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Abstract

Causal inference and discovery from observational data has been extensively stud-
ied across multiple fields. However, most prior work has focused on independent
and identically distributed (i.i.d.) data. In this paper, we propose a formalization
for causal inference between pairs of event variables in multivariate recurrent
event streams by extending Rubin’s framework for the average treatment effect
(ATE) and propensity scores to multivariate point processes. Analogous to a joint
probability distribution representing i.i.d. data, a multivariate point process repre-
sents data involving asynchronous and irregularly spaced occurrences of various
types of events over a common timeline. We theoretically justify our point process
causal framework and show how to obtain unbiased estimates of the proposed
measure. We conduct an experimental investigation using synthetic and real-world
event datasets, where our proposed causal inference framework is shown to exhibit
superior performance against a set of baseline pairwise causal association scores.

1 Introduction

It is widely known that the gold standard for effective causal inference is through the use of inter-
ventional data such as randomized controlled trials, for measuring the impact of some treatment on
an outcome of interest [30]. However, intervening in the system can often be impractical or even
impossible, in which case one must conduct causal analysis using observational data alone.

Observational data in the form of multivariate event streams is common in many domains including
health, finance, and retail. Analogous to how an observation in an i.i.d dataset can be viewed as
a sample from a joint distribution over a set of random variables, a multivariate event stream can
be viewed as a sample from a multivariate point process over a set of event labels [10], where the
instantaneous rate of any event label depends on the historical occurrences of some subset of the
event labels. Modeling, fitting, and predicting future occurrences given a multivariate event stream is
an active area in statistics [9, 11, 40], data mining [28, 34], and machine learning [32, 16, 29, 44, 7].
Recent work in this area leverages advances in deep learning [45, 25, 17, 48, 21].

Related work in survival analysis focuses only on pairs of events with continuous covariates [23],
involving short event streams with both continuous and discrete variables, and most notably [47, 46]
only a single occurrence of the outcome [24]. While a general theory for point process counterfactual
inference has been developed [37, 1], practical algorithms focus on continuous covariates and hazard
models [39]. Moreover, work in dynamic treatment [26, 18] is for discrete time, motivating work for
continuous-time data, which aims to reduce bias or high variance in discretizing time [38, 41, 43]. In
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contrast, here we focus on the setting where data is of the form of long event streams with multiple

occurrences of various types of events, including both the treatment event and outcome event.

Causal inference entails drawing a conclusion about a causal relationship between potential causes
and effects; in this work, we focus on causal inference between pairs of event labels observed in event
stream data, which differs from standard Granger causal graph learning [12, 49]. Specifically, we pose
the following causal inference problem for multivariate point processes: how can one meaningfully

measure the causal relationship between a cause event label z and an effect event label y? Such a
causal measure would explain whether the cause label z amplifies, inhibits, or has no impact on the
effect label y, while taking into account the potential effects of all other event labels x.

This problem deviates from the typical causal inference setting in several ways. First, most methods
assume i.i.d. observations; in our setting, events may be correlated across time and therefore it is
necessary to make certain independence assumptions in order to identify the effect of interest. Second,
most causal inference settings are concerned with the expected value of a single observable outcome
such as mortality. Our setting has repeated occurrences of an outcome over time and therefore involves
event frequency (or rate), which existing pairwise causal inference models are unable to handle and
therefore necessitates new methods. Note that since event label z’s historical occurrences could have
a complex dynamic effect on another event y’s occurrence at any time in a multivariate point process,
there are a number of questions to address around the fundamental problem of even defining the
notions of treatment, outcome and covariates, before one can study the causal effect of z on y.

There are several real-world applications that motivate our work on causal inference with event stream
data. For instance, one may be interested in understanding causal relations between events relevant
to a diabetic patient, such as meals, insulin intake, exercise and blood glucose level changes [2].
Detecting issues in microservice or other web applications requires detecting which faults or abnormal
states cause other downstream faults from system logs [3]. Example causal pairs from other domains
are: food shortage and protests, which are recurring event labels in socio-economic datasets [27], and
earning call events and stock price jumps, which are recurring event labels in financial datasets [42].
All these examples have an observable outcome that occurs repeatedly, necessitating a new approach.

Contributions We make several major contributions: 1) we propose a formalization of causal
inference between a pair of event variables in a multivariate point process, 2) we define an average
treatment effect (ATE) for multivariate point processes as the effect of having observed treatment in a
proximal window, 3) we derive and obtain the equivalence of propensity scores and balancing scores
for ATE in multivariate point processes, 4) we propose an inverse propensity score re-weighting
procedure for better ATE estimation to adjust for the impact of other covariates, and 5) we conduct a
detailed empirical evaluation on both synthetic and real datasets with baselines to show the superior
performance of our proposed methods in pairwise causal inference in multivariate point processes.

