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Abstract

Human cognition is deeply intertwined with a001
sense of time, known as Chronoception. This002
sense allows us to judge how long facts re-003
main valid and when knowledge becomes out-004
dated. Despite progress in vision, language,005
and motor control, AI still struggles to reason006
about temporal validity. We introduce Chrono-007
cept, the first benchmark to model temporal008
validity as a continuous probability distribution009
over time. Using skew-normal curves fitted010
along semantically decomposed temporal axes,011
Chronocept captures nuanced patterns of emer-012
gence, decay, and peak relevance. It includes013
two datasets: Benchmark I (atomic facts) and014
Benchmark II (multi-sentence passages). Anno-015
tations show strong inter-annotator agreement016
(84% and 89%). Our baselines predict curve017
parameters - location, scale, and skewness - en-018
abling interpretable, generalizable learning and019
outperforming classification-based approaches.020
Chronocept fills a foundational gap in AI’s021
temporal reasoning, supporting applications in022
knowledge grounding, fact-checking, retrieval-023
augmented generation (RAG), and proactive024
agents. Code and data are publicly available.025

1 Introduction026

Humans effortlessly track how information changes027

in relevance over time. We instinctively know when028

facts emerge, become useful, or fade into obsoles-029

cence - a cognitive ability known as Chronoception030

(Fontes et al., 2016; Zhou et al., 2019). This higher-031

order perception of time plays a crucial role in how032

we evaluate the persistence and usefulness of infor-033

mation in real-world contexts. Despite excelling034

in pattern recognition (He et al., 2016), language035

generation (Brown et al., 2020), and motor control036

(Levine et al., 2016), modern AI systems remain037

largely insensitive to the temporal validity of the038

information they process.039

Prior work has advanced temporal understanding040

via event ordering (Allen, 1983; Ning et al., 2020;041

Wen and Ji, 2021), timestamp prediction (Kan- 042

habua and Nørvåg, 2008; Kumar et al., 2012; Das 043

et al., 2017), and temporal commonsense reasoning 044

(Zhou et al., 2019). However, these approaches of- 045

ten reduce time to static labels or binary transitions. 046

Even recent efforts in temporal validity change pre- 047

diction (Wenzel and Jatowt, 2024) model shifts as 048

discrete class changes, neglecting the gradual and 049

asymmetric nature of temporal decay. 050

We introduce Chronocept, a benchmark that 051

models temporal validity as a continuous probabil- 052

ity distribution over time. Using a skewed-normal 053

distribution over logarithmic time, parameterized 054

by location (ξ), scale (ω), and skewness (α) (Az- 055

zalini, 1986; Schmidt et al., 2017), Chronocept 056

captures subtle temporal patterns such as delayed 057

peaks and asymmetric decay. 058

To support structured supervision, we decom- 059

pose each sample along semantic temporal axes. 060

We release two benchmarks: Benchmark I features 061

atomic factual statements, and Benchmark II con- 062

tains multi-sentence passages with temporally in- 063

terdependent elements. High inter-annotator agree- 064

ment across segmentation, axis labeling, and curve 065

parameters validates annotation quality. 066

We benchmark a diverse set of models, includ- 067

ing linear regression, SVMs, XGBoost, FFNNs, Bi- 068

LSTMs, and BERT (Devlin et al., 2019). FFNNs 069

perform best on the simpler Benchmark I, while Bi- 070

LSTMs excel on the more complex Benchmark II. 071

Surprisingly, fine-tuned BERTs do not outperform 072

simpler architectures. To assess the role of tempo- 073

ral structure, we conduct ablations that remove or 074

shuffle temporal axes during training - both lead to 075

marked performance drops. 076

Chronocept enables several downstream applica- 077

tions. In Retrieval-Augmented Generation (RAG), 078

temporal curves guide time-sensitive retrieval; in 079

fact-checking, they help flag decaying or stale facts. 080

Most importantly, Chronocept lays the foundation 081

for proactive AI systems that reason not just about 082
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what to do, but when to do it (Miksik et al., 2020).083

All resources - dataset, and baseline implemen-084

tations - are publicly available to support future085

research in machine time-awareness.086

2 Related Work087

2.1 Temporal Validity Prediction088

In the earliest attempt to formalize the temporal va-089

lidity of information, Takemura and Tajima (2012)090

proposed the concept of “content viability” by clas-091

sifying tweets into “read now,” “read later,” and092

“expired” categories, to prioritize timeliness in in-093

formation consumption. However, their approach094

assumed a rigid, monotonic decay of relevance, fail-095

ing to model scenarios where validity peaks later096

rather than at publication. This restricted its appli-097

cability beyond real-time contexts such as Twitter098

streams.099

Almquist and Jatowt (2019) extended this work100

by defining a “validity period” and effectively101

proposing a “content expiry date” for sentences,102

using linguistic and statistical features. However,103

their reliance on static time classes (e.g., hours,104

days, weeks) sacrificed granularity, and their ap-105

proach required explicit feature engineering rather106

than leveraging more advanced, data-driven meth-107

ods (Das et al., 2017).108

Traditional approaches (Almquist and Jatowt,109

2019; Lynden et al., 2023; Hosokawa et al., 2023)110

mostly treat validity as binary, where information111

is either valid or invalid at a given time, this can be112

formulated as:113

validityi(t) =

{
True if information i is valid at t,
False otherwise

(1)114

where i represents the information under consid-115

eration and t denotes the time at which its validity116

is evaluated. However, this model overlooks grad-117

ual decay, recurrence, and asymmetric relevance118

patterns.119

More recently, Wenzel and Jatowt (2024) in-120

troduced Temporal Validity Change Prediction121

(TVCP), which models how context alters a state-122

ment’s validity window. However, it does not quan-123

tify validity as a continuous probability distribution124

over time.125

Chronocept advances this field by defining tem-126

poral validity as a continuous probability distribu-127

tion, allowing a more precise and flexible represen-128

tation of how information relevance evolves.129

2.2 Temporal Reasoning and Commonsense 130

Temporal reasoning has largely focused on event or- 131

dering (Allen, 1983; Wen and Ji, 2021; Ning et al., 132

2020), predicting temporal context (Kanhabua and 133

Nørvåg, 2008; Kumar et al., 2012; Das et al., 2017; 134

Luu et al., 2021; Jatowt et al., 2013), and com- 135

monsense knowledge (Zhou et al., 2019). While 136

these studies laid the groundwork for understand- 137

ing event sequences, durations, and frequencies, 138

recent work has expanded into implicit or common- 139

sense dimensions of temporal reasoning. 140

TORQUE (Ning et al., 2020) is a benchmark de- 141

signed for answering temporal ordering questions, 142

while TRACIE, along with its associated model 143

SYMTIME (Zhou et al., 2021), primarily ensures 144

temporal-logical consistency rather than modeling 145

truth probabilities. 146

McTACO (Zhou et al., 2019) evaluates temporal 147

commonsense across five dimensions: event dura- 148

tion, ordering, frequency, stationarity, and typical 149

time of occurrence. McTACO assesses whether a 150

given statement aligns with general commonsense 151

expectations, and does not quantify the likelihood 152

of a statement being true over time. 153

Recent work Wenzel and Jatowt, 2023; Jain et al., 154

2023 has explored how LLMs handle temporal 155

commonsense, exposing inconsistencies in event 156

sequencing and continuity. However, these studies 157

do not incorporate probabilistic modeling of tem- 158

poral validity - a core focus of Chronocept, which 159

models truthfulness as a dynamic, evolving proba- 160

bility distribution. 161

2.3 Dataset Structuring for Temporal 162

Benchmarks 163

Temporal annotation frameworks like TimeML 164

(Pustejovsky et al., 2003) and ISO-TimeML (Puste- 165

jovsky et al., 2010) focus on static event rela- 166

tionships, often suffering from low inter-annotator 167

agreement due to event duration ambiguities. The 168

TimeBank series (Pustejovsky, 2003; Cassidy et al., 169

2014) and TempEval challenges (Verhagen, 2007, 170

2010; UzZaman et al., 2012) expanded evaluations 171

but remained limited in modeling evolving event 172

validity. 173

In response, Ning et al. (2018) proposed a multi- 174

axis annotation scheme that structures events into 175

eight distinct categories - Main, Intention, Opin- 176

ion, Hypothetical, Negation, Generic, Static, and 177

Recurrent. Additionally, the scheme prioritizes 178

event start points over full event intervals, reducing 179
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ambiguity and significantly improving IAA scores.180

