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ABSTRACT

Recent developments in the unsupervised domain adaptation (UDA) enable the
unsupervised machine learning (ML) prediction for target data, thus this will ac-
celerate real world applications with ML models such as image recognition tasks
in self-driving. Researchers have reported the UDA techniques are not working
well under large co-variate shift problems where e.g. supervised source data con-
sists of handwritten digits data in monotone color and unsupervised target data
colored digits data from the street view. Thus there is a need for a method to
resolve co-variate shift and transfer source labelling rules under this dynamics.
We perform two stages domain invariant representation learning to bridge the
gap between source and target with semantic intermediate data (unsupervised).
The proposed method can learn domain invariant features simultaneously between
source and intermediate also intermediate and target. Finally this achieves good
domain invariant representation between source and target plus task discriminabil-
ity owing to source labels. This induction for the gradient descent search greatly
eases learning convergence in terms of classification performance for target data
even when large co-variate shift. We also derive a theorem for measuring the gap
between trained models and unsupervised target labelling rules, which is neces-
sary for the free parameters optimization. Finally we demonstrate that proposing
method is superiority to previous UDA methods using 4 representative ML clas-
sification datasets including 38 UDA tasks. Our experiment will be a basis for
challenging UDA problems with large co-variate shift.

1 INTRODUCTION

These days UDA is attracting attentions from researchers and engineers in ML projects, since it can
automatically correct difference in the marginal distributions of the training source data (supervised)
and test target data (unsupervised) and learn the better model based on labeling rule from source
data. Especially domain invariant representation learning methods including the domain adversarial
training of neural networks (DANNs) (Ganin et al., 2017), the correlation alignment for deep domain
adaptation (Deep CoRALs) (Sun & Saenko, 2016), and the deep adaptation networks (DANs) (Long
et al., 2015) have achieved performance improvements in a variety of ML tasks for instance digits
image recognition and the human activity recognition (HAR) with accelerometer and gyroscope
(Wilson et al., 2020). There are emerging projects in a fairly business-like setting with UDA, and
demonstrated a certain level of success. For instance image semantic segmentation task in self-
driving where different whether conditions data undermines ML models performance due to that
distribution gap between training and testing (Liu et al., 2020).

On the other hand, researchers have reported the UDA techniques are not working well under large
co-variate shift. The techniques could cope with a small amount of distribution gap, e.g. between
monotone color digit images and their colored version without changing background and digit itself
in other means, or between simulated binary toy data and their 30 degrees rotated version (Ganin
et al., 2017). In contrast to that, reported discrimination performance was not over 25 % and had
very high variance using UDA with the convolutional neural networks (CNNs) backbones between
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monotone color digit data and colored digit data from street view (Ganin et al., 2017). Same problem
was observed between binary toy data and 50-70 degrees rotated version (See Figure 2 that we
explain later. We can create much better model for 30 degrees target data using same shallow neural
networks backbone (Ganin et al., 2017).). Such UDA problems with large co-variate shift are often
in real-world ML tasks. We limit scope of large co-variate shift problem to two dimensional data
domains causing co-variate shifts. In this setting two attributes related to data are causing co-variate
shifts e.g. from monotone to color and from not on the street to on the street, the details of which
are dealt with in 2.2.

In this study we propose two stages domain invariant representation learning to fill this gap. Use in-
termediate data (unsupervised) between source and target to ensure simultaneous domain invariance
between source and intermediate data and invariance between intermediate and final target data, this
greatly enhances learning convergence in terms of classification performance for target. We can usu-
ally get access to intermediate unsupervised data compared to huge burden for labelling processes
involving human labour and expensive measuring equipment. We also demonstrate a theorem that
allows unsupervised hyper-parameters optimisation based on the reverse validation (RV) (Zhong
et al., 2010). This measures the difference between the target labelling rules and the labelling rules
of the model after UDA training without any access to the target supervised labels. The UDA tends
to negative transfer with inappropriate free parameters (Wang et al., 2019b), therefore theoretical
supported indicator is important.

Experimental results with four datasets confirmed the superiority of the proposed method to previous
studies. Datasets for comparison tests with high demand for social implementations include image
recognition and accelerometer based HAR, and occupancy detection with energy consumption data
measured by smarter maters in general households. This paper contributes to (1) Proposition of UDA
strategy as a solution to large co-variate shift, (2) Derivation of free parameters tuning indicator,
enables validation for conditional distribution difference without any access for target ground truth
labels, (3) Demonstration of experimental superiority after comparison tests with benchmarks using
four representative datasets.

2 PRELIMINARY

2.1 UNSUPERVISED DOMAIN ADAPTATION

Sets of data are comprised of DS = {(xS
i , y

S
i )}

NS
i=1, DT = {xT

i }
NT
i=1, DT ′ = {xT ′

i }
NT ′
i=1 (Source

domain, intermediate domain, target domain respectively and we denote NS , NT , NT ′ as the sample
sizes for source, intermediate and target.), in our setting DT is e.g. from (UserA, Summer) when
DS is from (UserA, Winter) andDT ′ is from (UserB, Summer). Then let PS(y|x), PS(x) denote the
marginal and conditional distribution of source, defined for intermediate and target similarly. They
are in the homogeneous domain adaptation assumption, namely they share same sample space but
different distribution (Wilson & Cook, 2020). Also this research is in co-variate shift problem, that
is generally sharing conditional distribution but different marginal distribution of co-variate (Zhao
et al., 2019). The objective is learning ϕ(·) = F ◦ C to predict ground truth labels for DT ′ using
three sets of data without access to target ground truth labels, F corresponds to feature extractor
with arbitrary neural networks parameter θf and C task classifier with θc to be optimized by gradient
descent.

2.2 WHAT IS TWO DIMENSIONAL CO-VARIATE SHIFTS

Let’s dive into what is intermediate domain DT , we assume data domain is not one dimensional but
is two dimensional e.g. (UserA or UserB, Accelerometer Model A and Accelerometer Model B)
in HAR, (UserA or UserB, Winter or Summer) in occupancy detection problem and (Monotone or
Color, In the street or not) in image recognition. In this paradigm, DS ,DT ,DT ′ may be (UserA,
Accelerometer Model A), (UserB, Accelerometer Model A), (UserB, Accelerometer Model B) for
instance. These two dimensional factors are influencing data distribution (we call this as two di-
mensional co-variate shifts), energy consumption data differs between users and also seasons for
instance. Basically under this two dimensional co-variate shifts problem correcting difference be-
tween domains in UDA is quite difficult but more natural case closer to businesses or real world
projects. Additionally we assume gathering unsupervised data DT is quite easy, so UDA problem
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Figure 1: Forward path and backward process of Normal(DANNs), Step-by-step, Ours. The
Ltask,−Ldomain as Lc, Ld for short.

with three sets DS ,DT ,DT ′ is natural and there is demand for solving this problem. Two dimen-
sional domains assumption is novel in this field, although uses of an intermediate domain to resolve
large co-variate shift are explored in (Lin et al., 2021; Zhang et al., 2019; Oshima et al., 2024) as
well. Their experiments showed a synthetic intermediate domain can improve UDA (Lin et al.,
2021; Zhang et al., 2019), but limited to computer vision tasks technically or experimentally. Our
proposition is not limited to a specific data type. We investigated whether or not each dataset follows
this assumption in the Appendix E.

