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ABSTRACT

Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) achieves
remarkable performance but suffers from significant computational overhead.
CoT reasoning exhibits redundancy across two critical dimensions: temporal re-
dundancy, where reasoning steps may be unnecessary, and spatial redundancy,
where computations can be performed at reduced precision. While existing ap-
proaches require expensive dataset construction and model fine-tuning to improve
reasoning efficiency, we propose Temporal-Spatial Adaptive Reasoning (TSAR), a
training-free framework that jointly exploits both redundancy dimensions through
coordinated optimization. TSAR segments reasoning based on Dewey’s reflec-
tive thinking model, employs progressive precision reduction that adapts to both
reasoning phases and progress, and coordinates termination decisions through
entropy-based confidence estimation. Our adaptive scheduler prevents precision-
induced errors while enabling compound efficiency gains. Extensive evaluation
on diverse reasoning tasks demonstrates up to 12.4x speedup while maintaining
the accuracy, establishing coordinated multi-dimensional redundancy exploitation
as superior to conventional optimization strategies.

1 INTRODUCTION

Chain-of-Thought (CoT) reasoning has revolutionized
how Large Language Models (LLMs) approach com-
plex problem-solving, enabling systematic decompo-
sition of intricate tasks through step-by-step reason-
ing (Wei et al., 2022} Parashar et al., 2025)). However,
this approach often produces long reasoning chains that
are computationally expensive, as they require generat-
ing and processing a greater number of tokens across
multiple intermediate steps, leading to higher infer-
ence latency, memory consumption, and energy de-
mands (Sui et al.| 2025} Feng et al.| [2025)). This poses
significant challenges for practical deployment, partic-
ularly in resource-constrained environments.

Existing approaches to improve CoT reasoning effi-
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Figure 1: Reducing temporal and spatial
redundancy is critical to optimize the effi-
ciency of reasoning LLMs.

ciency predominantly rely on training-dependent methods that require substantial computational re-
sources and domain-specific data collection. Training-based methods construct specialized datasets
and fine-tune models to reduce reasoning steps (Liu et al., |2024; [Xia et al., 2025)), but suffer from
limited transferability across domains. Structural optimization approaches modify reasoning strate-
gies through prompt engineering (Kang et al.| 2024)), but often sacrifice reasoning completeness
for efficiency and require extensive manual optimization. Computational optimization techniques
apply general LLM efficiency methods like uniform quantization (Zhang et al.l [2025) or simple
confidence-based early exit (Qiao et al.l 2025) to reasoning tasks, but treat reasoning as generic text
generation, missing reasoning-specific optimization opportunities and failing to exploit the multi-

dimensional nature of redundancy in CoT reasoning.
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The fundamental challenge in reducing redundancy for CoT reasoning lies in the multi-dimensional
nature of inefficiency patterns. Specifically, modern reasoning LLMs exhibit redundancy across
two critical dimensions (Figure [T): temporal redundancy where entire reasoning steps become
unnecessary once sufficient understanding is achieved (Sui et al., 2025} |Li et al.| |2024), and spa-
tial redundancy, where individual computations can be performed at reduced precision without
significant quality degradation (Zhang et al. |2025). These redundancy dimensions are inherently
correlated—they emerge from the same underlying reasoning dynamics and exhibit strong depen-
dencies that current approaches systematically ignore. To effectively reduce these redundancies to
optimize the inference efficiency of reasoning LLMs, there are several critical challenges that need
to be addressed.

Challenge 1: Redundancy Detection and Exploitation. Identifying when reasoning steps become
redundant requires a sophisticated understanding of reasoning progress and confidence dynamics.
Simple heuristics like fixed confidence thresholds fail to capture the complex patterns of reasoning
completion, while training-based approaches require expensive data collection and model modifica-
tion. The challenge lies in developing training-free methods that can accurately detect redundancy
patterns across both temporal and spatial dimensions without compromising reasoning quality.

Challenge 2: Multi-Dimensional Coordination. Temporal and spatial redundancy exhibit strong cor-
relations that current independent optimization approaches fail to exploit. When precision reduction
affects confidence estimation, termination mechanisms make suboptimal stopping decisions, lead-
ing to cascading errors. The challenge is developing coordinated optimization strategies that can
exploit these correlations to achieve compound efficiency gains while preventing error propagation
between dimensions.

Challenge 3: Dynamic Adaptation to Reasoning Patterns. CoT reasoning exhibits distinct computa-
tional phases with heterogeneous redundancy characteristics that static optimization cannot capture.
E.g., problem formulation phases require high precision for accurate context establishment, while
verification phases often tolerate aggressive quantization and early termination. The challenge lies
in developing adaptive strategies that can dynamically adjust policies based on reasoning phase
characteristics and temporal progress without requiring training or manual tuning.

To address these challenges, we propose Temporal-Spatial Adaptive Reasoning (TSAR), a training-
free framework that jointly optimizes temporal and spatial redundancy through coordinated multi-
dimensional exploitation. TSAR operates by automatically segmenting reasoning sequences into
distinct cognitive phases based on Dewey’s reflective thinking model, enabling phase-specific op-
timization policies that adapt to heterogeneous computational requirements. The framework em-
ploys progressive precision reduction that dynamically adjusts quantization levels based on both rea-
soning phase characteristics and temporal progress within the reasoning sequence, moving beyond
static uniform quantization to exploit the temporal dependencies inherent in step-by-step reasoning.
TSAR coordinates termination decisions through entropy-based confidence estimation computed
from thought transition patterns, preventing precision-induced confidence degradation from causing
premature or delayed stopping.

