and
(A2) hold and the step sizes satisfy η0 > 1 and ηk+1 ≥ (ϑρ/(ϑρ − 1)) ηk for all k ≥ 0. Then, for
any comparator policy π⋆, it holds that

V (K)
ρ − V ⋆ρ ≤

(
1− 1

ϑρ

)K (
V (0)
ρ − V ⋆ρ +

D⋆
0/(ϑρ − 1)

(1− γ)η0

)
+
ϑ2ρ
√
2ϵactor + 2ϑρϵcritic

1− γ .

where D⋆
0 = Es∼d⋆ρ

[
DΦ(π

⋆
s , π

(0)
s )
]
.

The proof of Theorem C.1 is given in Appendix D. It retains the convergence rate of Alfano et al.
[2023] albeit with some different techniques. This is expected since in the L2 case, DAPO-L2 is the
same as AMPO.

D Convergence Analysis of DAPO

The analysis starts by proving an approximate version of the Pythagorean theorem, which controls
the error in three-point identity by the corresponding Bregman divergence and will serve as the key
tool of our analysis.

D.1 Approximate Pythagorean Theorem

We begin with a general upper bound and then, we will derive its extensions under specific choices of
mirror maps.
Lemma D.1 (Approximate Pythagorean Theorem). Let Φ : C 7→ R be a proper closed convex mirror
map, D ⊆ C be a closed convex set and v, c ∈ C be two points. Suppose u⋆ = argminu∈DDΦ(u, v).
Then, for any u ∈ D, we have

DΦ(u, u
⋆) +DΦ(u

⋆, c)−DΦ(u, c) ≤ ⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩ .

Proof. Using the definition of Bregman divergence in Eq. (5), we have

DΦ(u, u
⋆) +DΦ(u

⋆, c)−DΦ(u, c) = ⟨∇Φ(u⋆), u− u⋆⟩ − ⟨∇Φ(c), u⋆ − c⟩+ ⟨∇Φ(c), u− c⟩
= ⟨∇Φ(u⋆)−∇Φ(c), u⋆ − u⟩ (31)
= ⟨∇Φ(u⋆)−∇Φ(v), u⋆ − u⟩︸ ︷︷ ︸

≤0 by Lemma 4.1 in Bubeck et al. [2012]

+ ⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩

≤ ⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩ .

17



D.1.1 Extension under Squared L2-Norm

Lemma D.2. Under the condition of Lemma D.1, if we take Φ to be the squared L2-norm (see
Example 2.1) and D = ∆(A), then for any u ∈ D, we have

DΦ(u, u
⋆) +DΦ(u

⋆, c)−DΦ(u, c) ≤
√

2DΦ(v, c).

Proof. By Lemma D.1, we only need to bound ⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩. Then, since∇Φ(x) = x,
we have

⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩ ≤ ∥v − c∥2 ∥u⋆ − u∥2 ≤
√
2DΦ(v, c),

where ∥u⋆ − u∥2 ≤ 1 since u⋆, u ∈ ∆(A).

D.1.2 Extension under Negative Entropy

Lemma D.3. Under the condition of Lemma D.1, if we take Φ to be the negative entropy restricted
on ∆(A) (see Example 2.3) and assume C = D = ∆(A), then for any u ∈ D, we have

DΦ(u, u
⋆) +DΦ(u

⋆, c)−DΦ(u, c) ≤
(
1 +

∥∥∥u
v

∥∥∥
∞

)(
DΦ(v, c) +

√
2DΦ(v, c)

)
.

Proof. By Lemma D.1, we only need to bound ⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩. Then, since C = D =
∆(A), we have v = u⋆. Therefore, we have

⟨∇Φ(v)−∇Φ(c), u⋆ − u⟩ = ⟨∇Φ(v)−∇Φ(c), v − u⟩
=
〈
log

v

c
, v − u

〉
(Since Φ is the negative Shannon entropy)

=DKL(v∥c)−
〈
log

v

c
, u
〉

≤DKL(v∥c) +
∥∥∥u
v

∥∥∥
∞

〈∣∣∣log v
c

∣∣∣ , v〉
≤DKL(v∥c) +

∥∥∥u
v

∥∥∥
∞

(
DKL(v∥c) +

√
2DKL(v∥c)

)
.

(By Lemma D.4)

≤
(
1 +

∥∥∥u
v

∥∥∥
∞

)(
DΦ(v, c) +

√
2DΦ(v, c)

)

Lemma D.4. For any distributions p, q ∈ ∆(A) such that p is absolutely continuous with respect to

q, we have
〈∣∣∣log p

q

∣∣∣ , p〉 ≤ DKL(p∥q) +
√

2DKL(p∥q).

Proof. Without loss of generality, assume supp(p) = A. Now, we define A+ = {a ∈ A | pa ≥ qa}
and A− = {a ∈ A | pa < qa}. Then, when p, q are discrete distributions, we have〈∣∣∣∣log pq

∣∣∣∣ , p〉 =
∑
a∈A+

pa log
pa
qa

+
∑
a∈A−

pa log
qa
pa

=
∑
a∈A+

pa log
pa
qa
−
∑
a∈A−

pa log
qa
pa

+
∑
a∈A−

pa log
qa
pa

+
∑
a∈A−

pa log
qa
pa

=DKL(p∥q) + 2
∑
a∈A−

pa log
qa
pa

≤DKL(p∥q) + 2
∑
a∈A−

pa

(
qa
pa
− 1

)
(Since log x ≤ x− 1 for any x > 0.)

=DKL(p∥q) + 2
∑
a∈A−

(qa − pa)

=DKL(p∥q) + 2 ∥q − p∥TV (By definition of total variation distance.)

≤DKL(p∥q) +
√
2DKL (p∥q). (By Pinsker’s inequality.)

18



D.2 Proof of Theorem C.1 and Theorem 4.1

We first recall the Assumption (A1), (A1’), (A2) and (A3) listed in Section 4. Here, we prove Theorem
C.1 and Theorem 4.1 in a slightly more general version in which the training data distributions can
be different from d

(k)
ρ as long as they satisfy the assumptions. This slight extension makes our result

applicable to the offline training setting where ν(k) ∈ ∆(S) is the reply buffer distribution at k-th
iteration. Taking ν(k) = d

(k)
ρ recovers the online training setting.