3 UDA WHEN TWO DIMENSIONAL CO-VARIATE SHIFTS

3.1 LARGE CO-VARIATE SHIFT SOLVER: TWO STAGES DOMAIN INVARIANT LEARNERS

To begin with previous domain invariant learning abstraction, their objective functions and optimiza-
tion are below (we call this as Normal). Domain invariant learning is parallel learning including the
feature extractor and task classifier’s learning labelling rule based on DS by minimizing Ltask and
the feature extractor’s learning domain invariance between DS ,DT ′ by Ldomain (measurement of
distribution gap between source and target, we elaborate later). The constant value λ is coefficient
of weight to adjust the balance between task classification performance and domain invariant perfor-
mance. We define Ltask = −

∑batch size
i=1

∑num class
j=1 ySi,j log(ŷ

S
i,j) as the cross entropy loss with a

predicted probability ŷSi,j for source input.

L = Ltask + λLdomain (1)
argminθf ,θcLtask, argminθf ,(θc)Ldomain (2)

This will achieve the feature extractor and task classifier’s generalization performance for target
data theoretically, since the UDA goal(expectation risk for target discrimination performance) is
bounded by marginal distribution difference between source and target (corresponds to Ldomain),
empirical risk for source discrimination performance (corresponds to Ltask), conditional distribution
gap (under co-variate shift problem this should be small), and so fourth. Let H be a hypothesis
space of VC-dimension d, D̂S , D̂T ′ be empirical sample sets with size N drawn from source joint
distribution (features and label) and target marginal distribution (features), di be the domain label
(binary label identifying source or target, di ∈ {0, 1}), ET ′(h),ES(h) be expectations for hypothesis
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h (task classification), ÊS(h) be the empirical expectation, I[·] be the function outputting 1 when
true inside the square brackets otherwise outputting 0, and then w.p. at least 1 − δ (δ ∈ (0, 1)),
∀h ∈ H, the following inequality holds (Zhao et al., 2019; Ben-David et al., 2006).

ET ′(h) ≤ ÊS(h) +
1

2
dH(D̂S , D̂T ′) + λ∗ +O(

√
dlogN + log( 1δ )

N
) (3)

h∗ = argminh∈HES(h) + ET ′(h), λ∗ = ES(h
∗) + ET ′(h∗) (4)

dH(D̂S , D̂T ′) = 2(1−min
h∈H

(
1

NS

NS∑
i=1

I[h(xS
i ) ̸= dSi ] +

1

NT ′

NT ′∑
j=1

I[h(xT ′

j ) ̸= dT
′

j ])) (5)

Previous studies such as DANNs, CoRALs and DANs have been published as embodiments of
equation 1 and 2. The construction of Ldomain differs across methods. DANNs define it as a loss
of domain classification problem, while CoRALs use the distance between covariance matrices of
C. DANs build it using the multiple kernel variant of maximum mean discrepancy (MK-MMD
(Gretton et al., 2012)) calculated on F and C, and Deep Joint Distribution Optimal Transportation
(DeepJDOT) define it by wasserstein distance based on the optimal transport problem (Damodaran
et al., 2018). There are many variants, e.g. Convolutional deep Domain Adaptation model for Time
Series data (CoDATS) is signal processing layers and multi sources version of DANNs (Wilson
et al., 2020) and CoRALs variants are using different distant metrics for correlation alignment in-
cluding a euclidean distance (Zhang et al., 2018a), geodesic distance (Zhang et al., 2018b), and log
euclidean distance (Wang et al., 2017). For DANNs, optimizing Ldomain in a adversarial way with
the domain discriminator D with arbitrary neural networks’ parameters θd, we omitted description
of argmaxθd Ldomain. Please note that argminθc Ldomain is only worked for e.g. CoRALs and
DANs.

We extend equation 1 to use intermediate data, as a decomposition of distribution differences be-
tween source and intermediate data and between intermediate and terminal target data, and same
optimization can be used in this formula as well.

Lpropose = Ldomain(DS ,DT ) + Ldomain(DT ,DT ′) (6)
argminθf ,θcLtask, argminθf ,(θc)Lpropose (7)

The equation 6 says if we have intermediate data we can minimize Ldomain substituted by
Ldomain(DS ,DT ) and Ldomain(DT ,DT ′). Concurrent training of Lpropose, Ltask is tantamount
to (1) aquisition of domain invariance between source and intermediate domain, discrim-
inability for intermediate domain, (2) aquition of domain invariance between intermediate
domain and target, discriminability for target, we can do each quite easier compared with nor-
mal domain invariant learning between source and target with same goal due to data domain’s se-
mantic reason, so as a whole our strategy will facilitate learning target discriminability. Based
on assumption of two dimensional data domains divergence between source and target is larger
than divergence between source and intermediate, or divergence between intermediate and tar-
get, we can say Ldomain ≥ Lpropose

2 . This term is the optimisation target of domain invari-
ant representation learning, but it can be inferred that the larger it is, the more likely it is to be
addicted to stale solutions (e.g. local minima) when paralleled with loss minimisation for task
classification. Pseudo codes for UDA with Lpropose are in Algorithm 1 and Algorithm 3 (Ap-
pendix A), though of course this can be used in other domain invariant representation learning
techniques in the almost same way. We implemented two stages domain invariant learners with
CoRALs as Lpropose = Ldomain(DS ,DT ) + Ldomain(DS ,DT ′), since we can say same thing as
Lpropose = Ldomain(DS ,DT ) + Ldomain(DT ,DT ′) and to avoid noisy correlation alignment be-
tween intermediate and target data in the early stages of epochs. We denote di as domain labels, CE
as the cross entropy loss, BCE as the binary cross entropy loss, MSE as the mean squared error
and Cov as the covariance matrix. The schematic diagram for DANNs version two stages domain
invariant learners is in Figure 1 (CoRALs version in Appendix A Figure 7).

Previous paper (Oshima et al., 2024) is intuitively step-by-step version of this paper (center of Figure
1), this executes DANNs learning between source and intermediate data then second time DANNs
between intermediate data (pseudo labeling by that learned task classifier) and target. We call this as
Step-by-step. Very limited evaluation was conducted and achieved higher classification performance
compared to normal DANNs and without adaptation model using occupancy detection data(Dataset
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Algorithm 1 2stages-DANNs
Require: source,intermediate domain,target DS ,DT ,DT ′

Ensure: neural network parameters {θf , θc, θd, θd′}
1: θf , θc, θd, θd′ ← init()
2: while epoch training() do
3: while batch training() do
4: Ê(Ldomain(DS ,DT ))←

1
batch

∑batch
i=1 BCE(D(F (xS

i )), d
S
i ) +

1
batch

∑batch
i=1 BCE(D(F (xT

i )), d
T
i )

5: Ê(Ldomain(DT ,DT ′))←
1

batch

∑batch
i=1 BCE(D(F (xT

i )), d
T
i ) +

1
batch

∑batch
i=1 BCE(D(F (xT ′

i )), dT
′

i )

6: Ê(Ltask)← 1
batch

∑batch
i=1 CE(C(F (xS

i )), y
S
i )

7: θc ← θc − ∂Ê(Ltask)
∂θc

8: θf ← θf − ∂(Ê(Ltask)−Ê(Ldomain(DS ,DT ))−Ê(Ldomain(T,T ′)))
∂θf

9: θd ← θd − ∂Ê(Ldomain(DS ,DT ))
∂θd

10: θd′ ← θd′ − ∂Ê(Ldomain(DT ,DT ′ ))
∂θd′

11: end while
12: end while

Algorithm 2 two stages domain invariant learners free parameter indicator
Require: DS ,DT ,DT ′ , a neural network ϕ

