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ABSTRACT

Understanding the drivers of machine learning performance is essential for op-
timizing model accuracy and robustness. While significant attention has been
given to hyperparameter tuning and data preprocessing, the impact of intrinsic
data complexity (e.g., class overlap, feature overlap, dimensionality, etc) remains
less explored. This study investigates the comparative influence of data com-
plexity and hyperparameter configurations on the performance of classification
algorithms, specifically Random Forests (RF), Support Vector Machines (SVM),
Decision Tree (DT), Adaptive Boosting (AB) and Multi-layer Perceptron (MLP).
Using 270 diverse OpenML datasets and 304 hyperparameter configurations, we
employ functional analysis of variance (fANOVA) and Ordinary Least Squares
(OLS) regression to quantify the relative importance and effect sizes of hyperpa-
rameters and complexity meta-features. Our results reveal that data complexity
exerts a more substantial influence on both bias and variance components than hy-
perparameter tuning, underscoring the importance of addressing intrinsic dataset
challenges. These findings suggest that efforts to mitigate data complexity factors,
such as class overlap or imbalance, may yield greater performance improvements
than extensive hyperparameter optimization. This study provides actionable in-
sights for machine learning practitioners and highlights the need for further re-
search into the interplay between dataset properties and algorithmic performance.

1 INTRODUCTION

The performance of machine learning models is influenced by various factors, including the quality
of the data, the choice of algorithms, and the optimization of hyperparameters. While considerable
research has focused on techniques for hyperparameter tuning to improve model performance, less
attention has been given to the inherent properties of datasets—referred to as data complexity meta-
features—that fundamentally shape a model’s ability to learn effectively.

Hyperparameters govern the complexity and architecture of machine learning models, necessitating
precise selection prior to model training. The process of identifying the optimal hyperparameters to
maximize the performance of a machine learning algorithm on a given dataset is known as hyperpa-
rameter tuning. This involves exploring a range of hyperparameter settings using various optimiza-
tion techniques such as Grid search (Lerman, 1980), Random search (Bergstra & Bengio, 2012),
and Bayesian optimization (Mockus, 1982). However, this optimization can be computationally in-
tensive, particularly for complex models like deep neural networks, which are characterized by nu-
merous hyperparameters. Understanding the influence of hyperparameters has become increasingly
important, as identifying the critical hyperparameters can narrow the optimization space, thereby im-
proving efficiency. Consequently, several studies (Biedenkapp et al., 2017; Huang & Boutros, 2016;
Hutter et al., 2014; Jin, 2022; van Rijn & Hutter, 2018; Taylor et al., 2021; Trithipkaiwanpon &
Taetragool, 2021) have been dedicated to quantifying and ranking the influence of hyperparameters
on classification performance. Notably, in (Hutter et al., 2014), the authors introduced a functional
analysis of variance (fANOVA) framework to quantify the individual and pairwise contributions of
hyperparameters. Their findings underscored that model performance could often be attributed to a
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select few hyperparameters. Utilizing the fANOVA framework, van Rijn & Hutter (2018) examined
the most influential hyperparameters of various algorithms, including Random Forests (RF), Support
Vector Machines (SVM), and Adaptive Boosting (AB), across 100 datasets, revealing consistent key
hyperparameters across these datasets.

It is equally well established that the predictive performance of classifiers is influenced by the com-
plexity of the given dataset. To elucidate this dependency, complexity meta-features have been pro-
posed (Ho & Basu, 2002; Mollineda et al., 2005; Ho et al., 2006; Sotoca et al., 2006; Orriols-Puig
et al., 2010) to describe classification task difficulty by measuring aspects such as feature overlap,
class overlap, linear separability, and feature dimensionality. In Cano (2013), researchers explored
the impact of complexity meta-features on binary classification accuracy using synthetic datasets
to control data complexity. They determined that feature-based measures had the most significant
impact on classification accuracy, followed by separability measures. Similarly, Östlund & Fahlman
(2022) analyzed multiclass classification tasks using SVM, k-Nearest Neighbors (KNN), and Mul-
tilayer Perceptron (MLP) on both real-world and synthetic datasets, investigating the influence of
complexity meta-features on classification accuracy and variability across data folds.

Recent studies (Farhangi, 2022; Gardner et al., 2023; Talaei Khoei et al., 2023; Lima et al., 2024)
have also investigated the comparative influence of data preprocessing and hyperparameter tuning
on model performance. The findings of these studies reveal that performing data preprocessing im-
proved model performance more than hyperparameter tuning. However, these approaches primarily
address external transformations rather than the underlying complexity of the data and as such the
foundational impact of data complexity on model behavior remains poorly quantified. Address-
ing this gap is crucial, as understanding the interplay between data complexity and hyperparameter
configurations can inform the design of more robust and efficient machine learning systems.

This study builds upon prior research by systematically investigating the relative importance of data
complexity and hyperparameter configurations on classification performance. Specifically, we per-
form a bias-variance decomposition of classification error, providing a granular perspective on how
these factors influence both bias and variance components. Using functional ANOVA (fANOVA)
and Ordinary Least Squares (OLS) regression, we quantify the contributions of complexity meta-
features and hyperparameters, offering a novel approach to dissecting performance drivers.

This paper is structured as follows: Section 2 provides foundational knowledge on bias-variance
decomposition and fANOVA. Section 3 outlines our experimental approach. Section 4 presents
and discusses the experimental results.Section 5 highlights the contribution and implications of our
study. Finally, Section 6 concludes with a summary of key findings and suggests avenues for future
research. Section 7 in the appendix discusses our causal analysis.

2 BACKGROUND

This section provides foundational knowledge on bias-variance decomposition, and fANOVA.