Chronocept builds on this by refining multi-axis181

annotation to model temporal validity, capturing182

how information relevance shifts over time through183

probabilistic distributions.184

2.4 Statistical Modeling of Temporal Data185

Using Skewed Normal Distribution186

Traditional normal distributions often fail to cap-187

ture skewed temporal patterns. The skew-normal188

distribution (Azzalini, 1986, 1996) provides a more189

flexible alternative by incorporating asymmetry, im-190

proving accuracy in modeling time-dependent in-191

formation relevance (Schmidt et al., 2017). Chrono-192

cept employs this distribution to capture various193

temporal behaviors, including gradual decay, peak194

relevance, and rapid obsolescence.195

3 Chronocept: Task & Benchmark196

Design197

3.1 Problem Definition198

Temporal Validity Prediction (TVP) of Informa-199

tion seeks to model how long a factual statement200

remains true after it is published.201

We formalize Temporal Validity Prediction as a202

probabilistic task of modeling information’s rele-203

vance as a continuous probability distribution over204

time, rather than the binary-or-multiclass settings205

common in earlier work.206

Let T ⊆ R≥0 denote the time domain, where207

t ≥ 0 represents the elapsed time since publication208

of information i.209

Then, we define a binary random variable,210

validityi(t) ∈ {0, 1} (2)211

where validityi(t) = 1 indicates that the infor-212

mation i is valid at time t, and validityi(t) = 0213

otherwise.214

Rather than predicting validityi(t) directly, TVP215

aims to learn a continuous probability density func-216

tion pi(t)217

pi(t) = P
(
validityi(t) = 1

)
, pi : T → [0, 1] (3)218

Accordingly, the probability that the statement219

remains valid throughout any interval [a, b] ⊆ T is220

given by221

P
(
∀ t ∈ [a, b], validityi(t) = 1

)
=

∫ b

a
pi(t) dt

(4)222

Crucially, the model does not impose rigid 223

boundary constraints - such as pi(0) = 1 or mono- 224

tonic decay - thereby permitting the learned dis- 225

tribution to capture complex temporal phenomena, 226

including delayed onset, non-monotonic plateaus, 227

and intermittent resurgences (Takemura and Tajima, 228

2012; Almquist and Jatowt, 2019) 229

3.2 Modeling Temporal Validity 230

We model the temporal validity of statements using 231

a probability curve, with likelihood of being valid 232

on the Y-axis and time since publication on the 233

X-axis. To reduce ambiguity, sentences are decom- 234

posed along semantically distinct axes. A skew- 235

normal distribution on a logarithmic time scale cap- 236

tures the validity dynamics. 237

Axes-Based Decomposition. We adopt the multi- 238

axis annotation scheme of Ning et al. (2018) (MA- 239

TRES), which partitions each sentence into eight 240

semantically coherent axes (Main, Intention, Opin- 241

ion, Hypothetical, Generic, Negation, Static, Recur- 242

rent). By isolating relation annotation within each 243

axis, MATRES reduces cross-category ambiguity 244

and better aligns with human temporal perception. 245

In our ablation Appendix F, removing axis 246

features increases MSE by 4.57%, confirming that 247

axis-level signals are essential for precise temporal 248

modeling. 249

250

Skewed Normal Distribution. We model tem- 251

poral validity using the skewed normal distribution, 252

a generalization of the Gaussian with a shape pa- 253

rameter α that captures asymmetry. This enables 254

representation of non-symmetric temporal patterns 255

such as delayed onset, gradual decay, or skewed 256

relevance, which symmetric (Gaussian) or memo- 257

ryless (exponential) distributions fail to model. 258

The probability density function is: 259

f(x; ξ, ω, α) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
α
x− ξ

ω

)
(5) 260

where: 261

• ϕ(z) is the standard normal PDF, 262

• Φ(z) is the standard normal CDF, 263

• ξ is the location parameter - determining the 264

time at which an event is most likely valid, 265

• ω is the scale parameter - governing the dura- 266

tion of validity, and 267
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• α is the shape parameter - controlling skew-268

ness (with positive values yielding right skew269

and negative values left skew).270

Quantitative comparisons against Gaussian,271

log-normal, exponential and gamma distributions272

in Appendix D support this choice.273

274

Logarithmic Time Scale. Linear time yields275

sparse coverage over key intervals, particularly at276

minute-level granularity. To address this, we com-277

press the time axis using a monotonic logarithmic278

transformation:279

t′ = log1.1(t) (6)280

We default to a base of 1.1 for the near-281

linear spacing across canonical intervals (e.g., min-282

utes, days, decades) while preserving granularity.283

Chronocept’s target values remain compatible with284

alternative bases. See Appendix C for the base285

transformation framework, compression analysis,286

and the provided code implementation.287

4 Dataset Creation288

4.1 Benchmark Generation & Pre-Filtering289

Chronocept comprises two benchmarks to facili-290

tate evaluation across varying complexity levels.291

Benchmark I consists of 1,254 samples featuring292

simple, single-sentence texts with clear temporal re-293

lations - ideal for baseline reasoning - while Bench-294

mark II includes 524 samples with complex, multi-295

sentence texts capturing nuanced, interdependent296

temporal phenomena.297

Synthetic samples were generated using the GPT-298

o11 model (OpenAI, 2024) with tailored prompts299

to ensure temporal diversity across benchmarks.300

Full prompts for both benchmarks are disclosed301

in Appendix E for reproducibility. No real-world302

or personally-identifying data was used, ensuring303

complete privacy.304

In the pre-annotation phase, SBERT2 (Reimers305

and Gurevych, 2019) and TF-IDF embeddings306

were generated for all samples, and pairwise cosine307

similarities were calculated. Samples with SBERT308

or TF-IDF similarity exceeding 0.7 (70%) were re-309

moved to reduce semantic and lexical redundancy.310

Annotation guidelines are disclosed in Ap-311

pendix A and were continuously accessible during312

annotation.313
1https://openai.com/o1
2all-MiniLM-L6-v2 available at https://huggingface.

co/sentence-transformers/all-MiniLM-L6-v2

4.2 Annotation Workflow 314

Annotation Process. Our protocol consists of 315

three steps: (i) Temporal Segmentation – partition- 316

ing text into coherent subtexts that preserve tem- 317

poral markers; (ii) Axis Categorization – assigning 318

each segment to one of eight temporal axes (Main, 319

Intention, Opinion, Hypothetical, Generic, Nega- 320

tion, Static, Recurrent); and (iii) Temporal Validity 321

Distribution Plotting – annotating a skewed normal 322

distribution, parameterized by location (ξ), scale 323

(ω), and skewness (α), over a logarithmic time axis. 324

To ensure interpretability and consistency, all 325

parent texts are written in the present tense, dis- 326

tributions are anchored at t = 0, and multimodal 327

curves are excluded. Additionally, any samples 328

that did not exhibit a clearly assignable main time- 329

line or violated these constraints were flagged and 330

discarded during the annotation process. 331

4.3 Annotator Training & Quality Control 332

Eight third-year B.Tech. students with relevant 333

coursework in Natural Language Processing, Ma- 334

chine Learning, and Information Retrieval partic- 335

ipated. They underwent a 1-hour training session 336

and a supervised warm-up on 50 samples. Agree- 337

ment thresholds were set at ICC > 0.90 for numeri- 338

cal annotations, Jaccard Index > 0.75 for segment- 339

level annotations, and Pk < 0.15 for segmentation 340

consistency during this warm-up phase. 341

Each sample was annotated independently by 342

two annotators. Quality control included daily re- 343

views of 10% of annotations, a limit of 70 sam- 344

ples per annotator per day to mitigate fatigue, and 345

automated flagging of samples with segmentation 346

mismatches, target deviations >2σ, or Pk > 0.2. 347

Discrepancies were adjudicated or, if unresolved, 348

discarded. 349

No personal or identifying information was col- 350

lected or stored during the annotation process. 351

Handling Edge Cases and Final Resolution. 352

Ambiguous samples were flagged or discarded 353

following the three-phase filtering scheme. For 354

segmentation and axis labels, a union-based 355

approach retained all plausible interpretations, 356

recognizing that axis confusion may encode 357

aspects of human temporal cognition useful for 358

future modeling. For temporal validity targets 359

(ξ, ω, α), annotator values were averaged to 360

yield smooth probabilistic supervision rather than 361

discrete target selection. 362

363
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{ 
    “_id”: “H0028”,


    “parent_text”: “They are discussing a philosophical concept, whereas an online forum 
simultaneously erupts in debate over similar ideas. They believe open dialogue fosters 
clarity, yet they recognize tensions may escalate. They intend to document their 
conclusions, hoping to contribute thoughtfully to the discussion.”


