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Abstract

Adversarial attacks optimize against models to defeat defenses. Existing defenses1

are static, and stay the same once trained, even while attacks change. We argue2

that models should fight back, and optimize their defenses against attacks at test3

time. We propose dynamic defenses, to adapt the model and input during testing,4

by defensive entropy minimization (dent). Dent alters testing, but not training, for5

compatibility with existing models and train-time defenses. Dent improves the6

robustness of adversarially-trained defenses and nominally-trained models against7

white-box, black-box, and adaptive attacks on CIFAR-10/100 and ImageNet. In8

particular, dent boosts state-of-the-art defenses by 20+ points absolute against9

AutoAttack on CIFAR-10 at ε∞ = 8/255.10

1 Introduction: Attack, Defend, and Then?11

Deep networks are vulnerable to adversarial attacks: input perturbations that alter natural data to12

cause errors or exploit predictions [54]. As deep networks are deployed in real systems, these attacks13

are real threats [63], and so defenses are needed. The challenge is that every new defense is followed14

by a new attack, in a loop [56]. The strongest attacks, armed with gradient optimization, update to15

circumvent defenses that do not. Such iterative attacks form an even tighter loop to ensnare defenses.16

In a cat and mouse game, the mouse must keep moving to survive.17

Current defenses, deterministic or stochastic, stand still: once trained, they are static and do not adapt18

during testing. Adversarial training [18, 30] learns from attacks during training, but cannot learn19

from test data. Stochastic defenses alter the network [11] or input [20, 7], but their randomness is20

independent of test data. Static defenses do not adapt, and so they may fail as attacks update.21

Our dynamic defense fights adversarial updates with defensive updates by adapting during testing22

(Figure 1). In fact, our defense updates on every input, whether natural or adversarial. Our defense23

objective is entropy minimization, to maximize model confidence, so we call our method dent for24

defensive entropy. Our updates rely on gradients and batch statistics, inspired by test-time adaptation25

approaches [53, 43, 28, 29, 58]. In pivoting from training to testing, dent is able to keep changing, so26

the attacker never hits the same defense twice. Dent has the last move advantage, as its update always27

follows each attack.28

Dent connects adversarial defense and domain adaptation, which share an interest in the sensitivity of29

deep networks to input shifts. Just as models fail on adversarial attacks, they fail on natural shifts30

like corruptions. Adversarial data is a particularly hard shift, as evidenced by the need for more31

parameters and optimization for adversarial training [30], and its negative side effect of reducing32
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Figure 1: Attacks optimize the input x+ δ against the model θ. Adversarial training optimizes θ for
defense (a), but attacks update during testing while θ does not (b). Our dynamic defense improves
robustness by adapting θ + ∆ during testing (c), so the attack cannot hit the same defense twice.

accuracy on natural data [52, 65]. Faced with these difficulties, we turn to adaptation, and change our33

focus to testing, rather than training more still.34

Experiments evaluate dent against white-box attacks (APGD, FAB), black-box attack (Square), and35

adaptive attacks that are aware of its updates. Dent boosts state-of-the-art adversarial training defenses36

on CIFAR-10 by 20+ points against AutoAttack [9] at ε∞ = 8/255. Ablations inspect the effects of37

iteration, parameterization, and batch size. Our code is included in the supplement.38

Our contributions39

• We highlight an opportunity for dynamic defense: the last move advantage.40

• We propose the first fully test-time dynamic defense: dent adapts both the model and input41

during testing without needing to alter training.42

• Dent augments state-of-the-art adversarial training methods, improving robustness by 30%43

relative, and tops the AutoAttack leaderboard by 15+ points.44

• We devise two adaptive attacks against dent: denying updates and mixing batches.45

2 Related Work46

Adversarial Defense For adaptive adversaries, which change in response to defenses, it is natural47

to consider dynamic defenses, which adapt in turn. Evans et al. [14] explain dynamic defenses are48

promising in principle but caution they may not be effective in practice. Their analysis concerns49

randomized defenses, which do change, but their randomization does not adapt to the input. We argue50

for dynamic defenses that depend on the input to keep adapting along with the attacks. Goodfellow51

[17] supports dynamic defenses for similar reasons, but does not develop a specific defense. We52

demonstrate the first defense to optimize the model and input during testing for improved robustness.53