2 Background

A multivariate event stream (or event dataset) is a sequence of events, D = {Di}
N
i=1, where

each event Di includes an event label (or synonymously type or variable) and a time-stamp, i.e.
Di = (xi, ti). xi belongs to the label set L, whose cardinality is M , i.e. |L| = M , and ti is the time
of occurrence, ti 2 R+. We assume a strictly temporally ordered dataset, ti < tj for i < j, initial
time t0 = 0 and end time tN+1 = T . Let z, y refer to an arbitrary pair of event labels in L.

Multivariate event streams can be regarded as samples from a multivariate point process (MPP),
where each label has a counting process [10]. It uses conditional intensity functions �y(t|Ht) > 0
that denote the instantaneous rate of type y given the history up to t, i.e. Ht = {(xi, ti) : ti < t}. In
a multivariate point process, the probability of observing y as the next event at time t is:

pt(y|Htn) = �y(t|Ht) exp(�

Z t

tn

X

x2L

�x(⌧ |H⌧ )d⌧) (1)

where tn is the most recent event occurrence time before t. It can be shown that �y(t|Ht)dt =
E[Ny([t, t+ dt])|Ht] [10, 33], where Ny(A) is the number of y occurrences in time interval A.

Prior work has proposed the notion of process independence among event labels’ counting processes
[11]. The basic idea is that the intensity of one type of event does not depend on certain past events
once we know about specific other past events. This is an asymmetric concept, similar to Granger
causality. Informally, for sets of labels x, y and z s.t. y \ z = ;, x is process independent of y given
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z when all labels in x have conditional intensities that do not functionally depend at any time on the
history of labels in y, given the history of labels in z. Process independence is captured in graphical
event models [11, 15], where the conditional intensity for any event label at any time t depends only
on historical occurrences of its event label parents in the underlying graph.

A minimal graphical representation can be used to define direct causes in multivariate point processes,
analogous to those in causal networks. Here we provide a simplified definition of direct causes [11]:
Definition 1. Event label z is a direct cause of label y if z belongs to the minimal set of nodes u s.t.

y is process independent of all other labels given u.

A minimal set entails that none of its subsets satisfies the property. We highlight that in this work, we
are interested in identifying pairwise causal relationships without learning a full graphical model.
This is because it can often be computationally intensive as well as unnecessary to learn a full model
when one is merely interested in pairwise causality.

3 Causal Inference in Point Processes

The Neyman-Rubin potential outcomes causal inference framework estimates the treatment effects
between a treated variable and an effect for i.i.d. data [36, 20]. We extend this framework, including
average treatment effects (ATE), to study how an event label z affects event label y in a MPP. In this
class of models, treatment is denoted as z 2 {0, 1}, where 0 is the control and 1 the treatment. The
potential outcome yz for each z is the outcome if treatment z is applied. The main difficulty in causal
inference stems from the fact that only outcomes from the administered treatments are observed and
never any of the other outcomes. Hence it may be viewed as a missing data problem.

We estimate the treatment effects between a treatment variable associated with historical occurrences
of z and an outcome variable (or response) associated with y’s occurrence, under existing assumptions
in the literature. Covariate variables x involve historical occurrences of labels other than z, i.e.
x = L \ z. We assume all variables are observed, hence strong ignorability is satisfied (which we
will discuss further in Section 3.2). Next we define treatment, outcome, and covariate variables, and
then derive the propensity score for ATE computation.

3.1 Defining Treatment, Outcome and Covariates

There are many possible ways to define the treatment, outcome, and covariates in a multivariate
point process. We begin with the following general formulation. We use Zt to represent the treatment
variable at time t, distinguishing it from the event label z. Let Hz

t be the history of occurrences of
event z before t, and K

y
t be the future of event y occurrences at t.

Definition 2. General Formulation for Causal Inference: for a pair of event labels (z, y), the

treatment variable Zt at time t is a function of z’s historical occurrences, i.e. Zt = fz(Hz
t ). The

outcome variable is a function of y’s future occurrences at t, i.e. Yt = fy(K
y
t ). The covariates Xt

are a function of historical occurrences of event labels other than z, i.e. Xt = f�z(H
�z
t ).

