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ABSTRACT

This paper investigates the cross-view geo-localization task, which aims to com-
pare ground query images with an aerial image database tagged with GPS co-
ordinates to determine the capture location of ground images. This task holds
considerable significance across multiple domains, including autonomous driv-
ing, robotic navigation, and 3D reconstruction. Despite recent notable perfor-
mance improvements, existing models lack robustness against real-world envi-
ronmental variations such as adverse weather conditions and sensor noise. This
deficiency poses potential risks when integrating this task into safety-critical ap-
plications. To comprehensively evaluate the robustness of existing methods, this
paper introduces the first benchmarks for evaluating the robustness of cross-view
geo-localization models to real-world image corruptions. We applied 16 corrup-
tion types to a widely used public dataset, including CVUSA and CVACT, with
5 corruption severities per type, ultimately generating about 1.5 million corrupted
images to study the robustness of different models. This study contributes by
revealing the performance degradation of cross-view geo-localization models on
corrupted images and provides user-friendly robustness evaluation benchmarks.
Additionally, we introduce straightforward and effective robustness enhancement
techniques (stylization and histogram equalization) to consistently improve the
robustness of various models. The codes and benchmarks are available online.

1 INTRODUCTION

Cross-view geo-localization is the task of determining the location where a ground-level query im-
age was captured by comparing it with a database of aerial reference images tagged with GPS co-
ordinates, such as satellite images. Traditional image-based geo-localization methods often involve
comparing query images with geotagged reference images captured from a ground view. One sig-
nificant limitation of these approaches is the limited coverage of geotagged images, as they tend to
be biased toward well-known tourist destinations. Consequently, ground-to-ground geo-localization
methods often fail when reference images are unavailable. In contrast, the reference image dataset
for cross-view geo-localization can be created from aerial images captured by devices that densely
cover the Earth’s surface, such as satellites and drones. As a result, cross-view image matching has
become an increasingly popular purely visual geo-localization method. Cross-view geo-localization
finds applications in various fields, including autonomous driving (Middelberg et al., 2014), robot
navigation (McManus et al., 2014), 3D reconstruction (Häne et al., 2017), and more. Despite its
promising applications, the substantial visual differences between ground and aerial perspectives
make cross-view geo-localization a highly challenging task.

With the remarkable success of deep learning in numerous computer vision tasks (Krizhevsky et al.,
2012; Long et al., 2015; He et al., 2017), recent research efforts (Hu et al., 2018; Liu & Li, 2019; Zhu
et al., 2021; 2022) have achieved significant performance improvements on typical benchmarks such
as CVUSA (Workman et al., 2015) and CVACT (Liu & Li, 2019). However, existing data-driven
deep learning methods often exhibit a sharp decline in performance when confronted with data cor-
ruption, such as adverse weather conditions, sensor noise, image blurring, and so on. This issue
becomes particularly critical when integrating cross-view geo-localization with safety-critical ap-
plications like autonomous driving, where robustness becomes an essential consideration. Figure 1
illustrates the challenges faced by current cross-view geo-localization models when ground-level
query images are corrupted. Nevertheless, to the best of our knowledge, current models largely
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neglect the evaluation of model robustness, primarily due to the absence of robustness evaluation
benchmarks specific to this task within the cross-view geo-localization community.

Figure 1: Existing cross-view geo-localization models fail when the ground query image is cor-
rupted. The red box indicates the ground truth. The red and blue lines indicate the retrieved most
similar matches. The model that can make the correct match on the clean image fail to match when
the ground query image is corrupted.

This paper aims to investigate the performance of existing models when ground query images en-
counter real-world corruption. To achieve this goal, we propose the first benchmarks for evaluating
the robustness of cross-view geo-localization models to real-world image corruption, with the hope
of advancing research within the community on the robustness of this task. It is important to note that
in this context, robustness refers to the performance of models trained only on clean images when
directly tested on corrupted images. We derive our robustness evaluation benchmarks from read-
ily available datasets commonly used for cross-view geo-localization tasks: CVUSA and CVACT
(including CVACT val and CVACT test), comprising approximately 1.5 million corrupted images.

