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Abstract

Enhancing the cross-domain generalization of 3D semantic segmentation is a piv-
otal task in computer vision that has recently gained increasing attention. Most
existing methods, whether using consistency regularization or cross-modal feature
fusion, focus solely on individual objects while overlooking implicit semantic
dependencies among them, resulting in the loss of useful semantic information.
Inspired by the diffusion model’s ability to flexibly compose diverse objects into
high-quality images across varying domains, we seek to harness its capacity for
capturing underlying contextual distributions and spatial arrangements among
objects to address the challenging task of cross-domain 3D semantic segmenta-
tion. In this paper, we propose a novel cross-modal learning framework based
on diffusion models to enhance the generalization of 3D semantic segmentation,
named XDiff3D. XDiff3D comprises three key ingredients: (1) constructing object
agent queries from diffusion features to aggregate instance semantic information;
(2) decoupling fine-grained local details from object agent queries to prevent in-
terference with 3D semantic representation; (3) leveraging object agent queries
as an interface to enhance the modeling of object semantic dependencies in 3D
representations. Extensive experiments validate the effectiveness of our method,
achieving state-of-the-art performance across multiple benchmarks in different task
settings. Code is available at https://github.com/FanLiHub/XDiff3D.

1 Introduction

3D semantic segmentation, a fundamental task in computer vision with widespread applications in
autonomous driving, robotics, and augmented reality, has made significant advancements in recent
years [39, 40, 32, 48, 17, 10]. Despite these advancements, it still experiences severe performance
degradation when models trained on the source domain are applied to unseen target domains due to
the existence of a domain gap. This has sparked growing interest in Domain Generalized 3D Semantic
Segmentation (DG3SS) [28, 62, 24, 55, 68], aiming to learn domain-invariant features that enable
models to perform well on a variety of unseen target domains with similar semantic distribution.

Current approaches can be broadly categorized into uni-modal methods based solely on point clouds
and cross-modal methods that integrate both point cloud and image data, as shown in Figure 1. The
former focuses on reducing the domain gap between the source and target domains through domain
augmentation [24, 42, 44] or domain mixing [43, 25], but its performance remains limited. The latter
exploits image features paired with point clouds to perform consistency regularization [37, 19, 59, 55]
or cross-modal feature fusion [54, 28], substantially improving cross-domain generalization and
delivering impressive results. However, most existing approaches treat objects as isolated islands,
focusing solely on domain-invariant features of individual objects and overlooking the implicit
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Figure 1: Existing methods mainly adopt two paradigms: (a) consistency regularization, which
enforces alignment across modalities, and (b) cross-modal feature fusion, which integrates multi-
modal information. However, both paradigms focus primarily on individual domain-invariant features,
overlooking rich semantic dependencies among objects. In contrast, our method (c) leverages object
agent queries as an interface to incorporate instance semantic dependencies from diffusion priors into
the 3D semantic space, enhancing cross-domain generalization of 3D semantic segmentation.

semantic dependencies among them such as spatial arrangements and contextual relations, which
leads to the loss of informative cues and ultimately leads to suboptimal performance.

Recently, diffusion models have provided a new perspective for improving semantic segmentation
generalization with remarkable capabilities in capturing underlying semantic relations among objects
to synthesize high-quality samples across diverse domains [18, 12, 41]. Building on this insight,
several studies [38, 22, 35, 52] have leveraged diffusion priors to better model semantic dependencies
among objects, thereby enhancing the generalization of 2D semantic segmentation. Given the
remarkable progress of diffusion models in the 2D visual domain, a natural curiosity has been
raised: How can the prior knowledge encoded in diffusion models be leveraged to improve the
generalization of 3D semantic segmentation?

A naive solution is to treat diffusion models as general feature extractors and utilize their features as
supervisory signals or auxiliary information by pixel-to-point matching for 3D semantic segmentation.
However, this comes with two new challenges: (1) Strict pixel-to-point matching leads to significant
loss of image features due to point cloud sparsity [1, 37], further aggravated by mainstream diffusion
models operating in compressed latent spaces rather than pixel spaces, hindering effective cross-
modal feature association. (2) Diffusion models are inherently designed for generative tasks, and
their feature spaces not only model high-level instance semantics but also retain fine-grained local
visual details (e.g., slogans and scrawl) that may introduce noise and disturb 3D feature learning.