(A1) With initial distribution ρ ∈ ∆(S) and reply buffer distribution ν(k) ∈ ∆(S), there exist
constants ϵcritic, ϵactor > 0 such that for any k, it holds

Es∼ν(k)

[∥∥∥Q̂(k)
s −Q(k)

s

∥∥∥
∞

]
≤ ϵcritic,

Es∼ν(k)

DKL

π(k+1)
s

∥∥∥∥∥∥
π
(k)
s exp

(
−ηkQ̂(k)

s

)
Z

(k)
s

 ≤ ηkϵactor,
(A1’) Under the same setting as (A1), we instead have

Es∼ν(k)

[
1

2

∥∥∥f (k+1)
s −

(
π(k)
s + ηkQ̂

(k)
s

)∥∥∥2
2

]
≤ η2kϵactor.

(A2) With initial distribution ρ and replay buffer distribution ν(k) ∈ ∆(S), there exists constant
ϑρ ≥ 1 such that for any k, it holds

max


∥∥∥∥∥ d⋆ρ

d
(k+1)
ρ

∥∥∥∥∥
∞

,

∥∥∥∥∥d(k+1)
ρ

ν(k)

∥∥∥∥∥
∞

,

∥∥∥∥∥∥
d
(k+1)
d⋆ρ

ν(k)

∥∥∥∥∥∥
∞

,

∥∥∥∥∥∥
d
(k+1)
d⋆ρ

d⋆ρ

∥∥∥∥∥∥
∞

 ≤ ϑρ.
(A3) There exists constant Cρ > 0 such that for any k, it holds

max
s∈supp(ν(k))

{∥∥∥∥ π⋆s

π
(k+1)
s

∥∥∥∥
∞
,

∥∥∥∥∥ π
(k)
s

π
(k+1)
s

∥∥∥∥∥
∞

}
≤ Cρ.

To present the proof in an unified way, we further define Cρ,s = max
{∥∥∥ π⋆

s

π
(k+1)
s

∥∥∥
∞
,
∥∥∥ π(k)

s

π
(k+1)
s

∥∥∥
∞

}
for

some state s ∈ S and ψΦ
s : R+ 7→ R+ as

ψΦ
s (x) =

{√
2x, if Φ is squared L2-norm,

(1 + Cρ,s)
(
x+
√
2x
)
, if Φ is the negative entropy on ∆(A). (32)

Then, applying Lemma D.2 and D.3 to Algorithm 1 will result the following key lemma.

Lemma D.5. Consider running Algorithm 1. Then, for policy π = π(k) or π = π⋆, for any s ∈ S , if
Φ is either squared L2-norm or negative entropy on ∆(A), we have

ηk

〈
Q̂(k)
s , π(k+1)

s − πs
〉
+DΦ

(
πs, π

(k+1)
s

)
+DΦ

(
π(k+1)
s , π(k)

s

)
−DΦ

(
πs, π

(k)
s

)
≤ψΦ

s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))
.

Proof. Fix some s ∈ S. Since line 5 of Algorithm 1 states that

π(k+1)
s ∈ argmin

π′
s∈∆(A)

DΦ

(
π′
s,∇Φ∗(f (k+1)

s )
)
,

Then, We can apply Lemma D.2 or D.3 with D = ∆(A), u = πs, u⋆ = π
(k+1)
s , v = ∇Φ∗(f

(k+1)
s )

and c = ∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)
, which gives us

DΦ

(
π(k+1)
s ,∇Φ∗

(
∇Φ(π(k)

s )− ηkQ̂(k)
s

))
−DΦ

(
πs,∇Φ∗

(
∇Φ(π(k)

s )− ηkQ̂(k)
s

))
19



+DΦ

(
πs, π

(k+1)
s

)
≤ ψΦ

s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))
.

By using the identity in Eq. (31), for the left-hand side of the above inequality, we have

LHS =
〈
∇Φ(π(k+1)

s )−∇Φ
(
∇Φ∗

(
∇Φ(π(k)

s )− ηkQ̂(k)
s

))
, π(k+1)
s − πs

〉
=
〈
∇Φ(π(k+1)

s )−
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)
, π(k+1)
s − πs

〉
(By Lemma B.2.)

=ηk

〈
Q̂(k)
s , π(k+1)

s − πs
〉
+
〈
∇Φ(π(k+1)

s )−∇Φ(π(k)
s ), π(k+1)

s − πs
〉

=ηk

〈
Q̂(k)
s , π(k+1)

s − πs
〉
+DΦ

(
πs, π

(k+1)
s

)
+DΦ

(
π(k+1)
s , π(k)

s

)
−DΦ

(
πs, π

(k)
s

)
(By using the identity in Eq. (31) again on the second term above.)

The proof is then complete by plugging this inequality back.

Notice that the conditions in Assumption (A1) and (A1’) can unifiedly written as

Es∼ν(k)

[
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

))]
≤ ηωΦ

k ϵactor,

where we define ωΦ as

ωΦ =

{
2, if Φ is squared L2-norm,
1, if Φ is the negative entropy on ∆(A).

Therefore, we can summarize both Theorem C.1 and 4.1 into the following theorem and present its
proof.

Theorem D.6. Consider Algorithm 1 with initial policy π(0), initial distribution ρ ∈ ∆(S) and Φ
being either the squared L2-norm or negative entropy on ∆(A). Let Assumption (A1), (A1’), (A2),
(A3) hold and suppose the learning rates satisfy η0 ≥ 1 and ηk+1 ≥ ϑρ

ϑρ−1ηk for any k ∈ [K]. Then,

for any comparator policy π⋆, with D⋆
0 = Es∼d⋆ρ

[
DΦ(π

⋆
s , π

(0)
s )
]
, it holds that

V (K)
ρ − V ⋆ρ ≤

(
1− 1

ϑρ

)K (
V (0)
ρ − V ⋆ρ +

D⋆
0/(ϑρ − 1)

(1− γ)η0

)
+
ϑ2ρψ

Φ(ϵactor) + 2ϑρϵcritic

1− γ ,

where we define ψΦ : R+ 7→ R+ as

ψΦ(x) =

{√
2x, if Φ is L2-norm square,

(1 + Cρ)
(
x+
√
2x
)
, if Φ is the negative entropy.

