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Abstract— Research into robotics applications of deep rein-
forcement learning (DRL) has increasingly been focussed on
learning precise object manipulation and trajectory planning.
Extending these tasks to continuous robot-object interactions
with the surface of complex geometries remains an open
problem. In this paper we investigate end-to-end DRL solutions
for depowdering tasks that work by directing a pressurized air
stream onto the object’s surfaces using a blast nozzle head
mounted on a robotic arm. We develop a GPU accelerated
vectorized cleaning effect for integration into RL training and
consider ways to expose vision-less trajectory synthesis for
surface treatment applications to the RL agent based on UV
mapping. Our experimental evaluation demonstrates that DRL
has the potential to be used for generating object-specific agents
for depowdering tasks on a variety of 3D objects without
requiring intermediate path planners even in a full 3D motion
setup. Finally, we show that DRL-generated trajectories can
be transferred to a real-world setup. Our task formulation
lends itself to approximate a wide range of surface treatment
applications (e.g., cleaning and spray painting) with various
effects.

I. INTRODUCTION

In 3D printing, the post-processing steps involving manual
human interventions have become a highly time-consuming
and costly bottleneck. Specifically, cleaning powder-based
printers (e.g. Selective Laser Sintering) requires an operator
to remove the residual powder from 3D-printed parts manu-
ally applying a combination of rotation, vibration, vacuum,
and air blasting techniques [1], [2], [3], [4]. As such there
has been a growing interest in the development of robotic
systems that use a robot arm to automatically remove powder
by using brushing, vacuuming, or air blasting. [5], [6], [7],
[8]. For example, [5] presented a custom-made mechanical
robotic station that uses Deep Learning for 3D perception at
ICRA 2020. They used classical motion planning and force
control to perform the depowdering task using an industrial
robot arm.

In a recent study, [8] utilized object’s mesh to obtain a
complete coverage of surfaces. Then the task was formulated
as a NP-hard coverage path planning (CPP) problem to find
the shortest path for the robotic arm that visits each surface
exactly once. They propose to decompose the computation
on the whole mesh into subgraphs constructed by edges to
its neighbor-connected clusters.

Determining a collision free path for robots while nav-
igating around environments and objects and achieving a
coverage objective has been well studied [9]. Studies on
using deep reinforcement learning (DRL) techniques to solve
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Fig. 1: Depowdering effect: When the virtual air nozzle
points at the object the gray (dust) surface is removed
revealing the green object surface.

CPP problems [10], [9], [11], [12] are highly relevant to this
paper. For instance, [12] develop a generalized method for
online CPP in unknown 2D environments where an RL agent
directly predicts the control signals for the robot based on
the environments’ sensory data. To address the scalability
problem, they proposed to use a multi-scale frontier map rep-
resentation along with a scale-grouped convolutional neural
network that independently processes the different scales in
the map.

We found that the majority of contributions in the DRL
research either focus on the CPP problem for 2D navigation
applications or, when dealing with 3D objects, rely on sim-
plifying parts of the problem within restricted environments.
Additionally, they do not provide an end-to-end solution but
use DRL only for high-level decision-making while relying
on traditional methods for low-level execution such as path
planning.

A few studies have explored DRL solutions that en-
compass both CPP and surface treatment tasks, such as
depowdering or spray painting. [13] propose PaintRL as a
simplified version of spray painting, but limit the movement
of the robot arm to four discrete actions (up, down, left,
right). In another example, [14] proposed a two-step training
strategy (pre-training and fine-tuning) to reduce the overall
time needed for object-specific DRL training. However, their
example includes only 2D rectangles shapes and 2D robot
movements.

Tasks like spray painting and depowdering, while special-
ized, are applications of a broader robotic manipulation prob-
lem. They offer long-horizon decision problems involving
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Fig. 2: Holdout objects used for evaluation. To the right side is the UV map for each object.

complex motion sequences, which present many challenges
for DRL training.

In this paper, we take a step towards solving the depow-
dering task in an end-to-end manner in full 3D with the RL
agent directly predicting joint position targets. We propose
to use an end-to-end DRL method and also investigate a way
of training it without the need for synthetic camera images.
We train object-specific DRL agents for cleaning 3D objects
that directly output control targets for the joint controllers
of the 7 DOF robot arm in simulation. This yields simulated
trajectories, which we then execute on a real robot arm. Our
contributions are:

« We develop an integrated way to approximate the de-
powdering task in a GPU-accelerated manner suitable
for vectorized DRL training that allows the expression
of a broad range of scenarios.

o We investigate a lightweight way to train the DRL agent
directly on a representation of the object cleaning state
that does not require synthesizing camera images.

o We present end-to-end DRL agents that learn to control
the simulated robot arm at the joint level, allowing the
target surfaces to be cleaned while avoiding collision.