In this study, we focus exclusively on scenarios involving the corruption of ground images. This
choice stems from practical considerations in the deployment of cross-view geo-localization task,
where aerial reference images are typically sourced from third-party interfaces and pre-cached by
the system. In contrast, ground-level images are captured in real-time from in-vehicle cameras or
pedestrian devices. As a result, aerial images exhibit stability and higher quality compared to their
ground-level counterparts. Therefore, investigating the robustness of different models when ground-
level images are subjected to real-world corruption holds greater practical significance.

In more specific terms, we have categorized image corruptions into 4 major classes, each further
divided into 16 subcategories, with each subcategory encompassing 5 severity levels. For both
the CVUSA and CVACT val datasets, we have created distinct evaluation subsets for all corrup-
tion types and their corresponding severity level. Consequently, each set corresponds to a total
of 80 evaluation subsets, collectively referred to as CVUSA-C and CVACT val-C. Together, these
subsets comprise approximately 1.4 million corrupted images. By evaluating existing methods on
CVUSA-C and CVACT val-C, we gain insight into the fine-grained impact of each corruption type
on cross-view geo-localization models, serving as benchmarks for fine-grained robustness evalu-
ation. Simultaneously, we have also introduced comprehensive robustness benchmarks, namely
CVUSA-C-ALL, CVACT val-C-ALL, and CVACT test-C-ALL. These sets are generated using our
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designed model for comprehensive robustness evaluation benchmarks, essentially encompassing all
corruption types and severities within a single set, totaling approximately 100,000 corrupted images.

To summarize our contributions in this paper:

• We represent the first comprehensive investigation into the robustness of cross-view geo-
localization models. It demonstrates that numerous cross-view geo-localization models
experience significant performance degradation when confronted with corrupted images
and delves into the robustness of various models.

• We propose the first robustness benchmarks for cross-view geo-localization. These bench-
marks are derived from the CVUSA and CVACT (CVACT val and CVACT test) datasets.
It comprises fine-grained robustness evaluation benchmarks, denoted as CVUSA-C and
CVACT val-C, and comprehensive robustness evaluation benchmarks, denoted as CVUSA-
C-ALL, CVACT val-C-ALL, and CVACT test-C-ALL. In total, these benchmarks consist
of approximately 1.5 million corrupted images.

• We introduce straightforward yet effective robustness enhancement techniques (stylization
and histogram equalization) to consistently enhance the robustness of multiple models. At
the same time, they without introducing additional training complexity or necessitating
architectural alterations to the models.

2 RELATED WORK

Cross-view Geo-localization. Cross-view geo-localization has witnessed significant advancements
in recent years, exploring geo-localization from different perspectives. Initially, Workman et al.
(2015) introduced Convolutional Neural Networks (CNNs) to the cross-view matching task, re-
sulting in notable performance improvements. Subsequently, Hu et al. (2018) employed a VGG
backbone network with two branches, combined with the NetVlad (Arandjelovic et al., 2016), and
proposed the weighted soft-margin triplet loss, achieving state-of-the-art performance. To further
enhance network performance, Liu & Li (2019) emphasized the importance of orientation in cross-
view geo-localization and devised a method to explicitly provide orientation information to the neu-
ral network. Shi et al. (2019) adopted multi-head spatial attention modules to aggregate information-
rich and diverse feature maps, while introducing polar transformation for pre-processing to narrow
the geometric gap between center-aligned satellite and ground-level images. Recently, Yang et al.
(2021) explored the integration of Transformers in cross-view geo-localization, proposing a novel
layer-to-layer cross self-attention mechanism that highlighted the significance of considering global
dependencies to reduce visual ambiguity. Zhu et al. (2022) introduced an attention-guided pure
Transformer approach, which further improved the resolution of satellite images through additional
training, thus advancing the performance of task. Zhang et al. (2022) introduced a novel geomet-
ric layout extraction module that explicitly decouples geometric information from original features
and proposed two types of data augmentation methods. However, all these methods invariably over-
looked the performance of models on corrupted images, which is the focus of this paper - robustness.