1: Split DS into DStrain
and DSval

2: Execute domain invariant learning with ϕ, DStrain
,DT ,DT ′ , validate by DSval

do early stop-
ping

3: Pseudo labeling for DT ′ get {(xT ′

i , ŷT
′

i )}NT ′
i=1 using ϕ

4: With pseudo-supervised {(xT ′

i , ŷT
′

i )}NT ′
i=1 as source and DT and unsupervised {xS

i }
NStrain
i=1 , do

domain invariant learning build ϕr

5: calculate loss between predictions for DSval
by ϕr and its ground truth labels

D, explain later). There are five main differences between the method of (Oshima et al., 2024) and
this paper, (1) (Oshima et al., 2024) generates noise due to erroneous answers in the pseudo-labelling
step ({(xT

i , ŷ
T
i )}

NT
i=1 in Figure 1), which may hinder learning convergence, whereas our end-to-end

method does not, (2) The two domain invariant representation learnings have partially independent
structure, and there is no guarantee that the first learning will necessarily be good for the second
learning, but our method can perform the two learnings in end-to-end, which may make it easier to
keep the overall balance, (3) They introduced confidence threshold technique which has large impact
on learning convergence, but these engineering tricks are not easy to tune in unsupervised settings
in practical use cases, (4) Comparative experiments on four sets of data show that our method has a
performance advantage on most of the settings (5/8 settings) and (5) The learning algorithm encom-
passes the entire domain invariant representation learning techniques including CoRALs, DANNs
and DANs.

3.2 FREE PARAMETERS TUNING

Free parameters(e.g. learning rate for gradient descent optimizer, layer-wise configurations) selec-
tion has been regarded as a crucial role because deep learning methods generally are susceptible to,
additionally UDA require us to do this in a agnostic way for target ground truth labels at all. We
propose free parameter tuning method specialized in this two stages domain invariant learners by
extending RV. RV applies pseudo-labeling to the target data and uses the pseudo-labeled data and
the source unsupervised data in an inverse relationship (Zhong et al., 2010), authors proved this can
measure conditional distribution difference between target data and learned model. We apply the RV
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idea to two stages domain invariant representation learners, replacing the internal learning steps from
regular supervised machine learning with two stages domain invariant representation learners and
calculating classification loss between predictions for source data by reverse model and its ground
truth labels. We can find better configurations by argminθ |ϕr(x

S) − yS |. Algorithm is denoted
in Algorithm 2, and the Theorem 3.1 states that this method can measure the gap in labeling rules
between the trained model and the final target data, the proof of the theorem is given in Appendix
B.
Theorem 3.1. When executing Algorithm 2, conditional distribution gap between ϕ(·) and DT ′ ’s
ground truth is calculated by (C1, C2 as constant values)

|ϕr(x
S)− yS | ∝ |C1{P (y|x, ϕ)− PT ′(y|x)}+ C2{PT (y|x)− PT ′(y|x)}| (8)

4 EXPERIMENTAL VALIDATION

4.1 SETUP AND DATASETS

The evaluation follows the hold-out method. The evaluation score is the percentage of correct labels
predicted by the task classifier of the two stages domain invariant learners for the target data i.e.
accuracy(xT ′

) = 1
n

∑
xT ′ I[C(F (xT ′

)) = yT
′
] (n as the sample size of target data for testing). The

target data is divided into training data and test data in 50%,the training data is input to the training
as unsupervised data, and the test data is not input to the training but used only when calculating
the evaluation scores. In order to take into account the variations in the evaluation scores caused by
the initial values of each layer of deep learning, 10 evaluations are carried out for each evaluation
pattern and the average value is used as the final evaluation score. In addition, hyperparameters
optimisation with 3.2 is performed on the learning rate using the training data. The all codes we
used in this paper are available on GitHub 1.

We validate our method with 4 datasets and 38 tasks including simulated toy data, image digits
recognition, HAR, occupancy detection. We adopt six benchmark models (conventional Train on
Target model, Ste-by-step with DANNs or CoRALs, Normal with DANNs or CoRALs, conventional
Without Adapt model) as a comparison test to ours in Table 14 (Appendix I). If our hypothesis is
true, our method should be close to its Upper bound and better than previous studies and Lower
bound models therefore ideal state ”Upper bound > Ours > Max(Step-by-step, Normal, Lower
bound)” should be expected.

A. sklearn.datasets.make moons
Source data is two interleaving half circles with binary class. Intermediate data is ro-
tated a degrees (semi-clockwise from the centre), target data is rotated 2a degrees (a ∈
{15, 20, 25, 30, 35}). These rotations correspond to toy versions of two dimensional co-
variate shifts.

B. MNIST, MNIST-M, SVHN(Lecun et al., 1998; Ganin et al., 2017; Netzer et al., 2011)
Source data is modified national institute of standards and technology database (MNIST),
intermediate data is MNIST-M which is the randomly colored version of MNIST, target
data is the street view house numbers (SVHN). Case with source and target reversed was
demonstrated to be coped with by Normal (Ganin et al., 2017). Two dimensional co-variate
shifts should be (Monotone, Not on the Street)→(Color, Not on the Street)→(Color, On the
Street).

C. HHAR(Stisen et al., 2015)
Heterogeneity human activity recognition dataset (HHAR). Signal processing problem
to determine human behaviour ({bike, sit, stand,walk, stairsup, stairsdown}) by ac-
celerometer data (sliding window with size 128, sampling rate is 100-150Hz). Subjects
were taking actions in the pre-programmed way, so there are no chances of distribution
shift by different or strange movements. The two dimensional co-variate shifts should
be (UserA, SensorA)→(UserB, SeonsorA)→(UserB, SensorB), same actions but different
user and sensor differ in co-variate. We extract 16 patterns randomly from 9 users and 4
models.

1please check v1.0.0(release soon) compatible to this paper [Put URL later], also we elaborated experimen-
tal configurations in the Appendix D
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D. ECO data set(Beckel et al., 2014)
Electricity consumption & occupancy (ECO) data set. Signal processing problem same as
HHAR with different time window and activity classes(only {occupied, unoccupied}).
The two dimensional co-variate shifts should be (HouseA, Winter)→(HouseB,
Winter)→(HouseB, Summer). Subjects were not pre-programmed in any means so should
include distribution shift in multiple ways, though basically the sharing of the rule of being
at home when energy consumption is high and absent when it is not is indicated by (Oshima
et al., 2024). 16 Patterns as total.

4.2 QUANTITATIVE RESULTS

We confirmed the Ours’ obvious performance advantage compared to Step-by-step and Normal in
Dataset A with DANNs when larger co-variate shift exists i.e. target data with 60 and 70 degrees
rotated (highlighted in red in left of Figure 2). The difference was 0.174 compared to Normal when
60 degrees rotated target, 0.074 compared to Step-by-step and 0.091 compared to Normal when 70
degrees rotated target, and variance was much smaller. In Dataset A with CoRALs, increasing the
angle of rotation significantly reduces the evaluation scores of Normal, but Step-by-step and Ours
were somewhat able to cope with this (highlighted in red in right).

