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ABSTRACT

Autoregressive modeling is the main learning paradigm behind the currently so
successful large language models (LLM). For sequential tasks, such as generat-
ing natural language, autoregressive modeling is a natural choice: the sequence
is generated by continuously appending the next sequence token. In this work,
we investigate whether the autoregressive modeling paradigm could also be suc-
cessfully used for molecular activity and property prediction models, which are
equivalent to LLMs in molecular sciences. To this end, we formulate autoregres-
sive activity prediction modeling (AR-APM), draw relations to transductive and
active learning, and assess the predictive quality of AR-APM models in few-shot
learning scenarios. Our experiments show that using an existing few-shot learning
system without any other changes, except switching to autoregressive mode for in-
ference, improves ∆AUC-PR up to ∼40%. Code is available here: https://
github.com/ml-jku/autoregressive_activity_prediction.

1 INTRODUCTION

Autoregressive modeling and large language models. Autoregressive modeling (Yule, 1927;
Whittle, 1951; Box et al., 2015; Radford et al., 2018) is a fundamental approach within the do-
main of sequence and generative modeling, exemplified prominently by the recent success of large
language models (LLMs) (Vaswani et al., 2017; Brown et al., 2020b). LLMs have shown remarkable
capabilities at text generation, translation, text summarization, and as conversational agents (Zhao
et al., 2023). These LLMs are deep neural networks, usually based on the Transformer architecture
(Vaswani et al., 2017), and are trained to solve autoregressive tasks, concretely predicting the correct
next tokens given a sequence of previous tokens. Overall, autoregressive modeling has emerged as a
cornerstone technique for natural language processing and other areas. However, in other areas, such
as the molecular sciences, where the data is not naturally sequential, it is still unclear whether the
success of autoregressive modeling can be carried over and how these areas will be impacted. In this
work, we investigate whether molecular activity and property prediction models (Mayr et al., 2018;
Yang et al., 2019; Deng et al., 2023), which are the equivalent of language models for molecular
sciences, can be improved with the autoregressive modeling paradigm. Concretely, we will propose
autoregressive modeling of few-shot learning data in drug discovery.

Low-data drug discovery, few- and zero-shot learning on molecules. Molecular activity and
property prediction models play a crucial role in numerous drug discovery projects (Green, 2019;
Brown et al., 2020a; Tyrchan et al., 2022; Volkamer et al., 2023). Since seeking suitable drug candi-
dates often faces the low-data obstacle, Deep Learning methods have been designed for, applied to,
and evaluated for these low-data scenarios (Stanley et al., 2021; The COVID Moonshot Consortium
et al.; Schimunek et al., 2024). While already optimized for these low-data scenarios, recently used
few-shot models (Altae-Tran et al., 2017; Guo et al., 2021; Wang et al., 2021; Schimunek et al.,
2023; Chen et al., 2022) stick to the initially available measurements provided as a support set.
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Figure 1: Overview of autoregressive activity prediction (AR-APM) models. Left column: Initially,
only 1 active and 1 inactive molecules are known. Based on these two molecules, an embedding-
based few-shot learning model predicts the labels of the query set. Second column: The top predic-
tions of the query set are added to the support set. Again, the few-shot model predicts the labels of
the query set. Thus, the model is conditioned on its own prediction from the step before.

Contributions. In contrast to the existing few-shot learning modeling, we suggest an autoregressive
inference scheme for few-shot drug-discovery models which enables support set augmentation in
an iterative fashion by including new pseudo-labeled samples to the support set. We show that this
autoregressive inference scheme applied to the SOTA few-shot model MHNfs boosts the model
performance in terms of AUC and ∆AUC-PR for very low-data scenarios, i.e. scenarios in which
just one active and one inactive molecule is known.