Robustness Benchmarks. Robustness benchmarks are essential in the field of computer vision to
enhance the stability and reliability of computer vision systems when facing uncertainties and noise.
For instance, IMAGENET-C and IMAGENET-P were proposed to evaluate robustness in classifi-
cation tasks (Hendrycks & Dietterich, 2019). In the context of autonomous driving, PASCAL-C,
COCO-C, and Cityscapes-C were introduced as benchmarks for evaluating the robustness of object
detection tasks (Michaelis et al., 2019). Similarly, robustness benchmarks for semantic segmentation
were established using PASCAL VOC 2012, Cityscapes, and ADE20K (Kamann & Rother, 2020).
Furthermore, KITTI-C, nuScenes-C, and Waymo-C were devised as robustness benchmarks for 3D
object detection (Dong et al., 2023). These benchmarks aid in evaluating the robustness of models to
accurately comprehend and computer vision under various complex environmental conditions, thus
promoting their real-world applications. However, to the best of our knowledge, no researcher has
proposed relevant robustness benchmarks specifically for cross-view geo-localization. Therefore,
this paper addresses this gap by introducing the benchmarks CVUSA-C, CVACT val-C, CVUSA-
C-ALL, CVACT val-C-ALL and CVACT test-C-ALL, thus filling this void in the field.

Robustness Enhancement. Several strategies have been proposed to address the impact of cor-
ruptions in computer vision. For example, Li et al. (2016) and Fu et al. (2017) present methods
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that utilize patch-based priors for background and rain layers, along with a deep CNN to effec-
tively remove rain streaks from images. In a similar vein, He et al. (2010) introduced a simple yet
powerful technique employing the dark channel prior to eliminate haze from single-input images.
Moreover, Liu et al. (2018) devised the DesnowNet, a multi-stage network specifically designed to
remove snow particles from images. However, a limitation of these methods lies in their reliance on
specific designs tailored to particular types of corruptions. This hinders their ability to generalize
and handle other types of corruptions effectively. As an alternative, some approaches have sought
to enhance model performance through data augmentation, incorporating corrupted data during the
training process. Although fine-tuning on specific corruption data has shown promise in boosting
performance for those particular corruption types Vasiljevic et al. (2016), Geirhos et al. (2018b)
discovered that fine-tuning on one type of corruption often struggles to generalize to other corrup-
tion types. In another study, Geirhos et al. (2018a) report training on a stylized ImageNet (Deng
et al., 2009), which increase overall robustness to different corruptions. In this work, we employ the
stylization and histogram equalization to train set, and we observe improvements in robustness.

3 METHODOLOGY

3.1 IMAGE CORRUPTION MODEL

Robustness. First, we consider a set of ground-to-aerial image pairs {Igi , Iai }, i = 1, ..., N , where
N represents the number of image pairs. The superscripts g and a respectively denote ground
images and aerial images. For a ground query image indexed as q, we assume the existence of
ground image encoders fg and aerial image encoders fa, which have been trained on samples
from distribution D. We let PC(c) approximate the frequency of real-world corruption. Exist-
ing models mostly assess performance when samples are drawn from distribution D, denoted as
P(Ig,Ia)∼D(d(fg(I

g
q), fa(I

a
q )) < {d(fg(Igq), fa(Iai ))|∀i ∈ {1, ..., N}, i ̸= q}), d(·, ·) representing

the L2 distance. However, in practical deployments, systems often need to operate on low-quality or
corrupted images. Hence, we construct an evaluation of the corruption robustness of model, denoted
as Ec∼C [P(Ig,Ia)∼D(d(fg(c(I

g
q)), fa(I

a
q )) < {d(fg(c(Igq)), fa(Iai ))|∀i ∈ {1, ..., N}, i ̸= q})].