The Figure 3 shows our methods’ superiority to previous studies in Dataset A-D(with DANNs),
D(with CoRALs), namely the ideal state ”Upper bound > Ours > Max(Step-by-step, Normal, Lower
bound)” was observed in the UDA experiment. In cases Dataset A and C, a clear difference in
accuracy was identified compared to Step-by-step or Normal, the difference in accuracy was 0.074
for Ours and Step-by-step in Dataset C, 0.061 for Ours and Normal, 0.053 for Ours and Normal in
Dataset A. In cases other than the above, the degree of deviation from the ideal state is case-by-case.
The superiority to Step-by-step i.e. ”Ours > Step-by-step” is confirmed 5 out of 8 settings and
this demonstrated effectiveness of proposing method i.e. end-to-end domain invariant learning with
three sets of data. The superiority to Normal i.e. ”Ours > Normal” is confirmed 8 out of 8 settings,
highlighting the positive impact of two times domain invariant learnings itself.

Counting the cases where evaluation score is at least higher than the Lower bound, which is impor-
tant in the UDA setting (”Ours > Lower bound”), 8/8 settings. This result means that when UDA
is performed in business and real-world settings, a better discriminant model can be built than when
it is not performed, highlighting its practical usefulness. Evaluation patterns and results for each
Dataset, before aggregation, are provided in the Appendix C.

Figure 2: Comparison of the evaluation values between methods at each rotation angle in Dataset
A (the left is with DANNs, right with CoRALs). Detailed results are in Appendix C Table 1 and 2
including the standard deviations.

4.3 QUALITATIVE RESULTS

To begin, we investigate how our method performs learning at each epoch in terms of domain in-
variance and task classifiability. We simultaneously visualise the learning loss of domain invariance
per epoch (i.e. −Ldomain = CrossEntropy(·)), the learning loss of task classifiability and the
synchronised evaluation of task classification on test target data. Figure 4 shows that in any case,
domain invariance between the source and the intermediate domain and invariance between the in-
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Figure 3: Quantitative result overview covering 8 methods and 4 datasets.

Figure 4: The Ltask, Ldomain(DS ,DT ), Ldomain(DT ,DT ′) and evaluation per epoch. The
Ldomain(DS ,DT ) as Ldomain(S, T ) for short. Column is one trial for Dataset A
(source→30rotated→60rotated), C ((d,s3mini)→(e,s3)), D ((3, s)→(1, w)) with DANNs.

termediate domain and the target are learnt in an adversarial manner and eventually a solution with
high invariance is reached. Also we found that the task classifiability to the source is simultaneously
optimised and eventually asymptotically approaches zero or small value. Correspondingly to the
above three learnings, the evaluation scores are improving and we can recognise that our proposed
optimisation algorithm is effective in the point of task classification performance for target data.

To get more insights into our method, we investigated neural networks’ learned representation at
both of feature level and classifier level. The Figure 5 includes feature extractor’s learned repre-
sentation, task classifier’s sigmoid probability for grid space and representation at feature level is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Learned representation at different levels in the Dataset A (source→30rotated→60rotated)
experiment with DANNs. The first column corresponds to feature representation with domain labels
color, second feature representation with task labels and third one is predictive probability for grid
space. Rows express methods(Ours, Step-by-step, Normal in order). Representations were gone
through t-distributed stochastic neighbor embedding (t-SNE)(van der Maaten & Hinton, 2008).

Figure 6: Learned representation at feature level in one trial from Dataset C ((d,s3mini)→(e,s3))
with DANNs. The first row corresponds to representation with domain labels, second feature repre-
sentation with task labels. Columns represent methods(Ours, Step-by-step, Normal in order).
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colored in two ways i.e. domain labels and task labels. We can qualitatively recognize ours could
learn domain invariant feature between source and target and task discriminability for target data
while keeping balance between both. Even though we have not accessed any labels for the target
data in black in the figure, we can see a probability boundary that discriminates the data approx-
imately perfectly. On the other hand Normal and Step-by-step could not. Normal could not get
domain invariance, task variance, and appropriate boundary. Step-by-step could not learn domain
invariance and appropriate boundary.

The Figure 6 shows Ours’ success of domain invariant and task variant features acquirement. Other
methods are struggling to get task variant features e.g. the space around the yellow-green scatter
points is very dense, including the other three classes. It is difficult for them to classify these human’s
behaviour classes (this four classes are {bike, walk, stairsup, stairsdown} far from {stand, sit},
Ours could overcome this apparently). The Step-by-step could not learn domain invariant features
since we can very easily identify yellow and brown scatter points at a glance.

5 CONCLUSION AND FUTURE RESEARCH DIRECTION

We proposed novel UDA strategy whose domain invariance and task variant nature could overcome
UDA problem with two dimensional co-variate shifts. Also our proposing free parameters tuning
method is useful since it can validate UDA model automatically without access to target ground
truth labels.

In terms of research directions for the method, further improvements in accuracy can be expected
when the method is used in combination with other UDA methods e.g. (Yang et al., 2024; French
et al., 2018; Sun et al., 2022; Yang et al., 2021; Singha et al., 2023). Our method is attractive because
it is a broad abstraction that encompasses layers of deep learning and domain invariant representation
learning methods internally, and can be used in combination with many other methods (not limited
to specific data type e.g. table data, image, and signal). The hyper-parameter optimisation method of
(Yang et al., 2024) uses not the conditional distribution gap that can be measured by this method, but
with the hopkins statistics (Banerjee & Dave, 2004) and mutual information, transferability at clas-
sifier level and transferability and discriminability at feature level can be measured in a combined
manner. Also (French et al., 2018) is based on that consistency regularisation ensures that the neural
networks’ outputs are close each other for stochastic perturbations. It is well-matched with tons
of image augmentation methods of image processing (Shorten & Khoshgoftaar, 2019) and is likely
to improve experiments with Dataset B in particular.Safe Self-Refinement for Transformer-based
domain adaptation uses vision transformer backbone and consistency regularization as well (Sun
et al., 2022), might improve the performance (vision transformer based UDA was also analyzed in
another paper (Yang et al., 2021) and improved the performance). Also large vision-language mod-
els’ prompting was used for UDA. They format domain invariant and task variant information as the
prompting and showed impressive performance improvements in image recognition datasets(Singha
et al., 2023).

Another research question is how to obtain an intermediate domain. For time series data, databases
normally hold huge amounts of unsupervised data(He et al., 2015; Wang et al., 2019a), so two
dimensional co-variate shifts assumption is quite natural. For other data types such as image data,
your database can’t always hold a suitable intermediate. One way is to use the Web with huge
unlabeled data. Alto this should be a future research direction e.g. generative models possibly will
create suitable one based on prompting or papers (Lin et al., 2021; Zhang et al., 2019) methods
might help create intermediate synthetically.
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A CORALS VERSION TWO STAGES DOMAIN INVARIANT LEARNERS

The pseudo code for Ours with CoRALs is in Algorithm 3 and the schematic diagram is in Figure
7.