The main contributions of this work can be summarized as follows,

* To the best of our knowledge, TSAR is the first training-free framework that jointly opti-
mizes temporal and spatial redundancy through coordinated, phase-aware scheduling.

* We introduce dynamic precision allocation that adapts to both reasoning phase charac-
teristics and temporal progress, extending beyond static uniform quantization to exploit
reasoning-specific computational patterns.

* We establish unified scheduling where precision adaptation informs termination decisions,
preventing cascading errors and enabling compound efficiency gains that exceed indepen-
dent optimization approaches.

» Extensive evaluation on multiple reasoning tasks demonstrates that TSAR achieves up
to 12.4x speedup compared to the existing approach, establishing coordinated multi-
dimensional redundancy exploitation as substantially superior to conventional efficiency
optimization strategies.
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Figure 2: Temporal and spatial redundancy in  Figure 3: Phase-aware reward and quantization
reasoning LLMs. sensitivity in reasoning LLMs.

2  MOTIVATIONS AND OBSERVATIONS

2.1 MULTI-DIMENSIONAL REDUNDANCY ANALYSIS

In order to quantitatively study the redundancy in large reasoning models, we conducted a study on
the MATH-500 dataset (Hendrycks et al., |2021b). Our empirical analysis reveals redundancy pat-
terns across two distinct dimensions that exhibit strong correlations, suggesting substantial potential
for unified optimization strategies.

Temporal redundancy manifests when reasoning steps become unnecessary once sufficient under-
standing is achieved. For example, in the verification phases, reasoning often continues beyond the
point where confidence stabilizes, with redundant verification steps providing minimal additional
value while consuming substantial computational resources. Our analysis in Figure[2](a) shows that
26.7% of reasoning steps could be eliminated without affecting final answer quality.

Spatial redundancy appears when computations can be performed at reduced precision without
affecting reasoning quality. E.g., routine mathematical operations often do not require full precision,
while complex analysis demands higher accuracy for numerical stability. Our statistical analysis
in Figure [2] (b) reveals that this redundancy is substantial. For a majority of tasks, dramatically
reducing precision from full BF16 down to 4-bits (w4), and in some cases even 3-bits (w3), incurs
only a negligible drop in accuracy.

2.2 PHASE-BASED COMPUTATIONAL REQUIREMENTS

We hypothesize that CoT reasoning is not a monolithic computational process but rather consists of
distinct phases with heterogeneous resource requirements. To test this, we conducted an experiment
grounded in the principles of John Dewey’s model of reflective thinking (Dewey, [1933).

Specifically, we split the thoughts generated by LLMs into these phases (with the method intro-
duced in the Methodology Section) and analyze them using a large reward model. Specifically, we
employ the reward model Qwen2.5-Math-PRM-7B (Yang et al., [2024)) to statistically analyze the
scores across these stages, systematically adjusting the precision of each stage to observe its impact
on overall accuracy. As illustrated in Figure[3a), we observe distinct reward magnitudes for differ-
ent stages. Furthermore, Figure [3{b) reveals their varying sensitivity to quantization. For instance,
the Problem Decomposition (PD) phase, which has the highest reward, is highly sensitive to preci-
sion, showing a steep decline in accuracy at lower bit-widths. In contrast, other phases like Solution
Consolidation (SC) are far more robust to quantization, maintaining high accuracy even at 3-bit pre-
cision. This evidence supports our claim that different reasoning phases have distinct computational
requirements.

These phase-dependent patterns reveal that optimal efficiency strategies must adapt dynamically
rather than apply uniform policies. Static quantization fundamentally cannot capture these varia-
tions, leading to systematic resource misallocation where high-redundancy phases receive excessive
computational resources while precision-critical phases may be under-provisioned.



Under review as a conference paper at ICLR 2026

i So, the correct formulais r = /(x* +y?). [count 6]
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Figure 4: Framework of TSAR, which effectively identifies different reasoning phases, dynamically
adjusts their precision levels and timely enables early termination.

3 METHODOLOGY

In this section, we introduce the TSAR framework, depicted in Figure ] orchestrating phase-aware
precision scheduling and entropy-based termination to optimize temporal and spatial efficiency.

3.1 PROBLEM FORMULATION AND REDUNDANCY DEFINITIONS

We formalize the multi-dimensional redundancy optimization problem for CoT reasoning. Consider
model My generating reasoning sequence s = (s1, S, . . ., S7) given input x, where the ¢-th thought
s¢ is computed using precision p; € P = {2, 3,4, - - - } bits with computational cost ¢(p;).

Temporal Redundancy Rr(t) quantifies the unnecessary computational cost from continuing rea-
soning beyond sufficient understanding:

RT(t) = c(ps) - 1[t > t*] where t* = min{t' | Q(s1.¢/) > Q(s1.7) — €} (1)

where Q(-) measures reasoning quality and ¢* is the optimal reasoning depth and € represents ac-
ceptable quality tolerance.

Spatial Redundancy Rg(t) quantifies computational redundancy from precision reduction without
quality loss:

Rs(t) = c(pt) — c(py) where py =min{p € P: Q(st,p) = Q(St: Pmaz) =0} (2)

where § represents spatial quality tolerance.

3.2 REASONING PHASE CLASSIFICATION

Inspired by our observation of phase-dependent computational needs, we structure our adaptive
framework around a cognitive model. John Dewey’s reflective thinking model, as outlined in his
foundational work How We Think (Dewey, |1933)), provides a cognitive framework for thoughtful
inquiry and problem-solving. It describes a sequential process involving five key phases: (1) the
recognition of a felt difficulty or problem, (2) the location and intellectualization of the problem
(defining it clearly), (3) the suggestion of possible solutions or hypotheses, (4) the development
of these suggestions through reasoning and deduction, and (5) the testing of hypotheses through
observation, experimentation, or verification, leading to acceptance or rejection.