Treatment and Covariate Models We need to specify the functions in the general formulation of
Definition 2, for instance, we need to summarize historical occurrences Hz

t . Due to potential multiple

(re)-occurrence of treatment and outcome, the representation of history needs careful modeling
based on specific assumptions at each time t. We take a simplified yet practical view of treatment,
making the proximal assumption that the most recent history is sufficient for causation. We do this
by assuming only a recent time window [t� w, t) for some window w could directly have a causal
impact on the outcome at time t; such an assumption has been used previously in point process
models [7] and provides an efficient and interpretable definition for treatment. It fits many real-world
situations where the influence comes primarily from recent history and repeated occurrences have
little additional impact on the intensity rate. It also has a strong statistical justification: matching long
treatment history could result in infinite sample requirements. We assume covariates are also defined
by whether they have appeared at least once in some recent time window.

Outcome Model We wish to measure a statistical quantity fy(K
y
t ) associated with the outcome

in a multivariate point process, based on future occurrences of y, Ky
t , from time t. Many such

quantities fy(Ky
t ) can be used. It is natural to consider either the instantaneous expected number of

occurrences of the outcome y, E[Ny([t, t+ dt])|Ht], in place of Ky
t , or cumulative expected number
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of occurrences of outcome in a future duration wf , E[Ny([t, t+ wf ])|Ht]. Moreover, the expected
count E[Ny([t, t+ dt])|Ht] equals �y(t)dt by definition. Note that at each time, the history can be
very different with the proximal assumption, hence the rate at each time in K

y
t can also be different.

The cumulative counts can be similarly written as ⇤wf
y (t) =

R t+wf

t �y(t)dt for some future duration
wf , which can be the total time horizon or infinity, but practically it is more meaningful for a specific
duration suitable for the application.

We will focus our analysis with �y(t) as the outcome in the following, which could be directly
extended to outcome ⇤

wf
y (t). We will compare with both definitions of outcomes in experiments.

Hence, our specific realization of the general formulation results in the following formulation:
Definition 3. Recent History Formulation for Causal Inference: for a pair of event labels (z, y),
the binary treatment variable Zw

t at time t is defined by whether or not z has occurred at least once

within a window w into the past from t. The outcome variable is the occurrence rate of the effect

label y at time t given the treatment, Yt = �y|Zt
(t). The covariates Xw

t at time t are a binary vector,

depending on whether other event labels have occurred at least once in [t� w, t), w 2 (0, t).

In event streams, it is possible for the cause and effect to be the same label in history, for instance,
consider a system with negative self-feedback (eating too much sugar for example). Hence z and Xt

could be identical to or contain y, but z and Xt must be disjoint sets of events.

We summarize the assumptions in this formulation of causal inference: 1) events before t � w
have no impact on y’s occurrence rate at time t. This enables memory in time yet provides a
compact representation of history, 2) only the occurrence of z in the window impacts y’s rate at
time t (regardless of the number of occurrences, hence we do not differentiate between multiple
occurrences within w), and 3) the specific times of z’s occurrences do not further affect y’s rate at
time t [16, 29, 15]. Such a model can be robust to outliers or noisy historical observations.

3.2 Defining Average Treatment Effect

To measure how label y responds to historical occurrences of z, average treatment effect (ATE)
[36] can be extended to our formulation in MPPs. We define the mean potential outcome Yt under
treatment assignment Zw

t = k as µk
y := 1

T

R T
0 �k

y(t)dt, where T is the maximal time horizon. µk
y

has an intuitive interpretation: it is the rate of y given Zw
t = k in its history w, averaged over time

horizon t0 = 0 to T . Note that µk
y measures the temporal average of instantaneous event occurrence

counts under treatment. It is a natural way to aggregate an event’s expected occurrence counts in
continuous time and captures the event dynamics affected by the proposed treatment.
Definition 4. Average Treatment Effect (ATE) for event pairs is defined as:

ATE = EHT [µ
1
y � µ0

y] = EHT [
1
T

Z

t

�1
y(t)� �0

y(t)dt] (2)

where �1
y(t) is �y|Zt

(t) at time t if z occurs at least once in Ht (Zw
t = 1) and �0

y(t) is �y|Zt
(t) at

t if z does not occur in Ht (Zw
t = 0). The EHT [·] is the expectation with respect to the random

trajectories over [0, T ] as induced by the history dependent MPP. Note that since the rate �k
y is the

instantaneous expected count of occurrences, ATE can also be viewed as a measure of expected count
differences, normalized by the length of the time horizon T .

For a known multivariate point process, one can find the counterfactual �̂y|Zt
(t) and hence the ATE

by looking up the conditional intensity function with the corresponding parental conditions after
making an adjustment to the treatment. Specifically, removing all occurrences of z in time period
[t� w, t) if the factual is Zw

t = 1 or inserting z at time t� w if the factual is Zw
t = 0.