2.1 BIAS-VARIANCE DECOMPOSITION

In classification tasks, bias refers to errors due to oversimplified assumptions about the problem,
while variance quantifies how much predictions vary across different training samples. Recent re-
search has emphasized the importance of decomposing a learner’s error into bias and variance com-
ponents, offering valuable insights into predictive performance. This approach, originating from
regression analysis, has been extended to classification (Geman et al., 1992) and further developed
by Domingos (2000).

In this study, we adopt this unified bias-variance decomposition approach to help us understand
the expected loss by breaking it down into three components: noise, bias, and variance. Noise
represents the inherent unpredictability in the data, bias represents the error due to assumptions
made by the model, and variance represents the error due to the variability in the training data.
These components provide a clearer picture of the sources of error in the model’s predictions. We
employ this decomposition approach because it is currently the only method that provides the most
intuitive and general formulation of bias-variance for classification problems. For a comprehensive
mathematical description of bias-variance decomposition, please refer to (Domingos, 2000).
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2.2 FUNCTIONAL ANALYSIS OF VARIANCE

Functional analysis of variance is a technique used to assess the individual contributions of various
components within a function to its overall variability. In this context, these contributions are re-
ferred to as performance metrics. During the training of a classifier on a dataset, multiple factors
influence the training process. Each factor has a specific domain of possible values, and the combi-
nation of these domains forms a configuration. The performance of the classifier, when trained and
evaluated on the dataset, is represented by a real-valued metric.

fANOVA breaks down the total variability in the classifier’s performance into parts attributed to dif-
ferent subsets of these factors. This decomposition helps in understanding how much each subset of
factors contributes to the overall variability. By quantifying these contributions, fANOVA provides
insights into which factors are most influential in affecting the performance. For detailed definitions
and efficient computation methods, please refer to the work of Hutter et al. (2014). In this study, we
utilize the fANOVA framework to quantify the contributions of each hyperparameter and complexity
meta-feature to the bias and variance of the classifier.

3 METHODOLOGY

This section outlines the methodological framework adopted in our study. It details the data se-
lection, preprocessing, classification algorithm selection, meta-feature extraction, and bias-variance
decomposition phases as depicted in Figure 1. The entire process was designed to examine the
impact of hyperparameters and complexity meta-features on the bias-variance in machine learning
models.

3.1 DATA SELECTION AND PREPROCESSING

We sourced 270 binary classification datasets from the OpenML repository (Vanschoren et al., 2014).
OpenML is a widely used platform for sharing machine learning datasets and experiment results.
Our dataset selection followed the criteria established by Mantovani et al. (2019) to ensure varied
complexity levels across the datasets. The selection criteria were as follows:

• Instances per dataset: Between 100 and 50,000.
• Features per dataset: Maximum of 1,500.
• No missing values in the datasets.
• Datasets must not be simplified, altered, or binarized versions of multi-class problems.
• Exclusion of datasets that are adaptations of regression tasks.

Given that the selected datasets had no missing values, the only preprocessing step required was
encoding categorical features. We used scikit-learn’s label encoding (Pedregosa et al., 2011) to
assign integer values to categorical variables. Other encoding techniques like one-hot encoding
were avoided to prevent dimensionality inflation, especially in datasets with many categories. No
normalization or scaling techniques were applied, as these could inadvertently modify the intrinsic
complexity of the datasets. After encoding, each dataset was split into training (70%) and test (30%)
sets for subsequent processes.

3.2 ALGORITHM SELECTION AND HYPERPARAMETER CONFIGURATION

3.2.1 ALGORITHM SELECTION

We employed two well-known supervised classification algorithms for this study: Random Forest
(RF), a robust ensemble method that combines decision trees to improve predictive accuracy and
reduce overfitting. Support Vector Machine (SVM), a classification algorithm that optimizes a deci-
sion boundary (hyperplane) to maximize class separation in the feature space. Decision Tree (DT),
a tree-based model that splits data based on feature rules to classify it. Adaptive Boosting (AB), an
ensemble method that combines multiple weak learners sequentially, focusing on fixing prior errors.
Multi-layer Perceptron (MLP): a type of artificial neural network with one or more hidden layers,
which learns complex patterns through backpropagation by adjusting weights based on errors

3
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Figure 1: A framework for assessing the contributions of hyperparameters and complexity meta-
features to bias and variance.

These models were chosen because they represent different algorithmic paradigms— DT as a tree-
based method, RF and AB as a tree-based ensemble method, SVM as a non-tree-based method
and MLP as a neural network method—allowing us to generalize the effect of hyperparameters and
complexity meta-features across model types.

3.2.2 HYPERPARAMETER CONFIGURATION

To explore the influence of hyperparameter tuning, we defined a search space for each model based
on prior research by van Rijn & Hutter (2018). The key hyperparameters for all the models were
selected for permutation within this search space. The search space was designed to ensure broad
coverage of hyperparameter settings while avoiding computational intractability. In total, we gener-
ated 304 distinct hyperparameter configurations for each model (Stages 2 & 3 in Figure 1). Detailed
settings for the hyperparameters are provided in Table 1 in the appendix section.

3.3 COMPLEXITY META-FEATURE EXTRACTION

We extracted three key complexity meta-features that characterize the difficulty of classification
tasks. These meta-features have been extensively studied in the literature (Ho & Basu, 2002; Lorena
et al., 2012; Mollineda et al., 2005). The following meta-features were extracted using the pymfe
package (Alcobaça et al., 2020):

• Class Overlap (N1): This complexity metric assesses whether the distributions of two
class labels (class 0 and class 1) are separable. To evaluate class overlap, we employed
the Fraction of Borderline Points method. This method constructs a minimum spanning
tree connecting all data points, regardless of class labels, and counts the number of points
connected to a different class via tree edges. A higher N1 value (ranging from 0 to just
below 1) suggests significant overlap between the classes. .