Image Corruption. Common corruptions are categorized following the approach of Hendrycks &
Dietterich (2019), dividing ground-level image corruptions into 4 major and 16 minor categories.
The first major category is weather-related corruption, which encompasses snow, frost, fog, glare,
and sunny conditions. The second major category consists of blur-related corruptions, including
defocus, glass blur, motion blur, and zoom blur. Defocus blur occurs when an image is out of focus,
while glass blur arises when images are captured through frosted glass windows of sensors. Motion
and zoom blur occurs in scenes with rapid camera movement or quick approaches towards objects,
and they are particularly prone to occur in image collections from vehicular devices. The third ma-
jor category involves noise-related corruptions, which encompasses Gaussian, speckle, impulse, and
speckle noise. Gaussian noise emerges under low-light conditions, attributed to the discrete nature of
light and causing electronic noise. Impulse noise results from bit errors, resembling the color analog
of salt-and-pepper noise. Speckle noise, which occurs due to light interference, leads to the appear-
ance of bright and dark speckles. Lastly, the fourth category includes digital corruption, including
contrast, pixelation, and JPEG corruption. Contrast corruption is dependent on lighting conditions
and the colors of the objects during capture. Pixelation occurs during upscaling low-resolution im-
ages, and JPEG corruption arises when images undergo lossy compression, introducing compression
artifacts. We present visualizations of various types and severities of common corruption in Figure 2.

Fine-Grained Robustness Benchmark Generation Model. We create fine-grained robustness
benchmarks comprising 16 corruption types, each corresponding to 5 severity levels denoted by
integers from 1 to 5, where higher numbers indicate more severe corruption. Consequently, a single
original ground query image can yield 80 (16 × 5) corrupted images. In the fine-grained robustness
evaluation model, each type of corrupted image forms an evaluation subset, with no overlap.

Comprehensive Robustness Benchmark Generation Model. Additionally, we introduce compre-
hensive robustness evaluation models. Prior efforts often generated separate test sets for each cor-
ruption type and its corresponding 5 severity levels. While this approach allows for a finer-grained
evaluation of each corruption type’s impact on the model, it imposes significant storage and compu-
tational costs. Recognizing that real-world concerns may prioritize a model’s overall performance
against diverse corruptions, for each corruption type and severity level, we aggregate all forms of
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(a) Comparison between clean and corrupted images.

(b) Comparison of different levels of severity, taking snow as an example.

Figure 2: Various types and severities of common corruption in our robustness benchmark, after
cropping are provided (best viewed when zoomed in on the screen). Visualizations of all corruption
types can be found in the appendix.

corruption into a single evaluation set, creating comprehensive benchmarks. An illustrative diagram
of the robustness benchmark generation models is presented in Figure 3.

Figure 3: Robustness benchmark generation models. Each corruption category encompasses 5 sever-
ity levels. The primary distinction between fine-grained and comprehensive robustness benchmark
generation models lies in whether separate evaluation subsets are created for each corruption cate-
gory and severity level.

3.2 ROBUSTNESS ENHANCEMENT

Stylization. Style transfer, introduced by (Gatys et al., 2016), merges the content and style of two
different images to generate a novel image that retains the content of the original image while adopt-
ing the style of the target image. In the context of image classification and object detection tasks,
style transfer has demonstrated its effectiveness in enhancing robustness Geirhos et al. (2018a).

Histogram Equalization. Histogram equalization is a fundamental technique used for enhancing
image contrast. It operates by redistributing pixel intensity values within an image, stretching or
compressing the brightness range, thus achieving a more uniform distribution of pixel intensity
values across the entire brightness range of the image. In this study, we employ Contrast Limited
Adaptive Histogram Equalization (CLAHE) (Pizer et al., 1987) to enhance the robustness of existing
methods. Examples of Stylization / CLAHE applied to CVUSA images are shown in Figure 4.

Training Strategy. In this paper, we apply Stylization / CLAHE to the cross-view geo-localization
dataset, testing two settings: (1) training using the standard (raw) dataset, (2) replacing all training
images with Stylization / CLAHE images, thereby eliminating the use of standard images during
training, and (3) having Stylization / CLAHE images participate in the training process alongside
the standard images with equal probability at each iteration.