(33)

Proof. Step 1. Fix some s ∈ S and k < K. First, by Lemma D.5 with πs = π
(k)
s , we have

ηk

〈
Q̂(k)
s , π(k+1)

s − π(k)
s

〉
+DΦ

(
π(k)
s , π(k+1)

s

)
≤ψΦ

s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))
,

where we dropped the term DΦ

(
π
(k+1)
s , π

(k)
s

)
since it is always non-negative.

Since DΦ

(
π
(k)
s , π

(k+1)
s

)
≥ 0 as a Bregman divergence, we have

∆(k)
s

def
= ηk

〈
Q̂(k)
s , π(k+1)

s − π(k)
s

〉
− ψΦ

s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂
(k)
s

)))
≤ 0.

(34)
Then, by using Lemma D.5 with πs = π⋆s , the comparator policy, and similarly dropping
DΦ

(
π
(k+1)
s , π

(k)
s

)
, we have

ηk

〈
Q̂(k)
s , π(k+1)

s − π⋆s
〉
+DΦ

(
π⋆s , π

(k+1)
s

)
−DΦ

(
π⋆s , π

(k)
s

)
20



≤ψΦ
s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))
.

By adding and subtracting ηk
〈
Q̂

(k)
s , π

(k)
s

〉
together with some rearrangement, we have

ηk

〈
Q̂(k)
s , π(k+1)

s − π(k)
s

〉
− ψΦ

s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))
+ ηk

〈
Q̂(k)
s , π(k)

s − π⋆s
〉
≤ DΦ

(
π⋆s , π

(k)
s

)
−DΦ

(
π⋆s , π

(k+1)
s

)
.

Taking expectation on both sides with respect to distribution d⋆ρ, we have

Es∼d⋆ρ
[
ηk

〈
Q̂(k)
s , π(k+1)

s − π(k)
s

〉
− ψΦ

s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))]
+ ηkEs∼d⋆ρ

[〈
Q̂(k)
s , π(k)

s − π⋆s
〉]
≤ D⋆

k −D⋆
k+1,

(35)

where D⋆
k = Es∼d⋆ρ

[
DΦ

(
π⋆s , π

(k)
s

)]
.

Then, for the first expectation above, we have

Es∼d⋆ρ
[
∆(k)
s

]
≥
∥∥∥∥∥ d⋆ρ

d
(k+1)
ρ

∥∥∥∥∥
∞

E
s∼d(k+1)

ρ

[
∆(k)
s

]
(By Eq. (34).)

≥ϑρEs∼d(k+1)
ρ

[
∆(k)
s

]
(By Assumption (A2).)

=ηkϑρEs∼d(k+1)
ρ

[〈
Q̂(k)
s , π(k+1)

s − π(k)
s

〉]
− ϑ2

ρEs∼ν(k)

[
ψΦ
s

(
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

)))]
(By Assumption (A2).)

≥ηkϑρEs∼d(k+1)
ρ

[〈
Q(k)
s , π(k+1)

s − π(k)
s

〉]
+ ηkϑρEs∼d(k+1)

ρ

[〈
Q̂(k)
s −Q(k)

s , π(k+1)
s − π(k)

s

〉]
− ϑ2

ρψ
Φ
(
Es∼ν(k)

[
DΦ

(
∇Φ∗(f (k+1)

s ),∇Φ∗
(
∇Φ(π(k)

s )− ηkQ̂(k)
s

))])
(By Assumption (A3), Jensen’s inequality and concavity of ψΦ

s .)
(i)
≥ηkϑρEs∼d(k+1)

ρ

[〈
Q(k)
s , π(k+1)

s − π(k)
s

〉]
− ηkϑρϵcritic − ϑ2

ρψ
Φ
(
ηω

Φ

k ϵactor

)
(By Assumption (A1), (A1’) and monotonicity of ψΦ.)

=(1− γ) ηkϑρ
(
V (k+1)
ρ − V (k)

ρ

)
− ηkϑρϵcritic − ϑ2

ρψ
Φ
(
ηω

Φ

k ϵactor

)
(By Lemma D.8.)

The inequality (i) above holds also because by Hölder’s inequality, we have〈
Q̂(k)
s −Q(k)

s , π(k+1)
s − π(k)

s

〉
≤
∥∥∥Q̂(k)

s −Q(k)
s

∥∥∥
∞

∥∥π(k+1)
s − π(k)

s

∥∥
1
≤
∥∥∥Q̂(k)

s −Q(k)
s

∥∥∥
∞
.

Similarly, for the second expectation in Eq. (35), we have

ηkEs∼d⋆ρ
[〈
Q̂(k)
s , π(k)

s − π⋆s
〉]

=ηkEs∼d⋆ρ
[〈
Q(k)
s , π(k)

s − π⋆s
〉]

+ ηkEs∼d⋆ρ
[〈
Q̂(k)
s −Q(k)

s , π(k)
s − π⋆s

〉]
≥(1− γ)ηk

(
V (k)
ρ − V ⋆

ρ

)
− ηkϑρϵcritic.

By plugging the results above back into Eq. (35) and defining δk
def
= V

(k)
ρ − V ⋆

ρ , we have

ϑρ (δk+1 − δk) + δk ≤
1

(1− γ)ηk
D⋆
k −

1

(1− γ)ηk
D⋆
k+1 +

ϑ2
ρψ

Φ
(
ηω

Φ

k ϵactor

)
(1− γ)ηk

+
2ϑρϵcritic
1− γ . (36)

21



Step 2. Now, dividing both sides of Eq. (36) by ϑρ together with some rearrangement, we can have

δk+1+
D⋆
k+1

(1− γ)ηkϑρ
≤
(
1− 1

ϑρ

)(
δk +

D⋆
k

(1− γ)ηk (ϑρ − 1)

)
+
ϑρψ

Φ
(
ηω

Φ

k ϵactor

)
(1− γ)ηk

+
2ϑρϵcritic
(1− γ)ϑρ

.