2 BACKGROUND AND RELATED WORK

Few-shot learning refers to methods that are geared to learning accurate predictive models with
in scenarios T∗ where only little data is available. Usually, a few-shot model g(·;w) with learn-
able parameters w is provided with a set of training tasks Dtrain = {Tt}Tt=1 during training,
and, during test/inference time, a set of unseen tasks Deval = {T∗}: Deval ∩ Dtrain = ∅. Each
task T comprises a set of data points, i.e. pairs of molecular inputs x and associated labels
y: T = {(x1, y1) , . . . , (xK , yK)}. The labels are assumed to be either binary or unknown:
y ∈ {0, 1,□}, where □ indicates the unknown class. For test/inference tasks T∗ , typically the
amount of labeled data S ⊂ T∗ is assumed to be limited which could be used to tune model parame-
ters and help to predict molecules {q1, . . . , qL} from the query set Q ⊂ T∗ , Q∩S = ∅. S is called
the support set. Notably, molecules assigned to the label 0 (1) are considered active (inactive).

Inductive inference. In standard few-shot drug-discovery settings, e.g., as provided in the FS-Mol
benchmark (Stanley et al., 2021), query molecules {q1, . . . , qL} usually are treated independently.
This is called inductive inference:

ŷl = g (ql;A(w,S,Dtrain)) ∀ 1 ⩽ l ⩽ L, (1)

where A is a possibly complex learning algorithm which maps the parameters, the training data and
the support set onto new parameters.

Semi-supervised learning and transductive inference. Semi-supervised learning
methods extend the support set S = {(x1, y1) , . . . , (xN , yN )} with unlabeled data
U = {(xN+1,□) , . . . , (xN+M ,□)}, which frames few-shot learning as the task of learning
from labeled and unlabeled data:

ŷl = g (ql;A(w,S ∪ U ,Dtrain)) ∀ 1 ⩽ l ⩽ L. (2)

In transductive inference the samples included in this additional unlabeled data set U are the query
molecules {q1, . . . , qL}.
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Figure 2: Results of autoregressive inference experiment. The model performance for autoregressive
inference mode (yellow) and naive baseline (blue) are shown across inference iterations. The shaded
area indicates the standard deviation across experiment reruns.

Pseudo labeling and label propagation. Recent methods (Iscen et al., 2019; Liu et al., 2018;
Lazarou et al., 2021; Zhu & Koniusz, 2023) leverage this unlabeled dataset U by augmenting the
support set (iteratively) with pseudo-labeled samples given in U . Label propagation (Zhu & Ghahra-
mani, 2002; Zhou et al., 2003; Liu et al., 2018) is the process of creating pseudo-labels for unlabeled
samples by propagating given label information through an nearest-neighbor based graph which in-
cludes both labeled and unlabeled samples.

Feature space adaption and embedding propagation. Rodrı́guez et al. (2020) propose embedding
propagation, which is an unsupervised non-parametric regularizer for manifold smoothing in few-
shot classification. Embedding propagation leverages interpolations between the extracted features
of a neural network based on a similarity graph. Similarly, Hu et al. (2021a) use feature interpola-
tions based on a similarity graph in few-shot settings. Hu et al. (2021b) introduce class-wise feature
preprocessing and feature distribution leveraging in few-shot learning.

Few-shot drug discovery. Different types of few-shot approaches have been suggested to few-
shot learning in drug-discovery. Some of them build up on meta-learning frameworks (Finn et al.,
2017) and use the support set to adapt to the new task within a few update steps (Guo et al., 2021;
Wang et al., 2021; Chen et al., 2022). Other models, known as embedding-based methods, com-
pute similarities between query and support set samples and eventually build predictions from a
weighted sum over the support set labels (Altae-Tran et al., 2017; Schimunek et al., 2023). Since
for embedding-based methods no re-training or fine-tuning (in the sense of a backward pass to ad-
just parameters) is necessary, these methods are intuitively well suited for an iterative autoregressive
inference procedure.

3 AUTOREGRESSIVE ACTIVITY PREDICTION

We employ autoregressive inference as a strategy to surmount the challenge of the pronounced
scarcity of available data. In autoregressive inference mode, a given few-shot model iteratively
augments the support set with additional pseudo-labeled samples. Formally, given a set of unlabeled
data U = {(u1,□) , . . . , (uM ,□)} and a selection policy π, which selects samples to be added to
the support set based on the model predictions:

π
(
{(u1, ŷ1), . . . , (uM , ŷM )}

)
= (ui, ŷi),
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Table 1: Autoregressive inference results on FS-Mol. The first column gives the inference mode,
either inductive (”Ind.”) or autoregressive (”AR-”) of the APM. The backbone of the APM is
given in column two. The columns ”n+/n−” show the model performance with n active pseudo-
labeled and n inactive pseudo-labeled samples added to the support set. Error bars represent the
standard deviation across ten experiment reruns. The metrics are averaged across tasks.