4 ROBUSTNESS EVALUATION BENCHMARKS

4.1 FINE-GRAINED ROBUSTNESS EVALUATION BENCHMARKS

CVUSA-C. The CVUSA (Workman et al., 2015) dataset is one of the earliest cross-view geo-
localization datasets primarily collected from suburban areas in the United States. It encompasses a
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Figure 4: Visualization of Stylization / CLAHE applied to CVUSA dataset. The illustration de-
picts standard images (middle row), stylized images (top row), and histogram-equalized images
(bottom row). The rectangular sections on the left represent different training strategies. The
red dashed boxes indicate the style images sourced from https://www.kaggle.com/c/
painter-by-numbers/.

total of 35,532 pairs of ground-aerial images for training and 8,884 pairs for testing. We have em-
ployed CVUSA test set to generate the CVUSA-C fine-grained robustness evaluation dataset. To be
specific, CVUSA-C comprises all types and severities of image corruptions, each residing indepen-
dently within individual subsets of CVUSA-C. Given that there are 16 distinct corruption types and
5 levels of corruption severity, CVUSA-C effectively comprises 80 evaluation subsets. Each of these
subsets contains 8,884 ground-level images for testing, resulting in an aggregate of approximately
710,000 images.

CVACT val-C. The CVACT (Liu & Li, 2019) dataset, curated by Liu & Li (2019), primarily en-
compasses urban areas in Australia. Similar to CVUSA, this dataset comprises 35,532 pairs of
ground-aerial images for training and 8,884 image pairs for validation (referred to as CVACT val).
In this study, we have generated fine-grained robustness evaluation dataset for CVACT val, encom-
passing all types and severities of image corruptions, resulting in a total of 80 test subsets comprising
approximately 710,000 corrupted images, collectively referred to as CVACT val-C.

Evaluation Metrics. The original evaluation metrics for cross-view geo-localization primarily re-
volved around R@K (K ∈ {1, 5, 10, 1%}), which represents the probability of correctly identify-
ing the matching image within the top K retrieved reference images based on a the query image.
Presently, we denote the performance of model on the original validation or test sets as R@Kclean.
For each corruption type c and each severity level s, we employ R@Kc,s to gauge the performance
of models under corruption conditions. Finally, by averaging across all corruption types and sever-
ity levels, we compute the average performance of model R@Kcor under corruption conditions.
In this context, C represents the ensemble of all corruption sets utilized for evaluation. Addition-
ally, we calculate the Relative Corruption Error (RCE) by measuring the percentage of performance
degradation. A higher RCE implies a relatively poorer model robustness.

R@Kcor =
1

|C|
∑
c∈C

1

5

5∑
s=1

R@Kc,s,RCEc,s =
R@Kclean −R@Kc,s

R@Kclean
,RCE =

R@Kclean − R@Kcor

R@Kclean
(1)

4.2 COMPREHENSIVE ROBUSTNESS EVALUATION BENCHMARKS

CVUSA-C-ALL and CVAC val-C-ALL. For the 8,884 pair test set of the CVUSA dataset and the
8,884 pair validation set of the CVACT val dataset, we designed comprehensive benchmarks for
robustness evaluation, as detailed in Section 3.1. These benchmarks are denoted as CVUSA-C-ALL
and CVACT val-C-ALL, respectively. Each of these datasets systematically encompasses a wide
range of corruption types and their corresponding severity levels.

CVACT test-C-ALL. The CVACT dataset additionally provides 92,802 pairs of images for test-
ing purposes (referred to as CVACT test), showcasing dense coverage of urban areas. Similar
to CVUSA-C-ALL and CVACT val-C-ALL, we have generated a comprehensive test subset for

6

https://www.kaggle.com/c/painter-by-numbers/
https://www.kaggle.com/c/painter-by-numbers/


Under review as a conference paper at ICLR 2024

CVACT test, named CVACT test-C-ALL, comprising a total of 92,802 corrupted images. These
comprehensive robustness evaluation benchmarks serve as valuable tools for evaluating the overall
robustness of models under all corruption scenarios.