Theorem 1 provides justification for choosing ATE to measure pairwise causal relations in a MPP:
Theorem 1. If z is not a direct cause of y in a multivariate point process, ATE for pair (z, y) is 0.

All detailed proofs are in the Appendices. The proof of Theorem 1 directly uses Definition 1 to show
that the intensity rate does not change per z. The above theorem also implies that if z is not a parent
of y in a graphical event model representation of the underlying MPP, the ATE for (z, y) is 0 as in
Equation 2 from Definition 4.
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To use ATE as defined in Equation 2, there are several assumptions that must hold in order to mimic
the randomized trials to truly establish causal relationships. The ignorability condition indicates
that whether y is 0 or 1 at each time t does not depend on whether Zw

t = 1 or 0 at that time,
i.e., (�1

y(t),�
0
y(t)) ? Zw

t |Xt, 8t (although the y’s intensity rate still depends on Zw
t ). Moreover,

overlap condition states that each time t has a strictly positive chance for Zw
t = 1 to happen given

its history, i.e., 0 < P (Zw
t = 1|Xt) < 1. Strong ignorability is often used when both overlap

and ignorability hold true. If the assumption does not hold, possibly due to covariate differences in
treatment groups, we need to adjust for these effects using propensity scores. This is particularly
important in observational event data, where different times t with Zw

t = 1 and Zw
t = 0 may not be

directly comparable, because the covariates Xw
t may not be similar to each other. It can be studies

further with the back-door criterion [31].

3.3 Defining Propensity Scores

The propensity score is proposed to resolve covariate differences in non-randomized experiments
to mimic a randomized study. It is a balancing score: conditioned on any balancing score, the
distribution of observed covariates will be similar between the treated and control groups. It has been
widely used in i.i.d. settings [22, 5, 13, 4].

We define a set of balancing scores, b(H�z
t ) (b⇤t for short), where the goal is to make treatment

conditionally independent of covariates given the scores: Zt ? H
�Z
t |b(H�Z

t ), 8t. Based on the spec-
ification provided by Definition 3, we use the recent window assumption and summarize the history
H

�z
t with a set of covariates Xw

t . Hence the balancing score would achieve Zw
t ? Xw

t |b(X
w
t ), 8t.

The most trivial b(Xw
t ) is b(Xw

t ) = Xw
t . However, to consider the sampling distribution of potential

cause Zw
t , many-to-one functions of Xw

t offer better adjustment, and the coarsest of such a function
is the propensity score. We define X is finer than Y (equivalently, Y is coarser than X) if y = f(X).
"Coarsest" here means that Y ’s dimension cannot be reduced further.

We use the above defined treatment Zw
t and covariates Xw

t and derive the equivalent form of
propensity score for MPPs. The goal is to derive the propensity score e(Xw

t ), or e⇤t for short, such
that P (Zw

t = 1|Xw
t , e

⇤

t ) = P (Zw
t = 1|e⇤t ). We know that:

P (Zw
t = 1|Xw

t ) =
D(Zw

t = 1;Xw
t )

D(Xw
t )

, (3)

where D(Zw
t = 1;Xw

t ) is the duration that Zw
t is observed true given observing covariates Xw

t in
the dataset. We define P (Zw

t = 1|et) similarly as P (Zw
t = 1|e⇤t ) =

D(Zw
t =1;e⇤t )
D(e⇤t )

. D(Zw
t = 1; e⇤t )

can be interpreted as the duration that Zw
t is observed true, i.e., the total duration for which z occurs

in [t � w, t], 8t, in the dataset with the same e⇤t in the relevant preceding windows. To ensure the
required equality, we define e⇤t as:
Definition 5. The propensity score for all covariates in history Xw

t at time t is defined as e⇤t =
e(Xw

t ) = P (Zw
t = 1|Xw

t ).

Note that Zw
t at any time t follows a distribution P (Zw

t = 1|Xw
t ), which depends on the values of

Xw
t . This quantity can be estimated efficiently by counting the duration of Zw

t = 1 with different Xw
t

values, which we will elaborate upon later. The major distinction between the proposed propensity
score and that for the traditional i.i.d. case is that e⇤t is time-variant and incorporates all occurrences
and non-occurrences of events in a window-viewed history.