To address the above challenges, we propose XDiff3D, a cross-modal learning framework via diffusion
models for cross-domain 3D semantic segmentation, which leverages the semantic dependencies
among objects embedded in pretrained diffusion priors to enrich the learned representations of point
clouds. Specifically, for the first challenge, we introduce learnable queries that interact with diffusion
features to aggregate rich semantic dependencies among objects, forming object agent queries that
subsequently refine the 3D feature representations. To tackle the second challenge, we introduce a
dual-query learning scheme that enforces semantic consistency between the principal components of
two sets of queries, effectively suppressing interference from potentially distracting visual details.
Ultimately, these object agent queries serve as an interface to infuse 2D semantic priors into the
3D representation space, enabling the refinement of 3D semantic features in the decoder for more
generalizable representations. Extensive experiments across multiple benchmark settings demonstrate
that XDiff3D consistently delivers state-of-the-art performance, surpassing existing baselines by
a significant margin. Moreover, comprehensive ablation studies and analyses further validate the
effectiveness of its core components. The contributions are summarized as follows:

• To the best of our knowledge, XDiff3D is the first diffusion-based cross-modal learning
framework that constructs object agent queries as an interface to infuse 2D diffusion priors
into the 3D representation space, thereby enhancing the cross-domain generalization of 3D
semantic segmentation.

• We propose a dual-queries learning scheme that suppresses potentially intricate visual details
embedded in diffusion priors to prevent interference with the learning of robust 3D feature
representations.
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• XDiff3D is a concise and general framework, consistently outperforming a wide variety
of baselines and achieving state-of-the-art performance across multiple benchmarks for
cross-domain 3D semantic segmentation.

2 Related Works

2.1 Diffusion Models

Diffusion models [18, 46, 12, 41] have demonstrated impressive capabilities in image generation and
are increasingly being explored for visual perception tasks such as semantic segmentation [60, 53, 49],
object detection [7, 20], and depth estimation [23]. Recent studies have begun to exploit diffusion
models for improving domain generalization in 2D segmentation [38, 35, 4]. For example, DGInStyle
[21] introduces a controllable framework that generates diverse, task-specific images from diffusion
priors. Niemeijer et al. [35] use text-guided diffusion to synthesize pseudo-target domains for better
coverage of target domain variations. Despite the progress in 2D tasks, the potential of diffusion
priors to enhance generalization in 3D semantic segmentation remains underexplored. This work
addresses this gap by leveraging instance-level semantic priors from diffusion models to enrich 3D
semantic representations and improve their generalization with respect to domain shifts.

2.2 Domain Generalized 3D Semantic Segmentation

Domain Generalized 3D Semantic Segmentation (DG3SS) aims to learn a model solely from source
domain data that can perform well across diverse unseen target domains, and has recently garnered
significant attention in the research community [5, 62, 58, 55, 68]. SemanticSTF [58] introduces a
large-scale benchmark for semantic segmentation of LiDAR point clouds in adverse weather, enabling
comprehensive evaluation of domain adaptive and generalizable 3D segmentation methods under
all-weather conditions. MM2D3D [5] injects depth cues into the 2D branch and RGB information
into the 3D branch to improve modality complementarity and robustness to domain shift. 2DPASS
[62] introduces a fusion-then-distillation strategy to transfer rich semantic and structural information
from 2D images to 3D point clouds without requiring strictly paired data. UniDSeg [55] leverages
Visual Foundation Models by introducing learnable prompts within a cross-modal framework to
bridge the 2D-3D domain gap and enhance generalization in cross-domain 3D semantic segmentation.
Despite these advancements, existing methods primarily focus on learning domain-invariant features
for individual objects, while overlooking the latent semantic dependencies among objects. In contrast,
this paper exploits the contextual relationships and spatial organization among objects to move beyond
isolated instance modeling, enabling the model to grasp a unified semantic distribution underlying
diverse scenes, thereby enhancing cross-domain generalization.

2.3 Learnable Queries Design

Recently, various approaches [36, 30, 66, 51] have adopted learnable query-based frameworks in-
spired by DETR [6]. MaskFormer [8] and Mask2Former [9] unify semantic and instance segmentation
using object queries. Tqdm [36] introduces domain-invariant textual queries for domain general-
ized semantic segmentation. kMaX-DeepLab [64] treats pixel–query interaction as k-means-style
clustering, simplifying cross-attention for better segmentation. While learnable queries have proven
effective in various perception tasks, how to leverage them to enhance generalization in 3D semantic
segmentation remains an open question. In this work, we derive object agent queries from diffusion
features and utilize them as a cross-modal interface to enhance 3D semantic representations.