Most defenses for deep learning focus on first-order adversaries [18, 30] that are equipped with54

gradient optimization but constrained by `p-norm bounds. Adversarial training and randomization55

are the most effective defenses against such attacks, but are nevertheless limited, as they are fixed56

during testing. Adversarial training [18, 30] trains on attacks, but a different or stronger adversary57

(by norm or bound) can overcome the trained defense [46, 55]. Randomizing the input [37, 7, 32]58

or network [11] requires the adversary to optimize in expectation [3], but can still fail with more59

iterations. Furthermore, these defenses gain adversarial robustness by sacrificing accuracy on natural60

data. Dent adapts during testing to defend against various attacks without more harm to natural61

accuracy.62

Generative, self-supervised, and certified defenses try to align testing with training but are still63

static. Generative defenses optimize the input w.r.t. autoregressive [50], GAN [42], or energy [23]64

models, but the models do not adapt, and may be attacked by approximating their gradients [3].65

Self-supervised defenses optimize the input w.r.t. auxiliary tasks [49], but again the models do not66

adapt. Certified defenses [7, 66] guarantee robustness within their training scope, but are limited67

to small perturbations by specific types of attacker during testing. Changing data distributions or68
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Figure 2: Dent adapts the model and input to minimize the entropy of the prediction H(ŷ). The
model f is adapted by a constrained update ∆ to the parameters θ. The input is adapted by smoothing
g with parameters Σ. Dent updates batch-by-batch during testing.

adversaries requires re-training all of these defenses. Dent adapts during testing, without requiring69

(re-)training, and is the only method to update the model itself against attack.70

Domain Adaptation Domain adaptation mitigates input shifts between the source (train) and target71

(test) to maintain model accuracy [34, 41]. Adversarial attacks are such a shift, and adversarial72

error is related to natural generalization error [51, 15]. How then can adaptation inform dynamic73

defense? Train-time adaptation is static, like adversarial training, with the same issues of capacity,74

optimization, and re-computation when the data/adversary changes. We instead turn to test-time75

adaptation methods.76

Test-time adaptation keeps updating the model as the data changes. Model parameters and statistics77

can be updated by self-supervision [53], normalization [43], and entropy minimization [58]. These78

methods improve robustness to natural corruptions [22], but their effect on adversarial perturbations79

is not known. We base our defense on entropy minimization as it enables optimization during testing80

without altering model architecture or training (as needed for self-supervision). For defense, we (1)81

extend the parameterization of adaptation with model and input transformations, (2) optimize for82

additional iterations, and (3) investigate usage on data that is adversarial, natural, or mixed. We are83

the first to report test-time model adaptation improves robustness to adversarial perturbations.84

Dynamic Inference A dynamic model conditionally changes inference for each input, while a85

static model unconditionally fixes inference for all inputs. There are various dynamic inference86

techniques, with equally varied goals, such as expressivity with more parameters or efficiency with87

less computation. All static models are alike; each dynamic model is dynamic in its own way.88

Selection techniques learn to choose a subset of components [1, 57]. Halting techniques learn to89

continue or end computation [19, 59]. Mixing techniques learn to combine parameters [47, 33, 62].90

Implicit techniques learn to iteratively update [6, 4]. While these methods learn to adapt during91

training, our method keeps adapting by directly optimizing during testing.92

3 Dynamic Defense by Test-Time Adaptation93

Adversarial attacks optimize against defenses at test time, so defenses should fight back, and counter-94

optimize against attacks. Defensive entropy minimization (dent) does exactly this for dynamic95

defense by test-time adaptation.96

In contrast to many existing defenses, dent alters testing, but not training. Dent only needs differen-97

tiable parameters for gradient optimization and probabilistic predictions for entropy measurement.98

As such, it applies to both adversarially-trained and nominally-trained models.99

3.1 Preliminaries on Attacks and Defenses100

Let x ∈ Rd and y ∈ {1, . . . , C} be an input sample and its corresponding ground truth. Given a101

model f(·; θ) : Rd → RC parameterized by θ, the goal of the adversary is to craft a perturbation102

δ ∈ Rd such that the perturbed input x̃ = x+ δ causes a prediction error f(x+ δ; θ) 6= y.103

A targeted attack aims for a specific prediction of y′, while an untargeted attack seeks any incorrect104

prediction. The perturbation δ is constrained by a choice of `p norm and threshold ε: {δ ∈ Rd |105

‖δ‖p < ε}. We consider the two most popular norms for adversarial attacks: `∞ and `2.106
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Figure 3: The adversary optimizes its attacks δ1···t against the model f . Static defenses (left) do not
adapt, and are vulnerable to persistent, iterative attacks. Our dynamic defenses (right) do adapt, and
update their parameters ∆,Σ each time the adversary updates its attack δ.