Evaluation Metrics. Since the comprehensive robustness evaluation benchmarks represent inde-
pendent subsets for testing, the recall accuracy (R@Kall) can be directly employed for evaluation.

5 ROBUSTNESS EVALUATION BENCHMARK EXPERIMENTS

The experimental results of the fine-grained robustness evaluation benchmarks are shown in Sec-
tion 5.1. In Section 5.2, we report the experimental results demonstrating the influence of styliza-
tion on the robustness of model. For different benchmarks, we have chosen representative cross-view
geo-localization models to evaluate their robustness. Details regarding the selected methods can be
found in Table 1. Supplementary materials provides additional experimental results (including com-
prehensive robustness evaluation benchmark and histogram equalization for robustness enhancement
experiment results, etc.).

Table 1: The cross-view geo-localization models adopted for corruption robustness evaluation on
CVUSA (CVUSA-C and CVUSA-C-ALL) and CVACT (CVACT val-C, CVACT val-C-ALL, and
CVACT test-C-ALL).

Method Publication Backbone Params (M) FLOPs (G) dim CVUSA CVACT
CVM-Net (Hu et al., 2018) CVPR’18 VGG16 160.3 - 4096 ✓
OriCNN (Liu & Li, 2019) CVPR’19 VGG16 30.7 - 1536 ✓ ✓
SAFA (Shi et al., 2019) NeurIPS’19 VGG16 29.5 40.2 4096 ✓ ✓

CVFT (Shi et al., 2020b) AAAI’20 VGG16 26.8 - 4096 ✓ ✓
DSM (Shi et al., 2020a) CVPR’20 VGG16 14.7 39.3 4096 ✓ ✓

L2LTR (Yang et al., 2021) NeurIPS’21 HybridViT 195.9 57.1 768 ✓ ✓
TransGeo (Zhu et al., 2022) CVPR’22 DeiT-S/16 44.9 12.3 1000 ✓ ✓

GeoDTR (Zhang et al., 2022) AAAI’23 ResNet34 48.5 39.89 4096 ✓ ✓

5.1 FINE-GRAINED ROBUSTNESS EVALUATION BENCHMARK EXPERIMENT RESULTS

5.1.1 CVUSA-C EXPERIMENT RESULTS

Table 2 presents the results of 8 cross-view geo-localization methods on the robustness evaluation
benchmark CVUSA-C. Overall, there is a strong correlation between robustness and accuracy on
clean images, but this correlation is not absolute. Models with higher R@1clean, such as L2LTR,
TransGeo, and GeoDTR, also achieve higher R@1cor, which is understandable as different models
show consistent performance degradation on corrupted images. However, it is surprising that L2LTR
outperforms TransGeo and GeoDTR in R@1cor, even though TransGeo and GeoDTR exhibit higher
R@1clean. This observation differs from the results obtained in Kamann & Rother (2020) and Dong
et al. (2023). The discrepancy might be attributed to its deeper network architecture, more parame-
ters, and FLOPS, making it more robust to input variations. This finding emphasizes the importance
of considering the robustness of model independently, especially when its performance on clean data
is high, as higher clean performance does not necessarily indicate stronger robustness. In Figure 5a,
we plot the RCE of models under various corruption types. Based on our experimental results, we
draw the following conclusions.

Impact of Corruption Types. Based on the results from Table 2 and Figure 5a, we observed that
zoom blur, snow weather, and Gaussian noise corruptions have a significant impact on the perfor-
mance of various cross-view geo-localization models in the CVUSA-C benchmark, resulting in RCE
values exceeding 13% for all models. Conversely, the effects of glass blur, JPEG compression, and
pixelation on performance are relatively minor. These findings demonstrate the threats posed by
adverse weather conditions, fast motion, and low lighting to cross-view geo-localization models.
In contrast, most models exhibited less performance degradation under the influence of glass blur,
JPEG compression, and pixelation, possibly due to similar corruptions being present in the training
dataset, allowing the models to learn prior knowledge about these types of corruptions.