Building upon this cognitive science foundation, we adapt Dewey’s model to the context of LLM
reasoning, distilling it into five distinct phases that align with its core principles while emphasiz-
ing heterogeneous computational characteristics. These phases enable targeted optimizations that
traditional static approaches cannot exploit effectively:

* Problem Definition (PD), which corresponds to Dewey’s problem recognition (phases 1),
focusing on initial context establishment;

* Problem Formulation (PF), which extends the intellectualization by formalizing problem
structures, constraints, and representations (phases 2);

* Solution Computation (SC), akin to hypothesis suggestion and initial development (phase
3), involving generative reasoning and derivation;
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* Solution Verification (SV), reflecting further reasoning, deduction, and testing (phase 4),
emphasizing validation and error checking;

* Conclusion Formation (CF), mirroring final verification and acceptance (phase 5), synthe-
sizing results into a coherent outcome.

We segment reasoning sequences at thought transition points identified by linguistic indicators:
S(St) = 1[3](5 € ’Csplit ke St] (3)
where Kgpie = {”wait”, ”Wait”, ”Alternatively”, - - - }.

In order to ensure operational efficiency, we adopted a keyword-based classification method in the
reasoning stage. Specifically, each segment is classified using enhanced phase detection:

®(segment) = arg max Z frx(segment) 4)
wer key,

where ¥ = {PD, PF, SC,SV,CF?}, and fj, is the keyword counting function of keyword .

3.3 PHASE-AWARE PROGRESSIVE QUANTIZATION

Traditional quantization methods require separate model copies for each precision level, creating
prohibitive memory overhead for dynamic switching. Any-Precision maintains a single model that
can operate at multiple precisions through nested quantization (Park et al.,[2024)), enabling seamless
precision adaptation essential for reasoning optimization. This capability is particularly valuable for
reasoning tasks where precision requirements can change within a single reasoning sequence.

Our dynamic precision allocation adapts based on phase characteristics, reasoning progress, and
confidence. The scheduler is guided by a principled linear model, which serves as a computationally
efficient, first-order approximation of an ideal precision function. For a detailed justification, please
see Appendix [B] The model is defined as:

t

Pt = max <pbase(¢t) — Q- Ti + ﬂ : (1 - C(t)); 2> (5)
exrp

where ppase(¢+) provides phase-specific baseline precision. T, is the expected number of reason-

ing thought and o - =— 1mplements progressive reduction aligned with reasoning advancement.

B-(1—-C(t)i increases pre01510n when confidence is low. This formulation provides a robust and
interpretable control strategy without the overhead of complex nonlinear models.

3.4 COORDINATED TERMINATION

Our termination strategy coordinates precision adaptation with stopping decisions through entropy-
based confidence estimation computed from thought transition patterns. This coordination prevents
precision-induced confidence degradation from causing suboptimal termination decisions.

For reasoning steps containing split tokens (in most cases also the important high-entropy to-
kens (Wang et al., [2025))) indicating reconsideration, we compute transition entropy as a measure of
reasoning uncertainty:

H, =-— Z P(v|context:) log P(v|contexty) (6)

v€Viplit

where V. contains transition vocabulary indicative of reasoning uncertainty and P(v|context;)
represents the probability of generating transition token v given current reasoning context. Our
unified confidence metric integrates phase-specific quality assessment with temporal confidence dy-
namics as:

Hbase - Ht

Hbase (7)

C(t) = W1 'T¢(St) +WQ'
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where r4,,) represents phase-specific quality, and w; are weighting parameters. The coordinated
termination decision integrates multiple criteria:

T() = (Ct) > 1) A(t > timin) (8)

where t,,;, enforces minimum number of thoughts and 7. is the threshold. To implement natural
termination, we employ confidence-based completion phrase injection. When termination criteria
are satisfied, we append contextually appropriate completion indicators like “Okay, I think I have
finished thinking” This approach maintains reasoning coherence while enabling efficient early exit.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We conduct comprehensive evaluation using two model variants: DeepSeek-
RI-Distill-Qwen-7B (Guo et al.,|2025) and Qwen-3-8B (Yang et al.,2025)), implementing our frame-
work with the Any-Precision quantization algorithm (Park et al., 2024) to enable seamless dynamic
precision switching without memory overhead. To demonstrate TSAR’s applicability across differ-
ent architectures. We evaluate performance on four challenging mathematical reasoning datasets that
cover a wide spectrum of complexity: GSM8K (Cobbe et al.,|2021), which consists of elementary-
level word problems requiring sequential arithmetic reasoning; MATH-500, a high-difficulty subset
of 500 competition-style problems derived from the MATH dataset; AIME-120, featuring problems
from the American Invitational Mathematics Examination (2022-2025) that test advanced problem-
solving techniques; and AMC-23, a selection of problems from the American Mathematics Compe-
titions that assess deep conceptual understanding and strategic reasoning. In addition, we conducted
evaluations on two general-purpose datasets: GPQA-Diamond-MC (Rein et al.l 2024), a collec-
tion of 198 highly challenging questions from the Graduate-Level Google-Proof Q&A benchmark;
and MMLU (Hendrycks et al., [2021a)), a benchmark spanning numerous academic and professional
domains, designed to assess models’ general-purpose knowledge and reasoning capabilities.

Baselines and Metrics. We establish comprehensive baselines representing different optimization
paradigms to evaluate TSAR’s effectiveness across multiple dimensions.