Adversarial training is a standard defense, formulated by Madry et al. [30] as a saddle point problem,107

argmin
θ

E(x,y) max
δ
L(f(x+ δ; θ), y), (1)

which the model minimizes and the adversary maximizes with respect to the loss L(ŷ, y), such as108

cross-entropy for classification. The adversary iteratively optimizes δ by projected gradient descent109

(PGD), a standard algorithm for constrained optimization, for each step t via110

δt = Πp(δ
t−1 + α · sign(∇δt−1L(f(x+ δt−1; θ), y))), (2)

for projection Πp onto the norm ball for `p < ε, step size hyperparameter α, and random initialization111

δ0. The model optimizes θ against δ to minimize the loss of its predictions on perturbed inputs. This112

is accomplished by augmenting the training set with adversarial inputs from PGD attack.113

Adversarial training is state-of-the-art, but static. Dynamic defenses offer to augment its robustness.114

3.2 Defensive Entropy Minimization115

Defensive entropy minimization (dent) counters attack updates with defense updates. While adver-116

saries optimize to cross decision boundaries, entropy minimization optimizes to distance predictions117

from decision boundaries, interfering with attacks. As the adversary optimizes its perturbation δ, dent118

optimizes its adaptation ∆,Σ. Figure 2 shows dent’s model (∆) and input (Σ) updates.119

Dent is dynamic because both ∆,Σ depend on the testing data, whether natural x or adversarial120

x+ δ. On the contrary, static defenses depend only on training data through the model parameters θ.121

Figure 3 contrasts static and dynamic defenses across the steps of attack optimization.122

Entropy Objective Test-time optimization requires an unsupervised objective. Following tent [58],123

we adopt entropy minimization as our adaptation objective. Specifically, our defense objective is to124

minimize the Shannon entropy [45] H(ŷ) of the model prediction during testing ŷ = f(x; θ) for the125

probability ŷc of class c:126

H(ŷ) = −
∑

c∈1,...,C

p(ŷc) log p(ŷc) (3)

Adaptation Parameters Dent adapts the model by ∆ and input by Σ (Figure 2). For the model, dent127

adapts affine scale γ and shift β parameters by gradient updates and adapts mean µ and variance σ2128

statistics by estimation. These are a small portion of the full model parameters θ, in only the batch129

normalization layers [25]. However, they are effective for conditioning a model on changes in the130

task [33] or data [43, 58]. For the input, dent updates Gaussian smoothing g by gradient updates131

of the parameter Σ, while adjusting the filter size for efficiency [48]. This controls the degree of132

smoothing dynamically, unlike defense by static smoothing [7].133

In standard models the scale γ and shift β parameters are shared across inputs, and so adaptation134

updates batch-wise. For further adaptation, dent can update sample-wise, with different affine135

parameters for each input. In this way, it adapts more than prior test-time adaptation methods with136

batch-wise parameters [58, 43].137

Our model and input parameters are differentiable, so end-to-end optimization coordinates them138

against attacks as layered defenses. This coordination is inspired by CyCADA [24], for domain139

adaptation, but dent differs in its purpose and its unified loss. CyCADA also optimizes input and140

model transformations but does so in parallel with separate losses. Our defensive optimization is141

joint and shares the same loss.142
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Table 1: Dent boosts the robustness of adversarial training on CIFAR-10 against AutoAttack. Adver-
sarial training is static, but dent is dynamic, and adapts during testing. Dent adapts batch-wise, while
dent+ adapts sample-wise, surpassing the state-of-the-art for static defense at robustbench.github.io.