    “axes”: {


        “main_outcome_axis”: “They are discussing a philosophical concept,”,


        “intention_axis”: “They intend to document their conclusions, hoping to 

contribute thoughtfully to the discussion.”,


        “opinion_axis”: “They believe open dialogue fosters clarity,”,


        “hypothesis_axis”: “”,


        “generic_axis”: “”,


        “negation_axis”: “”,


        “static_axis”: “whereas an online forum simultaneously erupts in debate over 
similar ideas. yet they recognize tensions may escalate.”,


        “recurrent_axis”: “”

    },


    “target_values”: {


        “location”: 39.865,


        “scale”: 13.265,


        “skewness”: 4.25

    }

}

Figure 1: Composition of samples in Chronocept benchmarks.

4.4 Inter-Annotator Agreement (IAA)364

We evaluate Inter-Annotator Agreement (IAA) us-365

ing stage-specific metrics aligned with each step366

of the annotation task. Segmentation quality is as-367

sessed using the Pk metric (Beeferman et al., 1997),368

axis categorization consistency is measured using369

the Jaccard Index, and agreement on the final tem-370

poral validity parameters (ξ, ω, α) is quantified371

using the Intraclass Correlation Coefficient (ICC).372

We report only ICC as the benchmark-wide373

IAA, refraining from aggregating agreement across374

stages, as segmentation and axis categorization,375

while enriching the dataset structure, do not di-376

rectly impact the core prediction task, which de-377

pends solely on the parent text and its annotated378

temporal validity distribution.379

Agreement statistics across both benchmarks are380

summarized in Table 1. We observed notable con-381

fusion between the Generic and Static axes during382

the early stages of annotation, particularly in the383

warm-up phase. This source of disagreement is384

analyzed in detail in Appendix B.385

IAA Metric BI BII

ICC 0.843 0.893
Jaccard Index 0.624 0.731
Pk Metric 0.233 0.009

Table 1: IAA metrics for segmentation, axis catego-
rization, and temporal validity annotation across both
benchmarks. For Pk, lower is better, with values rang-
ing from 0 (perfect agreement) to 1 (chance-level).

4.5 Dataset Design 386

Each Chronocept sample captures the temporal dy- 387

namics of factual information through a structured 388

annotation format, as illustrated in Figure 1. 389

Parent Text. A single sentence serving as the 390

basis for annotation. 391

Temporal Axes. Each parent text is segmented 392

into subtexts annotated along eight temporal axes: 393

• Main: Core verifiable events. 394

• Intention: Future plans or desires. 395

• Opinion: Subjective viewpoints. 396
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• Hypothetical: Conditional or imagined397

events.398

• Negation: Denied or unfulfilled events.399

• Generic: Timeless truths or habitual patterns.400

• Static: Unchanging states in context.401

• Recurrent: Repeated temporal patterns.402

Target Values. Temporal validity is quantified403

by three parameters:404

• ξ (Location): The time point of peak validity.405

• ω (Scale): The duration over which validity is406

maintained.407

• α (Skewness): The asymmetry of the validity408

curve.409

4.6 Dataset Statistics & Splits410

Stratified sampling over the axes distribution was411

applied to partition the datasets into training (70%),412

validation (20%), and test (10%) splits, ensuring413

equitable axis coverage. Table 2 summarizes the414

splits for both benchmarks. The axes distribution,415

calculated based on non-null annotations for each416

sample, is detailed in Table 3.417

Benchmark Training Validation Test

Benchmark I 878 247 129
Benchmark II 365 104 55

Table 2: Dataset Composition and Splits.

Temporal Axis Benchmark I Benchmark II

Main Axis 1254 524
Static Axis 516 513
Generic Axis 228 116
Hypothetical Axis 136 182
Negation Axis 240 200
Intention Axis 165 522
Opinion Axis 328 519
Recurrent Axis 348 198

Table 3: Distribution of annotated temporal axes across
Benchmark I and Benchmark II.

Token-level3 and target parameter-level statistics418

for both benchmarks are summarized in Table 4419

and Table 5.420

3Tokenization performed using SpaCy’s en_core_web_sm
model: https://spacy.io/api/tokenizer

Benchmark Mean Length (µ) SD (σ)

Benchmark I 16.41 tokens 1.56 tokens
Benchmark II 56.21 tokens 6.21 tokens

Table 4: Sentence Length Statistics for Benchmarks.

4.7 Accessibility and Licensing 421

The Chronocept dataset is released under the Cre- 422

ative Commons Attribution 4.0 International (CC- 423

BY 4.0)4 license, allowing unrestricted use with 424

proper attribution. It is publicly available on Hug- 425

ging Face Datasets at: [redacted, disclosed as a zip 426

file]. 427

5 Baseline Model Performance 428

5.1 Task Scope and Evaluation Focus 429

Chronocept models temporal validity as a struc- 430

tured regression task over low-dimensional param- 431

eters: location (ξ), scale (ω), and skewness (α), 432

predicted from annotated parent texts. Unlike prior 433

work on event ordering (Pustejovsky, 2003), com- 434

monsense classification (Zhou et al., 2019), or tem- 435

poral shift detection (Wenzel and Jatowt, 2024), 436

segmentation and axis labels are treated as prepro- 437

cessing and not modeled at inference. 438

Evaluation spans three dimensions: regression 439

accuracy (MSE, MAE, R2), calibration (Negative 440

Log-Likelihood), and rank correlation (Spearman 441

ρ). As the task involves parameter estimation rather 442

than text generation, encoder-only models suffice. 443

Decoder architectures are unnecessary, as Chrono- 444

cept operates at the application layer, interfacing 445

with downstream systems without altering core lan- 446

guage models. 447

5.2 Baseline Models and Training Setup 448

We benchmark Chronocept against a representative 449

set of baselines spanning statistical (LR, SVR), tree- 450

based (XGB), and neural architectures (FFNN, Bi- 451

LSTM, BERT Regressor). Each baseline is trained 452

to jointly predict ξ, ω and α from BERT-based in- 453

put embeddings of the parent text and temporal 454

subtexts. Targets are Z-Score normalized to stan- 455

dardize learning across all models. 456

Hyperparameters for all baselines (except BERT) 457

were tuned via grid search; final configurations 458

are detailed in Appendix H. FFNN and Bi-LSTM 459

models were trained for 100 epochs while BERT 460

4https://creativecommons.org/licenses/by/4.0
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Parameter Location (ξ) Duration (ω) Skewness (α)

Benchmark Mean (µ) SD (σ) Mean (µ) SD (σ) Mean (µ) SD (σ)

Benchmark I 54.2803 20.4169 11.5474 3.7725 -0.0158 1.3858
Benchmark II 46.1511 13.3839 9.5553 2.5725 0.0275 1.1773

Table 5: Temporal Parameter Distribution Statistics for Benchmarks.

0 10 20 30 40 50
Epochs

50

100

150

200

250

Lo
ss

BERT Regressor Loss Curves for Both Benchmarks
Train Loss (Benchmark 1)
Validation Loss (Benchmark 1)
Train Loss (Benchmark 2)
Validation Loss (Benchmark 2)

Figure 2: BERT training loss curves for Benchmark I
and Benchmark II. The loss flatlined after 2 epochs for
both benchmarks.