Static Quantization Baselines. We implement uniform quantization strategies where all reasoning
phases operate at fixed precision levels: 3-bit uniform quantization and 4-bit uniform quantiza-
tion (Frantar et al.l [2022)). These baselines represent conventional static approaches that cannot
adapt to dynamic reasoning requirements.

Adaptive Quantization Baseline. Following the Progressive Mixed-Precision Decoding (PMPD)
framework (Chen et al., 2025a), we implement a naive scheduler that switches from high-precision
to low-precision models. This approach provides temporal adaptation without reasoning awareness,
serving as a direct comparison for our coordinated strategy.

Early Termination Baseline. We compare our approach with two training-free early stopping meth-
ods, S1 length control (Muennighoff et al.||2025) and NoThinking (Ma et al.| 2025a).In the compar-
ison, we align their generation budgets with ours to enable a fair evaluation of performance.

4.2 MAIN RESULTS

As presented in Table[I] TSAR demonstrates consistent and substantial superiority over all baselines
across two distinct models and a wide spectrum of reasoning tasks. Our analysis is structured by
task difficulty, revealing how TSAR’s coordinated optimization excels at every level of complexity.

Dominant Efficiency on Foundational Reasoning Tasks (GSMS8K). On elementary mathemat-
ical problems like GSM8K, where reasoning paths are relatively straightforward, TSAR delivers
massive efficiency gains with virtually no accuracy trade-off. Across both models, it achieves a
5.7x-6.2% efficiency boost while maintaining accuracy that is statistically indistinguishable from
the full-precision baseline (e.g., 0.944 vs. 0.955 on Qwen-3). This performance highlights the ef-
ficacy of our entropy-based termination criterion, which accurately detects the point of confidence
saturation and prunes the redundant reasoning chain. In contrast, while S1 length-control also re-
duces tokens, its reliance on full precision makes it spatially inefficient (only 1.1x-1.2x total gain).
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Table 1: Model performance on various reasoning datasets. Efficiency is measured as a composite
of temporal and spatial efficiency.

| DeepSeek-R1-Distill-Qwen-7B | Qwen-3-8B
Method \ Accuracy Avg. Bit  Avg. Tokens Efficiency \ Accuracy Avg. Bit Avg. Tokens Efficiency
Dataset | GSMSK Dataset
Original 0.923 16.00 1847.16 1.0x 0.955 16.00 2335.76 1.0x
Uniform 4-bit 0.922 4.00 1822.44 4.1x 0.953 4.00 2368.36 3.9%x
Uniform 3-bit 0.919 3.00 1857.97 5.3%x 0.924 3.00 2459.24 5.1x
PMPD 0.920 3.52 1835.73 4.6x 0.938 3.53 2312.44 4.6x
NoThinking 0.903 16.00 1984.76 0.9x% 0.942 16.00 2016.14 1.2x
S1 length-control 0.920 16.00 1526.43 1.2x 0.932 16.00 2162.08 1.1x
TSAR (Ours) 0.923 3.51 1353.77 6.2x 0.944 3.54 1845.09 5.7x
Dataset | MATH-500 Dataset
Original 0.930 16.00 4186.74 1.0x 0.950 16.00 5469.73 1.0x
Uniform 4-bit 0.926 4.00 4202.62 4.0x 0.922 4.00 5397.44 4.1x
Uniform 3-bit 0.896 3.00 4223.48 5.3%x 0.870 3.00 6140.33 4.8%
PMPD 0.826 3.49 4161.34 4.6x 0.924 3.56 5425.36 4.5%
NoThinking 0.890 16.00 3309.78 1.3%x 0.926 16.00 4922.34 1.1x
S1 length-control 0.908 16.00 2836.54 1.5%x 0.875 16.00 4727.32 1.2x
TSAR (Ours) 0.922 3.61 2993.74 6.2x 0.928 3.63 4506.80 5.3x
Dataset | AIME-120 Dataset
Original 0.450 16.00 14909.66 1.0x 0.675 16.00 17242.02 1.0x
Uniform 4-bit 0.408 4.00 14140.91 4.2x 0.667 4.00 15061.76 4.6
Uniform 3-bit 0.217 3.00 12481.43 6.4x 0.292 3.00 18522.59 5.0x
PMPD 0.342 3.46 12188.29 5.7x 0.583 3.53 18134.53 43x
NoThinking 0.283 16.00 9267.87 1.6x 0.375 16.00 14862.65 1.2x
S1 length-control 0.317 16.00 10126.44 1.5%x 0.492 16.00 13653.46 1.3x
TSAR (Ours) 0.383 3.47 9899.67 6.9x 0.633 3.31 12683.75 6.6 x
Dataset | AMC-23 Dataset
Original 0.900 16.00 6854.68 1.0x 0.900 16.00 9756.05 1.0x
Uniform 4-bit 0.900 4.00 6660.15 4.1x 0.900 4.00 8560.50 4.6
Uniform 3-bit 0.825 3.00 7929.35 4.6x 0.800 3.00 11231.74 4.6x
PMPD 0.825 3.45 734291 4.3x% 0.825 3.45 8617.82 5.3x
NoThinking 0.775 16.00 4856.43 1.4x 0.850 16.00 8751.86 1.1x
S1 length-control 0.850 16.00 5097.83 1.3x 0.850 16.00 6423.78 1.5%x
TSAR (Ours) 0.875 3.64 4642.91 6.5x% 0.875 3.43 6150.85 7.4x
Dataset | GPQA-Diamond-MC Dataset
Original 0.525 16.00 10268.76 1.0x 0.586 16.0 10229.74 1.0x
Uniform 4-bit 0.520 4.00 8769.02 4.7x 0.566 4.00 10170.12 4.0x
Uniform 3-bit 0.409 3.00 8123.29 6.7x 0.429 3.00 10503.03 5.2%
PMPD 0.455 3.51 8245.86 5.7x 0.530 3.55 10435.67 4.4x
NoThinking 0.389 16.00 3895.11 2.7x 0.505 16.00 8802.09 1.2x
S1 length-control 0.449 16.00 492351 2.1x 0.484 16.00 8531.45 1.2x
TSAR (Ours) 0.520 3.53 3762.13 12.4x 0.545 3.55 8204.79 5.6x
Dataset | MMLU Dataset
Original 0.634 16.00 1958.83 1.0x 0.826 16.00 2252.57 1.0x
Uniform 4-bit 0.633 4.00 1821.87 4.3x 0.825 4.00 2089.12 43x%x
Uniform 3-bit 0.592 3.00 2029.23 5.1x 0.791 3.00 2124.62 5.7x
PMPD 0.603 3.54 1523.49 5.8x 0.805 3.58 2203.87 4.6
NoThinking 0.571 16.00 1162.55 1.7x 0.786 16.00 1857.23 1.2x
S1 length-control 0.612 16.00 1547.64 1.3x 0.812 16.00 2135.45 1.1x
TSAR (Ours) 0.633 3.55 1258.71 7.0x 0.823 3.62 1790.82 5.6x