ACCURACY(%) NATURAL ADVERSARIAL
STATIC DENT DENT+

ε∞ = 8/255
CARMON ET AL. [5] 89.6 59.5 74.7 82.3
SEHWAG ET AL. [44] 84.4 54.4 61.2 75.2
WONG ET AL. [60] 83.3 43.2 52.3 71.8
DING ET AL. [12] 88.0 41.4 47.6 64.4
ε2 = 0.5
SEHWAG ET AL. [44] 89.5 73.4 77.8 85.7
RICE ET AL. [38] 88.7 67.7 69.7 81.3
RONY ET AL. [39] 89.1 66.4 73.4 85.3
DING ET AL. [12] 88.0 66.1 70.3 82.8

Update Algorithm In summary, when the adversary attacks with perturbation δt, our dynamic143

defense reacts with Σt,∆t. The parameters of the model f and smoothing g are updated by144

argminΣ,∆H(f(g(x+ δ; Σ); θ + ∆)) through test-time optimization. At each step, dent estimates145

the normalization statistics µ, σ and then updates the parameters γ, β,Σ by the gradient of entropy146

minimization. Figure 3 contrasts static defenses and dynamic defenses that update like dent.147

Dent adapts on batches rather than samples. Batch-wise adaptation stabilizes optimization for entropy148

minimization. The defense parameters reset between batches.149

Discussion The purpose of a dynamic defense is to move when the adversary moves. When the150

adversary submits an attack x+ δt, the defense counters with ∆t. In this way, the defense has the151

last move, and therefore an advantage.152

Our dynamic defense changes the model, and therefore its gradients, but differs from gradient153

obfuscation [3]. Our defense does not rely on (1) shattered gradients, as the update does not cause154

non-differentiability or numerical instability; (2) stochastic gradients, as the update is deterministic155

given the input, model, and prior updates; nor (3) exploding/vanishing gradients, as the update156

improves robustness with even a single step (although more steps are empirically better).157

Dent forces the attack to rely on a stale gradient, as δt follows ∆t−1, while the model adapts by ∆t.158

4 Experiments159

We evaluate dent against white-box, black-box, and adaptive attacks with a variety of static defenses160

and datasets. For attacks, we choose the AutoAttack [9] benchmark, which includes four attack types161

spanning white-box/gradient and black-box/query attacks. For static defenses, we choose strong and162

recent adversarial training methods, and we also experiment with nominally trained models. For163

datasets, we evaluate dent on CIFAR-10/CIFAR-100 [27], as they are popular datasets for adversarial164

robustness, and ImageNet [40], as it is a large-scale dataset.165

We ablate the choice of model/input adaptation, parameterization, and the number of updates.166

4.1 Setup167

Metrics We score natural accuracy on the regular test data x and adversarial accuracy on the perturbed168

test data x+ δ. Each is measured as percentage accuracy (higher is better). We report the worst-case169

adversarial accuracy across attacks.170

Test-time Optimization We optimize batch-wise ∆ (dent) and sample-wise ∆ (dent+). Dent updates171

by Adam [26] with learning rate 0.001. Dent+ updates by AdaMod [13] with learning rate 0.006. Σ172
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updates use learning rate 0.25. All updates use batch size 128 and no weight decay. Dent+ regularizes173

updates by information maximization [16, 29]. We tuned update hyperparameters against PGD174

attacks. Please see the code for exact settings.175

Architecture For comparison with existing defenses, we keep the architecture and training the same,176

and simply load the public reference models provided by RobustBench [10]. For analysis and ablation177

experiments, we define a residual net with 26 layers and a width multiplier of 4 (ResNet-26-4) [21, 64],178

following prior work on adaptation [53, 58].179

4.2 Attack Types & Threat Model180

We evaluate standard white-box and black-box attacks with adversarially-trained models (Section 4.3)181

and nominally-trained models (Section 4.4), as well as dent-specific adaptive attacks (Section 4.5).182

We primarily evaluate against AutoAttack’s ensemble of:183

1. APGD-CE [30, 9], an untargeted white-box attack by cross-entropy,184

2. APGD-DLR [9], a targeted white-box attack with a shift and scale invariant loss,185

3. FAB [8], a targeted white-box attack for minimum-norm perturbation,186

4. Square Attack [2], an untargeted black-box attack with square-shaped updates.187

These attacks are cumulative, so a defense is only successful if it holds against each type. Following188

convention, we evaluate `∞ attacks with ε∞ = 8/255 and `2 attacks with ε2 = 0.5. This is the189

standard evaluation adopted by the popular RobustBench benchmark [10].190

We devise and experiment with two adaptive attacks against dent and its dynamic updates. The first191

interferes with adaptation by denying updates: it optimizes offline against θ without ∆,Σ updates.192