was trained for 50 epochs. BERT training loss461

plateaued after approximately 2 epochs across both462

benchmarks, as shown in Figure 2, suggesting early463

stopping could be beneficial for future experiments.464

All training and inference experiments were con-465

ducted on a machine with an Intel Core i9-14900K466

CPU, 16GB DDR5 RAM, and an NVIDIA RTX467

4060 GPU.468

Baseline implementations and train-469

ing scripts are publicly available at:470

https://anonymous.4open.science/r/471

chronocept-baseline-models-1EE1.472

5.3 Quantitative Evaluation473

Table 6 summarizes the performance of baseline474

models across both benchmarks. Each reported475

metric reflects the mean score across the three pre-476

dicted parameters.477

Feedforward Neural Networks (FFNN) outper-478

form all other models overall, achieving the lowest479

MSE, MAE, NLL, and the highest Spearman Cor-480

relation on Benchmark I. This supports prior find-481

ings that simpler architectures, when paired with482

high-quality pretrained embeddings, can match or483

exceed deeper models in accuracy and efficiency484

(Saphra and Lopez, 2019; Wei et al., 2021).485

Bi-LSTM trails FFNN on Benchmark I but out-486

performs it on Benchmark II in four of five metrics -487

MSE, R2, NLL and Spearman ρ - on Benchmark II, 488

which provides longer textual context. This is con- 489

sistent with prior findings on sequence modeling 490

(Meng and Rumshisky, 2018; Dligach et al., 2017), 491

and may stem from Bi-LSTM’s ability to better 492

model long-range dependencies, while FFNNs rely 493

on the BERT [CLS] token, which can struggle to 494

encode longer contexts into a single vector (Li et al., 495

2020). 496

BERT Regression improves significantly from 497

Benchmark I to II, with MSE dropping by over 498

50%, suggesting longer inputs help stabilize fine- 499

tuning. However, BERT still underperforms across 500

all metrics, consistent with its known sensitivity to 501

overfitting and gradient noise on small regression 502

datasets (Mosbach et al., 2021; Peters et al., 2019; 503

Lee et al., 2020). 504

Among classical models, SVR and XGBoost 505

perform reasonably but are outpaced by neural ap- 506

proaches. SVR achieves relatively strong R2 and 507

NLL scores on Benchmark I, while XGBoost and 508

LR lag across all metrics. Their interpretability 509

and training efficiency still make them useful refer- 510

ence baselines (Drucker et al., 1996; Rogers et al., 511

2020). 512

Together, these results affirm that pretrained 513

embeddings paired with compact neural regres- 514

sors like FFNN yield state-of-the-art performance. 515

Additionally, they highlight how models with 516

sequence-awareness, such as Bi-LSTM and BERT, 517

benefit disproportionately from longer contexts. 518

5.4 Impact of Temporal Axes: Ablation 519

Studies 520

To assess the utility of explicit temporal axes in 521

Chronocept, we conduct two ablation studies on 522

Benchmark 1 using the Bi-LSTM and FFNN base- 523

lines. 524

The first study evaluates the impact of removing 525

all axis-level information, and the second examines 526

the impact of randomly shuffling axis order during 527

training. This setup parallels prior work on robust- 528

ness testing via perturbed input labels (Moradi and 529
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Metric MSE MAE R2 NLL Spearman

Baseline BI BII BI BII BI BII BI BII BI BII

LR 1.3610 1.1009 0.9179 0.8361 -0.3610 -0.1009 1.5730 1.4670 0.2338 0.3279
XGB 0.8884 0.9580 0.7424 0.8011 0.1116 0.0420 1.3598 1.3975 0.2940 0.2331
SVR 0.9067 0.8889 0.7529 0.7740 0.0933 0.1111 1.3700 1.3601 0.3281 0.3293
FFNN 0.8763 0.8715 0.7284 0.7583 0.1237 0.1285 1.3529 1.3502 0.3543 0.3437
Bi-LSTM 0.9203 0.8702 0.7571 0.7646 0.0797 0.1298 1.3774 1.3494 0.2367 0.3535
BERT 145.8611 68.1507 6.7570 4.6741 -0.0090 -0.1122 3.9103 3.5299 -0.0485 -0.2407

Table 6: Test set performance of baseline models for Benchmark I (BI) and Benchmark II (BII). Lower values for
MSE, MAE, and NLL indicate better performance; higher R2 and Spearman Correlation ρ denote improved fit.

Samwald, 2021).530

Both the axis-removal and axis-shuffle setups531

lead to substantial performance degradation, indi-532

cating that both - the presence and consistent order-533

ing of temporal axes - play a key role in accurately534

modeling temporal validity.535

Table 7 summarizes the increase in MSE for536

the Bi-LSTM baseline. Experimental design and537

complete results for both baselines are detailed538

in Appendix F (excluded axes) and Appendix G539

(shuffled axes).540

Ablation Type Ablated MSE Increase

Exclusion of Axes 0.9625 4.59%
Erroneous Labeling 1.0107 9.83%

Table 7: Ablation results for the Bi-LSTM baseline.
Relative increases are computed over the original MSE
of 0.9203.

6 Conclusion & Applications541

We introduced Chronocept, a framework that mod-542

els temporal validity as a continuous probability543

distribution using a unified, parameterized repre-544

sentation. By encoding validity through location545

(ξ), scale (ω), and skewness (α), Chronocept pro-546

vides a generalizable mathematical scheme for tem-547

poral reasoning in language.548

Through structured annotations and explicit tem-549

poral axes, Chronocept enables models to capture550

not just if, but when and for how long informa-551

tion remains valid - advancing beyond binary truth552

labels to a richer temporal understanding.553

Empirical results highlight the effectiveness of554

simple neural models paired with pretrained em-555

beddings, and ablation studies underscore the im-556

portance of structural consistency and axis-level557

decomposition.558

Chronocept opens pathways for temporally 559

aware applications, including retrieval-augmented 560

generation (RAG), fact verification, knowledge life- 561

cycle modeling, and proactive AI agents that act 562

based on temporal salience (Miksik et al., 2020). 563

All datasets, annotations, and baselines are pub- 564

licly released to support continued research in this 565

space. 566

7 Limitations 567

In this section, we highlight key limitations of 568

Chronocept and suggest directions for future re- 569

finement and broader applicability. 570

Unimodal Temporal Representation. Chrono- 571

cept models temporal validity with a unimodal, 572

single-peaked distribution. While this ensures in- 573

terpretability and efficient annotation, it cannot rep- 574

resent events with multiple distinct periods of rele- 575

vance, such as seasonal or recurring phenomena. 576

Sentence-Level Context Only. The dataset con- 577

sists of short, self-contained sentences without 578

document-level or historical context. This limits 579

the modeling of long-range temporal dependencies 580

and evolving narratives, constraining discourse- 581

level temporal reasoning. 582

No Atemporality Indicators. Chronocept lacks 583

explicit labels for atemporal or universally valid 584

facts, introducing ambiguity between permanently 585

valid and time-sensitive information. 586

Minimum Validity Constraint from Log Time 587

Scale. The logarithmic time scale imposes a 588

lower bound of one minute, making it unsuitable 589

for modeling events that become instantly obsolete, 590

such as flash updates or ephemeral statements. 591
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Appendix824

A Annotation Guidelines825

This section outlines the annotation guidelines used826

in the Chronocept dataset. These were introduced827

through an in-person training session and remained828

accessible throughout the annotation phase via a829

custom Streamlit-based interface for annotations5.830

The guidelines provide precise instructions for tem-831

poral segmentation, axis categorization, and tem-832

poral validity distribution plotting, supplemented833

with definitions, examples, and coverage of edge834

cases for all eight temporal axes.835

During the initial warm-up phase, annotators ex-836

hibited substantial confusion between the Generic837

and Static axes. To mitigate this, the guidelines838

were revised to incorporate clearer contextual defi-839

nitions and axis-specific "key questions" designed840

to improve disambiguation. These revisions led to a841

marked improvement in inter annotator agreement.842

The complete guidelines are shown in Figure 3.843

5https://streamlit.io

B Axis Confusion Analysis: Generic and 844

Static 845
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(a) Axis assignment co-occurrence matrix with Generic and
Static treated as distinct classes
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(b) Axis assignment co-occurrence matrix after merging
Generic and Static into a unified class

Figure 4: Comparison of co-occurrence matrices before
and after merging the Generic and Static axes, used to
assess annotation consistency.

This appendix investigates a key source of anno- 846

tator disagreement in the Chronocept annotation 847

process: the difficulty in consistently distinguish- 848

ing between the Generic and Static temporal axes. 849

Generic segments typically express habitual or 850

timeless statements, while Static segments describe 851

ongoing but context-specific states. Their seman- 852

tic similarity led to frequent disagreement in axis 853
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assignment.854

To address this, the annotation guidelines were855

refined during the warm-up phase with axis-856

specific clarifications and diagnostic questions.857

The guideline clarification led to reduced confu-858

sion, as shown in the co-occurrence matrices in859

Figure 4.860

While co-occurrence matrices are traditionally861

used to analyze disagreement patterns between an-862

notators, we treat them here as confusion matrices863

by including agreement counts along the diagonal,864

enabling standard metric computation.865

To quantify the benefit of merging these axes,866

we computed micro-averaged inter-annotator pre-867

cision. Treating this as a multi-class classification868

task, we additionally calculate Cohen’s Kappa to869

assess inter-annotator agreement beyond chance.870

As shown in Table 8, merging resulted in a consis-871

tent improvement across both metrics: precision872

improved by 18.0% and Cohen’s Kappa by 17.47%.873

Axis Setting Precision Cohen’s Kappa

Original 0.4443 0.3291
Merged 0.5243 0.3866

Table 8: Improvement in annotator alignment metrics
after merging Generic and Static into a single class.
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Figure 5: Effect of logarithmic base choice on time axis
representation. Base 1.1 preserves quasi-linear spacing;
larger bases induce stronger compression.