Algorithm 3 2stages-CoRALs
Require: source,intermediate domain,target DS ,DT ,DT ′

Ensure: neural network parameters {θf , θc}
1: θf , θc ← init()
2: while epoch training() do
3: while batch training() do
4: Ê(Ldomain(DS ,DT ))←

1
batch

∑batch
i=1 MSE(Cov(C(F (xS

i ))), Cov(C(F (xT
i ))))

5: Ê(Ldomain(DS ,DT ′))←
1

batch

∑batch
i=1 MSE(Cov(C(F (xS

i ))), Cov(C(F (xT ′

i ))))

6: Ê(Ltask)← 1
batch

∑batch
i=1 CE(C(F (xS

i )), y
S
i )

7: θc ← θc − ∂(Ê(Ltask)+Ê(Ldomain(DS ,DT ))+Ê(Ldomain(DS ,DT ′ )))
∂θc

8: θf ← θf − ∂(Ê(Ltask)+Ê(Ldomain(DS ,DT ))+Ê(Ldomain(DS ,DT ′ )))
∂θf

9: end while
10: end while

B PROOF OF REVERSE VALIDATION BASED FREE PARAMETERS TUNING

Line 2 in Algorithm 2 is saying learned ϕ should be approximation of mixing of
PS(y|x), PT (y|x), PT ′(y|x) and line 4 can be seen in the same way. We omitted the descriptions of
approximation errors.

P (y|x, ϕ) = (1− γ − δ)PS(y|x) + γPT (y|x) + δPT ′(y|x)

P (y|x, ϕr) = (1− α− β)P (y|x, ϕ) + αPS(y|x) + βPT (y|x)
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Figure 7: Forward path and backward process of Normal(CoRALs), Step-by-step, Ours. The
Ltask, Ldomain as Lc, Ld for short.

Where α, β, γ, δ are the nuisance parameters related to the ratio between the sizes of distributions.

|ϕr(x
S)− yS | = |P (y|x, ϕr)− PS(y|x)|

= |(1− α− β)P (y|x, ϕ) + αPS(y|x) + βPT (y|x)− PS(y|x)|

= |(1− α− β)P (y|x, ϕ) + βPT (y|x)−
1− α

1− γ − δ
{P (y|x, ϕ)−

γPT (y|x)− δPT ′(y|x)}|

|ϕr(x
S)− yS |(1− γ − δ) = |{(1− α− β)P (y|x, ϕ) + βPT (y|x)−

1− α

1− γ − δ
{P (y|x, ϕ)−

γPT (y|x)− δPT ′(y|x)}}(1− γ − δ)|
= |C1P (y|x, ϕ) + C2PT (y|x) + C3PT ′(y|x)|
= |C1P (y|x, ϕ) + {C2 + C3}PT ′(y|x) + C2{PT (y|x)− PT ′(y|x)}|

|ϕr(x
S)− yS | = |C1{P (y|x, ϕ)− PT ′(y|x)}+ C2{PT (y|x)− PT ′(y|x)}|C4

We denoted fixed values as C1, C2, C3, C4 respectively.C1 = (1 − α − β)(1 − γ − δ) − (1 − α),
C2 = β(1− γ − δ) + (1− α)γ, C3 = (1− α)δ, C4 = 1

1−γ−δ

C QUANTITATIVE RESULTS IN DETAIL

Detailed results including the pattern of each data, each method and each domain adaptation task(as
PAT for short in these tables) before calculating the average for each dataset and method are in Table
2-13.

D IMPLEMENTATION CONFIGURATION IN DETAIL

Data load and pre-processing steps are same as UDA previous studies (Ganin et al., 2017; Wilson
et al., 2020; Oshima et al., 2024) (experiment with Dataset A and B from (Ganin et al., 2017),
Dataset C from (Wilson et al., 2020), Dataset D from (Oshima et al., 2024)). For standardisation pre-
processing, the statistics of the target test data are not accessed, only the statistics of the training data
are accessed and executed. Internal layers are same between methods, Normal and Step-by-step and

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 1: Dataset A with DANNs. The best method in each PAT except for Train on Target was
specified in bold. The value inside of parentheses is the standard deviation of 10 times evaluations,
we omitted the depictions for Dataset B-D.

PAT Train on Target Ours Step-by-step Normal(DANNs) Without Adapt
15rotated→30rotated 1(0) 0.868(.07) 0.919(.06) 0.875(.07) 0.775(.02)
20rotated→40rotated 1(0) 0.869(.08) 0.879(.09) 0.873(.06) 0.619(.03)
25rotated→50rotated 1(0) 0.805(.06) 0.830(.1) 0.793(.1) 0.533(.02)
30rotated→60rotated 1(0) 0.834(.04) 0.813(.07) 0.660(.2) 0.439(.05)
35rotated→70rotated 1(0) 0.774(.1) 0.700(.1) 0.683(.2) 0.339(.01)

Average 1(0) 0.830(.07) 0.828(.09) 0.777(.1) 0.541(.03)

Table 2: Dataset A with CoRALs.
PAT Train on Target Ours Step-by-step Normal(CoRALs) Without Adapt

15rotated→30rotated 1(0) 0.923(.06) 0.936(.07) 0.855(.1) 0.784(.04)
20rotated→40rotated 1(0) 0.853(.09) 0.925(.07) 0.731(.09) 0.631(.03)
25rotated→50rotated 1(0) 0.633(.1) 0.780(.1) 0.560(.07) 0.529(.03)
30rotated→60rotated 1(0) 0.553(.2) 0.656(.2) 0.512(.06) 0.420(.02)
35rotated→70rotated 1(0) 0.475(.1) 0.547(.1) 0.437(.2) 0.349(.01)

Average 1(0) 0.687(.1) 0.769(.1) 0.619(.08) 0.543(.03)

Table 3: Dataset A with JDOT.
PAT Train on Target Ours Step-by-step Normal(JDOT) Without Adapt

15rotated→30rotated 1(0) 0.934(.02) 0.895(.07) 0.8882(.04) 0.782(.04)
20rotated→40rotated 1(0) 0.839(.08) 0.764(.05) 0.787(.04) 0.617(.03)
25rotated→50rotated 1(0) 0.720(.1) 0.677(.04) 0.707(.09) 0.530(.04)
30rotated→60rotated 1(0) 0.620(.1) 0.522(.03) 0.554(.1) 0.427(.02)
35rotated→70rotated 1(0) 0.492(.1) 0.440(.08) 0.434(.05) 0.329(.01)

Average 1(0) 0.721(.09) 0.660(.05) 0.673(.06) 0.537(.03)

Table 4: Dataset B with DANNs.
Trial index Train on Target Ours Step-by-step Normal(DANNs) Without Adapt

0 0.8142286539077759 0.2569529712200165 0.31246158480644226 0.2764674127101898 0.2764674127101898
1 0.8248693943023682 0.29966962337493896 0.29859402775764465 0.29452213644981384 0.288836807012558
2 0.8270590305328369 0.365281194448471 0.29548248648643494 0.2744314670562744 0.3106561303138733

Average 0.8220523596 0.307301263014475 0.302179366350173 0.28019360701243 0.29198678334554

Table 5: Dataset B with CoRALs.
Trial index Train on Target Ours Step-by-step Normal(CoRALs) Without Adapt

0 0.824062705039978 0.28626304864883423 0.2970958948135376 0.1885755956172943 0.2821911573410034
1 0.8216425776481628 0.27185770869255066 0.267324835062027 0.2312154322862625 0.23025506734848022
2 0.7872233986854553 0.231292262673378 0.2524969279766083 0.20732176303863525 0.2641364336013794

Average 0.810976227124532 0.263137673338254 0.272305885950724 0.20903759698073 0.258860886096954

Table 6: Dataset B with JDOT.
Trial index Train on Target Ours Step-by-step Normal(JDOT) Without Adapt