The second interferes with adaptation by mixing data: it combines adversarial data and natural data193

in the same batch. Both are specific to dent to complement our general evaluation by AutoAttack.194

These attacks fall under the usual white-box threat model. The adversary has full access to the195

classifier, including its architecture and parameters, and the defense, such as dent’s adaptation196

parameters and statistics. With this access the adversary chooses an attack for each input, but it197

cannot choose the inputs (the test set is fixed).198

We include one additional requirement: dent assumes access to test batches rather than individual199

test samples. While independent, sample-wise defense is ideal for simplicity and latency, batch200

processing is not impractical. For example, cloud deployments of deep learning batch inputs for201

throughput efficiency, and large-scale systems handle many inputs per unit time [31].202

The supplementary material covers more attacks, including AutoAttack Plus and Boundary, to confirm203

that AutoAttack is a sufficient measure of robustness.204

4.3 Dynamic Defense of Adversarial Training205

We extend static adversarial training defenses with dynamic updates by dent. Compared to nominal206

training, adversarial training achieves higher adversarial accuracy but lower natural accuracy. The207

purpose of dent is to improve adversarial accuracy without further harming natural accuracy.208

Dent improves state-of-the-art defenses. Table 1 shows state-of-the-art adversarial training defenses209

[5, 44, 39, 38, 60, 12] with and without dynamic defense by dent. Note that dent does not specialize210

to the choice of norm or bound, unlike adversarial training, but instead adapts to each attack during211

testing. In each case, dent significantly improves adversarial accuracy and maintains natural accuracy.212

Dent updates batch-wise for 30 steps. Dent+ is more robust in fewer steps by sample-wise adaptation.213

With sample-wise (γ, β) parameters, dent+ needs only six steps to reach an adversarial accuracy214

within 90% of the natural accuracy. These experiments only include model adaptation of ∆, without215

input adaptation of Σ, as we found it unnecessary when combined with adversarial training.216
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Table 2: AutoAttack includes four attack types, and dent improves robustness to each on CIFAR-10
against `∞ attacks. We evaluate without dent (-) and with dent (+).

ACCURACY(%) APGD-CE APGD-DLR FAB SQUARE
- + - + - + - +

WONG ET AL. [60] 45.9 57.6 43.2 52.3 43.2 52.3 43.2 52.3
DING ET AL. [12] 50.1 60.2 41.6 48.0 41.5 47.7 41.4 47.6

Table 3: Ablation of model adaptation (∆), input adaptation (Σ), and steps on the accuracy of a
nominally-trained model with dent.

∆ Σ STEP TIME NATURAL
ADVERSARIAL

ε∞ = 1.5
255 ε2 = 0.2

× NONE 0 1.0× 95.6 8.8 9.2√
NONE 1 3.6× 95.6 15.0 13.5

× STAT. 0 1.0× 86.2 25.8 23.6√
STAT. 1 3.6× 86.3 27.5 24.4√
STAT. 10 25.9× 86.3 37.6 30.9√
DYNA. 10 26.1× 92.5 45.4 36.5

Dent helps across attack types. Table 2 evaluates dent against each attack in the AutoAttack217

ensemble. Dent improves robustness to each attack type. We report the worst case across these types218

in the remainder of our experiments.219

Dent helps across datasets and architectures. We experiment on ImageNet to check scalability.220

We evaluate the defense of Wong et al. [60], one of few defenses that scales to this dataset, against221

strong `∞-PGD attacks with 30 iterations, step size of 0.1, and five random starts. Dent improves the222

adversarial accuracy by 14 points against PGD at ε∞ = 4/255 and natural accuracy by 23 points.223

Table ?? in the supplement confirms improvement across more defenses, architectures, and datasets.224

4.4 Dynamic Defense of Nominal Training225

Dent improves the adversarial accuracy of off-the-shelf, nominally-trained models. As dent does not226

assume adversarial training, it can apply to various models at test time.227

For nominal training, we exactly follow the CIFAR reference training in pycls [35, 36] with ResNet-228