Since the learning rates satisfy ηk+1(ϑρ − 1) ≥ ηkϑρ, we have

δk+1 +
D⋆
k+1

(1− γ)ηk+1(ϑρ − 1)

≤
(
1− 1

ϑρ

)(
δk +

D⋆
k

(1− γ)ηk (ϑρ − 1)

)
+
ϑρψ

Φ
(
ηω

Φ

k ϵactor

)
(1− γ)ηk

+
2ϑρϵcritic
(1− γ)ϑρ

≤
(
1− 1

ϑρ

)(
δk +

D⋆
k

(1− γ)ηk (ϑρ − 1)

)
+
ϑρψ

Φ (ϵactor)

(1− γ) +
2ϑρϵcritic
(1− γ)ϑρ

,

where the second inequality above holds because we can straightforwardly verify that ψ
Φ(ηω

Φ

k ϵactor)

ηk
≤

ψΦ(ϵactor) for either choice of Φ. Then, applying the above relation recursively, we have

δK+
D⋆
K

(1− γ)ηK(ϑρ − 1)
≤
(
1− 1

ϑρ

)K (
δ0 +

D⋆
0

(1− γ)η0(ϑρ − 1)

)
+
ϑρψ

Φ (ϵactor)

1− γ
K−1∑
k=0

(
1− 1

ϑρ

)k
+

2ϑρϵcritic
(1− γ)ϑρ

K−1∑
k=0

(
1− 1

ϑρ

)k
.

(37)

We can notice that
K−1∑
k=0

(
1− 1

ϑρ

)k
≤ 1

1−
(
1− 1

ϑρ

) = ϑρ.

Therefore, dropping the term with D⋆
K in Eq. (37), we can finally have

V (K)
ρ − V ⋆

ρ ≤
(
1− 1

ϑρ

)K (
V (0)
ρ − V ⋆

ρ +
D⋆

0/(ϑρ − 1)

(1− γ)η0

)
+
ϑ2
ρψ

Φ(ϵactor) + 2ϑρϵcritic

1− γ .

Then, Theorem C.1 and 4.1 are immediate consequences of Theorem D.6.
Theorem C.1 (Linear Convergence of DAPO-L2). Consider Algorithm 1 with initial policy π(0),
initial distribution ρ ∈ ∆(S) and Φ being the squared L2-norm. Suppose Assumptions (A1’) and
(A2) hold and the step sizes satisfy η0 > 1 and ηk+1 ≥ (ϑρ/(ϑρ − 1)) ηk for all k ≥ 0. Then, for
any comparator policy π⋆, it holds that

V (K)
ρ − V ⋆

ρ ≤
(
1− 1

ϑρ

)K (
V (0)
ρ − V ⋆

ρ +
D⋆

0/(ϑρ − 1)

(1− γ)η0

)
+
ϑ2
ρ

√
2ϵactor + 2ϑρϵcritic

1− γ .

where D⋆
0 = Es∼d⋆ρ

[
DΦ(π

⋆
s , π

(0)
s )
]
.

Proof. Apply ψΦ(x) =
√
2x to Theorem D.6.

Theorem 4.1 (Linear Convergence of DAPO-KL). Consider Algorithm 1 with initial policy π(0),
initial distribution ρ ∈ ∆(S) and Φ being the negative entropy restricted on ∆(A). Suppose
Assumptions (A1), (A2) and (A3) hold and the step sizes satisfy η0 > 1 and ηk+1 ≥ (ϑρ/(ϑρ − 1)) ηk
for all k ≥ 0. Then, for any comparator policy π⋆, we have

V (K)
ρ − V ⋆

ρ ≤
(
1− 1

ϑρ

)K (
V (0)
ρ − V ⋆

ρ +
D⋆

0/(ϑρ − 1)

(1− γ)η0

)
+
ϑ2
ρψ(ϵactor) + 2ϑρϵcritic

1− γ ,

where ψ(x) = (1 + Cρ)
(
x+
√
2x
)

for x ≥ 0.

Proof. Apply ψΦ(x) = (1 + Cρ)
(
x+
√
2x
)

to Theorem D.6.

22



D.3 Technical Lemmas

Lemma D.7. If we take ρ = Unif(S), then for any k and any policy π, it holds that
∥∥∥ dπρ

d
(k)
ρ

∥∥∥
∞
≤ |S|

1−γ .

Proof. By definition of state-visitation distribution in Eq. (3), we can immediately get d(k)ρ,s ≥
(1− γ)ρs for any s ∈ S by truncating all terms with t ≥ 1. Since ρ = Unif(S), we have ρs = 1

|S| for
any s ∈ S. Thus, we have ∥∥∥∥∥ dπρd(k)ρ

∥∥∥∥∥
∞

= max
s∈S

dπρ,s

d
(k)
ρ,s

≤ 1

(1− γ)ρs
≤ |S|

1− γ .

Lemma D.8 (Performance Difference Lemma). For any two policies π, π̃ : S 7→ ∆(A) and initial
distribution ρ ∈ ∆(S), it holds that

V π
ρ − V π̃

ρ =
1

1− γEs∼dπρ
[〈
Qπ̃
s , πs − π̃s

〉]
=

1

1− γEs∼dπ̃ρ [⟨Q
π
s , πs − π̃s⟩] .

Proof. See Lemma 1 in Xiao [2022].

E Convergence Analysis of SAC

In this section, we prove a sublinear convergence rate for SAC under general function approximation
by using our framework. It essentially adopts our proof techniques in Theorem D.6 to an entropy-
regularized objective.

We start by presenting a modified version of the performance difference lemma under entropy-
regularized reinforcement learning.
Lemma 4.3 (Modified Performance Difference Lemma). For any two policies π, π̃ : S 7→ ∆(A),
initial distribution ρ ∈ ∆(S) and regularization strength τ > 0, it holds that

V π
τ,ρ − V π̃

τ,ρ =
1

1− γEs∼dπρ
[〈
Qπ̃
τ,s, πs − π̃s

〉
+ τDKL(πs∥π̃s)

]
=

1

1− γEs∼dπ̃ρ
[〈
Qπ
τ,s, πs − π̃s

〉
− τDKL(π̃s∥πs)

]
.