Inf. Mode Backbone ∆AUC-PR AUC
1+/1− 2+/2− 8+/8− 1+/1− 2+/2− 8+/8−

Ind. APM MHNfs .138±.010 .138±.010 .138±.010 .623±.010 .623±.010 .623±.010

AR-APM MHNfs .156±.009 .177±.008 .189±.006 .646±.009 .657±.008 .679±.007

Performance Gain .019±.003 .028±.004 .051±.008 .020±.003 .030±.005 .053±.007

the autoregressive inference procedure is performed in iterations to augment the support set and
eventually improve the model performance:

(u1, ŷ1) = π
({

(u, ŷ) | ŷ = g
(
U1;S

)
,u ∈ U1

})
(u2, ŷ2) = π

({
(u, ŷ) | ŷ = g

(
U2;S ∪ {(u1, ŷ1)}

)
,u ∈ U2

})
. . .

(un, ŷn) = π
({

(u, ŷ) | ŷ = g
(
Un−1;S ∪ {(ui, ŷi)}n−1

i=1

)
,u ∈ Un−1

})
,

where Ui = (ui,ui+1, . . .uM ). Here, we used g(·;S) as a shorthand for g (·;A(w,S ∪ U ,Dtrain)).
Also, for simplicity, we assumed the selection policy selects the unlabeled elements sequentially.
Note that active learning is similar, but instead of adding the datapoint with the pseudo-label (ui, ŷi),
the datapoint with the correct label (ui, yi) is added to the training or support set.

We choose MHNfs (Schimunek et al., 2023) as the backbone few-shot model since a) MHNfs has
already proven to be SOTA on the FS-Mol benchmark experiment, b) MHNfs is an embedding-
based method and thus does not require any backward passes to adapt to changing support sets, and
c) already includes the idea of feature manifold smoothing (Rodrı́guez et al., 2020; Hu et al., 2021a).
As a selection policy, we choose the candidate with the highest (lowest) few-shot model prediction
to be added to the support for the active (inactive) class.

4 EXPERIMENTS

Data. Recently Stanley et al. (2021) proposed the FS-Mol dataset to benchmark few-shot models.
Extracted from ChEMBL27 (Mendez et al., 2019), it consists 5,125 separate assays, 233,786 com-
pounds and 489,133 measurements. The tasks are well-balanced by design which means that the
mean ratio of active and inactive molecules per task is 1. The authors provide a training (4,938
tasks), validation (40 tasks), and test split (157 tasks), whereas training, validation, and test tasks
build disjoint sets (Stanley et al., 2021). We use the FS-Mol test set data for benchmarking perfor-
mance gains of autoregressive activity prediction.

Methods compared. We compare MHNfs run in autoregressive inference mode
”AR-APM (MHNfs)” with a naive baseline ”Inductive APM (MHNfs)”. The naive baseline
is the MHNfs model which predicts the evaluation set only once just being aware of the initial
support set, consisting of one active and one inactive sample. Notably, the naive baseline is
the model proposed by Schimunek et al. (2023). Therefore, it already was compared to other
competitors in the FS-Mol benchmark experiment.

We run experiments in two slightly different experimental setups, which are a) semi-supervised
learning with fixed evaluation set, and b) a transductive learning setting (see Appendix A.3).

SEMI-SUPERVISED LEARNING SETTING WITH FIXED EVALUATION SET

This experiment evaluates whether the predictive power of the few-shot classifier increases in au-
toregressive inference mode. For undistorted performance evaluation we fix the evaluation set which
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means that samples for performance evaluation and potential support set candidates come from dif-
ferent sets. The evaluation set samples are predicted in inductive inference mode, support set candi-
dates are processed in transductive inference mode.