26-4/ResNet-32-10 architectures. Briefly, we train by stochastic gradient descent (SGD) for 200229

epochs with batch size 128, learning rate 0.1 and decay 0.0005, momentum 0.9, and a half-period230

cosine schedule.231

We evaluate against `∞ and `2 AutoAttack attacks on CIFAR-10. As the nominally-trained models232

have no static defense, we constrain the adversaries to smaller ε perturbations.233

Dent defends nominally-trained models. Table 3 inspects how each part of dent affects adversarial234

accuracy and natural accuracy. When applying dent to nominally-trained models, model adaptation235

through ∆ is further helped by input adaptation through Σ. In just a single step, the ∆ update236

improves adversarial accuracy without affecting natural accuracy. from 8.8% to 15.0% against `∞237

attacks with just a single step. With 10 steps, and Σ adaptation, dent improves the model’s adversarial238

accuracy to 45.4% against `∞ attacks and 36.5% against `2 attacks. In total, dent boosts `∞ and `2239

adversarial accuracy by almost 40 and 30 points while only sacrificing 3 points of natural accuracy.240

Dent delivers this boost at test-time, without re-training.241

Input adaptation helps preserve natural accuracy. Gaussian smoothing significantly improves242

adversarial accuracy. This agrees with prior work on denoising by optimization [20] or randomized243

smoothing [7]. Tuned as a fixed hyperparameter, smoothing helps adversarial accuracy but hurts244

natural accuracy. Optimized end-to-end, our dynamic smoothing reduces the natural accuracy gap.245

On natural data, the learned Σ for the blur decreases to approximate the identity transformation.246
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Table 4: Adaptive attack by denying updates. We
transfer attacks from static models to dent and
then evaluate nominal and adversarial training [30]
against `∞ and `2 AutoAttack. Attacks break the
static models (static-static), but fail to transfer to
our dynamic defense (static-dent).

NOMINAL ADVERSARIAL
ε∞= 1.5

255 ε2=0.2 ε∞= 8
255 ε2=0.5

STATIC-STATIC 11.6 11.0 42.0 44.1
STATIC-DENT 82.5 81.6 50.0 50.2

Table 5: Adaptive attack by mixing adversar-
ial and natural data. We report the adversarial
accuracy on mixed batches, from low to high
amounts of adversarial data. Dent improves
on adversarial training (43.8%) across mixing
proportions within 10 steps.

µ, σ STEP 1 10% 25% 50% 75% 90%

× 1 - 43.4 43.2 44.0 44.2 43.8
× 10 62.4 51.2 49.6 48.7 48.7 47.6
√

1 - 41.7 41.4 43.2 44.1 44.7√
10 54.9 47.6 47.7 49.7 50.6 50.9

4.5 Adaptive Attacks on Dent Updates247

We adaptively attack dent through its use of adaptation by (1) denying updates and (2) mixing batches.248

To deny updates, we attack the static model offline by optimizing against θ without ∆,Σ updates,249

then submit this attack to dent. This attempts to short circuit adaptation by disrupting the first update250

with a sufficiently strong perturbation. To mix batches, we mix adversarial and natural data in the251

same batch. This attempts to prevent adaptation by aligning batch statistics with natural data.252

Denying Updates The aim of this attack is to defeat adaptation on the first move, before dent can253

update to counter it. We optimize against the static model alone to prevent defensive optimization254

until adversarial optimization is complete. Under this attack, the input to dent is the final perturbation255

derived by adversarial attack against the static model.256

We examine whether these offline perturbations can disrupt adaptation. Table 4 shows that dent can257

still defend against this attack. This suggests that updating, and having the last move, remains an258

advantage for our dynamic defense.259

Mixing Batches Dent adapts batch-wise, with the underlying assumption that one shared transfor-260

mation can defend the whole batch. We challenge this assumption by evaluating mixed batches of261

adversarial and natural data. In Table 5, we vary the ratio of adversarial and natural data in each batch262

and measure accuracy on the adversarial portion.263

At the extreme, we consider an adaptive attack with only one adversarial input per batch. Specifically,264

we batch one adversarial input with 15 natural inputs randomly chosen from the test set. This adaptive265

attack aims to reduce adaptation by the dynamic defense, as natural inputs do not need adaptation.266

Dent is generally robust to batch mixing, and improves over adversarial training in 10 steps or less.267

4.6 Ablations & Analysis268

More updates deliver more defense. The number of steps can balance defense and computation.269