3 Method

3.1 Preliminary

Stable Diffusion. Stable diffusion models comprise two complementary stochastic processes: a
diffusion process and a reverse process. During the diffusion process, random noise is progressively
added to the data via a Markov chain:

q (zt | z0) := N
(
zt |

√
ᾱtz0, (1− ᾱt) I

)
, z0 = E(x) (1)
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Figure 2: A brief illustration of our proposed framework. First, we aggregate semantic information of
objects within the scene from diffusion features to form the object agent queries. Next, we propose
a dual-query mechanism to eliminate local visual details from the object agent queries, preventing
interference with 3D semantic representation. Finally, the optimized object agent queries are used
as an interface to infuse inter-object semantic dependencies into the 3D representation, guiding the
model to learn domain-invariant features.

where E denotes a pretrained VAE encoder that maps an input image x ∈ RH×W×3 into a latent
representation z0. The hyperparameters ᾱt represent a pre-defined noise schedule, where a larger t
corresponds to larger noise weights. The reverse process gradually reconstructs clean data from noisy
samples using a noise predictor ϵθ(·). Each step of this reverse process can be formulated as:

pθ (zt−1 | zt) := N (zt−1 | µθ (zt, t) ,Σθ (zt, t)) (2)

where µθ is the mean predicted by ϵθ(·), and Σθ is typically set to a predefined covariance value.

Problem Definition. The goal of DG3SS is to train a segmentation model solely on a labeled source
domain S , enabling it to generalize to unseen target domains T . For the source domain, it is assumed
that paired images and point clouds are available. In general, the segmentation model φ = g ◦ υ
consists of a backbone g for feature extraction and a decoder υ for producing semantic predictions.

3.2 Overview

With diffusion models successfully enhancing segmentation generalization in the 2D vision domain
drawing on strong instance semantic priors, a natural question arises: How can the prior knowledge
encoded in diffusion models be leveraged to bolster the generalization of 3D semantic segmentation?
As illustrated in Figure 2, we propose XDiff3D, a cross-modal learning framework for cross-domain
3D semantic segmentation based on diffusion models, which consists of three key ingredients: (1)
aggregating object semantic information from the prior knowledge encoded in diffusion features to
generate object agent queries (Section 3.3), (2) suppressing potential intricate visual details embedded
within the object agent queries (Section 3.4), and (3) leveraging the optimized object agent queries as
an interface to perform cross-modal semantic enhancement (Section 3.5).

3.3 Construction of Object Agent Queries

Given that diffusion models operate in compressed latent spaces, traditional calibration-based hard
associations between LiDAR points and image pixels become unreliable. To fully harness the rich
instance semantic priors captured by diffusion features, we construct object agent queries from the
diffusion space and employ them as an interface for infusing semantic knowledge into the 3D feature
space, with the goal of enhancing the generalization capability of 3D semantic segmentation.
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Diffusion Feature Extraction. Before that, we need to extract diffusion features. To do this, we
begin by encoding the source image x into a latent code z0 = E(x) via a pretrained encoder E .
Subsequently, we introduce noise to z0 according to Equation 1, yielding the noisy latent code zt.
Finally, we apply the noise predictor ϵθ(·) to perform the denoising process to get diffusion features:

f
(i)
sd = ϵiθ (zt, t, T (e)) ,with 1 ≤ i ≤ M (3)

where T denotes the text encoder, f (i)
sd represents the i-th layer features from the diffusion model, e

is the empty text, and M is the total number of diffusion feature layers.

Aggregating Instance Semantic Features. We employ multiple sets of learnable queries, each
corresponding to a specific layer of diffusion features. Specifically, for the i-th layer of diffusion
features, we map them to key (Ki) and value (Vi) vectors, while a corresponding set of randomly
initialized learnable queries is mapped to query (Qi) vectors:

Qi = qiinitW
i
Q, K

i = f i
sdW

i
K, V

i = f i
sdW

i
V , with qiinit ∈ Rr×c (4)

where Wi
Q, Wi

K and Wi
V are linear projection matrices, qiinit denotes randomly initialized learnable

queries, c is the dimension of qiinit, and r is the sequence length of qiinit. Next, the layer-wise object
agent queries are formed as follows:

q̂iins = FFN

(
exp

(
si
)∑hw

j=1 exp (s
i)