Chronocept represents time on a logarithmic axis to875

unify short- and long-term temporal dynamics in a876

compact space. The transformation is defined over877

a configurable base b; all released datasets use base878

1.1. A reusable DataLoader with log conversion879

is available in the official baselines repository6. 880

Log Transformation. Given time t in minutes, 881

the log-space representation is: 882

t′ =
ln(t)

ln(b)
. 883

Base 1.1 yields quasi-linear spacing across inter- 884

vals like hours, days, and years, preserving inter- 885

pretability. Figure 5 shows that higher bases in- 886

creasingly compress longer intervals, while base 887

1.1 maintains resolution across scales. 888

Compression Analysis. Table 9 summarizes the 889

compression effect across bases 1.1, 2, and 10. For 890

each timestamp, we report the log value t′, com- 891

pression ratio CR = t′/t, and percentage compres- 892

sion. 893

To convert values between log bases m and b: 894

t′(b) =
ln(m)

ln(b)
· t′(m). 895

Skew-Normal Parameter Adjustment. Chrono- 896

cept models temporal validity using a skew-normal 897

distribution: 898

f(x; ξ, ω, α) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
α
x− ξ

ω

)
, 899

where ξ and ω denote location and scale. When 900

converting between bases: 901

ξ(b) =
ln(m)

ln(b)
· ξ(m), ω(b) =

ln(m)

ln(b)
· ω(m). 902

Skewness α remains invariant. 903

D Comparison of Distributions for 904

Modeling Temporal Validity and Curve 905

Fitting Methodology 906

This section evaluates candidate distributions for 907

modeling temporal validity and outlines the curve 908

fitting methodology. We consider six synthetic, 909

unimodal scenarios varying along three axes: offset 910

(peak position), duration (span of validity), and 911

asymmetry (skew in rise and decay). Table 10 lists 912

a representative sentence and five annotation points 913

per scenario, placed on a base-1.1 logarithmic time 914

axis. 915

Each temporal profile is defined by a smooth 916

freehand curve from which five points are sam- 917

pled—one at the peak, two mid-validity, and two 918

6https://anonymous.4open.science/r/
chronocept-baseline-models-1EE1
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log base 1.1 log base 2 log base 10

Timestamp Linear (t) t′ CR % t′ CR % t′ CR %

1 minute 1 0.0 0.000 100 0.0 0.000 100 0.0 0.000 100
1 hour 60 42.96 0.716 28.4 5.91 0.099 90.1 1.78 0.030 97.0
1 day 1440 76.30 0.053 94.7 10.47 0.007 99.3 3.16 0.002 99.8
1 week 10080 96.73 0.010 99.0 13.30 0.001 99.9 4.00 3.968e-4 99.9
1 month 43200 111.97 0.003 99.7 15.39 3.563e-4 99.9 4.63 1.072e-4 ~100
1 year 525600 138.23 2.623e-4 ~100 19.00 3.615e-5 ~100 5.72 1.088e-5 ~100
1 decade 5256000 162.25 3.087e-5 ~100 22.33 4.249e-6 ~100 6.72 1.279e-6 ~100

Table 9: Compression analysis across logarithmic bases. CR = t′/t, Compression % = 100× (1− CR).

low-validity points. These define a proportional919

shape used for fitting.920

Since these curves represent relative probabil-921

ities, their area under the curve (AUC) is uncon-922

strained. During optimization, a scaling factor is923

applied to fit freely, followed by Trapezoidal Rule924

normalization to enforce AUC = 1 while preserving925

shape.926

To reduce computational overhead over long-927

tailed domains, we recommend rescaling the fitted928

curve by its maximum value to constrain it to [0, 1].929

This avoids instability from very small values930

in AUC-normalized densities. The result, while931

no longer a true probability distribution, retains932

shape and relative comparisons. We refer to it as a933

proportional validity curve, useful in applications934

prioritizing ranking or visualization over strict935

probabilistic semantics.936

937

Candidate distributions include:938

939

Gaussian Normal:940

fGaussian(x;µ, σ) =
1√
2π σ

exp

(
−(x− µ)2

2σ2

)
941

Exponential:942

fExp(x;λ) = λ exp(−λx),where x ≥ 0943

Log-normal:944

fLN (x;µ, σ) =
1

x
√
2π σ

exp

(
−(lnx− µ)2

2σ2

)
,945

946
where x > 0947

Gamma:948

fΓ(x; k, θ) =
1

Γ(k) θk
x k−1 exp

(
−x

θ

)
,949

950
where x > 0951

Skewed Normal: 952

fSN (x; ξ, ω, α) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
α
x− ξ

ω

)
953

where ϕ(z) is the standard normal PDF and Φ(z) 954

is the standard normal CDF. 955

956

Optimization: Parameter estimation is performed 957

using the Trust Region Reflective (TRF) algorithm 958

by minimizing the sum of squared residuals: 959

SSR(θ) =
N∑
i=1

(yi − f(xi; θ))
2

960

This is implemented via 961

scipy.optimize.curve_fit7. After opti- 962

mization, we compute: 963

N =

∫ xmax

xmin

ffit(x) dx, 964

965

fnorm(x) =
ffit(x)

N
, fmax = max

x
fnorm(x), 966

967

Sfinal =
Sfit

N · fmax
968

Evaluation: RMSE is used as the primary 969

goodness-of-fit metric. As a scale-sensitive mea- 970

sure that penalizes large deviations, a lower RMSE 971

indicates superior fit quality. 972

Table 10 and Figure 6 present the six scenarios, 973

annotation points, and corresponding fitted curves. 974

Table 11 reports RMSE for each candidate distri- 975

bution across scenarios. The skew-normal con- 976

sistently yields the lowest RMSE, confirming its 977

suitability for modeling asymmetric and variable- 978

duration temporal profiles. 979

7https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.curve_fit.html
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Temporal Scenario Sample Sentence Annotation Points (x, y)

S1: Early Onset "He is making coffee for
himself right now."

(14.91, 0.19), (21.64, 0.41),
(27.64, 0.77), (31.64, 0.41),
(34.91, 0.20)

S2: Late Onset "The movie is going to hit the
theaters in a few weeks."

(93.75, 0.21), (100.67, 0.80),
(106.57, 0.42), (112.73, 0.20),
(98.0, 0.63)

S3: Short Duration "The site has been crashing for
a few minutes as there is some
server maintenance work going
on."

(12.73, 0.21), (28.19, 0.80),
(41.28, 0.20), (32.19, 0.60),
(18.91, 0.40)

S4: Long Duration "The ruling government brings
growth and progress."

(1, 0.05), (130.38, 0.81),
(147.84, 0.21), (111.29, 0.42),
(138.38, 0.60)

S5: Rapid Rise, Slow Decay "The advertisement’s impact
peaks immediately and lingers."

(42.73, 0.21), (46.91, 0.40),
(53.10, 0.80), (63.46, 0.56),
(81.83, 0.27)

S6: Slow Rise, Rapid Decay "The news slowly gains
attention but quickly becomes
outdated."

(43.28, 0.20), (58.01, 0.40),
(76.92, 0.79), (84.92, 0.40),
(88.92, 0.17)

Table 10: Six temporal scenarios illustrating the effects of offset, duration, and asymmetry. Each scenario is
represented by 5 annotation points on a log-transformed time axis with base 1.1.