Proof. By definition of the value function, we have

V π
τ,ρ − V π̃

τ,ρ =Eat∼πst

[
∞∑
t=0

γt (c(st, at) + τ log π(at | st))
∣∣∣∣∣ s0 ∼ ρ

]
− V π̃

τ,ρ

=Eat∼πst

[
∞∑
t=0

γt
(
c(st, at) + τ log π(at | st) + γV π̃

τ (st+1)− V π̃
τ (st)

) ∣∣∣∣∣ s0 ∼ ρ
]

=Eat∼πst

[
∞∑
t=0

γt
(
Qπ̃
τ (st, at)− V π̃

τ (st) + τ log
π(at | st)
π̃(at | st)

) ∣∣∣∣∣ s0 ∼ ρ
]

=Eat∼πst

[
∞∑
t=0

γt
(
Aπ̃τ (st, at) + τ log

π(at | st)
π̃(at | st)

) ∣∣∣∣∣ s0 ∼ ρ
]

(We define Aπτ (s, a) = Qπ
τ (s, a)− V π

τ (s).)

=
1

1− γEs∼dπρ
[〈
Qπ̃
τ,s, πs − π̃s

〉
+ τDKL(πs∥π̃s)

]
.

Then, by similarly expanding the term V π̃
τ,ρ, we can get

V π
τ,ρ − V π̃

τ,ρ =
1

1− γEs∼dπ̃ρ
[〈
Qπ
τ,s, πs − π̃s

〉
− τDKL(π̃s∥πs)

]
.

Thus, the proof is complete.

23



Now, we start to prove Theorem 4.4. Here, for simplicity, we keep using the function ψs and ψ
defined in Eq. (32) and (33). However, we ignore the superscript Φ since in this concrete example,
we only take Φ to be the negative entropy.
Theorem 4.4 (Sublinear Convergence of SAC). Consider running Algorithm 1 for entropy-regularized
reinforcement learning with initial policy π(0), regularization strength τ , initial distribution ρ ∈ ∆(S)
and Φ being the negative entropy restricted on ∆(A). Suppose Assumptions (A1), (A2) and (A3)
hold and the step sizes satisfy ηk = η ≤ 1

τϑρ
for any k. Then, for any comparator policy π⋆, we have

1

K

K−1∑
k=0

(
V (k)
τ,ρ − V ⋆

τ,ρ

)
≤ 1

K

(
D⋆

0

(1− γ)η +
V

(0)
τ,d⋆ρ

1− γ

)
+
ϑρψ(ϵactor) + (2− γ)ϑρϵcritic

(1− γ)2 ,

where D⋆
0 = Es∼d⋆ρ

[
DKL

(
π⋆s ∥ π(0)

s

)]
and ψ(x) = (1 + Cρ)

(
x+
√
2x
)

for x ≥ 0.

Proof. First, it is straightforward to check that Lemma D.5 still holds under entropy-regularized
reinforcement learning. Then, fix some s ∈ S and k < K, similar to the proof of Theorem D.6, just
like Eq. (34), we also have

∆(k)
τ,s

def
= η

〈
Q̂(k)
τ,s , π

(k+1)
s − π(k)

s

〉
− ψs

(
DKL

(
π(k+1)
s

∥∥∥ π(k)
s exp

(
−ηQ̂(k)

τ,s

)
/Z(k)

s

))
≤ 0. (38)

Then, by using Lemma D.5 with πs = π⋆s , the comparator policy, we have

η
〈
Q̂(k)
τ,s , π

(k+1)
s − π⋆s

〉
+DKL

(
π⋆s
∥∥ π(k+1)

s

)
+DKL

(
π(k+1)
s

∥∥ π(k)
s

)
−DKL

(
π⋆s
∥∥ π(k)

s

)
≤ψs

(
DKL

(
π(k+1)
s

∥∥∥ π(k)
s exp

(
−ηQ̂(k)

τ,s

)
/Z(k)

s

))
.

Notice here the key difference to the proof of Theorem D.6 is that we do not drop the term
DKL

(
π
(k+1)
s

∥∥∥ π(k)
s

)
.

By some algebraic rearrangement and taking expectation with respect to distribution d⋆ρ, we then get

Es∼d⋆ρ
[
η
〈
Q̂(k)
τ,s , π

(k+1)
s − π(k)

s

〉
− ψs

(
DKL

(
π(k+1)
s

∥∥∥ π(k)
s exp

(
−ηQ̂(k)

τ,s

)
/Z(k)

s

))]
+ ηEs∼d⋆ρ

[〈
Q̂(k)
τ,s , π

(k)
s − π⋆s

〉]
+ Es∼d⋆ρ

[
DKL

(
π(k+1)
s

∥∥ π(k)
s

)]
≤ D⋆

k −D⋆
k+1,

(39)

where D⋆
k = Es∼d⋆ρ

[
DKL

(
π⋆s

∥∥∥ π(k)
s

)]
.

For the first expectation above, we have

Es∼d⋆ρ
[
∆(k)
τ,s

]
(i)
≥ 1

1− γEs∼d(k+1)

d⋆ρ

[
∆(k)
τ,s

]
=

η

1− γEs∼d(k+1)

d⋆ρ

[〈
Q(k)
τ,s , π

(k+1)
s − π(k)

s

〉]
+

η

1− γEs∼d(k+1)

d⋆ρ

[〈
Q̂(k)
τ,s −Q(k)

τ,s , π
(k+1)
s − π(k)

s

〉]
− ϑρ

1− γEs∼ν(k)

[
ψs

(
DKL

(
π(k+1)
s

∥∥∥ π(k)
s exp

(
−ηQ̂(k)

τ,s

)
/Z(k)

s

))]
(By Assumption (A2))

≥ η

1− γEs∼d(k+1)

d⋆ρ

[〈
Q(k)
τ,s , π

(k+1)
s − π(k)

s

〉]
− ηϵcritic

1− γ −
ϑρ

1− γ ψ(ηϵactor)
(By Assumption (A1), (A3) and concavity of ψs.)

=η
(
V

(k+1)
τ,d⋆ρ

− V (k)
τ,d⋆ρ

)
− ητE

s∼d(k+1)

d⋆ρ

[
DKL

(
π(k+1)
s

∥∥ π(k)
s

)]
− ηϑρϵcritic

1− γ − ϑρψ(ηϵactor)

1− γ
(By Lemma 4.3, the modified performance difference lemma.)

≥η
(
V

(k+1)
τ,d⋆ρ

− V (k)
τ,d⋆ρ

)
− ητϑρEs∼d⋆ρ

[
DKL

(
π(k+1)
s

∥∥ π(k)
s

)]
− ηϑρϵcritic

1− γ − ϑρψ(ηϵactor)

1− γ

24



Here, the above inequality (i) holds because Eq. (38) holds and we have d(k+1)
d⋆ρ,s

≥ (1 − γ)d⋆ρ,s for
any s ∈ S as introduced in Section 2.