II. RELATED

The deep reinforcement learning (DRL) framework is con-
sidered a promising end-to-end solution for solving robotic
tasks. Over the past decade, developments in simulation
and computing technology have led to the growth of DRL
robotic research [15], [16]. The interest in DRL research in
the robotic domain has been accompanied by the growth of
simulation software such as MuJoCo [17], Pybullet [18], and
Nvidia Isaac [19] due to their ability to quickly synthesize
large amounts of data. Among these studies, over the past
decade, increasing use of mobile robots and articulated
arms has led to the growth of DRL-based path planning
methodologies [20]. Concurrently, DRL has become a popu-
lar method for solving the application of the Coverage Path
Planning (CPP) problem [21], [9], [22].

The majority of DRL-based solutions for the CPP problem
have been researched in the context of autonomous mo-
bile robots (AMRs) [23], [12] or unmanned aerial vehicles
(UAVs) [11], [24]. For example, in a recent study, [12],
developed an online coverage path planning system that
utilizes DRL in unknown 2D environments. They analyze
various components of DRL, such as observation, action
space, neural network architecture, and reward function to
efficiently learn CPP while avoiding obstacles.

In contrast to AMRs and UAVs, there have only been
a few studies that apply DRL-based methods specifically
for learning CPP problems in manipulation tasks with a
robot arm [13], [14]. The tasks often involve the use of a
robotic arm for surface treatment applications, such as object
cleaning, depowdering, or spray painting.

For example, in the context of a spray painting task, [13]
approximate the spray gun as an array of rays in the Pybullet
[18] simulation and calculate the intersection with the object
for each ray. They propose to use the UV map as an input
for the DRL agent (see related work [25], [26]). While [13]
demonstrated that the proximal policy optimization (PPO)
[27] DRL algorithm could achieve complete paint coverage
of a car door, their approach was limited by a simplified
version of spray painting, as their robot could only move
in four discrete directions, and was provided with a lower-
dimensional input based on identifying the achieved coverage
in circular sectors around the current area.

In another spray painting example, [14] proposed an
unsupervised DRL pre-training stage to reduce the overall
time needed for object-specific training. They focus on task-
agnostic training guided by a state-entropy maximization ob-
jective to solve the object-conditioned exploration problem.
However, their example includes only 2D rectangles shapes
and 2D robot movements.

In contrast, here, we unify various aspects of the previous
works: we combine the use of a DRL agent, on a full 3D
version of the task and cleaning effect, with a continuous
control space and the usage of the UV mapping rather than
synthetic camera images. Our environment involves addi-
tional geometry that the agents have to learn to avoid, and we
use challenging holdout-objects to evaluate the method. We
highlight in particular the non-convex nature of our objects
with hard-to-access angles. It is generally not possible for
the agent to clean our evaluation objects by going over them
hemispherically. Additionally, our agents start from random
initial configurations. As we do not train on camera images,
our agents are object-specific.

I11. METHOD
A. Vectorized Cleaning Effect

A scalable way to expose the dynamics of the cleaning
task to the agent is necessary for DRL. Using fully accurate
classical, or physically plausible, simulation techniques this
can be a problem, as full simulation models modelling all
aspects of the behavior of dust particles and their interaction



TABLE I: Sampling performance of the environment

Mean Wall Time Simulated time

BS Resolution Samples Simulated Sample Wall time
256 128x128 100000 | 2.2318ms & 0.0101 44.8
512 128x128 250000 | 2.0836ms == 0.0542 48.0
256 256x256 100000 | 2.6680ms &= 0.0086 37.5
512 256x256 250000 | 2.5852ms 4 0.0121 38.7