• Data Sparsity (T2): This complexity metric evaluates the distribution density of data
points within the input space. We measured data sparsity by comparing the ratio of data
features to data samples. This method, referred to as the Average number of features per
points, provides insight into the distribution density. Higher T2 values (bounded between 0
and m) indicate more sparse distributions, where m represents the total number of features.

• Class Imbalance (C2): This complexity measure captures the degree of imbalance be-
tween the classes in the dataset. To measure class imbalance, we computed the ratio be-
tween the number of samples in the majority class and the minority class. Higher values of
C2 (bounded between 0 and 1) indicate a greater imbalance between classes.
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• Feature Overlap (F1v): This complexity measure evaluates the separability of two classes
by identifying an optimal projection vector. Once data points are projected onto this vector,
it assesses their separability using a directional Fisher criterion. F1v provides a bounded
value within the interval (0, 1]. Lower F1v values indicate simpler classification tasks, as
the classes are more easily distinguishable within the projected space.

• Linear Separanility of Classes (L2): The L2 complexity measure quantifies the per-
formance of a linear support vector machine (SVM) by computing its error rate on the
dataset. Higher L2 values (bounded between 0 and 1) suggest that the data is less amenable
to linear separation, implying increased classification complexity. This metric highlights
datasets where linear models struggle to achieve low error rates, often due to non-linear
class boundaries or overlapping distributions.

• Density: This measure assesses data connectivity in a graph by normalizing the number
of edges against the maximum possible. Lower Density values (bounded between 0 and 1)
indicate dense, same-class clusters (simpler tasks), while sparse graphs with fewer edges
or interclass proximity suggest higher complexity.

Each complexity meta-feature was calculated from the training set of each dataset (Stage 4 in Fig-
ure 1).

3.4 BIAS-VARIANCE DECOMPOSITION

To assess the impact of both hyperparameters and complexity meta-features on model performance,
we conducted a bias-variance decomposition for each classification model (Stage 5 in Figure 1).
Using the bias variance decomp function from the MLxtend library (Raschka, 2018), we trained
each of the 304 hyperparameter configurations on each dataset and decomposed the classification
error into bias and variance components using the 0-1 loss function. These components offer a more
granular view of model performance beyond just classification accuracy.

3.5 PERFORMANCE DATA GENERATION AND INFLUENCE ANALYSIS

Performance Data Generation: The next phase involved consolidating the bias-variance results,
hyperparameter configurations, and meta-feature values into a structured dataset referred to as per-
formance data (Stage 6 in Figure 1). This dataset contained both the feature variables (hyperparam-
eters and complexity meta-features) and target variables (bias and variance).

fANOVA Analysis: To quantify the relative influence of hyperparameters and complexity meta-
features on bias and variance, we applied the fANOVA framework (Hutter et al., 2014) (Stage 7
in Figure 1). This technique enabled us to decompose the variation in bias and variance estimates
and assign it to individual hyperparameters or complexity meta-features. We employed fANOVA
because it is well-suited for high-dimensional parameter space exploration, allowing us to determine
the relative importance of each factor. We normalized the independent variables to improve the
interpretability of results.

Linear Regression Analysis: To complement fANOVA and quantify the magnitude and direction
of each factor’s effect, we applied Ordinary Least Squares (OLS) regression. We standardized the
independent variables, which included hyperparameters and meta-features, and tested the regression
coefficients for statistical significance using p-values. This approach enabled us to analyze and
interpret the relationships between these factors and the resulting bias-variance outcomes.

Causal Analysis: Lastly, we conducted an analysis based on the Manipulation Theory of Causation
(Section 7 in appendix) to establish a causal link between dataset complexity and model perfor-
mance. This analysis confirmed that dataset complexity has a more consistent and pronounced
effect on bias and variance than hyperparameters.

4 EXPERIMENTAL RESULTS

4.1 FANOVA ANALYSIS RESULTS

This section presents the findings of our fANOVA analysis.
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4.1.1 BIAS RESULTS

The fANOVA analysis (Figure 2) shows that complexity meta-features overwhelmingly dictate the
bias in all the models considered in this study. These features collectively accounted for a sub-
stantial proportion of bias variability across all models: 74.0% for SVM, 65.6% for RF, 62.6% for
DT, 52.0% for MLP, and 45.5% for AB. More specifically Figure 3 reveals that Class overlap (N1)
emerged as the most significant contributor to bias in RF, DT, MLP, and AB, explaining 53.8%,
53.5%, 44.0%, and 28.2% of the variability, respectively. Notably, SVM deviated from this pattern,
with class imbalance (C2) being the dominant factor, explaining 60.0% of its bias variability. This
observation aligns with the known sensitivity of SVM to class distribution, favoring majority-class
performance (Akbani et al., 2004). As the second most influential meta-feature, Density influenced
SVM (12.2%) and AB (9.3%) bias significantly, while RF bias was more affected by feature overlap-
ping (F1v; 6.0%). Across all models, hyperparameters played a relatively minor role, cumulatively
explaining less than 5% of bias variability in each model. This reveals the limited direct influence
of hyperparameter tuning on bias.

Interestingly, we deduced from our results that a substantial proportion of bias variability—ranging
from 25.7% in SVM to 50.4% in AB—remains unexplained, suggesting potential interactions be-
tween data complexity features and hyperparameters that were not captured in this study. These
unexplained variabilities warrant further exploration of higher-order and nonlinear interactions in
future studies.

Figure 2: Comparison of the total influence of hyperparameters and complexity meta-features on
bias.