Then, for the second expectation in Eq. (39), we can similarly apply Lemma 4.3 and obtain

ηEs∼d⋆ρ
[〈
Q̂(k)
τ,s , π

(k)
s − π⋆s

〉]
=ηEs∼d⋆ρ

[〈
Q(k)
τ,s , π

(k)
s − π⋆s

〉]
+ ηEs∼d⋆ρ

[〈
Q̂(k)
τ,s −Q(k)

τ,s , π
(k)
s − π⋆s

〉]
≥(1− γ)η

(
V (k)
τ,ρ − V ⋆

τ,ρ

)
+ (1− γ)ητD⋆

k − ηϑρϵcritic.

By plugging these bounds back into Eq. (39), we then have

(1− γ)
(
V (k)
τ,ρ − V ⋆

τ,ρ

)
≤D

⋆
k

η
− D⋆

k+1

η
+ V

(k)
τ,d⋆ρ
− V (k+1)

τ,d⋆ρ
+

(2− γ)ϑρϵcritic
1− γ +

ϑρψ(ηϵactor)

(1− γ)η

+

(
τϑρ −

1

η

)
Es∼d⋆ρ

[
DKL

(
π(k+1)
s

∥∥ π(k)
s

)]
− (1− γ)τD⋆

k

≤D
⋆
k

η
− D⋆

k+1

η
+ V

(k)
τ,d⋆ρ
− V (k+1)

τ,d⋆ρ
+

(2− γ)ϑρϵcritic
1− γ +

ϑρψ(ηϵactor)

(1− γ)η
(By taking η ≤ 1

τϑρ
and noticing KL divergence is non-negative.)

Finally, by noticing that ψ(ηϵactor)
η

≤ ψ(ϵactor) and by taking sum from k = 0 to K − 1, we can get

1

K

K−1∑
k=0

(
V (k)
τ,ρ − V ⋆

τ,ρ

)
≤ 1

K

 D⋆
0

(1− γ)η +
V

(0)
τ,d⋆ρ

1− γ

+
ϑρψ(ϵactor) + (2− γ)ϑρϵcritic

(1− γ)2 .

F Implementation Details

F.1 Algorithm Details

The implementations of DAPO-KL, AMPO and MAMPO are based on modifying the actor loss in
SAC while keeping other parts unchanged. Therefore, we will first present the pseudocode of SAC
and then give modified actor losses for DAPO-KL, AMPO and MAMPO.

F.1.1 SAC

The pseudocode of SAC is given in Algorithm 2.

Here, J(τ, θ) and Jq(ϕi,B, ϕtarg,1, ϕtarg,2) in line 10 and 11 represent the loss functions to update
regularization parameter τ and q-value networks, respectively. More details of these two loss functions
can be found in Haarnoja et al. [2018b].

F.1.2 DAPO-KL

To implement DAPO-KL, we will basically replace the update rule in 14 of Algorithm 2 by DAPO-
KL’s update rule. To do this, we first need to rewrite DAPO-KL’s update rule in Eq. (24) in terms of
qπτ = Qπ

τ (s, a) + τ log π(a | s). In particular, we have

θ(k+1) ∈ argmin
θ

E
s∼d(k)

ρ

DKL

πθs
∥∥∥∥∥∥
π
(k)
s exp

(
ηkQ

(k)
τ,s

)
Z

(k)
s


=argmin

θ
E
s∼d(k)

ρ

DKL

πθs
∥∥∥∥∥∥
π
(k)
s exp

(
ηkq

(k)
τ,s − ηkτ log π(k)

s

)
Z

(k)
s


=argmin

θ
E

s∼d(k)
ρ

a∼πθ
s

[
log πθ(a | s)− (1− ηkτ) log π(k)(a | s)− ηkq(k)τ (s, a)

]
(By ignoring normalization constants.)

25



=argmin
θ

E
s∼d(k)

ρ

a∼πθ
s

[
τ log πθ(a | s)− (1− β)τ log π(k)(a | s)− βq(k)τ (s, a)

]
,

where β def
= ηkτ < 1. We can see that the update rule exactly becomes the SAC’s update rule when

β = 1, which means to have ηk = 1
τ

, consistent with our derivation in Section 3.2.

Algorithm 2 Soft Actor-Critic (SAC) [Haarnoja et al., 2018b]

1: Input: Initial policy network parameter θ; initial q-value network parameters ϕ1, ϕ2; replay
buffer D; learning rates λq, λπ, λ; target mixture weight ω ∈ (0, 1); initial regularization power
τ > 0; number of gradient steps per iteration m

2: Set ϕ(0)
targ,1 ← ϕ1 and ϕ(0)

targ,2 ← ϕ2

3: Initialize k ← 0
4: while not done do
5: Observe state s and take action a ∼ πθ(· | s)
6: Observe next state s′, reward r, done signal d and add (s, a, s′, r, d) to buffer D

// {d = 1 if s′ is a terminal state; otherwise, d = 0}
7: If s′ is a terminal state, reset the environment
8: if it’s time to update then
9: Randomly sample a batch of transitions B = {(s, a, r, s′, d)} ⊆ D

10: Update regularization parameter by

τ (k+1) ← τ (k) − λ∇τJ(τ, θ(k))

11: Update q-value networks by

ϕ
(k+1)
i ← ϕ

(k)
i − λq∇ϕi

Jq(ϕi,B, ϕ(k)
targ,1, ϕ

(k)
targ,2, θ

(k), τ (k+1)), i = 1, 2

12: Set θ(k+1)
0 ← θ(k)

13: for j = 1, . . . ,m do
14: Update policy network by

θ
(k+1)
j ← θ

(k+1)
j−1 − λπ∇θ E

s∼B
a∼πθ(·|s)

[
τ (k+1) log πθ(a | s)− min

i=1,2
qϕ

(k+1)
i (s, a)

]∣∣∣∣
θ=θ

(k+1)
j−1

15: end for
16: Set θ(k+1) ← θ

(k+1)
m

17: Update target networks with

ϕ
(k+1)
targ,i ← ωϕ

(k)
targ,i + (1− ω)ϕ(k+1)

i , i = 1, 2

18: Update k ← k + 1
19: end if
20: end while

Therefore, to implement DAPO-KL, we replace the update rule in line 14 of Algorithm 2 by

θ
(k+1)
j ← θ

(k+1)
j−1 −λπ∇θ E

s∼B
a∼πθ

s

[
τ (k+1) log πθ(a | s)− (1− β)τ (k+1) log πθ

(k)

(a | s)

−β min
i=1,2

qϕ
(k+1)
i (s, a)

]∣∣∣∣
θ=θ

(k+1)
j−1

,

where β is a user-specified hyperparameter. Note that we use the standard reparameterization trick
to compute the above gradient [Kingma and Welling, 2013].