We can show that times with the same value b⇤t but different treatment Zw
t can act as controls for each

other, as their expected outcome difference equals the proposed ATE:
Theorem 2. Suppose the treatment event Zw

t is strongly ignorable and b⇤t is a balancing score. Let

[µk
y |A] := 1

T

R
t �

k
y(t)|Adt. Then, [µ1

y|X
w
t , Z

w
t = 1]� [µ0

y|X
w
t , Z

w
t = 0] = [µ1

y|b
⇤

t ]� [µ0
y|b

⇤

t ].

Proof sketch. If the treatment is strongly ignorable, then it is also strongly ignorable given any
balancing score. Therefore, we can show that the expected differences of both sides are equal. We
further can show that treatment Zw

t and covariates in history Xw
t are conditionally independent, given

the propensity score e⇤t , which makes e⇤t a balancing score. Please see the Appendices for exact
proofs and further discussions.

It follows that the two-sampling process gives an unbiased estimate of ATE, using pair matching
and sub-classification techniques [36] to adjust for the propensity score. However, in practice, pair
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matching is difficult to perform given the continuous nature of time t which results in infinite sampling
sizes. Subclassification is also difficult when the number of covariate event labels is large, leading to
a high sample requirement on T .

4 Estimating ATE Scores

There are several parameters that need to be provided or estimated in order to adjust for the propensity
score and obtain ATE, including the window size for the treatment definition, conditional intensity
rate of the treatment, and the outcome conditional or cumulative intensity rates.

Window Size w for the Treatment: The window size w of the treatment Zw
t definition is provided

as an input to the ATE estimation procedure. Moreover, it is used as the window size for all quantities
associated with a window, namely Xw

t , Z
w
t , �y|Zt

(t), and P (Zw
t |Xw

t ). If one wants to estimate
a window, practitioners should exercise prior knowledge to set w since the treatment effect with
different windows will produce different results.

Alternately, one could take a data-driven approach to learning a window for a particular pair of
event labels (z, y). One candidate is the heuristic pairwise approach in [7] that chooses from a set
of inter-event times in the event stream data. Note that windows that are too short or too long could
result in treatments that are always absent or present, respectively, making the ATE computation
unsuitable and unstable. There is therefore a trade-off between long (which captures the historical
influences as much as possible) and short windows (which captures only the important subset of
history). We include more details in the Appendix.

Propensity Score e⇤t Estimation: Let D(Zw
t = 1;xw

t ) be the duration that Zw
t is observed true in

the dataset and that the condition xw
t is true in the relevant preceding window w. Formally,

D(Zw
t = 1;xw

t ) =
N+1X

i=1

Z ti

ti�1

Ixw
t
(Zw

t = 1, t)dt (4)

where Ixw
t
(Zw

t = 1, t) is an indicator for whether each instantiation of Xw
t , xw

t , is true and Zw
t = 1

at time t as a function of the relevant windows w. Similarly, D(xw
t ) is the duration that the condition

xw
t is true in w. Hence, P (Zw

t = 1|xw
t ) = D(Zw

t =1;xw
t )

D(xw
t ) and P (Zw

t = 1|Xw
t ) is a vector of such

probabilities with size |Xw
t |.

Outcome Conditional Intensity Rate �y|Zt
(t): Given the most recent history view in the treatment

definition, we estimate �y|Zt
(t), 80  t  T by using the same recent history formulation. This

assumption has been used previously in MPPs, such as in proximal graphical event models (PGEMs)
[7] where the rate of occurrence of an event type depends only on whether or not its parents have
occurred in the most recent history.

When the parents U of all nodes V are known, the log likelihood of a MPP represented by a PGEM
can be simplified to a function of counts and durations in the data and the conditional intensity rates:

logL(D) =
X

V

X

u

�
��v|uD(u) +N(v;u) ln(�v|u)

�
(5)

where u is an instantiation of the parent of each variable v, N(v;u) is the number of times that X is
observed in the dataset and that the condition u (from 2|U| possible parental combinations) is true in
the relevant preceding windows, and D(u) is the duration over the entire time period where the con-
dition u is true. Formally, N(v;u) =

PN
i=1 I(li = V )Iwv

u (ti) and D(u) =
PN+1

i=1

R ti
ti�1

Iwv
u (t)dt,

where Iwv
u (t) is an indicator for whether u is true at time t as a function of the relevant windows wv .

We refer the reader to [7] for more details around model learning.

We set z as the parent of y in a PGEM and then can estimate �w
y|z and �w

y|z̄ , which are intensities
when z does and does not occur in the provided proximal window w. It is efficient since we only look
at two events and only need to estimate intensity rates without learning windows. Once we have these
two intensities, we can then look up �y|Zt

(t) by finding the treatment Zw
t state at any query time t.