4.1.2 VARIANCE RESULTS

In the analysis of variance, data complexity meta-features once again emerged as most influential
(Figure 4), though with slightly reduced contributions compared to bias. These meta-features col-
lectively explained 67.3% of variance variability in DT, 64.0% in RF, 59.0% in SVM, 40.4% in AB,
and 26.1% in MLP. Again, N1 was the most impactful complexity meta-feature (Figure 5) for RF,
DT, AB, and MLP, accounting for 56.8%, 49.6%, 27.4%, and 16.0% of their respective variance
variability. SVM variance was most strongly influenced by C2 (46.1%), reinforcing its sensitivity to
class imbalance. The role of hyperparameters in variance variability was slightly higher than in bias
but remained secondary, with the highest contribution observed in MLP (9.4%) and AB (6.5%).

Also for variance, a significant portion of its variability remained unexplained, ranging from 31.1%
in DT to 64.5% in MLP. This suggests that additional unmodeled interactions or external factors
may significantly influence model variance.
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(a) RF Bias (b) SVM Bias

(c) DT Bias (d) ADA Bias

(e) MLP Bias

Figure 3: Comparison of the effects of hyperparameters and complexity meta-features on bias. The
X-axis indicates the degree of contribution, while the Y-axis shows the influencing factors.

Figure 4: Comparison of the total influence of hyperparameters and complexity meta-features on
variance.
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4.2 REGRESSION ANALYSIS RESULTS

This section presents the findings of our Ordinary Least Squares (OLS) regression analysis (Table 2
to 11 in the appendix section). When interpreting the regression results, we primarily focus on the
direction of the correlation for each predictor variable, as OLS measures only the linear relation-
ships between the analyzed factors and performance. Hence, for rankings of influence, we rely on
the results from fANOVA, as it captures complex, nonlinear dependencies between the factors and
performance, which OLS cannot.

4.2.1 BIAS RESULT

RF: The linear regression analysis indicates that all predictor variables, including complexity
meta-features and hyperparameters, significantly influence the bias of the RF model (p < 0.001).
Among the complexity meta-features, N1 (coefficient = 0.0945), F1v (coefficient = 0.0408), and T2
(coefficient = 0.0184) exhibit the highest positive coefficients, suggesting their substantial role in
increasing bias. In contrast, L2 (coefficient = 0.0144) and max features (coefficient = 0.0062) show
negative correlations, indicating that better class separation and increased max features reduce RF
bias. All RF hyperparameters contribute modestly but significantly, highlighting their subtle impact
on bias adjustment.

SVM: For the SVM model, all predictor variables except the hyperparameter gamma significantly
contribute to bias (p < 0.001). Complexity meta-features N1 (coefficient = 0.0155) and F1v (co-
efficient = 0.0211) have the highest positive coefficients, showing their strong influence on bias.
Conversely, C2 (coefficient = 0.1139) demonstrates the largest negative impact, implying that im-
balanced class distributions reduce SVM bias. Additionally, hyperparameters such as kernel and C
exhibit small but statistically significant contributions.

DT: The analysis reveals that all predictor variables, except the complexity meta-feature L2 and
the hyperparameter min samples split, significantly affect the bias of the DT model (p < 0.001).
Complexity meta-features N1 (coefficient = 0.1054) and F1v (coefficient = 0.0399) show the highest
positive contributions. The hyperparameters min samples leaf and max features also display small
but statistically significant impacts.

AB: For AB, all complexity meta-features significantly influence bias (p < 0.001). Among the
complexity meta-features, N1 (coefficient=0.0792) and F1v (coefficient=0.0348) remained the high-
est positive coefficients. Among hyperparameters, only learning rate shows a statistically significant
contribution.

MLP: In the MLP model, all predictor variables significantly impact bias (p < 0.001). Among
complexity meta-features, N1 (coefficient = 0.0896) has the highest positive contribution. All hy-
perparameters display small but statistically significant contributions.

4.2.2 VARIANCE RESULT

RF: The variance analysis for RF identifies N1 (coefficient = 0.0485) and F1v (coefficient =
0.0251) as the most influential positive predictors, mirroring their effect on bias. In contrast, the
hyperparameters bootstrap (coefficient = 0.0085) and min samples leaf (coefficient = 0.0012) nega-
tively correlate with variance, reflecting the bias-variance trade-off inherent in hyperparameter tun-
ing.

SVM: All complexity meta-features significantly contribute to SVM variance. N1 (coefficient =
0.0174) and T2 (coefficient = 0.0205) exhibit the strongest positive impacts. Conversely, C2 (coeffi-
cient = 0.0738) shows the largest negative correlation, suggesting that imbalanced class distributions
reduce SVM variance. Interestingly, hyperparameters gamma and C are statistically insignificant in
their contribution to variance relative to complexity meta-features.

DT: All complexity meta-features significantly influence DT variance, with N1 (coefficient =
0.1054) having the highest positive coefficient. Similar to its effect on bias, the hyperparameter

8
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min samples split shows a statistically insignificant impact relative to complexity meta-features,
suggesting that it plays a negligible role in both bias and variance adjustment.

AB: For AB, all predictor variables significantly contribute to variance (p < 0.001). Complexity
meta-feature N1 (coefficient = 0.0792) remains the most prominent positive factor. Hyperparameters
learning rate (coefficient = 0.0211) and n estimators (coefficient = 0.0070) maintain their respective
positive and negative relationships with variance. This finding suggests that tuning these hyperpa-
rameters may not result in a bias-variance trade-off, warranting further investigation.

MLP: In the MLP model, all predictor variables except F1v significantly affect variance. Among
complexity meta-features, N1 (coefficient = 0.0443) retains its dominant positive influence. All
hyperparameters display small but significant contributions.