Experimental setup. For each FS-Mol test task, the available data points are split into three sets
a) an initial support set, b) a candidate set, and c) an evaluation set. The initial support set consists
of 1 active and 1 inactive molecule. It functions as the initial, first support set the model is pro-
vided with during the autoregressive inference procedure. The candidate set consists of 32 active,
and 32 inactive data points. Candidate set samples are processed in transductive inference mode
which means that for all available candidates activity is predicted jointly and eventually a selection
policy π decides for the candidates to augment the support set with. The evaluation set includes all
other datapoints the FS-Mol test task provides. It is fixed in terms of it does not change during the
autoregressive inference iterations. Evaluation set samples are treated independently which means
the few-shot model runs in inductive inference mode for these samples. All available datapoints
for a task are distributed randomly. For experiment reruns the samples for initial support set and
candidate set are drawn with different seeds, the evaluation set is not changed.

Results. The results in terms of ∆AUC-PR and AUC are presented in Table 1 and Figure 2. The
standard deviation is reported across ten experiment reruns, i.e. the comparison of autoregressive
inference with naive baseline. In the table, the support set augmentation realized with the autore-
gressive inference procedure causes performance gains up to 0.051± 0.008 for the ∆AUC-PR and
0.053±0.007 for the AUC metric. This means the model performance increases from 0.138±0.010
to 0.189 ± 0.006 for the ∆AUC-PR and from 0.623 ± 0.010 to 0.679 ± 0.007 for the AUC metric
without neither having changed any model parameter nor having included any new measurements.
Despite this generally found performance boost, Figure A1 shows that, in fact, performance gains
are highly task dependent and vary a lot. While some correlation between model performance on a
specific task and potential gains using the autoregressive inference scheme seems present, detailed
analysis is up to future work. Notably, the FS-Mol main benchmark experiment was performed with
support set size 16, while the size of the initial support set for this experiment is 2.

Discussion. Our work has introduced the idea of autoregressive activity prediction modeling, while
connecting it to the fields of active learning and transductive learning. Our experiments showed that
applying this autoregressive inference mode to MHNfs improved both the AUC and the ∆AUC-PR
metric. Generalization to another embedding-based few-shot method failed and requires further
exploration A.2. Another evaluation in relation to the selection policy A.1 shows that even randomly
selecting candidates for the support set helps to improve the model performance. Still, AR-APM
(MHNfs), i.e. MHNfs in autoregressive inference mode with suggested selection policy, excels.
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A.1 DETAILS ON SEMI-SUPERVISED LEARNING EXPERIMENT WITH FIXED EVALUATION SET

Figure A1 shows that performance gains are highly task dependent and vary a lot.

PERFORMANCE ACROSS FS-MOL TEST TASKS
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Figure A1: Results of autoregressive inference experiment. Left: The model performance within the
autoregressive inference loop (mean over experiment reruns) is shown. The shaded area reports the
standard deviation across tasks. Right: For the backbone few-shot model, task-wise the performance
value evaluated on the FS-Mol benchmark experiment (Schimunek et al., 2023) is associated with
the performance gain in the autoregressive inference procedure.

RANDOM SAMPLING BASELINE FOR THE SEMI-SUPERVISED LEARNING SETTING

As a additional baseline we define a ”random selection policy” which ignores the MHNfs predic-
tions. In every iteration, randomly one candidate is chosen to be added to the support set with an
active pseudo label and one candidate is chosen to be added with an inactive pseudo label neglecting
both the true labels and the few-shot model predictions. Since the candidate set is balanced, this
leads to adding candidates with wrong pseudo-label in 50% of the cases.

Figure A2 shows that running MHNfs in autoregressive inference mode with this random selection
policy already improves the model performance in comparison to the naive baseline. We speculate
this is due to three reasons a) the data points the experiment is based on were curated by chemists
and therefore already include some sort of inductive bias, b) MHNfs, which originally was trained
to behalf well for support set sizes around 16, might generally perform better for larger support set
sizes, and c) adding noisy data could even help, similar to retrieval-augmented generation systems
for which including irrelevant documents can unexpectedly enhance performance (Cuconasu et al.,
2024).
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Table A2: Extended autoregressive inference results on FS-Mol. The columns ”n+/n−” show the
model performance with n active pseudo-labeled and n inactive pseudo-labeled samples added to
the support set. Error bars represent the standard deviation across ten experiment reruns. The
metrics are averaged across tasks.