Outcome Cumulative Intensity Rate ⇤wf

y|Zt
(t): The cumulative intensity is computed as the integral

of the conditional intensity over a future window wf , assuming that no other events occur. Again,
given a learned point process model, we take a recent history view and compute the integral using
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Algorithm 1 Inverse Probability Weighting for Events
Input: Event data D, time horizon T
Sample times t from 0 to T .
Compute the propensity scores e⇤t , 8t, per Equation 3.
Compute wt, 8t. per Equation 6 or stabilized scores.
Train a PGEM My to estimate �y|Zt(t), 8t.
Predict with My for a given Ht the outcome �0

y(t) with Zw
t = 1 and �1

y(t) with Zw
t = 0.

Compute ATE per Equation 7.

estimates for conditional intensities �w
y|z and �w

y|z̄ . Computing the integral from t to t + wf is
straightforward as these are piece-wise constant conditional intensities. Furthermore, it is only
possible for the treatment condition to change from Zw

t = 1 to Zw
t = 0 in the future window, when

the condition from the occurrence of event label z changes, but not the other way around.

Inverse Probability Weighting for Events: The idea of weighting samples is as follows. If the
time units for data involving the treatment Zw

t = 1 group are far fewer than those in the control
group Zw

t = 0 in an event dataset, we need to upweight the time units in the treatment group and
down-weight those in the control group for better estimation. We use inverse probability of treatment
weighting (IPTW) as the weighting scheme, in order to adjust for this imbalance in the population.

We define the weight for the conditional intensity at time t in the treated Zw
t = 1 group as ↵t =

1
P (Zw

t =1|Xw
t ) =

1
e⇤t

, and for the control group Zw
t = 0, the weight becomes ↵t =

1
1�P (Zw

t =1|Ht)
=

1
1�e⇤t

. Together, the weight for the outcome intensity rate at time t is defined as:

↵t =
Zw

t

e⇤t
+

1� Zw
t

1� e⇤t
w (6)

Using Equation 6, we propose an inverse probability weighting method for events, detailed in
Algorithm 1. We first estimate the propensity score using Equation 3, and then estimate wt for all t
using Equation 6. Then we can choose a PGEM My to predict �y|Zt

(t), for both the factual outcome
and counterfactual �y|Zt

(t). Computing their empirical expectation provides an ATE estimate:

ATE = EHT [
1
T

Z T

t=0

↵t · �
1
y(t)�

1
T

Z T

t=0

↵t · �
0
y(t)] (7)

Equation 7 requires one to compare occurrence rates for all t in [0, T ], which includes some epochs
with treatment and some without. Since this is a continuous time setting, integration over time is
not straightforward. Hence, we propose using a sampling procedure to compute the inner integral
over time in Equation 7 as 1

S

PS
t=1 ↵t · �1

y(t)�
1
S

PS
t=1 ↵t · �0

y(t), where S is the desired number
of epoch samples from t0 = 0 to T .
Corollary 3. Inverse probability weighting for events with balancing scores. Under strongly ignor-

able treatment, the weighted average with inverse probability weighting is unbiased for ATE when

weights equal those in Equation 6.

Proof Sketch. The inner integral of ATE can be shown to equal to [µ1
y]� [µ0

y], and further [µ1
y(t)] =

1
T

R
t

ZW
t ·�⇤

y(t)

e⇤t
dt and [µ0

y(t)] =
1
T

R
t

(1�ZW
t )·�⇤

y(t)

1�e⇤t
dt.

We show in Corollary 3 that our ATE definition is an unbiased estimator. Consistency results, however,
rely on the estimation results of intensities from specific point process models. For example, when
the window sizes are given, PGEM estimator [7] for intensities are consistent.

Since we consider (interval) stationary point process here, we can follow the standard computational
procedure to estimate the sample variance of ATE estimator and a sample-based confidence interval
for the ATE estimate (for example, results from Theorem 6.2 in [19] can be directly extended to our
setting), as the samples are from the same distribution.

Factual and Counterfactual Treatment Usages To compute the ATE, we need both a factual and
counterfactual treatment for time. For time t with factual Zw

t = 1, the counterfactual Zw
t = 0

treatment is modeled by removing all occurrences of z in [t� w, t). For time t with factual Zw
t = 0,

the counterfactual Zw
t = 1 treatment is modeled by introducing one occurrence of z in [t � w, t).
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(a) ATE accuracy results on different causal pair scores for 3 PGEM synthetic datasets.

(b) ATE accuracy results on different causal pair scores for 3 Hawkes synthetic datasets.