(a) RF Variance (b) SVM Variance

(c) DT Variance (d) ADA Variance

(e) MLP Variance

Figure 5: Comparison of the effects of hyperparameters and complexity meta-features on variance.
The X-axis indicates the degree of contribution, while the Y-axis shows the influencing factors.

4.3 SUMMARY OF RESULTS

The findings emphasize that dataset complexity—particularly class overlap (N1) for tree-based mod-
els like Random Forest (RF) and Decision Trees (DT), and class imbalance for SVMs—plays a piv-
otal role in influencing bias and variance in classification models. Specifically, the significant impact
of class overlap on RF and DT corroborates recent findings by Kim & Jung (2023), which identified
improved performance in these models when resampling techniques such as SMOTE-TomekLinks
and SMOTE-PSO were applied to datasets with high complexity (e.g., class overlap and imbalance).
While that study reported performance improvements, it did not provide an explanation for the un-
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derlying reasons. Our results fill this gap, demonstrating that N1 complexity strongly governs the
bias-variance dynamics in tree-based models.

While hyperparameter tuning is essential, its impact diminishes for datasets with high complexity,
where intrinsic characteristics exert a far greater influence. The unexplained variability in bias and
variance underscores the need to explore higher-order interactions between complexity features and
hyperparameters for a deeper understanding of model behavior.

Although uniform hyperparameter sampling may not capture narrow optimal ranges, the results
robustly illustrate the dominance of dataset complexity over hyperparameters in determining perfor-
mance variability.

5 IMPLICATIONS OF RESULTS

5.1 THEORETICAL IMPLICATIONS

Importance of Data Complexity: These findings emphasize the critical role of data complex-
ity in classification performance. Beyond optimizing models, addressing intrinsic dataset chal-
lenges—such as class overlap—is essential to enhancing robustness and overall model effectiveness.

Bias-Variance Tradeoff Insights: The decomposition of classification error into bias and vari-
ance components revealed that complexity meta-features play a pivotal role in shaping these two
elements. For example, data complexity features like N1 consistently demonstrated a positive corre-
lation with both bias and variance, indicating that addressing this factor can simultaneously improve
both aspects.

Another interesting insight was that for some models, the hyperparameters maintained the same
correlation with both bias and variance. This suggests that tuning these hyperparameters could
improve both bias and variance simultaneously, rather than leading to the typical bias-variance trade-
off often associated with hyperparameter tuning.

5.2 PRACTICAL IMPLICATIONS

Data Preprocessing: Practitioners should prioritize identifying and mitigating dataset complexi-
ties, such as class overlap, early in the development process. Focusing on these issues during data
preprocessing can significantly enhance performance, often more effectively than hyperparameter
optimization.

Model Selection and Design: For datasets with substantial complexity, selecting models inher-
ently robust to class overlap, can offer more reliable reductions in bias and variance than relying
solely on hyperparameter adjustments.

6 CONCLUSION

In this paper, we explored the relative impact of hyperparameters and dataset complexity meta-
features on the bias-variance dynamics of machine learning models, using RF, SVM, DT, AB and
MLP classifiers as case studies. Leveraging the fANOVA framework, we conducted an in-depth
analysis to identify the primary drivers behind bias and variance, a research direction that has been
largely underexplored. Our analysis showed that complexity meta-features—such as class over-
lap—have a consistently stronger impact on model behavior than hyperparameter settings. By high-
lighting the dominant role of dataset complexity in determining bias and variance, these findings
emphasize the importance of adopting data-centric approaches to improving model performance.

Future research should extend this analysis to other domains and tasks to further validate these
findings. Also, further work is needed to develop comprehensive meta-features that capture nuanced
dataset properties beyond those studied here.
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André Biedenkapp, Marius Thomas Lindauer, Katharina Eggensperger, Frank Hutter, Chris Fawcett,
and Holger H. Hoos. Efficient parameter importance analysis via ablation with surrogates. In
AAAI Conference on Artificial Intelligence, 2017. URL https://api.semanticscholar.
org/CorpusID:1629270.
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framework for pattern classification by means of data complexity measures. Inteligencia Artif.,
10:31–38, 2006. URL https://api.semanticscholar.org/CorpusID:33258537.

12

https://proceedings.mlr.press/v32/hutter14.html
https://proceedings.mlr.press/v32/hutter14.html
https://dx.plos.org/10.1371/journal.pone.0288540
http://www.jstor.org/stable/2346413
http://arxiv.org/abs/2407.11105
https://www.sciencedirect.com/science/article/pii/S0925231211004085
https://www.sciencedirect.com/science/article/pii/S0925231211004085
http://dx.doi.org/10.1016/j.ins.2019.06.005
http://dx.doi.org/10.1016/j.ins.2019.06.005
https://joss.theoj.org/papers/10.21105/joss.00638
https://joss.theoj.org/papers/10.21105/joss.00638
https://api.semanticscholar.org/CorpusID:33258537


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tala Talaei Khoei, Shereen Ismail, Khair Al Shamaileh, Vijay Kumar Devabhaktuni, and Naima
Kaabouch. Impact of Dataset and Model Parameters on Machine Learning Performance for the
Detection of GPS Spoofing Attacks on Unmanned Aerial Vehicles. Applied Sciences, 13(1):383,
January 2023. ISSN 2076-3417. doi: 10.3390/app13010383. URL https://www.mdpi.
com/2076-3417/13/1/383. Number: 1 Publisher: Multidisciplinary Digital Publishing
Institute.