Inf. Mode Backbone ∆AUC-PR AUC
1+/1− 2+/2− 8+/8− 1+/1− 2+/2− 8+/8−

Ind. APM ProtoNet .138±.008 .138±.008 .138±.008 .617±.011 .617±.011 .617±.011

Ind. APM MHNfs .138±.010 .138±.010 .138±.010 .623±.010 .623±.010 .623±.010

AR-APM ProtoNet .138±.010 .138±.011 .135±.013 .614±.011 .615±.014 .609±.016

AR-APM MHNfs .156±.009 .177±.008 .189±.006 .646±.009 .657±.008 .679±.007

AR-APM MHNfs .143±.038 .144±.035 .146±.047 .633±.042 .633±.040 .636±.052

(random π)
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Figure A2: Results of the autoregressive inference experiment with the ”random selection policy”.
The model performance for autoregressive inference mode (yellow) and naive baseline (blue) are
shown across inference iterations. The shaded area indicates the standard deviation across experi-
ment reruns.

A.2 GENERALIZATION TO DIFFERENT BACKBONE FEW-SHOT MODEL

For this evaluation, we replace the MHNfs backbone model with a Prototypical-Network based few-
shot model (Snell et al., 2017). As a similarity measure dot-product distance is used. The model
was trained on the FS-Mol training set. Table A1 reports the performance on the FS-Mol main
benchmark experiment.

Table A1: Model performance comparison on the FS-Mol benchmark
experiment. Standard deviation is reported across tasks.

Model ∆AUC-PR AUC

Prototypical Networks 0.218 ± 0.135 0.719 ± 0.131
MHNfs 0.241 ± 0.119 0.739 ± 0.114

Surprisingly, this ProtoNet implementation in autoregressive mode performs worse than its naive
baseline (see Figure A3, and A2), which needs further exploration.
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Figure A3: Prototypical Network results of the autoregressive inference experiment. The model
performance for autoregressive inference mode (yellow) and naive baseline (blue) are shown across
inference iterations. The shaded area indicates the standard deviation across experiment reruns.

A.3 TRANSDUCTIVE LEARNING EXPERIMENT

This setting mimics virtual screenings in which pseudo labels for some of the queried molecules
might boost the prediction for others.

Experimental setup. For each FS-Mol test task, the available data points are split into two sets
which are an initial support set (analogous to 4) and a query set. The query set takes over both the
role of the candidate set and the evaluation set. Notably this setting might be closer to real-world
applications but reported performance values are based on test sets in which samples are not i.i.d..

Results. The results in terms of ∆AUC-PR and AUC are presented in Table A3. The standard
deviation is reported across ten experiment reruns. The table shows that the support set augmentation
realized with the autoregressive inference procedure causes performance gains up to 0.040± 0.005
for the ∆AUC-PR and 0.041 ± 0.006 for the AUC metric. This means the model performance
increases from 0.130 ± 0.010 to 0.169 ± 0.010 for the ∆AUC-PR and from 0.624 ± 0.011 to
0.665± 0.011 for the AUC metric without neither having changed any model parameter nor having
included any new measurements.

Table A3: Transductive inference results on FS-Mol. The columns ”n+/n−” show the model
performance with n active pseudo-labeled and n inactive pseudo-labeled samples added to the
support set. Error bars represent the standard deviation across ten experiment reruns. The metrics
are averaged across tasks.

Inf. Mode Backbone ∆AUC-PR AUC
1+/1− 2+/2− 8+/8− 1+/1− 2+/2− 8+/8−

Ind. APM MHNfs .130±.010 .130±.010 .130±.010 .624±.011 .624±.011 .624±.011

AR-APM MHNfs .146±.010 .154±.010 .169±.010 .641±.011 .650±.011 .665±.011

Performance Gain .016±.002 .024±.003 .040±.005 .018±.002 .026±.004 .041±.006

A.4 USED PERFORMANCE METRICS

In this manuscript results are presented in terms of AUC and ∆AUC-PR.

The AUC metric computes the area under the receiver operating characteristic curve (ROC AUC).
AUC values are between 0 and 1 and indicate how well active and inactive test molecule predictions
are separable. Random classifier achieve AUC scores around 0.5.
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The ∆AUC-PR metric computes the area under the precision recall curve and reports the model
performance as the difference from a random classifier. It was used by Stanley et al. (2021) in the
FSMol few-shot drug-discovery benchmark experiment.
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