Furthermore, the majority voting mechanism employed by the NoThinking method not only fails
to achieve spatial efficiency but also yields inconsistent accuracy across different models. More
importantly, uniform 3-bit quantization shows a noticeable accuracy drop (e.g., 0.924 on Qwen3-
8B), proving that even simple tasks can be sensitive to naive, static compression. TSAR’s dynamic
approach avoids this pitfall, providing a near-optimal balance of temporal and spatial efficiency for
this task category.

Navigating the Trade-off in Complex Problems (MATH-500). As task complexity increases,
the accuracy-efficiency trade-off becomes critical. On the challenging MATH-500 dataset, TSAR
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proves its ability to navigate this trade-off effectively. It retains over 97% of the original accuracy
on both models (99.1% for DeepSeek-R1, 97.7% for Qwen-3) while delivering a 5.3x-6.2x effi-
ciency gain. This success is directly attributable to our phase-aware scheduling. The framework
allocates higher precision to critical initial phases, then progressively reduces it, preventing the kind
of catastrophic errors seen in baselines. For instance, the PMPD scheduler, with its one-way switch
from high to low precision, is too brittle for this complexity, causing a severe 11.2% accuracy drop
on DeepSeek-R1. Under comparable token counts relative to TSAR while preserving their original
precision, both S1 length-control and the NoThinking method demonstrate unstable accuracy at an
efficiency ratio of 1.1 x-1.5x, significantly underperforming compared to our method. This demon-
strates that as problems become harder, a simple temporal schedule is insufficient; a coordinated,
context-aware strategy like TSAR’s is required to succeed.

Robustness Under Pressure in Contest-Level Scenarios (AIME-120, AMC-23). The superior-
ity of TSAR is most pronounced on high-difficulty contest benchmarks, where baseline methods
often collapse. On AIME-120, TSAR preserves an impressive 85.1% (DeepSeek-R1) and 93.8%
(Owen-3) of original accuracy with over 6x efficiency. On AMC-23, TSAR also achieve an effi-
ciency gain of 6.5x-7.4x. PMPD’s performance, however, plummets, demonstrating its inability
to handle sophisticated reasoning under compression. These findings strongly validate that our co-
ordinated, phase-aware optimization is not merely beneficial but essential for preserving reasoning
capabilities in the most demanding scenarios.

Broad Applicability on General-Purpose Reasoning (MMLU, GPQA-Diamond-MC). To con-
firm that TSAR’s benefits extend beyond mathematical domains, we evaluated it on the multi-
domain MMLU benchmark. The results affirm its broad applicability. TSAR again achieves a high
efficiency gain (5.6 x-7.0x) while matching the original model’s accuracy (e.g., 0.633 vs. 0.634
on DeepSeek-R1; 0.823 vs. 0.826 on Qwen-3). Similarly, on the challenging GPQA-Diamond-
MC dataset, TSAR opens up a significant accuracy gap of up to 6.5% over PMPD, 7.1% over Sl
and 13.1% over NoThinking (on DeepSeek-R1). Our method achieves a significant improvement
in both accuracy and efficiency, despite operating at comparable precision to PMPD and similar to-
ken counts to S1 length-control and the NoThinking. Although Uniform 3-bit quantization attains
the best efficiency on the Qwen-3-8B model, its considerable loss in accuracy cannot be overlooked.
This demonstrates that TSAR’s principles of identifying and exploiting temporal-spatial redundancy
are task-agnostic and highly effective for general-purpose reasoning as well.