R. Taylor, V. Ojha, I. Martino, and G. Nicosia. Sensitivity analysis for deep learning: Ranking hyper-
parameter influence. In 2021 IEEE 33rd International Conference on Tools with Artificial Intel-
ligence (ICTAI), pp. 512–516, Los Alamitos, CA, USA, nov 2021. IEEE Computer Society. doi:
10.1109/ICTAI52525.2021.00083. URL https://doi.ieeecomputersociety.org/
10.1109/ICTAI52525.2021.00083.

Thitiya Trithipkaiwanpon and Unchalisa Taetragool. Sensitivity analysis of random forest hyper-
parameters. In 2021 18th International Conference on Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology (ECTI-CON), pp. 1163–1167, 2021. doi:
10.1109/ECTI-CON51831.2021.9454885.

Jan N. van Rijn and Frank Hutter. Hyperparameter importance across datasets. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and; Data Mining,
KDD ’18. ACM, July 2018. doi: 10.1145/3219819.3220058. URL http://dx.doi.org/
10.1145/3219819.3220058.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science
in machine learning. SIGKDD Explor. Newsl., 15(2):49–60, jun 2014. ISSN 1931-0145. doi:
10.1145/2641190.2641198. URL https://doi.org/10.1145/2641190.2641198.

13

https://www.mdpi.com/2076-3417/13/1/383
https://www.mdpi.com/2076-3417/13/1/383
https://doi.ieeecomputersociety.org/10.1109/ICTAI52525.2021.00083
https://doi.ieeecomputersociety.org/10.1109/ICTAI52525.2021.00083
http://dx.doi.org/10.1145/3219819.3220058
http://dx.doi.org/10.1145/3219819.3220058
https://doi.org/10.1145/2641190.2641198


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

7 APPENDIX

7.1 CAUSAL ANALYSIS

To further validate the findings from our fANOVA analysis and reinforce the assertion that reducing
dataset complexity has a greater causal impact on model performance than hyperparameter tuning,
we conducted a causal analysis. Recognizing that correlation does not imply causation, we anchored
this analysis in the Manipulation Theory of Causation, which posits that variable X is a direct cause
of variable Y if an intervention on X results in a change in Y, while other factors remain constant
(Galatis, 2018). This approach allows us to disentangle the effects of different interventions and
attribute changes in model behavior to specific causes. It is important to note that we apply this
theory under the assumption of causal sufficiency, meaning there are no hidden confounding factors
influencing the observed relationships.

In this analysis, we aim to determine whether interventions on complexity meta-
features—particularly the N1 complexity meta-feature (class overlap)—have a more profound and
consistent impact on bias and variance than tuning the min samples leaf hyperparameter in an RF
model. Our hypothesis is twofold:

• H1: N1 complexity exerts a stronger causal effect on both bias and variance than the
min samples leaf hyperparameter.

• H2: Interventions to reduce N1 complexity will lead to greater improvements in overall
model performance, compared to hyperparameter tuning.

This analysis seeks not only to verify causal relationships but also to attribute changes in model be-
havior to these interventions, shedding light on the role of data complexity in model generalization.

7.2 DATA GENERATION AND MODEL SETUP PROCESS

To evaluate this hypothesis, we utilized the make classification function from scikit-learn (Pe-
dregosa et al., 2011) to generate synthetic data that simulates the complexity characteristics of the
German Credit Dataset (Hofmann, 1994). This synthetic dataset allowed us to control and manipu-
late class overlap to systematically observe the effect of the N1 complexity meta-feature on model
bias and variance. The dataset was generated with the following specifications:

• Number of features: 20.

• Number of informative features: 10.

• Number of classes: 2.

• Class overlap: Configured to reflect a moderate N1 complexity value of 0.54.

• The class distribution was kept moderately imbalanced to retain a real-world characteristic,
with a ratio of 60:40 for the two classes.

We employed an RF model as our base classifier for this analysis. The RF was initialized with default
hyperparameter settings, except for the min samples leaf hyperparameter, which was intentionally
misconfigured to a suboptimal value of 10 to simulate underfitting. This setup allows us to observe
how hyperparameter tuning and dataset complexity reduction impact bias and variance under high-
bias conditions.

7.3 HYPERPARAMETER AND N1 COMPLEXITY TUNING PROCESS

To assess the impact of hyperparameter tuning on model performance, we focused on optimizing
the min samples leaf hyperparameter. We systematically varied the value of min samples leaf from
10 to 1. The goal was to observe the bias and variance behavior at different configurations of this
parameter.

To evaluate the effect of reducing dataset complexity, we focused on decreasing the N1 complexity
meta-feature by manipulating class overlap in the synthetic dataset. This was achieved by pro-
gressively separating the classes in feature space, thereby reducing the overlap between them. The
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resulting changes in N1 allowed us to observe how decreasing class overlap influences bias and
variance while keeping the hyperparameter min samples leaf fixed at its suboptimal value.

7.4 RESULTS

Our causal analysis results support both hypotheses (H1 and H2) and are consistent with the
fANOVA findings, showing that dataset complexity has a significantly greater impact on bias and
variance compared to hyperparameters.

Effect of min samples leaf Tuning: Figure 6a illustrates the impact of tuning min samples leaf
on model performance. When the RF model was trained with the misconfigured value of
min samples leaf, the model exhibited underfitting, characterized by high bias and low variance.
Upon tuning min samples leaf to its optimal value of 1 (van Rijn & Hutter, 2018), we observed
a marginal reduction in bias but a corresponding increase in variance. This confirms that while
min samples leaf impacts bias, its effect on variance is limited, and the trade-off between bias and
variance is consistent with typical hyperparameter optimization behavior.