The environment sampling performance was measured by running 3 sample
experiments per row using a set batch size (number of parallel robot setups)
and cleaning state texture resolution with an agent taking random actions,
and then aggregating results. The number of samples per experiment was
chosen based on the batch size to better reflect time overheads for resetting
the episode on contacts. The sample collection was run until at least as many
samples as requested were collected, rounded to the next increment of the
batch size. The experiment ran on a Nvidia RTX A6000 GPU and an Intel
Xeon W7-3445 CPU. For better comparability we report the time to provide
the samples on the GPU. Usually, on top of this an additional performance
penalty is incurred for transfer to host memory and conversion to the
input format of the RL algorithm implementation. Not included is shader
compilation time, and setup time to instantiate geometry and presample
collision free reset poses for use during the training. We use a physics
timestep of % seconds, and run 6 physics timesteps per environment step.
Sampling performance is reported as the speedup over real time, ie how
many seconds of simulated interaction can be simulated in one real-world
second.

with the geometry and airflow are prohibitively computation-
ally expensive for use in this style of DRL training. Instead,
here, we propose to train on an only semi-realistic task proxy,
which we call the “cleaning effect” to distinguish it from a
true simulation. Its computation is vectorized over n parallel
robots within the scene.

We formulate this cleaning effect on arbitrary watertight
triangulated geometry. We assume each object has an UV
mapping available that maps the object surface to a 2D
texture. During evaluation we consider examples of auto-
matically generated UV maps as well as hand-made UV
maps. The coverage of the object surface is represented by
a single-channel 8 bit texture (the “cleaning state texture”).
The cleaning effect is the interaction that mediates changes
to the cleaning state texture based on the current pose of
the robot and object, as well as a description of the desired
effect.

We decompose the cleaning effect on the cleaning state
texture’s texels ¢ and their corresponding positions on the
object surface in 3D p into two stages: a refinement phase
that applies various criteria to a binary mask determining
which texels will be affected by the cleaning effect, and a
successive phase which determines the integral magnitude
of the change to the cleaning state texture. Given an end-
effector position e, and the forward direction from it d,
during the refinement phase we apply the following masks,
which together effectively shape the effect:

o whether p is within a certain distance range of e.
Cleaning from too close or too far away does not
effectively clean the object.

o whether p is within a certain minimum distance from
any point on the line extending forward in direction d
from e. This effectively creates a cylinder shape.

o whether there is a direct line of sight from p to e that is

not interrupted by any other face of the cleaning object.
This prevents the effect from cleaning through the object
or across corners. Here, the line of sight is validated
exclusively on the geometry of the object itself, but not
on other parts of the scene. Consequently, the agent
could theoretically clean through other objects. Due to
the geometry of our setup, we did not observe this to
be a problem, as the table surface in combination with
the robot arm’s reach, effectively prevents poses from
which this would be possible.

The final refinement mask is the logical conjunction of the
partial masks. While a large number of different effects can
be formulated within this framework, we consider here the
simplest possible scenario where the change is constant for
all eligible pixels, irrespective of direction or distance.

Additionally, we add special handling for mounting: in
practical applications the object can be mounted, which
means there are parts of the object surface that either cannot
be cleaned, or that it is not desirable for the robot to attempt
to clean (for example the parts that are attached to a base-
plate in 3D printing). We express this by manually creating
a masking texture that excludes some regions of the object
from the calculation of the cleaning effect.

This calculation is performed in-parallel across the texels
on the GPU. We implement it inside of NVIDIA Omniverse
Isaac [19] using torch [28] for the bulk of the effect calcu-
lation, and NVIDIA Warp [29] for raycasting and geometry
interaction. The performance is characterized in Table 1.

The advantage of this formulation of the cleaning effect
is its ability to approximate a wide variety of applications
with minimal changes. We define the cleaning problem as
the problem of reducing the values of the cleaning state
texture as close to 0 as possible, without any penalty for
over-cleaning. Painting could be expressed in this framework
by instead defining a target and penalizing for both over-
and under-applying the effect. Extensions like local surface
properties such as different materials, a different reaction of
the effect to creases, or different kinds of dirt, as well as dif-
ferent shapes and intensities of the effect are straightforward
to implement in this framework.

B. Cleaning Task

Our setup is a Franka Emika Panda robot arm mounted
on a table. The object to clean is mounted in front of the
robot arm. In this context the cleaning task has an intuitive
formulation as moving the robot arm so as to effect the
cleaning of the object while avoiding collisions with the
object and scenery, while observing the scene through one
or more cameras. We instead consider a different variation
of the task. In particular, we are interested in synthesizing
non-reactive cleaning trajectories using RL without having
a simulated camera view of the scene available. Doing so
avoids the computationally expensive process of rendering
images during training at the cost of the agent not being
reactive.