E Synthetic Generation of Samples980

This section presents the plaintext markdown981

prompts used for synthetic dataset generation in982

Chronocept via the GPT-o1 model (OpenAI, 2024).983

The prompts are designed to yield syntactically984

coherent text with explicit temporal structure. Gen-985

eration was performed in batches of 50 samples per986

prompt.987

The prompts are shown in Figure 7 for988

Benchmark-I and Figure 8 for Benchmark-II.989

F Ablation Study: Impact of Structured990

Temporal Axes on Model Performance991

To evaluate the contribution of multi-axis temporal992

annotations in modeling temporal validity, we con-993

duct an ablation study on the Bi-LSTM and FFNN994

baselines. Specifically, we assess the effect of re-995

moving structured temporal axes from the model996

input.997

Input Construction. Each example in Chrono-998

cept is annotated along multiple temporal axes. In999

the standard setup, axis-specific embeddings are1000

concatenated in a fixed order to the embedding of1001

the parent text, forming a structured input repre- 1002

sentation. The ablation removes these axis embed- 1003

dings, retaining only the parent text embedding. 1004

Setup. We compare the two configurations (with 1005

and without axis embeddings) using Bi-LSTM and 1006

FFNN models on Benchmark I. Both models are 1007

trained to predict the parameters ξ, ω, and α of the 1008

skew-normal temporal validity distribution. Eval- 1009

uation is performed using MSE, MAE, R2, NLL, 1010

and CRPS. 1011

Results. Table 12 reports the results for both 1012

models. Including axis embeddings reduces 1013

Bi-LSTM MSE by 4.6% and boosts R2 by 112%, 1014

confirming that structured cues matter more for 1015

goodness-of-fit than for absolute error. FFNN sees 1016

a 6.9% MSE drop and a 95.7% gain in R2, exhibit- 1017

ing a similar trend with even greater error reduction 1018

across all metrics. 1019

These findings are consistent with prior work 1020

showing that compositional and auxiliary structure 1021

improves model generalization and fit across tasks 1022

(Lake and Baroni, 2018; Søgaard and Goldberg, 1023

2016). 1024
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Distribution S1 S2 S3 S4 S5 S6 Parameters

Gaussian 0.0709 0.0673 0.0424 0.0273 0.1193 0.0806 (µ, σ)
Exponential 0.2103 0.2291 0.2312 0.2704 0.2126 0.2212 (λ)
Log-normal 0.0844 0.0597 0.0804 0.0325 0.0872 0.0919 (µ, σ)
Gamma 0.0827 0.0623 0.0668 0.0307 0.0968 0.0899 (k, θ)
Skewed Normal 0.0514 0.0357 0.0407 0.0224 0.0505 0.0247 (ξ, ω, α)

Table 11: Average RMSE values for candidate distributions across six temporal scenarios. All distributions were
fitted using a scaling factor S to enforce AUC = 1. A lower RMSE indicates a better fit, as RMSE heavily penalizes
large errors due to squaring, is scale-dependent, and more sensitive to outliers.

Model Setting MSE MAE R2 NLL CRPS

Bi-LSTM
Without Axes 0.9625 0.7659 0.0375 1.3998 0.7659

Absolute Change (∆) 0.0422 0.0088 0.0422 0.0224 0.0088

Improvement 4.59% 1.16% 112.53% 1.63% 1.16%

FFNN
Without Axes 0.9368 0.7531 0.0632 1.3863 0.7531

Absolute Change (∆) 0.0605 0.0247 0.0605 0.0334 0.0247

Improvement 6.91% 3.39% 95.71% 2.47% 3.39%

Table 12: Ablation results on Benchmark I for Bi-LSTM and FFNN with axis embeddings removed. “Absolute
Change” rows show differences from the original metrics in Table 6.

Conclusion. Structured axis embeddings im-1025

prove performance across both architectures, par-1026

ticularly in R2, which nearly doubles, indicating1027

better distributional alignment. These results vali-1028

date Chronocept’s use of explicit temporal structure1029

and are consistent with prior work on structured1030

auxiliary signals.1031

G Ablation Study: Impact of Incorrect1032

Temporal Axes Labeling1033

We evaluate the sensitivity of temporal validity1034

modeling to erroneous axis labelling by conduct-1035

ing an ablation on FFNN and Bi-LSTM baselines.1036

Specifically, we shuffle the order of temporal axis1037

embeddings during training while preserving cor-1038

rect ordering in the test set.1039

Setup. In Chronocept, input representations are1040

formed by concatenating temporal axis embeddings1041

in a fixed sequence with the parent text embedding.1042

This ablation introduces erroneous axis labelling by1043

disrupting the axis order during training, thereby1044

breaking the structural alignment. The evaluation1045

set remains unperturbed. Models are trained to1046

predict skew-normal parameters ξ, ω, and α, and1047

evaluated on Benchmark I using MSE, MAE, R2,1048

NLL, and CRPS.1049

Results. Table 13 shows that misaligned axis or- 1050

dering during training degrades performance signif- 1051

icantly. Bi-LSTM MSE increases by 9.81% and R2 1052

decreases by 113.43%; FFNN sees a 13.36% MSE 1053

increase and 94.58% R2 decrease. These results 1054

suggest that disrupting structural alignment intro- 1055

duces inductive noise, echoing prior findings on the 1056

role of compositional structure (Lake and Baroni, 1057

2018) and input robustness (Moradi and Samwald, 1058

2021). The pronounced drop in R2 highlights that 1059

axis ordering is critical for fit quality. 1060

Conclusion. Erroneous axis labelling during 1061

training leads to statistically significant drops in 1062

performance, particularly in R2, highlighting the 1063

importance of Chronocept’s structured multi-axis 1064

representation for accurate temporal modeling. 1065

H Hyperparameter Search and Final 1066

Baseline Configurations 1067

All baseline models were tuned via grid search on 1068

the validation split of each benchmark. All neural 1069

models except BERT were trained for 100 epochs, 1070

with early stopping applied based on validation loss 1071

when applicable. BERT was trained for 50 epochs. 1072

Final hyperparameters are summarized below. 1073

Support Vector Regression (SVR). We 1074

searched over C ∈ {0.1, 1, 10}, ε ∈ {0.01, 0.1, 1}, 1075
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Model Setting MSE MAE R2 NLL CRPS

Bi-LSTM
Erroneous Axes 1.0107 0.7984 -0.0107 1.4243 0.7984

Absolute Change (∆) 0.0904 0.0413 −0.0904 0.0469 0.0413

Performance Drop 9.81% 5.46% 113.43% 3.40% 5.46%

FFNN
Erroneous Axes 0.9933 0.7591 0.0067 1.4156 0.7591

Absolute Change (∆) 0.1170 0.0307 −0.1170 0.0627 0.0307

Performance Drop 13.36% 4.21% 94.58% 4.63% 4.21%

Table 13: Ablation results on Benchmark I for Bi-LSTM and FFNN under erroneous temporal axis labelling during
training. “Absolute Change” rows show differences from the original metrics in Table 6.

and kernel type ∈ {linear, rbf}. The optimal1076

setting used an RBF kernel with C = 1 and ε = 11077

(see Table 14).1078

Benchmark C ε Kernel

Benchmark I 1 1 rbf
Benchmark II 1 1 rbf

Table 14: Final SVR hyperparameters.

Linear Regression (LR). The grid search over1079

fit_intercept ∈ {True,False} selected False in1080

both cases (see Table 15).1081

Benchmark Fit Intercept

Benchmark I False
Benchmark II False

Table 15: Final Linear Regression setting.

XGBoost (XGB). We tuned n_estimators ∈1082

{50, 100}, max_depth ∈ {3, 5}, and learning rate1083

∈ {0.1, 0.01}. The best configuration used 50 es-1084

timators, depth 3, and learning rate 0.1 (see Ta-1085

ble 16).1086

Benchmark n Depth Learning Rate

Benchmark I 50 3 0.1
Benchmark II 50 3 0.1

Table 16: Final XGBoost hyperparameters.

Feedforward Neural Network (FFNN). We1087

searched over hidden size ∈ {64, 128, 256},1088

dropout ∈ {0.0, 0.2, 0.5}, learning rate1089

∈ {0.01, 0.001, 0.0001}, L1 regularization1090

∈ {0.0, 0.0001, 0.001}, and weight decay1091

∈ {0.0, 0.001, 0.01}. Final settings differed 1092

between benchmarks (see Table 17). 1093

Benchmark Hidden Dim Learning Rate

Benchmark I 64 0.001
Benchmark II 256 0.01

Table 17: Final FFNN hyperparameters. Other param-
eters were fixed at: dropout = 0.0, L1 = 0.001, weight
decay = 0.0.

Bidirectional LSTM (Bi-LSTM). Search space 1094

included hidden size ∈ {64, 128, 256} and learning 1095

rate ∈ {0.01, 0.001, 0.0001}. The final configura- 1096

tion used hidden size 64 and learning rate 0.0001 1097

(see Table 18). 1098

Benchmark Hidden Dim Learning Rate

Benchmark I 64 0.0001
Benchmark II 64 0.0001

Table 18: Final Bi-LSTM hyperparameters.