4.3 ABLATION STUDY

. . . Table 2: Ablation Study Results.
We conducted systematic ablation studies to Y

evaluate the impact of each TSAR component

. 3 . w1 | 0 0.1 0.2 0.3 0.4 0.5
by progressively reducing its parameter val- ~ accuacy | 0904 0904 0906 0910 0916 0924
ues to 0 Whlle keeping Other ComponentS ﬁxed Avg. Tokens | 2651.23 2690.37 2715.69 2954.88 3242.13  3460.92
. ? 0 0.1 0.2 0.3 0.4 0.5
Using the MATH-500 benchmark, we mea- “2 ‘
. Accuracy 0.934 0.926 0.920 0.914 0.908 0.906
sured performance through two key metrics: (1) Ave. Tokens | 423207 336971 302856 293648 286932 2806.09
per-question average token count (indicative of twn |0 1 2 3 4 5

0.914 0.922 0.920 0.922 0.926 0.932

computational efficiency) and (2) dataset-wide Accuracy
2762.35 2993.74 324345 3410.62 3784.10 3915.86

accuracy (reflecting overall task performance). e, Tokens
As detailed in Table |2} The study reveals three key results:

* Ablation of phase quality weight: By gradually reducing w; to 0, we observe that the
accuracy first drops rapidly before stabilizing at 0.904, while the token count decreases
sharply and then plateaus around 2,600 tokens.

* Ablation of entropy shift weight: Similarly, when reducing wy to 0, the reasoning sequence
s loses its constraints. Consequently, the truncation point of our method depends solely
on textual phrasing, leading to a gradual increase in both token count and accuracy. This
clearly demonstrates TSAR’s superior capability in dynamically adjusting token allocation
based on problem difficulty.

* Ablation of reasoning window: As tni, is progressively reduced to 0, the robustness of our
method declines. Intuitively, early exits may occur at suboptimal points due to inflated
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confidence values. Correspondingly, we observe a consistent decrease in both token count
and accuracy.

RS SR C Table 3: Per-task latency (seconds) and token counts across dif-

We evaluate inference latency fol- ferent datasets for DeepSeek-R1-Distill-Qwen-7B.

lowing the methodology of PMPD

. | GSMSK | MATH-500 | AIMEI20 | GPQA | AMC23
(Cl]l(enl et al}, 2025a), reportmdg per Method | Lat. Tok. | Lat. Tok. | Lat. Tok. | Lat. Tok. | Lat. Tok.
task latency (average seconds per o o o 0T 4rs7 1467 14910 | 916 9850 | 675 6855
question) to enable direct comparison  4-bit 133 1822|250 4460 | 89.8 14141 | 462 8769 | 424 6660
; _to- 3-bit 9.6 1858 | 18.1 4223 | 614 12481 | 338 8123 | 30.7 7929
across methods. Unlike end-to-end oy | 07 130 | (36 200 | 487 9000 | 156 3762 | 224 4643

dataset latency measurements com-
mon in some works, per-task latency isolates hardware efficiency from dataset size variations.

The results are shown in Table[3] While static quantization at 4-bit and 3-bit precision is expectedly
to reduce latency compared to the 16-bit original, our TSAR framework demonstrates substantially
greater gains. Specifically, TSAR achieves speedups ranging from 2.9x to 5.9x across various
datasets. Moreover, it attains higher accuracy (as shown in Table [I)) than the Uniform 3-bit model
while simultaneously achieving lower latency, indicating that TSAR realizes an optimal trade-off
between performance and efficiency.

5 RELATED WORK

CoT Reasoning Efficiency. Recent efforts to improve CoT reasoning efficiency focus on token
reduction by shortening CoT paths, building smaller models, or accelerating decoding (Feng et al.,
2025 [Hashemi et al.l 2025 |Chen et al., 2024} [Lee et al.l 2025). Methods to shorten CoT chains
include training-dependent approaches like reinforcement learning (RL) with length penalties (Ma
et al.l [2025b; |L1 et al., 2025; [Aggarwal & Welleckl [2025} Xia et al.l [2025 Hou et al., [2025) (e.g.,
O1-Pruner (Luo et al.| |2025), DAST (Shen et al.l [2025a)) and supervised fine-tuning (SFT) on
variable-length data (Xia et al., |2025; Ma et al., 2025b)). Training-free alternatives use prompting
to enforce brevity or route queries to specialized models (Renze & Guvenl 2024; Ong et al., [2024)).
Other strategies build smaller, more capable models via knowledge distillation (Feng et al., 2024;
Chen et al., [2025b; |Shen et al., 2025b) or accelerate decoding with techniques like problem decom-
position (Teng et al.| [2025) and speculative decoding (Pan et al., [2025). These approaches often
require training or treating redundancy dimensions independently, overlooking phase-specific pat-
terns. Unlike them, our TSAR framework provides training-free, phase-aware joint optimization of
temporal and spatial redundancy.

LLM Efficiency. Model compression is pivotal for alleviating the high resource demands of
LLMs, with key strategies including knowledge distillation (Gou et al., 2021)), pruning (Frantar &
Alistarh, [2023)), and quantization (Lin et al.| 2024; [Frantar et al., [2022). Among these, post-training
quantization (PTQ) provides a practical option by compressing models after training while retaining
most performance with low overhead. Recent PTQ innovations include SmoothQuant (Xiao et al.,
2023), which handles activation outliers for smoother low-bit conversion; GPTQ (Frantar et al.,
2022), which fine-tunes quantization layer by layer; and AWQ (Lin et al.| 2024)), which prioritizes
salient weights to maintain generation quality. Versatile systems like Any-Precision LLM (Park
et al., [2024) allow runtime selection of bit-widths from a single model without added storage costs,
and Progressive Mixed-Precision Decoding (Chen et al.,[2025a) varies precision adaptively through-
out the decoding sequence. Despite their effectiveness in curbing spatial overhead, these methods
typically enforce broad, non-specialized policies that disregard the varying demands of CoT phases.