Effect of N1 Complexity Reduction: In contrast, Figure 6b shows the effect of reducing N1 com-
plexity by decreasing class overlap. We observed a simultaneous reduction in both bias and variance,
despite the misconfigured min samples leaf hyperparameter. This result highlights that reducing
class overlap and, by extension, dataset complexity, exert a stronger causal influence on model per-
formance than hyperparameter tuning.

(a) Hyperparameter Tuning (b) Complexity Meta-feature Reduction

Figure 6: Comparison of the impact of tuning the min samples leaf hyperparameter and the N1
complexity meta-features on bias and variance in RF models.

7.5 DISCUSSION

The causal analysis conducted in this study underscores the critical importance of dataset complex-
ity, particularly class overlap, in shaping RF model behavior and performance. By isolating the
effects of reducing the N1 complexity meta-feature compared to optimizing hyperparameters like
the min samples leaf in an RF model, we provide strong evidence that complexity meta-features
exert a greater influence on bias and variance dynamics.

A key insight from this analysis is that class overlap—captured by the N1 meta-feature—has a
strong causal impact on model bias and variance. Reducing class overlap consistently led to better
separability between classes, which resulted in a simultaneous decrease in both bias and variance.
This simultaneous improvement is significant because it challenges the common notion of a strict
bias-variance tradeoff, where typically, reducing one comes at the expense of increasing the other.
Our findings show that addressing class overlap can mitigate both issues concurrently, suggesting
that data complexity has a more direct and profound influence on RF model performance than hy-
perparameter tuning.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 1: Search Space for Model Hyperparameters

Model Hyperparameter Type Range

Random Forest bootstrap boolean {true, false}
max features float [0.1, 0.9]
min samples leaf integer [1, 20]

Support Vector Machine kernel nominal {rbf, sigmoid}
C float [2-5, 215] (log-scale)
gamma float [2-15, 23] (log-scale)

Decision Tree min samples split integer [2, 20]
max features float [0.1, 0.9]
min samples leaf integer [1, 20]

Adaptive Boosting algorithm boolean {SAMME, SAMME.R}
learning rate float [0.01, 2.0] (log-scale)
n estimator integer [50, 500]

Multi-Layer Perceptron solver categorical {adam, lbfgs, sgd}
batchsize int [1, 32, 64, 128]
momentum float [0, 0.99]
learning rate init float [1e-7, 0.5]

Table 2: Summary of Linear Regression Analysis for RF Bias

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.2183 0.000 891.237 0.000 [0.218, 0.219]
N1 0.0945 0.000 191.829 0.000 [0.094, 0.095]
L2 -0.0144 0.000 -39.106 0.000 [-0.015, -0.014]
C2 0.0022 0.000 6.126 0.000 [0.002, 0.003]
T2 0.0184 0.000 45.298 0.000 [0.018, 0.019]
F1v 0.0408 0.000 103.122 0.000 [0.040, 0.042]
Density 0.0053 0.001 10.479 0.000 [0.004, 0.006]
min samples leaf 0.0085 0.000 34.803 0.000 [0.008, 0.009]
max features -0.0062 0.000 -25.122 0.000 [-0.007, -0.006]
bootstrap 0.0033 0.000 13.470 0.000 [0.003, 0.004]

Table 3: Summary of Linear Regression Analysis for SVM Bias

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.3651 0.000 1858.846 0.000 [0.365, 0.365]
N1 0.0155 0.000 39.441 0.000 [0.015, 0.016]
L2 -0.0147 0.000 -49.811 0.000 [-0.015, -0.014]
C2 -0.1139 0.000 -393.628 0.000 [-0.114, -0.113]
T2 -0.0150 0.000 -46.357 0.000 [-0.016, -0.014]
F1v 0.0211 0.000 66.800 0.000 [0.021, 0.022]
Density 0.0017 0.000 4.238 0.000 [0.001, 0.003]
kernel 0.0010 0.000 5.082 0.000 [0.001, 0.001]
gamma -0.0002 0.000 -0.834 0.405 [-0.001, 0.000]
C -0.0011 0.000 -5.822 0.000 [-0.002, -0.001]
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Table 4: Summary of Linear Regression Analysis for DT Bias

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.2317 0.000 884.947 0.000 [0.231, 0.232]
N1 0.1054 0.001 210.777 0.000 [0.104, 0.106]
L2 0.0008 0.001 1.035 0.301 [-0.001, 0.002]
C2 -0.0097 0.000 -23.196 0.000 [-0.011, -0.009]
T2 0.0096 0.000 33.231 0.000 [0.009, 0.010]
F1v 0.0399 0.001 62.465 0.000 [0.039, 0.041]
Density -0.0089 0.001 -15.326 0.000 [-0.010, -0.008]
min samples leaf 0.0096 0.000 36.381 0.000 [0.009, 0.010]
max features -0.0140 0.000 -53.382 0.000 [-0.015, -0.013]
min samples split 0.0006 0.000 2.111 0.035 [3.96e-05, 0.001]

Table 5: Summary of Linear Regression Analysis for AB Bias

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.2482 0.000 858.820 0.000 [0.248, 0.249]
N1 0.0792 0.001 145.019 0.000 [0.078, 0.080]
L2 0.0202 0.001 24.559 0.000 [0.019, 0.022]
C2 -0.0068 0.000 -14.714 0.000 [-0.008, -0.006]
T2 0.0070 0.000 21.935 0.000 [0.006, 0.008]
F1v 0.0348 0.001 49.584 0.000 [0.033, 0.036]
Density 0.0127 0.001 20.124 0.000 [0.011, 0.014]
algorithm 0.0001 0.000 0.369 0.712 [-0.000, 0.001]
learning rate 0.0298 0.000 102.618 0.000 [0.029, 0.030]
n estimators -0.0003 0.000 -0.932 0.351 [-0.001, 0.000]