26



F.1.3 AMPO

To implement AMPO in Alfano et al. [2023], we will need to replace the update rule in line 14 of
Algorithm 2 by AMPO’s loss in Eq. (16) in a more concrete form. That is, we have

θ(k+1) ∈ argmin
θ

E
s∼d(k)

ρ

[∥∥fθs − (log π(k)
s + ηkQ

(k)
s

)∥∥2
2

]
(40)

=argmin
θ

E
s∼d(k)

ρ

[∥∥fθs − (1− ηkτ) log π(k)
s − ηkq(k)τ,s

∥∥2
2

]
.

Here, fθ should be the exponent of a Gaussian distribution. Therefore, if gθ : S 7→ R2nA is the
policy network, where nA is the dimension of the action space. Then, we have

fθ(s, a) = −
nA∑
i=1

(
gθ(s)i

)2 − 2aig
θ(s)i

2 (gθ(s)nA+i)
2 . (41)

Therefore, to implement AMPO, we replace the update rule in line 14 of Algorithm 2 by

θ
(k+1)
j ← θ

(k+1)
j−1 −λπ∇θ E

s∼B
a∼Unif(A)

[(
fθ(s, a)− (1− ητ (k+1)) log πθ

(k)

(a | s)

−η min
i=1,2

qϕ
(k)
i (s, a)

)2
]∣∣∣∣∣
θ=θ

(k+1)
j−1

,

where η is the mirror descent learning rate.

F.1.4 MAMPO

As discussed in Section 5, MAMPO tries to optimize

θ(k+1) ∈ argmin
θ

E
s∼d(k)

ρ

[∥∥fθs − (π(k)
s + ηkQ

(k)
s

)∥∥2
2

]
,

where fθ(s, a) is defined in Eq. (41). Therefore, to implement MAMPO, we replace the update rule
in line 14 of Algorithm 2 by

θ
(k+1)
j ← θ

(k+1)
j−1 −λπ∇θ E

s∼B
a∼Unif(A)

[(
fθ(s, a)− πθ(k)

(a | s)− η min
i=1,2

qϕ
(k)
i (s, a)

+ητ (k+1) log πθ
(k)

(a | s)
)2]∣∣∣∣

θ=θ
(k+1)
j−1

.

F.2 Hyperparameter Settings

We use the implementation of SAC from the Stable Baseline 3 under the MIT license [Raffin et al.,
2021]. Then, we implement DAPO-KL, AMPO-KL, and MAMPO as modifications of its SAC’s
implementation. All model trainings were completed on 8 NVIDIA V100 GPUs in cluster.

We use SAC’s default hyperparameters on all environments for both SAC and DAPO-KL, while
AMPO-KL and MAMPO contain some tuning. Full hyperparameter details are provided in Table 1.

Particularly for hyperparameter β in DAPO-KL, we take different values for different tasks as shown
in Table 2.

G Additional Experiment Results on AMPO

In this section, we first introduce the original version of AMPO proposed in Alfano et al. [2023],
which is slightly different from what we have in Eq. (40). Then, we present a partial record of our
efforts in tuning AMPO, which shows the difficulty of using this algorithm in practical scenario.
Nevertheless, we retain the possibility that our implementation of AMPO may not be the optimal.

27



Table 1: Hyperparameters of all algorithms
Hyperparameter SAC DAPO-KL AMPO MAMPO

Adam learning rate 3× 10−4 3× 10−4 2× 10−5 3× 10−4

MD learning rate (η) NA NA 1.0 1.0
Entropy regularization (τ ) auto* auto* 0 0

Number of hidden layers 2
Hidden layer size 256

Batch size 256
Discount factor (γ) 0.99

Target mixture weight (ω) 0.005
Replay buffer size 1× 106

* Being “auto” in entropy regularization means to use the update rule at line 10
of Algorithm 2 to automatically adjust τ .

Table 2: Values of hyperparameter β in DAPO-KL for different MuJoCo tasks.
Environments HalfCheetah-v4 Hopper-v4 Walker2d-v4 Ant-v4

β 0.7 0.6 0.4 0.7

G.1 Variants of AMPO

The original version of AMPO proposed in Alfano et al. [2023] is given as

θ(k+1) ∈ argmin
θ

E
s∼d(k)

ρ

[∥∥fθs − (f (k)
s + ηkQ

(k)
s

)∥∥2
2

]
. (42)

While seemingly different from Eq. (40), these two are essentially the same from a theoretical
perspective. To see this, as discussed in Example 2.3, when Φ is the negative entropy restricted
on ∆(A), we can freely take ∇Φ(π) to be any vector in ∂Φ(π) while the corresponding Bregman
divergence DΦ is still well-defined. In particular, we have ∂Φ(π) = {log π + c1 | c ∈ R} with
1 = [1 · · · 1]

⊤. As a result, since the difference between fθs and log π
(k)
s is only an action-

independent normalization constant, Eq. (40) and Eq. (42) are theoretically equivalent.3

Nevertheless, Eq. (40) and Eq. (42) may still be empirically different since the constant difference
can still affect the L2-loss minimization. Therefore, we consider and empirically compare these two
different theoretically equivalent variants of AMPO-KL.4

G.2 Comparison between MAMPO and AMPO-KL

Here, we provide a comparison between MAMPO and the two variants of AMPO-KL in Fig. 2,
where both variants use the same set of hyperparameters as given in Table 1.

We can see that both variants of AMPO-KL almost cannot learn anything non-trivial in all tasks.