6 CONCLUSION

We presented TSAR, a training-free framework for optimizing Chain-of-Thought reasoning through
coordinated temporal and spatial redundancy exploitation. Our approach achieves up to 12.4x
speedup while maintaining accuracy without requiring training. The results establish coordinated
multi-dimensional optimization as substantially superior to conventional strategies, opening new
directions for practical reasoning optimization.
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ETHICS STATEMENT

Our work focuses on enhancing the computational efficiency of LLM reasoning using public models
and benchmarks. By dynamically adjusting computational precision and stopping criteria without
altering model parameters, our method introduces no new ethical risks and inherits the profile of the
base models. This approach aims to democratize access to advanced Al for resource-constrained
environments and reduce the environmental footprint of LLM deployments.

REPRODUCIBILITY STATEMENT

Our experiments are conducted on public models and benchmarks. For all reported results, we
average four runs with different random seeds; the main experiments use a fixed seed (42) for direct
replication. We will open-source our complete implementation to ensure full reproducibility and
facilitate future research.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing process, we utilized LLMs, specifically GPT-5, to refine the manuscript’s lan-
guage for clarity and fluency. The authors retained full responsibility for all content, with the LLMs
serving exclusively as a tool for language enhancement.

B JUSTIFICATION FOR EQUATION ()

The linear structure of our dynamic precision scheduler in Equation [5is grounded in a first-order
Taylor approximation of an optimal, yet intractable, precision function.

B.1 THEORETICAL FOUNDATION

Let us assume there exists an ideal precision function p* = f(t, C') that perfectly maps the reasoning
progress (time step ¢) and the model’s current confidence (C') to the optimal number of bits. This
function is complex and unknown. To create a practical scheduler, we can approximate it using a
first-order Taylor expansion around a specific operational point (¢g, Cp):

p* ~ f(to, C()) + 87f (t — to) + 87]0 (O — C()) (9)

Ot | (19.C0) IC | (1,c0)

We define our operational point at the start of a reasoning phase, where progress ty = 0. For the
initial confidence Cj, we make a foundational definition. At ¢ = 0, the reasoning process has not
yet begun, meaning no computational steps have been taken and, therefore, no uncertainty or error
has been introduced. The concept of "measured confidence” is not yet applicable. We thus define
the confidence at this boundary condition to be Cy = 1, representing an idealized state of zero
uncertainty before the first computational step.

B.2 MAPPING TO THE TSAR SCHEDULER

Our proposed scheduler is a direct, practical implementation of Equation[9] We map each term as
follows:

¢ Zeroth-Order Term: The value of the function at the operational point, f(0, 1), represents
the optimal precision at the beginning of a phase with perfect confidence. This is naturally
modeled by our phase-specific baseline:

f(0,1) £ Poase(Pt) (10)

¢ First-Order Term (Progress): The term -t captures how precision should change

ol

at 1(0,1)
with time. Based on our empirical observations, initial reasoning steps are more critical,
implying that the required precision decreases as reasoning progresses. We therefore model

the partial derivative as a negative constant:

ol a__a (11)
ot (0,1) Tewp
This leads to the term —« - % in our scheduler.
¢ First-Order Term (Confidence): The term %’(0 n (C — 1) captures how precision

should adapt to changes in confidence. Intuitively, a drop in confidence requires an increase
in precision to mitigate potential errors. This implies an inverse relationship, so we model
this partial derivative as a different negative constant:

of A
== = -4 (12)
9C (0,1)

Substituting this into the Taylor expansion gives the term —3(C —1), which is algebraically
equivalent to +3(1 — C') as used in our scheduler.
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By combining these components, our scheduler from Equation[5|emerges as a direct implementation
of the first-order approximation:

t

Y43 zpbase(¢t) — Q- + ﬂ : (]— - C(t)) (13)

exrp

This principled approach provides a justification for the linear form of our scheduler, demonstrating
that it is a well-founded design choice balancing accuracy and computational efficiency.

Algorithm 1 TSAR: Temporal-Spatial Adaptive Reasoning

Require: Reasoning LLM M, x, thresholds {7, 7. }, weights {«, 8}
Ensure: Generate sequence s, precision p

1: po < 4,t <0, Nadapt + 0, Hconf — []

2: while t < T,,,, and not terminated do

3i Syq1 < M(s1:4,0t)
4: Hconf-append(cbase(5t+1))
5: if S(St+1) then
6: b1 < P(5641)
7: H,; + ComputeEntropy(s;+1)
8: St < AssessStability (Hconf)
9: C} « UnifiedConfidence(¢s.t1, Ht, St)
10: prog < t/Teqp
11: Ptarget — Inax(pbase(¢t+1) — Q- prog — ﬁ : (]- - Ct) -7 U(d)tJrl)v 2)
12: if Cy > 7, and p; > piarger then
13: Pt+1 < Dtargets Nadapt < Nadapt + 1
14: ExecuteAdaptation(At)
15: else
16: Di+1 < Pt
17: end if
18: if C; > 7. and S; and PC(¢1y1) and t > t,,;,, then
19: InjectCompletion (¢4 1)
20: return Sq.; 11, P1:¢+1
21: end if
22:  else
23: De+1 < Pt
24:  end if

25: t+—t+1
26: end while
27. return Si.;, Pi:t

C TSAR ALGORITHM

Algorithm [I] presents our TSAR framework. The algorithm operates by monitoring reasoning gen-
eration for thought transition points, which serve as coordination opportunities. At each transition,
it performs phase classification, computes unified confidence metrics, and makes coordinated deci-
sions about precision adaptation and potential termination.