For ease of computation, we introduce the counterfactual occurrence of z at t� w for instantaneous
conditional intensity computation, although its exact location would not impact the outcome due
to the proximal assumption. For cumulative intensity outcomes, we introduce the counterfactual
occurrences at t � �t, with �t = w

2 which is the middle point of the window. Other choices �t of
introducing the counterfactual treatment are also possible.

Stabilized IPTW One common issue with IPTW is that sometimes the propensity scores for some
time unit t can get very close to 0, which indicates Z is extremely unlikely to occur in the window
[t� w, t); this is even more likely for continuous time data. Hence, the weights for those t become
extremely large, causing unstable estimations. To combat this issue, the stabilized IPTW [35] uses
the marginal probability of treatment to counteract such an instability. It is formulated as ↵t =
Zw

t ·P (Zw
t =1)

e⇤t
+ (1�Zw

t )·(1�P (Zw
t =1))

1�e⇤t
.

5 Empirical Evaluation

Evaluating causal inference algorithms is more difficult than those for prediction tasks since observa-
tional datasets rarely contain the ground truth treatment effects. To this end, most experiments in the
literature analyze causal models using a synthetic dataset where the ground truth is known [20]. We
begin by comparing the ATE estimation performance of our proposed IPTW methods on synthetic
event datasets, generated using different parameters. Per standard practice in causal inference litera-
ture, we use root mean squared error (RMSE) to measure the ATE accuracy of each method, along
with its standard deviation. We first focus on the experiments with the instantaneous conditional
intensity outcome. All experiments are done on a machine with 2.9 GHz quad-core CPU.

Since outcome �y is not directly observable, simple adaptation of ATE from the i.i.d. case would not
work. There are not many well-established baselines that use event occurrence rate as the outcome in
multivariate point processes for comparison. We adapt two baseline scores from fitting parametric
models to the intensity rates from cause-effect associate scores 11[8]: CI (conditional intensity) and
CIM , which consider a single parent event and a set, respectively. For the first baseline, we consider
the association between a pair of events, (z, y) and assume that the intensity of y only depends on
whether or not z has occurred at least once within a specified time window w. Hence we define a
conditional intensity score to estimate the causal effect of z on y as CI(z, y) = �w

y|z � �w
y|z̄ . We

extend this definition to allow for y depending on the historical arrival of a set of events instead of
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Table 1: Hits@K results for the diabetes dataset (test set).
Method K = 10 K = 15 K = 20
IP-Stable 3 6 7
CI 1 2 3
CIM 4 5 6

just a single z. This means that there are possibly 2|X|+1 conditional intensity rates, and we need to
aggregate the score for z given all other conditions of the parent set. For our purposes we will use the
mean of y over all settings. Formally, CIM (z, y) = mean

⇣
�w
y|z,x � �w

y|z̄,x

⌘
, when z is a parent of y

and otherwise the score is 0.

We compare CI scores with three versions of ATE estimation based on our proposed IPTW methods.
First, we compute ATE with no weighting as per Equation 2; labeled as IP-NW. Second, we use the
proposed IPTW with non-stable weight (IP-NS) with weights as per Equation 6. Last, we use IPTW
with stable weight (IP-Stable) to compute ATE.

Synthetic PGEM Datasets To test our estimation methods on synthetic data, we first generate event
data that adheres to the proximal assumption for the intensity functions [7]. We generate 3 models
with different numbers of events, randomly generated graph structures among events, fixed window
size of w = 30, T = 2000, and random intensities between 0.1 and 0.4. We use the data and the
generated model to obtain the true estimates of �y|Zt(t) at chosen times t and hence can compute the
ground truth ATE. Since we observed that the sample size S of t (103 to 105) in the ATE estimation
does not impact the results much, we use sample size S = 103 for all our experiments. Shown in
Figure 1a on three synthetic PGEM datasets, non-weighted IP-NW performs worse than CI scores
when window size w is small but better with large windows. IP-Stable’s RMSE is consistently the
smallest across datasets and window sizes, sometimes with a 6 times reduction in error from CI
scores. We did not include IP-NS in this figure as it has large errors in comparison to other methods.
IP-NS with non-stable weight can lead to non-stable estimation. For exact numerical values, please
refer to the appendix.