0 0.766364455223083 0.275046110153198 0.252228021621704 0.252727419137954 0.274469882249832
1 0.829706487655639 0.281576514244079 0.303741544485092 0.273547947406768 0.28322833776474
2 0.763560235500335 0.288875222206115 0.23782268166542 0.213429629802703 0.258681625127792

Average 0.786543726126352 0.281832615534464 0.264597415924072 0.246568332115808 0.272126615047455
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Table 7: Dataset C with DANNs.
PAT Train on Target Ours Step-by-step Normal(DANNs) Without Adapt

(d,nexus4)→(f,samsungold) 0.979234308 0.333990708 0.3791183114 0.2445475519 0.3040603146
(f,s3mini)→(g,s3) 0.9537375212 0.6039866924 0.3563122801 0.4890365332 0.4035714209
(d,s3mini)→(e,s3) 0.9632268667 0.8621621609 0.6398853391 0.6870597839 0.8511875629
(b,s3)→(f,s3mini) 0.9091445386 0.7703539729 0.6380531043 0.6666666627 0.7166666567
(a,nexus4)→(d,s3) 0.9471365869 0.5560352564 0.4770925194 0.5336563945 0.3418502301

(d,s3)→(e,samsungold) 0.9668659866 0.3383971155 0.3572966397 0.3135167331 0.2260765433
(e,s3mini)→(i,nexus4) 0.9696132898 0.633001852 0.5512707353 0.5638305902 0.5797790289
(e,samsungold)→(f,s3) 0.9335558951 0.4998330414 0.4212019861 0.4297161847 0.3644407243
(f,samsungold)→(h,s3) 0.9565408528 0.230904308 0.2175592646 0.2302897334 0.2808604091
(f,s3mini)→(g,nexus4) 0.9656078279 0.5516470492 0.3412548937 0.4018039137 0.3747843146

(b,samsungold)→(h,s3mini) 0.8693650961 0.2890476286 0.2026984192 0.2434920691 0.2863492191
(c,s3)→(i,nexus4) 0.9692449689 0.5139595062 0.5257458717 0.5067403525 0.2813628078

(a,nexus4)→(e,s3mini) 0.8998363554 0.5181669414 0.512438634 0.5076923162 0.3450081885
(h,s3)→(i,nexus4) 0.9661510408 0.5531123698 0.5488398015 0.558121568 0.476427266

(b,nexus4)→(e,s3mini) 0.9135843039 0.588052386 0.5351882339 0.508019653 0.4073649794
(a,s3)→(b,samsungold) 0.9768714905 0.2908379823 0.2344133988 0.2617877066 0.2089385405

Average 0.9462323081 0.5083430607 0.4336480896 0.4466236092 0.4030455129

Table 8: Dataset C with CoRALs.
PAT Train on Target Ours Step-by-step Normal(CoRALs) Without Adapt

(d,nexus4)→(f,samsungold) 0.979234308 0.2712296873 0.3948955804 0.2451276004 0.3040603146
(f,s3mini)→(g,s3) 0.9537375212 0.5656976521 0.5803986609 0.5835548103 0.4035714209
(d,s3mini)→(e,s3) 0.9632268667 0.8188370228 0.7868959963 0.8158067286 0.8511875629
(b,s3)→(f,s3mini) 0.9091445386 0.7690265477 0.7792035401 0.7799409986 0.7166666567
(a,nexus4)→(d,s3) 0.9471365869 0.5544493496 0.5429075032 0.529603532 0.3418502301

(d,s3)→(e,samsungold) 0.9668659866 0.3571770191 0.2886363477 0.3734449655 0.2260765433
(e,s3mini)→(i,nexus4) 0.9696132898 0.6311602473 0.7156169653 0.5859300375 0.5797790289
(e,samsungold)→(f,s3) 0.9335558951 0.5492487252 0.5727879584 0.52420699 0.3644407243
(f,samsungold)→(h,s3) 0.9565408528 0.2807726175 0.2603160739 0.274363485 0.2808604091
(f,s3mini)→(g,nexus4) 0.9656078279 0.5189019471 0.4879607767 0.567921567 0.3747843146

(b,samsungold)→(h,s3mini) 0.8693650961 0.2895238206 0.2641269937 0.2858730286 0.2863492191
(c,s3)→(i,nexus4) 0.9692449689 0.6111602366 0.6216574728 0.5978268981 0.2813628078

(a,nexus4)→(e,s3mini) 0.8998363554 0.5220949322 0.5574468166 0.639607209 0.3450081885
(h,s3)→(i,nexus4) 0.9661510408 0.5809944987 0.5965377748 0.543167603 0.476427266

(b,nexus4)→(e,s3mini) 0.9135843039 0.7222586095 0.7522095025 0.5345335573 0.4073649794
(a,s3)→(b,samsungold) 0.9768714905 0.2730726153 0.2655865803 0.3111731768 0.2089385405

Average 0.9462323081 0.5197253455 0.529199034 0.5120051367 0.4030455129

Table 9: Dataset C with JDOT.
PAT Train on Target Ours Step-by-step Normal(JDOT) Without Adapt

(d,nexus4)→(f,samsungold) 0.979234308 0.355220401287078 0.317865419387817 0.321693730354309 0.3040603146
(f,s3mini)→(g,s3) 0.9537375212 0.503405305743217 0.438787361979484 0.503405302762985 0.4035714209
(d,s3mini)→(e,s3) 0.9632268667 0.851760858297348 0.866830480098724 0.864209669828415 0.8511875629
(b,s3)→(f,s3mini) 0.9091445386 0.74144542813301 0.73274335861206 0.754129791259765 0.7166666567
(a,nexus4)→(d,s3) 0.9471365869 0.389691638946533 0.348017627000808 0.392158597707748 0.3418502301

(d,s3)→(e,samsungold) 0.9668659866 0.339234438538551 0.336124384403228 0.33349280655384 0.2260765433
(e,s3mini)→(i,nexus4) 0.9696132898 0.58184163570404 0.605451226234436 0.588397806882858 0.5797790289
(e,samsungold)→(f,s3) 0.9335558951 0.534557574987411 0.497829702496528 0.527045065164566 0.3644407243
(f,samsungold)→(h,s3) 0.9565408528 0.310798954963684 0.146356455236673 0.268832318484783 0.2808604091
(f,s3mini)→(g,nexus4) 0.9656078279 0.446235281229019 0.332862740755081 0.438745093345642 0.3747843146

(b,samsungold)→(h,s3mini) 0.8693650961 0.287936517596244 0.298888900876045 0.278095249831676 0.2863492191
(c,s3)→(i,nexus4) 0.9692449689 0.376316770911216 0.30895028412342 0.308692456781864 0.2813628078

(a,nexus4)→(e,s3mini) 0.8998363554 0.32962357699871 0.376268419623374 0.335024553537368 0.3450081885
(h,s3)→(i,nexus4) 0.9661510408 0.539668530225753 0.493407014012336 0.518563541769981 0.476427266

(b,nexus4)→(e,s3mini) 0.9135843039 0.377741411328315 0.53698855638504 0.38936171233654 0.4073649794
(a,s3)→(b,samsungold) 0.9768714905 0.264245799183845 0.202234633266925 0.258994407951831 0.2089385405

Average 0.9462323081 0.451857757754623 0.427475410280749 0.442552631534636 0.4030455129

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 10: Dataset D with DANNs.
PAT Train on Target Ours Step-by-step Normal(DANNs) Without Adapt