D DETAILS OF REASONING PHRASE CLASSIFICATION

To understand the internal mechanics of TSAR, we analyze two key components: the accuracy of
our phase classifier and the resulting dynamic precision allocation strategy. The effectiveness of
our framework hinges on correctly identifying the current reasoning phase to apply the appropriate
optimization policy. As shown in Figure |1} our lightweight, keyword-based phase classifier (Eq.
(5)) achieves nearly 90% average accuracy (details of this classifier can be found in Table [I). While
this keyword-based classifier demonstrates high accuracy and efficiency for the tasks evaluated, we
acknowledge that its robustness may vary on out-of-domain problems. Future work could explore
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Table 1: Keywords used in reasoning phrase classification.

Phase Keywords
PF recall, define, since, condition, theorem, inequality
SC compute, calculate, formula, integral, f L=+ K Vo sin, cos, [

SV check, verify, inconsistent, actually, hold on, error, doubt, ?, how, whether, confirm, correct

PF 4.0
- mmm PF mm SC mmm SV
3.62
c36 396 3.53
2 3.42
D5, 3.38 -
o 3.29
g
a 3.2
3.0
2.8
AIME GSM8k

Dataset

Figure 1: Phrase classification accuracy. Figure 2: Task-adaptive precision allocation.

replacing this with a small, lightweight learned classifier to enhance generalizability without signif-
icantly increasing computational overhead.

Building on this accurate phase detection, TSAR demonstrates a sophisticated, task-aware approach
to resource management, as illustrated in Figure [2] The framework learns to dynamically allocate
precision based on the complexity and nature of the dataset. For the highly complex AIME dataset,
the highest precision is allocated to Problem Formulation (PF) (3.56 bits), emphasizing the need
to correctly understand and set up the problem. In contrast, for the arithmetically-focused GSM8k
dataset, the highest precision is shifted to Solution Verification (SV) (3.62 bits), reflecting the critical
importance of rigorously checking the final computed answer. This adaptive behavior confirms
that TSAR does not use a one-size-fits-all policy; instead, it intelligently distributes computational
resources to the reasoning phases where they are most impactful, tailoring its strategy to the unique
demands of each task.

E COMPLETION INDICATORS

To implement natural termination, we employ confidence-based completion phrase injection. The
contextually appropriate completion indicators employed in our experiments are as follows,

* Prompt 1: Final Answer The usage of this prompt stems from our empirical ob-
servation of model outputs. We consistently observed that the model generates the to-
ken sequence Final Answer immediately preceding its final output. We therefore hy-
pothesize that this prompt effectively triggers early exit behavior. Experimental results
demonstrate that while this prompt achieves excellent truncation performance, it inadver-
tently suppresses the generation of the solution reasoning component, thereby exerting non-
negligible negative impacts on final accuracy.

* Prompt 2: Okay, I think I have finished thinking. This formulation
draws inspiration from (2025a), where the original work employed it at the be-
ginning of model outputs to skip chain-of-thought reasoning. We posit that inserting this
prompt within reasoning chains can effectively induce early exit. Our experiments reveal
that this prompt maintains an optimal balance between truncation efficiency and solution
reasoning length, consequently enabling the model to simultaneously optimize both token
generation quantity and prediction accuracy.
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Question: What is the distance, in units, between the points $(2, -6)$ and $(-4, 3)$? Answer: 3/13 ]

( Okay, so I need to find the distance between the two pom'rs (2,-6) and (-4, 3). [...]The 4 Bit
distance formula is: distance = /[(x2 - x1)* + (y2 - y1)*1[...] {s¢C}

584 [ Wait, [...] Let me confirm the differences: Ax is -6 and Ay is 9. [...]Hold on, let me verify

tokens that: 36 + 80 is 116, and then +1 more is 117. {sVv} ]
I
Wiait, [...] So I need to simplify /117.[...] So 117 is 3 x 3 x 13, which is 3 x 13. Therefore, v
J117 can'be simplified as /(3% x 13) which is 3/13. (sqy | 3 Bit
v
\ [ Wait, let me check if that's correct. [...] Yep, that's right. [...] {sv} ] 3 Bit
946 tokens / Original 180 tokens N TSAR
)
Let me just verify my steps again... e
Hmm, seems correct, ... Okay, I think I have finished thinking.

Wait, but just to make sure, ...
So I think my answer is correct.

Therefore, the answer is 3/13. [...]Thus, the distance is 3/13 units.

Figure 3: A case study demonstrating TSAR’s optimization process. TSAR identifies reasoning
phases, adaptively reduces precision for computational steps, and terminates early upon reaching a
stable conclusion, pruning the redundant verification steps.

F CASE STUDY

To provide a granular view of our framework’s mechanics, we present a case study on a challeng-
ing problem from the MATH-500 dataset. This analysis contrasts the lengthy, resource-intensive
reasoning process of the original DeepSeek-R1-Distill-Qwen-7B model with the highly efficient,
adaptive process guided by our TSAR framework. The comparison, illustrated in Figure [3] reveals
how TSAR dynamically prunes both spatial and temporal redundancy without compromising the
final answer’s accuracy.

It can be observed that after generating 584 tokens, the original model continues to produce an
additional 946 tokens. In contrast, when applying our TSAR (Token-Scalable Adaptive Reasoning)
method, the bit allocation process (indicated by blue arrows) can be observed, and the corresponding
text output is nearly identical to that of the original model. Upon detecting that the reasoning quality
meets the coordinated early-termination criterion, TSAR inserts the phrase ”Okay, I think I have
finished thinking.” to halt further generation by the original model. Subsequently, the quantized
model with TSAR generates only 180 tokens before concluding the reasoning process.

Although both approaches ultimately produce correct answers, our TSAR method achieves dual
improvements in temporal efficiency (reducing inference time) and spatial efficiency (optimizing
computational resource usage).
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