Synthetic Hawkes Dataset We also test our approaches on synthetic multivariate Hawkes process
datasets using an existing toolbox [6]. We again generate 3 datasets with 30, 40, and 50 event labels,
and w = 15. We use a fixed base rate 0.016 and each parental event leads to additive spike of 0.06 to
the base rate, with an exponential decay rate 0.15. We generate event streams with T = 2000. For
estimating the counterfactual rate, �̂y|Zt

(t), to compute ATE in the case where there is no treatment
event over [t� w, t), we introduce a counterfactual treatment event at time t� w. Figure 1b shows
the RMSE results of different algorithms. IP-NW outperforms CI scores in all cases. IP-Stable shows
the lowest RMSE among all methods, generally achieving 3 to 10 times better accuracy. In addition,
the performance of IP-NW and IP-Stable are relatively stable with respect to the window sizes, with
minimal changes. For exact numerical values, please refer to the appendix.

Hybrid Dataset We also generate a synthetic hybrid dataset that combines proximal graphical event
models with additive excitation similar to Hawkes processes with a constant kernel. For further details
about the generating process and the results, please refer to Appendices G and H. IP-NW outperforms
CI scores in all cases but one, and IP-Stable shows the lowest RMSE in all but two cases.

Diabetes Dataset We also test our methods on the diabetes dataset [14] – a real-world dataset which
we process into events for meals, exercise activity, insulin dosage and changes in blood glucose
measurements for 70 diabetes patients. We treat the assessments in [2] as the ground truth, where an
expert provided 11 pairs such that a cause label is more likely to make the effect label occur. Since
the assessments are only partial and do not provide the true ATE, we use hits@K among highest
absolute estimated ATE values to measure performance in this experiment, which is a popular metric
for information retrieval. Specifically, we determine how many of the 11 pairs are recovered by a
method’s top K absolute scores. The dataset is split into 50%/50% training/test sets, and optimal
window setting is determined on the training set, which is then deployed in the test set for evaluation.
w = {0.1, 0.3, 0.5, 1} days for all models were considered during training. Table 1 compares the
Hits@K across all methods on the test set for K = {10, 15, 20}, illustrating that IP-Stable is able to
recover more of the expert-assessed pairs in two out of three K values.
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Table 2: ATE accuracy results with cumulative intensity outcome on diff. causal pairs for synthetic datasets.

Model Future Window Size CCI CCIM CIP-NW CIP-NS CIP-Stable
PGEM-1 15 4.51±0.94 4.45±1.52 3.20±2.65 122.6±60.6 3.11±2.42
PGEM-2 15 3.77±2.96 3.98±3.03 2.61±0.97 538.91±203.36 2.87±0.99

Cumulative Intensity Outcome Experiments We also test our framework with the outcome being
the cumulative intensity. The procedure can be done directly by replacing �y(t) with its cumulative
version ⇤

wf
y (t), computed from a future window [t, t+ wf ), as discussed in Section 4. Hence the

overall computation becomes ATE = EHT [
1
T

R T
t=0 ↵t · ⇤1

y(t) �
1
T

R T
t=0 ↵t · ⇤0

y(t)] . To adapt the
CI baselines to cumulative setting, we compute the cumulative version of CI, CCI , with CCI(t) =
CIt ⇥ wf . We also name our methods CIP as the cumulative version of the IP methods. All other
computations remain the same. We are given the future window size wf = 15 for all methods. To
explore the data-driven approach for learning the window, we do not provide w here and instead let it
learn from data [7]. We show the results of ATE for the cumulative intensity outcome with 2 PGEMs
in Table 2. The results again confirm better performance of CIP methods over baselines, specially
NW and Stable versions. CIP-NS can be unstable as indicated previously.

6 Conclusion

We have proposed a framework for pairwise event causality in a multivariate point process and
formalized the problem with novel definitions of treatment, outcome, and propensity scores. Our
definitions allow for efficient modeling of data where outcomes occur multiple times on the timeline.
We estimated the average treatment effect using a propensity score weighting procedure that achieves
the best performance against baselines. Our work bridges causal inference with multivariate point
processes, showing promising performance in estimating pairwise causal relationships among events.
Our framework can be extended in many ways. For example, ATE with multiple causes could be
computed if we specify an outcome model given such multiple causes. Our treatment and covariate
definitions focus on binary values but could be extended to marked point processes where the event
has a real valued measurement, by choosing an appropriate aggregation function and outcome models.
Future work could study efficient estimation approaches of ATE without sampling and different
historical representations of the treatment. Another direction is a count-based estimand over the
current proximal assumption, which would result in multiple treatment value problems.

Limitations And Societal Impact: Our method focuses on potentially long event sequences with
multiple occurrences of all events. We assume proximal historical influence, along with strong
ignorability and no confounding. The usage of causal models should be cautioned, to draw potentially
harmful conclusions. In particular, the window sizes in our formulation, which can be subject to
human inputs, can induce biases and provide different conclusions with different values.
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