BERT Regression. We tuned dropout 1099

∈ {0.0, 0.2, 0.4} and learning rate ∈ {0.0001}. 1100

The best setting used no dropout and learning rate 1101

0.0001. Training loss converged within 2 epochs 1102

on both benchmarks (see Figure 2). 1103

All scripts used for hyperparameter search and 1104

training are disclosed (see footnote 6). 1105
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# Annotation Guidelines for Chronocept


This document provides instructions for annotating temporal validity using a **three-step process**: **Text Splitting**, **Axis Assignment**, 
and **Temporal Validity Distribution Plotting**. 

These guidelines are tailored to the nature of this benchmark, which typically involves one **Main Axis** segment and one additional axis 
segment from the seven auxiliary axes.



## **Step 1: Text Splitting**



### Objective:

Divide the input sentence into grammatically correct segments, ensuring semantic and temporal integrity is preserved.



### Guidelines:

1. **Identify Splitting Points:**

   - Divide the sentence into meaningful subtexts. Most samples will include one **Main Axis** segment and one from the other seven axes.

   - Use punctuation and conjunctions as natural delimiters but ensure that each subtext is self-contained.

2. **Preserve Temporal Context:**

   - Retain essential markers (e.g., *continuously*, *in 2023*, *every month*).

   - Avoid removing or altering any text.

3. **Avoid Over-Splitting:**

   - Ensure each subtext conveys clear, standalone meaning.

   - Over-splitting may lead to fragments that lose context or temporal clarity.

4. **Text Copying Convention:**

   - Copy text exactly as it appears in the sample, including punctuation.

5. **Example:**

   - Input: *"The company is expanding its operations in Asia, and the CEO is leading the efforts, planning a significant increase in market share."*

   - Split:

     - Subtext 1: "The company is expanding its operations in Asia," (Main Axis)

     - Subtext 2: "and the CEO is leading the efforts, planning a significant increase in market share." (Intention Axis)

6. **Ambiguity Handling:**

   - If a sample seems to violate the condition of one Main Axis plus one other axis, document the **Sample ID** and consult **[redacted]**.

   - If a sample does not carry a Main Axis with a clearly definable temporal cue, document the **Sample ID** and consult **[redacted]**.

   - Incorrect samples will be discarded.



## **Step 2: Axis Assignment**



### Objective:

Classify each subtext into one of the **seven temporal axes** based on its primary temporal characteristic.

### Temporal Axes:

1. **Main Axis (Factual Events):**

   - **Definition**: Verifiable events along a timeline, representing objective truths.

   - **Purpose**: Captures the primary narrative and establishes a concrete temporal sequence.

   - **Example**: "The company is expanding its operations in Asia."

   - **Key Question**: Does this event occur within the primary timeline of the narrative?

2. **Intention Axis:**

   - **Definition**: Captures someone's intention, desire, or plan, even if unfulfilled.

   - **Purpose**: Highlights future-directed actions or goals tied to the narrative but not necessarily realized.

   - **Example**: "The CEO is leading the efforts, planning a significant increase in market share."

   - **Key Question**: Is this event stated as an intended action or goal, regardless of its realization?

3. **Opinion Axis:**

   - **Definition**: Represents subjective viewpoints, expectations, or beliefs about events.

   - **Purpose**: Differentiates opinions or speculations from factual occurrences.

   - **Example**: "Experts believe the market will grow rapidly."

   - **Key Question**: Does this event represent a belief or expectation rather than a verified fact?

4. **Hypothetical Axis:**

   - **Definition**: Includes conditional or hypothetical events dependent on certain conditions.

   - **Purpose**: Tracks scenarios that are imagined or conditional, often using "if" statements.

   - **Example**: "If the company secures funding, it will expand globally."

   - **Key Question**: Is this event presented as dependent on another event or condition?

5. **Negation Axis:**

   - **Definition**: Identifies events explicitly stated as not occurring.

   - **Purpose**: Tracks denied actions or outcomes to separate them from realized events.

   - **Example**: "The company did not expand its operations in 2020."

   - **Key Question**: Is this event explicitly stated as unfulfilled or negated?

6. **Generic Axis:**

   - **Definition**: Represents universal truths or habitual occurrences, not tied to a specific timeline.

   - **Purpose**: Highlights timeless facts or generalizations applicable broadly.

   - **Example**: "Lions eat meat."

   - **Key Question**: Is this event a universal truth or a habitual occurrence that transcends specific contexts?

7. **Static Axis:**

   - **Definition**: Captures unchanging states or conditions **within a specific context or timeframe**.

   - **Purpose**: Tracks context-dependent facts or conditions relevant to the narrative.

   - **Example**: "The room is cold."

   - **Key Question**: Is this event context-specific and static within the described situation?

8. **Recurrent Axis:**

   - **Definition**: Describes events or states that happen repeatedly over time.

   - **Purpose**: Tracks patterns or cycles of actions/events relevant to the narrative.

   - **Example**: "The train arrives every morning at 8 AM."

   - **Key Question**: Does this event represent a recurring action or pattern?



### Guidelines:

1. **Assign to the Closest Axis:**

   - Carefully analyze the temporal and semantic meaning of the subtext.

   - Decide if the event can be anchored to a specific axis based on its nature.

   - Most samples will have one **Main Axis** subtext and one auxiliary axis subtext.

2. **Handle Ambiguities:**

   - Focus on the start-points of events to reduce ambiguity related to durations.

   - Only compare events on the same axis; cross-axis relations require separate investigation.

   - If unsure about the axis, document the **Sample ID** and consult **[redacted]**.

   - Incorrect samples will be removed from the dataset.

3. **Use Context:**

   - Assess the broader context to distinguish between axes like Static and Generic.

4. **Example Annotation:**

   - Subtext: "The CEO is leading the efforts, planning a significant increase in market share."

     - Assigned Axis: **Intention Axis**

5. **Advisory for Complex Cases:**

   - Consider the following example: "The printer is making strange noises while the IT technician tries to fix it."

     - "The IT technician is trying to fix the printer" can be treated as the **Main Axis**, while "the printer is making strange noises" can be assigned 
to the **Generic Axis**.

     - This requires thoughtful analysis, as the roles of subtexts may not be apparent immediately. Annotators should carefully consider such cases, 
akin to transposing the segments for clarity.



## **Step 3: Temporal Validity Distribution Plotting**



### Objective:

Plot a skewed probability distribution over a **time graph** to represent the temporal validity of each subtext.



### Guidelines:

1. **Temporal Cue Assignment:**

   - For samples with clear temporal cues (e.g., "solving for 1 hour"), assign a time interval to that cue. As an advisory, consider that a vernacularly 
used "1 hour" can range from 45 minutes to 90 minutes.

2. **Graph Axes:**

   - **X-Axis (Time):**

     - Labeled with intervals: 1 minute, 15 minutes, 30 minutes, 1 hour, 12 hours, 1 day, 1 week, 1 month, 1 year, 1 decade, and infinite validity.

   - **Y-Axis (Probability):**

     - Range: 0 (not valid) to 1 (fully valid).

3. **Plotting Points:**

   - Place 3–5 points on the timeline to indicate the probability of validity at specific times.

   - The user need not worry about making an ideal probability distribution with **AUC = 1**. Instead, plot proportions relative to the temporal 
"point" with the highest probability (Maximum Likelihood Estimate, MLE).

4. **Fit a Skewed Probability Distribution:**

   - A skewed curve will be automatically fitted through the plotted points to represent the temporal validity distribution.

5. **Consistency:**

   - Maintain consistency in plotting for similar subtexts.

6. **Ambiguity Handling:**

   - If the sample is technically correct but you are highly unsure about the temporal interval, annotate to the best of your ability. Low inter-annotator 
agreement (IAA) samples will be flagged and eliminated 

during post-processing.

   - If unsure about the distribution, document the **Sample ID** and consult **[redacted]**.

   - Incorrect samples will be removed.

The result of this step is a skewed probability distribution reflecting the temporal validity over time.



## **General Notes for Annotators**



1. **Ambiguities:**

   - For unclear splits, axis assignments, or validity distributions, contact **[redacted]** with the **Sample ID** for resolution.

2. **Discarding Samples:**

   - Multimodal samples or those with excessive ambiguity should be flagged for review and potential removal.

3. **Temporal Objectivity:**

   - Avoid consulting peers during annotation to maintain objectivity and ensure consistency across annotators.

4. **Quality Control:**

   - Ensure all annotations are thorough, consistent, and adhere to these guidelines.