G.3 AMPO-KL under Different Hyperparameters

Finally, we also provide a performance comparison of variants of AMPO-KL under different hyper-
parameter settings, where we only show the final-step performance under each setting, given in Table
3, 4, 5 and 6. Nevertheless, we can easily see that AMPO-KL still cannot learn anything non-trivial
under all of these settings.

3While Alfano et al. [2023] claims to obtain Eq. (42) by taking Φ to be the negative entropy on R|A|
+ , this

is not an appropriate argument because such a choice of Φ will enforce ∇Φ(π) = log π + 1, excluding the
freedom of choosing action-independent constant.

4We use the variant in Eq. (40) in all previous experiments.

28



0.0 0.2 0.4 0.6 0.8 1.0
×106

−500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

u
rn

HalfCheetah-v4 (m = 1)

MAMPO AMPO-Var-1 AMPO-Var-2

0.0 0.2 0.4 0.6 0.8 1.0
×106

0

250

500

750

1000

1250

1500

1750

Hopper-v4 (m = 1)

0.0 0.2 0.4 0.6 0.8 1.0
×106

0

200

400

600

800

1000

1200

Walker2d-v4 (m = 1)

0.0 0.2 0.4 0.6 0.8 1.0
×106

−1250

−1000

−750

−500

−250

0

250

500

750

Ant-v4 (m = 1)

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps ×106

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

u
rn

HalfCheetah-v4 (m = 10)

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps ×106

0

500

1000

1500

2000

2500

3000

3500

Hopper-v4 (m = 10)

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps ×106

0

250

500

750

1000

1250

1500

1750

Walker2d-v4 (m = 10)

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps ×106

−400

−200

0

200

400

600

800

Ant-v4 (m = 10)

Figure 2: Comparison under m = 1 and m = 10 gradient steps per iteration between MAMPO and
variants of AMPO-KL. Here, “AMPO-Var-1” refers to Eq. (40) and “AMPO-Var-2” refers to Eq.
(42). Each curve is averaged over 5 different random seeds and the shaded area represents the 95%
confidence interval.

Table 3: Final-step performance of AMPO-Var-1 (Eq. (40)) in HalfCheetah-v4 with entropy regular-
ization (τ = 1.0). Each data point is averaged over 3 different random seeds and ± represents the
95% confidence interval.

lr = 5× 10−6 lr = 1× 10−5 lr = 5× 10−5 lr = 1× 10−4

ηk = 0.1 −94.08± 37.82 −77.18± 16.73 −3.33± 0.17 −178.56± 41.57
ηk = 1 −79.8± 47.96 −61.83± 20.85 −4.19± 0.49 −14.93± 11.05
ηk = 10 −27.83± 28.96 −201.02± 71.98 −8.37± 0.33 −7.58± 0.73
ηk = 100 −220.2± 124.88 −210.46± 168.3 −8.12± 0.35 −7.36± 0.75

Table 4: Final-step performance of AMPO-Var-1 (Eq. (40)) in HalfCheetah-v4 without entropy
regularization (τ = 0). Each data point is averaged over 3 different random seeds and ± represents
the 95% confidence interval.

lr = 5× 10−6 lr = 1× 10−5 lr = 5× 10−5 lr = 1× 10−4

ηk = 0.1 −131.27± 62.23 −129.24± 51.24 −123.17± 63.02 −109.34± 84.59
ηk = 1 −93.94± 46.46 −95.82± 49.19 −83.12± 59.42 −97.82± 47.88
ηk = 10 −50.57± 45.8 −98.75± 24.9 −81.51± 29.18 −57.17± 39.36
ηk = 100 −301.4± 128.66 −295.53± 63.03 −196.38± 136.29 −255.11± 143.2

Table 5: Final-step performance of AMPO-Var-2 (Eq. (42)) in HalfCheetah-v4 with entropy regular-
ization (τ = 1.0). Each data point is averaged over 3 different random seeds and ± represents the
95% confidence interval.

lr = 5× 10−6 lr = 1× 10−5 lr = 5× 10−5 lr = 1× 10−4

ηk = 0.1 −3.56± 0.29 −3.48± 0.52 −3.39± 0.22 −3.59± 0.22
ηk = 1 −4.34± 0.47 −4.24± 0.32 −4.29± 0.26 −4.22± 0.34
ηk = 10 −8.38± 0.23 −8.33± 0.12 −8.4± 0.29 −8.08± 0.57
ηk = 100 41.59± 79.77 −8.38± 0.1 −8.33± 0.56 −8.36± 0.52

29



Table 6: Final-step performance of AMPO-Var-2 (Eq. (42)) in HalfCheetah-v4 without entropy
regularization (τ = 0). Each data point is averaged over 3 different random seeds and ± represents
the 95% confidence interval.

lr = 5× 10−6 lr = 1× 10−5 lr = 5× 10−5 lr = 1× 10−4

ηk = 0.1 −120.73± 34.97 −178.62± 34.49 −174.38± 67.63 −144.4± 54.12
ηk = 1 −87.45± 5.28 −121.66± 56.37 −129.73± 43.94 −157.94± 49.55
ηk = 10 −534.72± 205.25 −237.98± 127.79 −176.42± 235.9 −199.77± 12.45
ηk = 100 −341.7± 94.17 139.05± 118.93 −271.07± 149.01 −411.67± 56.92

30


	Introduction
	Preliminaries
	Markov Decision Processes
	Mirror Descent

	Policy Optimization with Dual Function Approximation
	Instantiations of DAPO
	Comparison with AMPO, MDPO and FMA-PG
	SAC as a special case of DAPO-KL

	Convergence Analysis
	Analysis of DAPO-KL
	Analysis of SAC

	Experiments
	Conclusions
	Related Work
	Legendre Function and Relaxations
	Analysis of DAPO-L2
	Convergence Analysis of DAPO
	Approximate Pythagorean Theorem
	Extension under Squared L2-Norm
	Extension under Negative Entropy

	Proof of Theorem C.1 and Theorem 4.1
	Technical Lemmas

	Convergence Analysis of SAC
	Implementation Details
	Algorithm Details
	SAC
	DAPO-KL
	AMPO
	MAMPO

	Hyperparameter Settings

	Additional Experiment Results on AMPO
	Variants of AMPO
	Comparison between MAMPO and AMPO-KL
	AMPO-KL under Different Hyperparameters