Concretely the agent controls the robot by setting the
7D control targets for the robot joint controllers. It starts
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(b) Evaluation results for the torus object
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Fig. 3: Evaluation results for the three objects. Each line represents the aggregate performance of the agents that have been
trained with the indicated reward (stateful, or stateless based on the difference). Due to a technical error during training the
final datapoint for one seed is missing from some training runs, we have indicated this with a dot that shows the data for

the single remaining seed.

from an initial position that is uniformly sampled over the
allowed joint movement range, and then rejection sampled to
eliminate positions where the robot starts out in a collision.
It observes the joint positions, the joint velocities, the world-
space position of the end-effector, the world-space rotation
matrix of the end-effector frame [30], the time that has
passed within the episode as well as the current joint motor
controller targets. We additionally provide the agent with a
downscaled version of the cleaning state texture. This is its
main way to track the cleaning interaction.

We simulate the environment at a simulation timestep of
% seconds. A DRL environment step as visible to the agent
consists of 6 such simulation substeps. The cleaning effect
is applied at each substep. An episode ends after a time limit
or if the robot arm collides. To avoid too large inaccuracies
given the fast movement of the robot arm, RL parameters
related to termination, such as collision, are computed at the
resolution of the substep rather than the DRL environment
step.

C. Reward Fomulation

We use two different reward formulations expressing two
different practical objectives. Considering the transition from
state s to state s’ in a setting with a maximum episode
length [., the mean observed value of the cleanable pixels
of the texture in a state c(s;), a flag value e € {0,1} that
indicates whether the transition was free of any collision or
self-collision (in that case e = 1 else it is 0) and a reward
scaling factor 4, we consider a stateful reward

T's

Tstateful = fe ’ C(S/)

€

Since in our task formulation, dirt cannot accumulate
again, it follows that in this way removing dirt at a location
is worth more if it happens earlier in the episode, and if
the episode lasts longer. As an alternative we consider a
stateless reward formulation as used in [13] where the agent
is rewarded based on the scaled magnitude of the change to
the cleaning state during that step
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This removes timing aspects from the consideration. In
contrast to [13], we do not apply an additional time penalty
to this reward. In our experiments, we apply reward scaling
with r¢ = 1000 for both rewards [31].

IV. EXPERIMENT
A. Training

Training was conducted using the Stable Baselines 3 [32]
implementation of Soft Actor Critic (SAC) [33], training on
256 parallel vectorized instances using an episode length of
200 steps (corresponding to 20s simulated time per episode).
We use a 1024x512x512x512 MLP for the actor and critic
and set v = 0.9, the learning rate to 3-10™%, and the batch
size to 256. The cleaning state texture is 256x256 pixels
large. We set a minimum nozzle-to-surface-distance of 10cm
below which no cleaning may happen. The parameterization
of the cleaning device was chosen before the evaluation to be
sufficiently large to enable the objects to be cleaned within
the length of the episode based on the overall cleanable
surface area.

We train for 10 million environment interaction steps
performing 640 gradient steps per single vectorized step
of the 256 instances. Thus training consists of 25 million
gradient updates. Training was performed on Nvidia A10G
and Nvidia RTX A6000 GPUs. On both these setups training
was conducted with 2 parallel training runs per GPU, with
each doublet taking 151 hours (A10G) and 101 hours (RTX
A6000) for training.

B. Evaluation

We evaluate on a holdout set of 3 complex objects that
were not previously used during development of the method
(Figure 2):

o A chair, used here as a proxy for a general object. The

UV map for this object was created manually.

o A toroidal wave-like shape, used here as a proxy for
an object that is potentially hard to clean with classical
techniques due to its many concavities, and potentially
hard to access angles. The UV map for this object was
created with Blender’s Smart UV project feature [34].

o A cube-frame, used here because it creates a challenging
movement scenario for the robot. The UV map for
this object was created manually, since the Smart UV
projection did not achieve a satisfactory result.

Evaulation was performed with 2 seeds per object and
reward. Each agent is trained on a specific object. We
perform our evaluation inside of the simulation.

C. Real-world execution

We additionally export some synthesized trajectories from
the simulation to illustrate them on a real version of the
robot setup. Nvidia Cortex was used to execute the syn-
thesized trajectories on the real robot. For safety reasons
we use Rmpflow [35] to perform the underlying control.
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Fig. 4: Fraction of evaluation episodes that end in a contact.