Performance of Different Models. Among all the evaluated models, L2LTR exhibited the most
outstanding R@1cor performance. Additionally, we observed a synchronized growth trend between
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Table 2: The experimental results of 8 cross-view geo-localization methods on the CVUSA-C. We
report the R@1 performance of each method under different corruption (obtained by averaging the
5 corruption severities), as well as the average performance R@1cor under all corruption types.

Method Clean
CVUSA-C

Weather Blur Noise Digital R@1corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
CVM-Net 22.47 0.86 8.42 8.37 13.75 6.11 1.06 4.81 1.47 0.23 1.82 1.18 1.28 2.32 4.75 6.89 6.23 4.35
OriCNN 40.79 7.36 6.51 7.57 21.69 22.01 20.46 26.10 19.60 10.32 17.24 13.95 19.40 14.09 7.94 28.51 27.27 16.88
SAFA 89.84 19.32 60.42 67.63 81.96 49.86 51.24 80.56 55.49 11.44 33.04 28.51 30.37 37.59 31.67 88.05 81.15 50.52
CVFT 61.43 8.00 30.79 47.46 47.54 27.63 24.55 44.93 34.89 8.17 21.83 19.19 20.56 26.25 38.28 57.25 47.11 31.53
DSM 91.96 24.24 64.44 84.08 82.44 57.58 62.48 84.52 66.02 25.15 49.55 46.40 48.84 60.83 72.11 90.20 85.56 62.78

L2LTR 94.05 67.19 85.00 92.64 91.61 75.24 88.35 93.13 89.33 42.07 81.32 80.29 82.88 86.54 86.36 93.64 90.56 82.88
TransGeo 94.08 29.39 69.50 70.89 85.01 64.26 80.97 92.16 85.96 40.97 72.95 70.27 74.32 83.99 43.01 93.74 90.13 71.72
GeoDTR 95.43 44.20 84.95 92.80 93.55 73.14 82.64 93.29 76.80 27.19 68.40 64.45 68.53 78.28 74.80 94.45 90.20 75.48

Table 3: The experimental results of 7 cross-view geo-localization methods on the CVACT val-C.
We report the R@1 performance of each method under different corruption (obtained by averaging
the 5 corruption severities), as well as the average performance R@1cor under all corruption types.

Method Clean
CVACT val-C

Weather Blur Noise Digital R@1corSnow Frost Fog Bright Spatter Defocus Glass Motion Zoom Gaussian Shot Impulse Speckle Contrast Pixel JPEG
OriCNN 46.96 13.94 6.13 3.78 29.45 40.54 31.71 39.99 37.58 24.89 34.24 32.27 39.01 33.28 4.56 44.38 42.56 28.65
SAFA 81.03 20.03 31.66 33.19 66.99 45.60 39.83 72.87 49.86 4.62 48.66 43.68 48.82 51.61 15.91 76.90 75.83 45.38
CVFT 61.05 15.00 22.32 42.53 47.60 37.25 31.30 53.88 36.91 4.10 35.68 30.80 36.32 36.84 31.79 58.21 57.97 36.16
DSM 82.49 31.95 51.70 70.43 69.48 52.35 57.35 80.16 67.38 15.34 58.34 53.05 58.18 63.06 52.79 81.72 80.55 58.99

L2LTR 84.89 71.03 77.93 83.50 81.17 73.78 83.98 85.07 84.00 49.79 82.20 81.19 82.98 82.23 79.15 85.07 83.40 79.15
TransGeo 84.95 47.65 58.51 32.91 72.67 67.13 81.43 84.83 81.80 36.34 81.96 80.86 82.84 83.01 22.18 84.92 83.74 67.68
GeoDTR 86.21 48.24 71.74 83.26 84.60 61.39 79.11 85.51 73.44 8.26 75.44 73.99 77.06 80.23 55.48 86.01 85.19 70.56

R@1clean and R@1cor for all methods except L2LTR. Notably, CVM-Net demonstrated the weakest
corruption robustness, which might be attributed to the corrupted images causing disruptions in the
aggregation of local image features into global image descriptors by the NetVlad (Arandjelovic
et al., 2016) layer. Consequently, the model lacked a comprehensive understanding of the overall
image features, resulting in a significant performance decline.