(1, w)→(2, s) 0.8957642913 0.7409972489 0.7875346422 0.7360110939 0.6867036104
(1, w)→(3, s) 0.861866653 0.7052208841 0.7192771018 0.6852744341 0.6829986632
(2, w)→(1, s) 0.8012861729 0.693053323 0.7054927468 0.6919224679 0.6621971011
(2, w)→(3, s) 0.8601333261 0.7986613035 0.7954484522 0.8053547502 0.8078982592
(3, w)→(1, s) 0.807395494 0.6822294176 0.7321486413 0.6969305456 0.6933764279
(3, w)→(2, s) 0.8927256107 0.7096952975 0.7237303913 0.696583581 0.6832871735
(4, w)→(5, s) 0.8287172318 0.8516837239 0.853587091 0.8380673289 0.81859442
(5, w)→(4, s) 0.8698020101 0.876616919 0.8845771074 0.8573797703 0.8353233814
(1, s)→(2, w) 0.8868200541 0.8035789073 0.8214736462 0.8545262694 0.8671578526
(1, s)→(3, w) 0.780769217 0.7954063714 0.66077739 0.8070671439 0.7749116659
(2, s)→(1, w) 0.6769754767 0.8073871732 0.7716826499 0.8065663874 0.7937072694
(2, s)→(3, w) 0.7828671217 0.7583038926 0.7551236808 0.760777396 0.7763250887
(3, s)→(1, w) 0.724523145 0.8347469509 0.7835841656 0.8384405255 0.8228454411
(3, s)→(2, w) 0.8864016414 0.8627368033 0.8244210184 0.8679999769 0.8871578455
(4, s)→(5, w) 0.7400809884 0.8338086188 0.7645621732 0.8256619632 0.84969455
(5, s)→(4, w) 0.7781984448 0.9292267561 0.9292267561 0.9102228284 0.7644823313

Average 0.8171454299 0.7927095994 0.7820404784 0.7924241539 0.7754163176

Table 11: Dataset D with CoRALs.
PAT Train on Target Ours Step-by-step Normal(CoRALs) Without Adapt

(1, w)→(2, s) 0.8957642913 0.7522622466 0.7524469137 0.7475531042 0.6867036104
(1, w)→(3, s) 0.861866653 0.7228915513 0.7121820569 0.7263721406 0.6829986632
(2, w)→(1, s) 0.8012861729 0.6936995268 0.6898223042 0.6877221525 0.6621971011
(2, w)→(3, s) 0.8601333261 0.8285140514 0.8327978611 0.8334672034 0.8078982592
(3, w)→(1, s) 0.807395494 0.7008077681 0.7260097086 0.6957996964 0.6933764279
(3, w)→(2, s) 0.8927256107 0.7213296473 0.7214219868 0.7216989934 0.6832871735
(4, w)→(5, s) 0.8287172318 0.853587091 0.853587091 0.853587091 0.81859442
(5, w)→(4, s) 0.8698020101 0.8825870633 0.8850746214 0.8812603652 0.8353233814
(1, s)→(2, w) 0.8868200541 0.831789434 0.8061052263 0.7663157582 0.8671578526
(1, s)→(3, w) 0.780769217 0.7992932916 0.7176678598 0.7975265026 0.7749116659
(2, s)→(1, w) 0.6769754767 0.7957592607 0.7577291667 0.7726402462 0.7937072694
(2, s)→(3, w) 0.7828671217 0.7575971723 0.6526501805 0.7731448889 0.7763250887
(3, s)→(1, w) 0.724523145 0.8332421601 0.8025992155 0.8411765158 0.8228454411
(3, s)→(2, w) 0.8864016414 0.8532631218 0.8418946981 0.8774736524 0.8871578455
(4, s)→(5, w) 0.7400809884 0.8350306153 0.8350306153 0.8350306153 0.84969455
(5, s)→(4, w) 0.7781984448 0.9263434052 0.9292267561 0.9259502232 0.7644823313

Average 0.8171454299 0.7992498379 0.7822653914 0.7960449468 0.7754163176

Table 12: Dataset D with JDOT.
PAT Train on Target Ours Step-by-step Normal(JDOT) Without Adapt

(1, w)→(2, s) 0.8957642913 0.73711912035942 0.7653739690780 0.717543876171112 0.6867036104
(1, w)→(3, s) 0.861866653 0.70575635433197 0.7164658486843 0.696385538578033 0.6829986632
(2, w)→(1, s) 0.8012861729 0.7024232804723 0.691599369049072 0.686106634140014 0.6621971011
(2, w)→(3, s) 0.8601333261 0.8397590339188 0.829183393716812 0.810575628280639 0.8078982592
(3, w)→(1, s) 0.807395494 0.689499223232269 0.7218093872031 0.690468513965606 0.6933764279
(3, w)→(2, s) 0.8927256107 0.705632507801055 0.7588181078499 0.710249316692352 0.6832871735
(4, w)→(5, s) 0.8287172318 0.853294265270233 0.8535870909690 0.851098072528839 0.81859442
(5, w)→(4, s) 0.8698020101 0.866003310680389 0.791708122938871 0.8747927069664 0.8353233814
(1, s)→(2, w) 0.8868200541 0.82652627825737 0.815578907728195 0.853052592277526 0.8671578526
(1, s)→(3, w) 0.780769217 0.7865724503998 0.74770318865776 0.763250893354415 0.7749116659
(2, s)→(1, w) 0.6769754767 0.8117647409408 0.786183339357376 0.810807144641876 0.7937072694
(2, s)→(3, w) 0.7828671217 0.768551242351531 0.7830388784407 0.764664322137832 0.7763250887
(3, s)→(1, w) 0.724523145 0.8399453103542 0.777428218722343 0.808344769477844 0.8228454411
(3, s)→(2, w) 0.8864016414 0.867789441347122 0.855368375778198 0.863999962806701 0.887157845
(4, s)→(5, w) 0.7400809884 0.838900262117385 0.835030615329742 0.832179284095764 0.84969455
(5, s)→(4, w) 0.7781984448 0.832503297179937 0.91310617923 0.871428591012954 0.7644823313

Average 0.8171454299 0.7920025074388 0.790123937046155 0.787809240445494 0.7754163176
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Ours have same layers and same shape of F,C,D respectively though the number of components is
not the same since e.g. Normal does not have two domain discriminators. The number of F,C when
inference is same. Internal layers are from previous studies, Dataset A with shallow neural networks
is from (Ganin et al., 2017), Dataset B with CNN based back bone from (Ganin et al., 2017), Dataset
C with one dimensional CNN based from Figure 3 in (Wilson et al., 2020) and Dataset D from Figure
4 and section 4.3. in (Oshima et al., 2024). In the settings during learning, a fixed learning rate is
adopted for Dataset A and B. For the other Datasets, the learning rate is determined by optimising
from 0.001-0.00001 using the Theorem 3.1 method. In Step-by-step and Normal, the (Ganin et al.,
2017) method is used to perform the optimisation. Terminal Evaluation step for target data is exactly
same for any method, the feature extractor and task classifier are applied to the 50% of target data
not used for training in any sense and their predictions are compared with the ground truth labels
to calculate the accuracy. The number of repetitions is three only for Dataset B. The training set of
DT ′ and test set are identical in Dataset A experiment.