×Vi

)
, si =

Qi(Ki)T√
di

, with q̂iins ∈ Rr×c (5)

where q̂iins are the object agent queries of the i-th diffusion layer, di is a scaling factor, and FFN
consists of a linear mapping followed by an activation layer. h and w denote the height and width
of the similarity matrix si, respectively. After the final layer, M , we compute both the maximum
and average components across all layer-wise object agent queries to obtain the global object agent
queries:

qins =

(
max

i=1,2,...,M
q̂iins +

1

M

M∑
i=1

q̂iins

)
×Wa + ba, with qins ∈ Rr×c (6)

where Wa and ba signify the weights and biases, respectively. Average queries encode global
contextual information to improve robustness to noise, while max queries emphasize the most
prominent and distinctive signals, highlighting key semantic features. As a result, the object agent
queries establish implicit associations with scene instances and learn the semantic dependencies
among objects embedded in diffusion features. Acting as an interface, these queries guide the 3D
feature representations to move beyond isolated individuals, enabling the model to grasp consistent
semantic patterns across diverse scenario domains.

3.4 Dual-queries Consistency Scheme

As diffusion models are inherently designed for generative tasks, their feature spaces encode not only
high-level instance semantics but also intricate local visual details. These details, though irrelevant
to 3D semantic segmentation, may be inadvertently propagated into object agent queries during
interaction process and disrupt the learning of 3D semantic representations. To this end, we propose
a dual-query consistency scheme to decouple potential local visual details from the object agent
queries.

Dual-queries Design. To achieve this, we first construct an auxiliary set of object agent queries q′ins
guided by diffusion features at higher timesteps t′, following the procedure described in Section 3.3.
Different timesteps in the diffusion process correspond to successive stages of denoising. Higher
timesteps introduce stronger noise that blurs local visual details, while the overall semantic structure
of the scene remains largely preserved. As a result, the primary difference between the diffusion
features at timestep t′ and t lies in the superficial visual details.

Principal Component Extraction and Consistency Constraint. Recently, SoMA [65] reveals
that the principal components derived from singular value decomposition (SVD) of weight matrices
in vision foundation models (VFMs) capture generalized world knowledge, which underpins their
strong generalization capability. Inspired by this, the object agent queries, as learnable parameters,
are expected to exhibit similar properties with principal components that emphasize domain-invariant
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instance semantic knowledge rather than intricate visual details. To this end, we first perform singular
value decomposition (SVD) on the two sets of object agent queries:

qins = UΣVT , q′ins = U ′Σ′VT,′, with U ∈ Rr×r, Σ ∈ Rr×c, V ∈ Rc×c (7)

where U (or U ′) and V (or V ′) are the left and right singular vectors, Σ (or Σ′) is a diagonal matrix
whose entries are singular values arranged in descending order. We select the top-k singular values
along with their associated components in U (or U ′) and V (or V ′) to generate the quantized object
agent queries qins_pc and q′ins_pc:

qins_pc = U[:,:k]Σ[:k]VT
[:k,:], q

′
ins_pc = U ′

[:,:k]Σ
′
[:k]V

T,′
[:k,:], with qins_pc ∈ Rr×c, q′ins_pc ∈ Rr×c (8)

Subsequently, we impose a consistency constraint between the two sets of quantized agent queries:

Lconsist =

r∑
r̂=1

q′ins_pc(r̂) log
q′ins_pc(r̂)

MLP(qins_pc)(r̂)
(9)

where the MLP includes a linear transformation followed by layer normalization. By enforcing a
consistency constraint, the principal components of the object agent queries are effectively guided
to focus on instance semantic distribution rather than local visual details. This is because encoding
excessive visual details within the principal components of the object agent queries would result in
substantial discrepancies between the two sets of queries, qins_pc and q′ins_pc. Thus, the consistency
loss reduces these discrepancies, ensuring that only semantic dependencies among objects are retained
in the constructed object agent queries, while irrelevant visual details are effectively suppressed.

3.5 Cross-modal Semantic Enhancement

Our ultimate goal is to improve the cross-domain generalization of 3D segmentation models. To
this end, we leverage object agent queries as an interface for cross-modal semantic alignment,
which subsequently enables the refinement of 3D feature representations to better capture semantic
dependencies among objects across domains.