Figure 3: Annotation guidelines for Chronocept.
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(b) Late Onset: Validity emerges gradually and peaks later.
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(c) Short Duration: A narrow window of high relevance.
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(d) Long Duration: Validity persists over time.

1 h
r

time [t' = log1.1(t)]

0.0

0.2

0.4

0.6

0.8

P(
va

lid
ity

)

Scenario: Rapid Rise, Slow Decay
'The advertisement s impact peaks immediately and lingers.'

Data Points
Skew-Normal
Gaussian
Exponential
Log-Normal
Gamma

(e) Rapid Rise, Slow Decay: Sudden onset, gradual decline.
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(f) Slow Rise, Rapid Decay: Gradual onset, sharp drop.

Figure 6: Visual fit comparison of candidate distributions across six temporal scenarios. The skew-normal
consistently provides the best fit, modeling varied validity patterns in onset, duration, and asymmetry.
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# Synthetic Data Generation for a Temporal Validity Benchmark 

## Objective 
This task involves creating synthetic sentences that will form the basis of a benchmark for temporal validity research. Your 

role as a text generation model is to produce *high-quality sentences only*, without accompanying explanations or axis 

descriptions. These sentences should describe occurrences or events that happen simultaneously or contrastively, 
incorporating various actions, states, or processes. 

## Key Definition: Axis 
An axis represents a semantic dimension or characteristic used to classify and analyze the relationships between events in 

a sentence. Axes are categorized into two types: 
1. **Event-Related Axes**: Describe the relationship between events or states in a sentence, focusing on interactions or 

dependencies.   
2. **Annotation Axes**: Provide supplementary semantic information about the events, enhancing interpretability.   

### Event-Related Axes 
Specify the relationship between events in the sentence:   
1. **Temporal Overlap**: Events occur simultaneously or in parallel.   
2. **Causality**: One event causes or results from the other.   
3. **Subordination**: One event depends on or occurs due to the other.   
4. **Unrelated**: Events are independent of each other.   

### Annotation Axes 
Provide semantic context and additional dimensions of meaning:   
1. **Main Axis (Factual Events)**: Verifiable, objective events tied to a specific timeline.   
2. **Intention**: Future-directed plans, desires, or actions.   
3. **Opinion**: Subjective beliefs or expectations about events.   
4. **Hypothetical**: Conditional or imagined scenarios.   
5. **Negation**: Explicitly unfulfilled or denied actions or outcomes.   
6. **Generic**: Universal truths or habitual actions that apply broadly across contexts and are not tied to specific timelines.   
7. **Static**: Unchanging states or conditions that are specific to a particular context or timeframe.   
8. **Recurrent**: Events or states that recur over time, forming patterns or cycles.   

## Guidelines for Sentence Generation 

### Sentence Structure 
- Sentences should be written in the *present tense*. Use **all forms of present tense** - Simple Present Tense, Present 

Continuous Tense, Present Perfect Tense and Present Perfect Continuous Tense. 
- Each sentence should incorporate:   
  - *At least one Event-Related Axis* to define the relationship between events.   
  - *Two Annotation Axes, one of which must be the **Main Axis (Factual Events)***.   

## Neutrality and Diversity 
- Sentences must span *diverse domains*, including daily life, technology, abstract concepts, and nature.   
- Use a mix of *pronouns* ("he," "she," "they"), *generic entities* (e.g., "a person," "a machine"), and *articles* ("the," "a"). 
Ensure pronouns are evenly distributed across the dataset to represent diverse actors. 

## Task Output 
1. Generate *50 sentences* adhering strictly to the above structure and requirements.   
2. Ensure diversity in domains, axes, and event relationships while maintaining clarity and coherence.   
3. Each sentence must explicitly include:   
   - **At least one Event-Related Axis**. 
   - **Two Annotation Axes**, with the *Main Axis (Factual Events)* included.   

## Examples of Correct Sentences 
1. "She is cooking dinner, but the oven keeps malfunctioning."   

2. "He is driving to work, while the traffic jam is worsening."   

3. "They are reviewing documents, as the deadline approaches."   

4. "A researcher is designing an experiment, while the technician prepares the equipment."   

5. "The sky is darkening, but the lake remains calm and still."   

6. "A student is reading the manual to understand how the device might operate."   

7. "She is negotiating a contract, while her team finalizes the presentation."   

8. "The clouds are gathering, and the wind is picking up speed."   

9. "The robot is performing a task, while the operator monitors its efficiency."   

10. "He is practicing the piano, but the audience remains silent."

Figure 7: Plaintext markdown prompt for Benchmark I.
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# Synthetic Data Generation for a Temporal Validity Benchmark 

## Objective 
Your role as a text generation model is to produce *high-quality, coherent, and naturally flowing sentences or short 
paragraphs*, without accompanying explanations or axis descriptions. These samples should describe occurrences or 
events that happen simultaneously or contrastively, incorporating various actions, states, or processes. Avoid unnatural, 
overly formal, or stilted constructions. 

## Key Definition: Axis 
An axis represents a semantic dimension or characteristic used to classify and analyze the relationships between events in 
a sentence. Axes are categorized into two types: 
1. **Event-Related Axes**: Describe the relationship between events or states in a sentence, focusing on interactions or 
dependencies.   
2. **Annotation Axes**: Provide supplementary semantic information about the events, enhancing interpretability.   

### Event-Related Axes 
Specify the relationship between events in the sentence:   
1. **Temporal Overlap**: Events occur simultaneously or in parallel.   
2. **Causality**: One event causes or results from the other.   
3. **Subordination**: One event depends on or occurs due to the other.   
4. **Unrelated**: Events are independent of each other.   

### Annotation Axes 
Provide semantic context and additional dimensions of meaning:   
1. **Main Axis (Factual Events)**: Verifiable, objective events tied to a specific timeline.   
2. **Intention**: Future-directed plans, desires, or actions.   
3. **Opinion**: Subjective beliefs or expectations about events.   
4. **Hypothetical**: Conditional or imagined scenarios.   
5. **Negation**: Explicitly unfulfilled or denied actions or outcomes.   
6. **Generic**: Universal truths or habitual actions that apply broadly across contexts and are not tied to specific timelines.   
7. **Static**: Unchanging states or conditions that are specific to a particular context or timeframe.   
8. **Recurrent**: Events or states that recur over time, forming patterns or cycles.   

## Guidelines for Sentence Generation 

### Sentence Structure 
- Sentences should be written in the *present tense*. Use **all forms of present tense** - Simple Present Tense, Present 
Continuous Tense, Present Perfect Tense and Present Perfect Continuous Tense. 
- Each sentence should incorporate:   
  - *At least two Event-Related Axes* to define the relationship between events.   
  - *Four or more Annotation Axes*, one of which must be the **Main Axis (Factual Events)**. 

- Avoid overusing commas. Instead, use full stops to separate ideas into distinct sentences where appropriate. 

## Neutrality and Diversity 
- Sentences must span *diverse domains*, including daily life, technology, abstract concepts, and nature.   
- Use a mix of *pronouns* ("he," "she," "they"), *generic entities* (e.g., "a person," "a machine"), and *articles* ("the," "a"). 
Ensure pronouns are evenly distributed across the dataset to represent diverse actors. 

## Task Output 
1. Generate *50 sentences* adhering strictly to the above structure and requirements.   
2. Ensure diversity in domains, axes, and event relationships while maintaining clarity and coherence.   
3. Each sentence must explicitly include:   
   - **At least two Event-Related Axis**. 
   - **Four or more Annotation Axes**, with the *Main Axis (Factual Events)* included.   

## Examples of Correct Sentences 
1. “She is cooking dinner. At the same time, the oven is malfunctioning, which causes delays in her preparation. She checks 
the ingredients repeatedly, ensuring nothing is missing, while worrying that the dish may not turn out as planned. Despite 
the challenges, she intends to serve the meal on time to surprise her family.”

2. “He is driving to work, navigating through dense traffic as the morning rush intensifies. Meanwhile, the traffic jam 
worsens due to a nearby accident, forcing him to rethink his route while calculating the estimated delay. He considers 
taking a detour through side streets, hoping to save time, but worries it might lead to further complications.”

3. “She is watering the garden while the sun remains hidden behind the clouds, leading to slower evaporation. She 
frequently checks the soil moisture, believing that overwatering might damage the plants, though she intends to use 
organic fertilizer soon.”

Figure 8: Plaintext markdown prompt for Benchmark II.
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