Table 6 shows that more steps offer stronger defense for both dent and dent+. However, more steps270

do nevertheless require more computation: ten-step optimization takes 25.9× more operations than271

the static model (Table 3). As a plus, dent+ is not only more robust, but also more efficient in needing272

fewer steps. Note that the computational difference between dent and dent+ is negligible, as the273

adaptation parameters are such a small fraction of the model.274

Model adaptation updates depend on the attack type. Dent adapts by adjusting normalization275

statistics and affine transformation parameters. Dent can fix or update the normalization statistics276

(µ, σ) by using static training statistics (×) or dynamic testing statistics (
√

); Dent can fix or update277

the affine parameters (γ, β) by not taking gradients (×) or applying gradient updates (
√

). Table 7278

compares each combination: affine updates always help, but both updates together hurt `2 robustness.279

Batch size We analyze dent’s sensitivity to batch size and focus on small batch sizes. Some real-world280

tasks, such as autonomous driving, naturally provide a small batch of inputs (from consecutive video281
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Table 6: Dynamic defenses can trade computation and adaptation. More steps are more robust on
CIFAR-10 with `∞ AutoAttack. Dent+ reaches higher adversarial accuracy in fewer steps.

STEPS
DENT 0 20 30 40

CARMON ET AL. [5] 59.5 68.3 74.7 76.1
WONG ET AL. [60] 43.2 48.2 52.3 55.1
DING ET AL. [12] 41.4 45.4 47.6 48.7

DENT+ 0 1 3 6
DING ET AL. [12] 41.4 46.5 57.7 64.4

Table 7: Ablation of model adaptation with and
without normalization statistics (µ, σ) and affine
parameters (γ, β) updates.

ACCURACY(%) NOMINAL ADVERSARIAL
µ, σ γ, β ε∞= 1.5

255 ε2=0.2 ε∞= 8
255 ε2=0.5

× × 8.8 9.2 43.8 47.3√
× 11.7 11.2 41.8 44.1

×
√

16.8 16.2 49.9 57.3√ √
21.2 15.2 50.4 53.0

Table 8: Sensitivity analysis of batch size and adver-
sarial accuracy with dent. With static batch statis-
tics (×), small batch sizes are better. With dynamic
batch statistics (

√
), small batch sizes are worse.

µ, σ TYPE 1 2 4 8 16 32 64

× NAT. 85.9 86.0 85.9 85.9 86.1 86.1 86.2
× ADV. 70.4 69.5 67.8 65.3 61.9 58.6 55.1
√

NAT. 11.1 68.1 76.3 80.9 83.4 84.9 85.8√
ADV 5.8 35.9 48.3 53.0 55.3 54.4 52.9

frames or various cameras, for example), and so we confirm that dent can maintain robustness on282

such small batches. Table 8 varies batch sizes to check dent’s natural and adversarial accuracy.283

5 Discussion284

In advocating for dynamic defenses, we hope that test-time updates can help level the field for attacks285

and defenses. Our proposed defensive entropy method takes a first step by countering adversarial286

optimization with defensive optimization over the model and input. While more test-time computation287

is needed for the back-and-forth iteration of attacks and defenses, the cost of defense scales with the288

cost of attack, and some use cases may prefer slow and strong to fast and wrong.289

Limitations Dent depends on batches to adapt, especially for fully test-time defense without ad-290

versarial training. It also relies on a particular choice of model and input parameters. A different291

objective could possibly lessen its dependence on batch size and reliance on constrained updates.292

More generally, dynamic defenses may present difficulties for certification or deployment, as they293

could drift. Along with how to update, improved defenses could investigate when to reset, or how to294

batch inputs for joint optimization.295

Benchmarking Standardized benchmarking, by AutoAttack and RobustBench for example, drives296

progress by competition and empirical corroboration. Dent brings adversarial accuracy on their297

benchmark within 90% of natural accuracy for three of the most accurate methods tested [5, 61, 12].298

This is encouraging, but more research is needed to fully characterize dynamic defenses like dent.299

However, RobustBench is designed for static defenses, and disqualifies dent by its rule against300

test-time optimization. Continued progress could depend on a new benchmark to standardize rules301

for how attacks and defenses alike may adapt.302

By fighting gradients with gradients, dent shows the potential for dynamic defenses to update and303

counter adversarial attacks. The next steps—by attacks and defenses—will tell.304
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