It is configured with the acceptable safety boundaries of
the setup. We try to achieve the steps from the synthesized
trajectory sequentially to an acceptable fidelity (1cm position
and 0.09 rad end-effector rotation). Poses which cannot be
reached within a defined time-frame are reattempted from a
recovery position, and if still not possible are filtered out.
Results of these real-world demonstrations are shown in the
supplementary material.

V. RESULTS

We use three held-out 3D objects to evaluate the perfor-
mance of the DRL agents on the task. Figure 3 shows the
results.

The stateless reward outperforms the stateful reward for-
mulation initially for all objects. The bias in the stateful
reward towards keeping the episode going for longer is
visible in the results, where agents trained on this reward
consistently result in much longer episodes. This does not
result in a better cleaning result though.

For training runs using the stateless rewards there is a
long-term instability on one of the three holdout objects that
occurs in the later phases of the training (Figure 3) where
an initial better approach disappears in a manner that the
training process does not recover from during the rest of the
training. Further experimentation was performed to assess
the representativeness of this failure-mode for this object,
and could consistently reproduce the issue. It corresponds
to a resulting policy which crashes into the object, and is
associated with a catastrophic decline in the entropy target.

We illustrate qualitative insights on the chair in Figure 5.
Videos for all objects are provided in the supplementary
material and provide a richer qualitative insight.

While both agents overall learn approaches that are more
intuitively human-like in that they move over the object
coarsely as opposed to more closely following the underlying
geometry representation as would be typical for non-RL solu-
tions. The objects represent challenging real-world kinematic
scenarios, and this is where the agents struggle. The stateful
agent chooses a strategy where it initially quickly cleans the
large surfaces of the backrest and one side of the seat, as well



(a) Intensity map for the stateful reward

(b) Intensity map for the stateless reward

Fig. 5: Intensity maps of 192 episodes each illustrating the different approaches that the agents have learned. A yellow hue
indicates a higher fraction of episodes where the surface was cleaned. Overall magnitude and intensity is not comparable
between the two sides. The stateful agent has learned a strategy that largely stays on one side of the object, whereas the
agent trained with a stateless reward has learned a much larger range of motion.

as a bit of the legs. It then gets stuck in a problematic pose
from which it does not manage to further pursue cleaning.
The stateless agent initially selects a kinematically much
more favourable configuration that allows it to access both
sides of the chair object and hemispherically move for better
access.

Both agents get stuck during later parts of the episode
where they just oscillate and are not able to make use of
the rest of the episode to clean more of the object. Neither
manages perform cleaning in the kinematically extremely
unfavourable area at the lower side of the seat plate. These
spots require a sustained and precise long-horizon motion
sequence to be cleaned correctly. As a result none of the
agents are able to fully clean the object.

VI. DISCUSSION

This work shows that it has become feasible to train with
modern vectorized simulations on a depowdering task in full
3D in combination with reinforcement learning without an
intermediate path planner or discretizing the action space.
The main drawback of the approach is its simulation ac-
curacy, as it cannot model powder accumulation, secondary
effects like dust-clouds, and its resolution depends critically
on the underlying UV representation as well as the resolution
of the cleaning state texture.

DRL solutions differ from classical (model-based) ap-
proaches based on a more direct analysis of the geom-
etry such as [8]. Model-based approaches are generally

much more resource-efficient and yield reliably collision
free trajectories. Conversely, the much slower end-to-end RL
methodology allows for more flexibility: it can easily express
different tasks, scenery and auxiliary priorities without fun-
damental changes to the underlying algorithms, at the cost
of no longer guaranteeing collision freeness.

We establish that nonetheless, this camera-less task for-
mulation is sufficiently challenging to provide an interesting
research setup for surface treatment application with DRL.
In particular learning the kinematic strategies required for
collision free access to obstructed parts of real-world objects
remains challenging.

The quantitative results show that fully solving this task
formulation requires further techniques beyond out-of-the
box RL methods, but at the same time the performance
of these methods is sufficient to form a basis for further
research. Additionally, it is clear that kinematic challenges
can be investigated on this task without the need for synthetic
camera images.

The task admits several areas of further work: improving
the accuracy of the simulation, applying further techniques
to improve the performance of the DRL agent, as well as
task-specific exploration of the ability of agents to leverage
different cleaning devices through different strategies.
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