Table 6: Summary of Linear Regression Analysis for MLP Bias

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.3016 0.000 630.484 0.000 [0.301, 0.303]
N1 0.0896 0.001 98.011 0.000 [0.088, 0.091]
L2 0.0112 0.001 8.203 0.000 [0.009, 0.014]
C2 -0.0231 0.001 -30.203 0.000 [-0.025, -0.022]
T2 0.0075 0.001 14.181 0.000 [0.006, 0.009]
F1v 0.0058 0.001 4.953 0.000 [0.003, 0.008]
Density 0.0035 0.001 3.271 0.001 [0.001, 0.006]
batch size 0.0022 0.000 4.593 0.000 [0.001, 0.003]
learning rate init -0.0181 0.000 -37.866 0.000 [-0.019 , -0.017]
momentum -0.0127 0.000 -26.413 0.000 [-0.014, 0.012]
solver 0.0063 0.000 13.205 0.000 [0.005, 0.007]

Table 7: Summary of Linear Regression Analysis for RF Variance

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.1131 0.000 750.759 0.000 [0.113, 0.113]
N1 0.0485 0.000 160.217 0.000 [0.048, 0.049]
L2 -0.0127 0.000 -55.915 0.000 [-0.013 , -0.012]
C2 -0.0162 0.000 -73.166 0.000 [-0.017, -0.016]
T2 0.0068 0.000 27.340 0.000 [0.006 , 0.007]
F1v 0.0251 0.000 103.171 0.000 [0.025, 0.026]
Density 0.0007 0.000 2.174 0.030 [6.68e-05 , 0.001]
min samples leaf -0.0012 0.000 -7.722 0.000 [-0.001 , -0.001]
max features 0.0067 0.000 44.291 0.000 [0.006 , 0.007]
bootstrap -0.0085 0.000 -56.391 0.000 [-0.009 , -0.008]
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Table 8: Summary of Linear Regression Analysis for SVM Variance

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.1268 0.000 272.039 0.000 [0.126 , 0.128]
N1 0.0174 0.001 18.591 0.000 [0.016 , 0.019]
L2 0.0040 0.001 5.689 0.000 [0.003 , 0.005]
C2 -0.0738 0.001 -107.462 0.000 [-0.075 , -0.072]
T2 0.0205 0.001 26.726 0.000 [0.019 , 0.022]
F1v 0.0143 0.001 19.092 0.000 [0.013 , 0.016]
Density -0.0176 0.001 -18.121 0.000 [-0.020 , -0.016]
kernel 0.0022 0.000 4.780 0.000 [0.001 , 0.003]
gamma 0.0013 0.000 2.880 0.004 [0.000 , 0.002]
C -0.0004 0.000 -0.915 0.360 [-0.001 , 0.000 ]

Table 9: Summary of Linear Regression Analysis for DT Variance

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.1955 0.000 1048.223 0.000 [0.195 , 0.196]
N1 0.0825 0.000 231.488 0.000 [0.082 , 0.083]
L2 0.0035 0.001 6.527 0.000 [0.002 , 0.005]
C2 -0.0256 0.000 -85.813 0.000 [-0.026 , -0.025]
T2 0.0035 0.000 17.174 0.000 [0.003 , 0.004]
F1v 0.0174 0.000 38.159 0.000 [0.016 , 0.018]
Density -0.0066 0.000 -15.974 0.000 [-0.007 , -0.006]
min samples leaf -0.0060 0.000 -32.334 0.000 [-0.006 , -0.006]
max features -0.0090 0.000 -48.385 0.000 [-0.009 , -0.009]
min samples split -0.0002 0.000 -0.884 0.377 [-0.001 , 0.000]

Table 10: Summary of Linear Regression Analysis for AB Variance

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.1603 0.000 594.868 0.000 [0.160 , 0.161
N1 0.0732 0.001 143.624 0.000 [0.072 , 0.074]
L2 0.0092 0.001 12.006 0.000 [0.008 , 0.011]
C2 -0.0245 0.000 -56.987 0.000 [-0.025 , -0.024]
T2 0.0030 0.000 10.228 0.000 [0.002 , 0.004]
F1v 0.0128 0.001 19.618 0.000 [0.012 , 0.014]
Density -0.0106 0.001 -17.949 0.000 [-0.012 , -0.009]
algorithm -0.0043 0.000 -15.824 0.000 [-0.005 , -0.004]
learning rate 0.0211 0.000 77.943 0.000 [0.021 , 0.022]
n estimators -0.0070 0.000 -25.910 0.000 [-0.008 , -0.006]

Table 11: Summary of Linear Regression Analysis for MLP Variance

Feature Coefficient Standard Error t-Statistic P-Value 95% CI
Intercept 0.1149 0.000 366.086 0.000 [0.114 , 0.116]
N1 0.0443 0.001 73.823 0.000 [0.043 , 0.045]
L2 0.0187 0.001 20.762 0.000 [0.017 , 0.020]
C2 -0.0212 0.001 -42.179 0.000 [-0.022 , -0.020]
T2 0.0023 0.000 6.709 0.000 [0.002 , 0.003]
F1v -0.0001 0.001 -0.147 0.883 [-0.002 , 0.001]
Density -0.0104 0.001 -15.036 0.000 [-0.012 , -0.009]
batch size -0.0010 0.000 -3.303 0.001 [-0.002 , -0.000]
learning rate init 0.0210 0.000 66.692 0.000 [0.020 , 0.022]
momentum 0.0051 0.000 16.160 0.000 [0.004 , 0.006]
solver -0.0097 0.000 -30.669 0.000 [-0.010 , -0.009]
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