E TWO DIMENSIONAL CO-VARIATE SHIFTS OBSERVATION

In this section, we confirm whether or not four datasets are following that two dimensional co-
variate shifts assumption we introduced in the 2.2. We need to check dataset-wise, (1) existence
of marginal distributions shifts between DS ,DT ,DT ′ (2) mostly sharing of conditional distribution
P (y|x) between any domains. Apparently Dataset A follows that since the three data sets retain co-
variate misalignment based on the semi-clockwise rotation action, and without this misalignment the
labelling rules are perfectly consistent (Figure 8), likewise DS ,DT in Dataset B can be understood
on the action of coloring digit part and background part (Figure 9). About the DT ′ in Dataset B,
although the explicit action does not return to DS ,DT , and includes shifts about labelling rules as
well as simple two dimensional co-variate shifts, we speculate a certain sharing of rule based on the
facts that we can identify numbers with the human eyes.

Figure 8: Data examples from Dataset A. Left is the source→15rotated→30rotated pattern, middle
is 50 rotated target, right is 70 rotated target.

Previous work with Dataset C showed their co-variate shift existence between users, so they did
the UDA experiment (Wilson et al., 2020) (e.g. see differences between user f and user g in Figure
10). It has been suggested in similar studies (Lane et al., 2011; Weiss & Lockhart, 2012) as well
that the characteristics of the data measured will change depending on the age and user of the same
behaviour, e.g. ML models trained on data from one age group will not generalise to different age
groups. We additionally assume that different models of accelerometer equipment generate further
shift based on the analysis by (Stisen et al., 2015) (e.g. see differences between model s3mini and
model s3 in Figure 10). The measurement of the same phenomenon under static conditions with
different models demonstrated that the distribution of measured values can be very different (please
check Figure 1 in (Stisen et al., 2015)). Because all the data for a given model and a given user
are taking a predetermined pattern of action classes, we can speculate that P (y|x) is also sharing
basically.

It is described by qualitative analysis of the previous study as co-variate shifts that satisfies a certain
degree of shared labelling rules in the Dataset D (Oshima et al., 2024). The dynamics include
different frequency of electricity peaks for certain time intervals between households (differences in
the number of family members) or between seasons, while the previously mentioned rule of being at
home if the electricity consumption is large and absent if it is small is shared (please check Figure 2

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: Data examples from Dataset B.

Figure 10: Data examples from Dataset C with (f,s3mini)→(g,s3). We omitted the plots of gyro-
scope data, blue plots correspond to the average of x-axis accelerometer data, red plots to the average
of y-axis and green plots to the average of z-axis.
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in (Oshima et al., 2024)). In particular, the Dataset D subjects live in Switzerland, where electricity
consumption tends to vary significantly between summer and winter, and is generally higher in
winter.

F APPLIED RESEARCHES’ FUTURE RESEARCH DIRECTION

A promising direction for applied research is to evaluate the method with data and tasks that are in
high demand for other social implementations, and to promote the application of UDA in business
and the real world. For example, the problem of determining whether a patient with acute hypoxemic
respiratory failure died during hospitalisation from medical data (e.g. blood pH and arterial blood
oxygen partial pressure) and the problem of classifying the name of the disease,(Purushotham et al.,
2017) may result in distribution shifts due to two dimensional data domains between different ages
and different sexes. Semantic image segmentation in self-driving also may put a need for UDA
between whether conditions and between a.m. or p.m. e.g. (Noon, Sunny)→(Noon, Rainy)→(Night,
Rainy) (Liu et al., 2020).

G JDOT VERSION TWO STAGES DOMAIN INVARIANT LEARNERS AND
EXPERIMENTAL VALIDATION

Algorithm and schematic diagram are in Algorithm 4 and Figure 11. In the pseudo code, we denote
optimal transport solution for sample i and sample j as OTi,j for short. Figure 12 shows two-stages
JDOT’s superiority to previous studies, namely we found that ”Upper bound > Ours > Max(Step-
by-step, Normal, Lower bound)” for 4 out of 4 datasets. Figure 13 also says that evaluation for ours
is always better than Normal and Step-by-step when any rotated target data in Dataset A.

Figure 11: Forward path and backward process of Normal(JDOT), Step-by-step, Ours. The
Ltask, Ldomain as Lc, Ld for short. The OptimalTransporti,j in this figure is optimal transport
solution for source samplei and target samplej.
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Algorithm 4 2stages-JDOT
Require: source,intermediate domain,target DS ,DT ,DT ′

Ensure: neural network parameters {θf , θc}
1: θf , θc ← init()
2: while epoch training() do
3: while batch training() do
4: Ê(Ldomain(DS ,DT ))←

1
batch×batch

∑batch
i=1

∑batch
j=1 {||F (xS

i )− F (xT
j )||2 + CE(C(F (xT

j )), y
S
i )} ×OTi,j

5: Ê(Ldomain(DT ,DT ′))←
1

batch×batch

∑batch
i=1

∑batch
j=1 {||F (xT

i )− F (xT ′

j )||2 + CE(C(F (xT ′

j )), ySi )} ×OTi,j

6: Ê(Ltask)← 1
batch

∑batch
i=1 CE(C(F (xS

i )), y
S
i )

7: θc ← θc − ∂(Ê(Ltask)+Ê(Ldomain(DS ,DT ))+Ê(Ldomain(DT ,DT ′ )))
∂θc

8: θf ← θf − ∂(Ê(Ltask)+Ê(Ldomain(DS ,DT ))+Ê(Ldomain(DT ,DT ′ )))
∂θf

9: end while
10: end while

Figure 12: Quantitative result overview with JDOT

H EMPIRICAL STUDY: EFFECTS OF TWO STAGES DOMAIN INVARIANT
LEARNERS FREE PARAMETER INDICATOR

We analyzed whether there is a positive correlation between RV-based indicators (left of Theorem
3.1) and actual losses (1st term, right of Theorem 3.1). Using dataset A, learning rate was varied
from 0.00000001 − 0.1, and the RV-based score (cross entropy loss) was calculated for the model
as the result of UDA learning. At the same time, actual losses (cross entropy loss) were calculated
using target data for testing. Finally, pearson correlation coefficient was calculated to determine
if there was a positive correlation between the two scores. Table 13 shows that there is a high
positive correlation for all patterns. This result supports that two stages domain invariant learners
free parameter indicator is useful in UDA experiments.
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Figure 13: Quantitative result with JDOT in Dataset A
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I BENCHMARKS DESCRIPTION FOR 4 EXPERIMENTAL VALIDATION

We adopted six benchmark models for the comparison test and described input when training, input
when inference and what the meaning is when compared to Ours.

Table 14: Benchmarks list.
Method Input

When Training
Input

When Inference Role and Note

Train on Target Training data of DT ′ with its labels Test data of DT ′

Call as Upper bound.
Training F,C with target ground truth labels

(other methods cannot access to),
validation on its test data.

Normal(DANNs,CoRALs) DS , training set of DT ′ same as above

Normal domain invariant learners.
Our methods should be better than these.

Internal layers are from
(Ganin et al., 2017; Wilson et al., 2020)

(Oshima et al., 2024)
.

Step-by-step
identical to ours

DS ,DT and training data of DT ′
same as above

Step by step domain invariant learners.
Our methods should be better than these.

We can implement this with CoRALs easily.
(Oshima et al., 2024) did not do that.

Without Adapt DS same as above
Call as Lower bound.

Ordinary supervised learning with source
then validated on target test data.
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