(a) CVUSA-C (b) CVACT val-C

Figure 5: The Relative Corruption Error (RCE) of different cross-view geo-localization models on
CVUSA-C and CVACT-C datasets. The results are shown for each major category of corruptions,
including Weather, Blur, Noise, and Digital, as well as the overall performance across all types of
corruptions (Overall).

5.1.2 CVACT VAL-C EXPERIMENT RESULTS

Table 3 presents the results of 7 cross-view geo-localization methods on the robustness evalua-
tion benchmark CVACT val-C. Similar to the experimental outcomes on CVACT val-C, except for
L2LTR, we observe a strong correlation between corruption robustness and accuracy under clean
conditions. Models with higher R@1clean, such as L2LTR, TransGeo, and GeoDTR, also achieve
higher R@1cor, aligning with the consistent trend of performance degradation among different mod-
els on corrupted images. Figure 5b shows the RCE of models across various corruption types.
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5.2 ROBUSTNESS ENHANCEMENT

5.2.1 STYLIZATION FOR ROBUSTNESS ENHANCEMENT

We investigated whether the use of stylization enhances the robustness of various cross-view geo-
localization models. Following the configuration outlined in Michaelis et al. (2019), we evaluated
the performance of 3 classical cross-view geo-localization models on the CVUSA dataset using
three different training strategies, as depicted in Figure 4.

Our experimental findings align with those reported by Geirhos et al. (2018b). Training on stylized
images indeed resulted in stronger robustness compared to models trained only on the clean images,
showing less performance degradation as the severity of corruption increased. However, the per-
formance on the original clean images (severity=0) is noticeably poorer. This can be attributed to
the fact that stylized data alters the distribution of the original data. By equally combining stylized
and clean data during training, a trade-off between clean and corrupted performance was achieved,
leading to both high performance akin to the standard data on clean instances and significantly im-
proved performance on corrupted instances. Results from Figure 6 indicate that both Standard
and Stylization & Standard training enhanced R@1cor under corruption.

(a) SAFA (b) L2LTR (c) TransGeo

Figure 6: Training on stylized images enhance the robustness of SAFA, L2LTR, and TransGeo on
the CVUSA dataset, with each severity level representing the average across all 16 corruption types.
Severity = 0 corresponds to clean images for testing . The Standard denotes the original, unaltered
training data, while Stylization denotes training exclusively on images subjected to stylization.
Stylization & Standard denotes stylized and original training data are equally interleaved
during the training process. Notably, the 3 different training strategies require identical training
complexity, the experimental configurations and model structures remain consistent throughout.

6 CONCLUSION

This paper systematically investigates the impact of ground query image corruption on cross-
view geo-localization models. We demonstrate that these models experience significant perfor-
mance degradation when faced with corruption, a challenge previously overlooked in the context
of cross-view geo-localization models. To address this crucial issue and track future develop-
ments, we propose fine-grained robustness evaluation benchmarks (CVUSA-C and CVACT val-C)
and comprehensive robustness evaluation benchmarks (CVUSA-C-ALL, CVACT val-C-ALL, and
CVACT test-C-ALL) for cross-view geo-localization tasks. Extensive experiments are conducted
to evaluate existing classical methods on these robustness evaluation benchmarks, revealing the fol-
lowing insights: 1) the corruption robustness of most cross-view geo-localization models is closely
related to their clean performance; 2) scaling blur, adverse weather conditions, and contrast degra-
dation significantly impact the performance of various cross-view geo-localization models; 3) glass
blur, JPEG compression, and pixelation have a relatively minor effect on performance. Furthermore,
we introduce two simple techniques—stylization and histogram equalization to effectively enhance
robustness. These techniques without requiring any model adjustments or introducing additional
training complexity. We hope that the comprehensive robustness benchmarking, in-depth analysis,
and insightful findings presented in this paper will raise awareness within the community regarding
the robustness of cross-view geo-localization models and contribute to enhancing their resilience to
challenges in complex real-world environments in the future.
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