Cross-modal Semantic Alignment. Before that, we first generate the 3D object agent queries
corresponding to the point cloud features. Similarly, we introduce multiple sets of learnable queries,
each corresponding to a specific layer of the 3D backbone. These queries are projected into query
vectors, while the associated 3D features are transformed into key and value vectors. A cross-attention
mechanism is then employed to facilitate interaction between the learnable queries and 3D features,
yielding layer-specific 3D agent queries. To generate the final 3D object agent query, we aggregate
the outputs from all layers using both max and average pooling, followed by an MLP projection. For
clarity, the previously introduced object agent queries derived from diffusion features are referred to
as 2D object agent queries in the remainder of this paper. Next, we perform a dot product operation
on the 2D object agent queries qins_pc with the 3D object agent queries q3D to obtain a similarity
map:

S = Softmax
(
q3D × Linear(qins_pc)

T
)
, with S ∈ Rr×r (10)

where Linear is a two-layer MLP with layer normalization. The dot product operation produces a
similarity matrix S, explicitly linking instance semantic information between the 2D and 3D object
agent queries. Subsequently, we leverage S to recompose the semantic information from the 2D
object agent queries, resulting in a new set of enhanced 3D object agent queries q̂3D infused with the
object-wise semantic dependencies conveyed by the 2D queries:

q̂3D = MLP(S × qins_pc + q3D), with q̂3D ∈ Rr×c (11)

Feature Refinement and Mask Prediction. The enhanced 3D object agent queries q̂3D act as
supervisory signals to guide the original 3D agent queries in actively modeling inter-instance semantic
dependencies during their construction process. Inspired by UniDSeg [55] and xMUDA [19], we
refine the segmentation features in the 3D decoder using q̂3D, while encouraging q3D to mimic this
refinement process:

f̂s
3D_aug=MLP(Softmax(fs

3D×(q̂3D)T )×q̂3D), f̂s
3D=MLP(Softmax(fs

3D×(q3D)T )×q3D)

Ls
sup =

K∑
j=1

Lδ(f̂
s
3D, f̂s

3D_aug), with Lδ(x, y) =

{
0.5(x− y)2 if |x− y| < 1

|x− y| − 0.5 otherwise

(12)
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Table 1: Performance comparison of domain adaptive and domain generalized 3D semantic segmenta-
tion methods in four typical settings. Top three results are highlighted as best , second and third ,
respectively. xM denotes the result which is obtained by taking the mean of the predicted 2D and 3D
probabilities after softmax.

S:Source /T:Target vKITTI/sKITTI nuScenes:USA/Sing nuScenes:Day/Night A2D2/sKITT
Task Method 3D xM 3D xM 3D xM 3D xM

logCORAL [34] 36.8 47.0 63.2 69.4 68.7 63.7 41.0 42.2
MinEnt [50] 43.3 47.1 61.5 66.0 68.8 63.6 39.6 42.6

BDL [29] 44.3 35.6 64.8 70.4 69.6 63.0 41.7 45.2
xMUDA [19] 46.7 48.2 63.2 69.4 69.2 67.4 46.0 44.0

DA

AUDA [31] 37.8 41.3 64.0 69.2 69.8 64.8 43.6 46.8
DsCML [37] 38.4 45.5 56.2 66.1 49.3 53.2 45.1 44.5

Dual-Cross [27] 35.1 44.2 58.1 66.5 69.7 68.0 40.0 48.6
SSE [67] 40.0 49.6 63.9 69.2 69.0 68.9 46.8 48.4

BFtD [54] 45.5 51.5 62.2 69.4 70.4 68.3 44.4 48.7
MM2D3D [5] 50.3 56.5 66.8 72.4 70.2 72.1 46.1 46.2
VFMSeg [61] 52.0 61.0 65.6 72.3 70.5 66.5 52.3 50.0
UniDSeg [55] 50.9 62.0 67.6 72.9 71.2 71.2 55.4 57.5

XDiff3D 53.1 63.3 69.5 74.1 73.5 72.3 57.6 58.8

DG
xMUDA [19] 37.4 39.0 62.3 68.6 68.9 59.6 36.7 41.6
MM2D3D [5] 40.2 44.2 62.3 70.9 63.2 68.3 35.9 43.6
UniDSeg [55] 44.7 60.0 64.5 72.3 70.5 70.0 46.3 54.4

XDiff3D 46.9 61.3 66.7 73.5 72.4 71.6 49.1 56.2

where fs
3D denotes s-th stage features of the 3D decoder and 1 ≤ s ≤ S. After the final stage, S, the

refined segmentation features f̂S
3D are fed into a 3D convolution to generate the final segmentation

predictions:
Lseg = Lce (Conv(f̂

S
3D), Y ) (13)

where Y denotes the point cloud labels and Lce denotes the cross-entropy loss.

Full Objective. Ultimately, the overall objective of the training process is defined as follows:

Ltotal = Lseg + γLsup + λLconsist (14)

where γ and λ are hyperparameters. Notably, all operations involving 2D object agent queries and
diffusion models are discarded during inference to ensure our framework remains concise and general.

4 Experiments

4.1 Datasets and Metrics

Following prior works [19, 58, 55, 68], we evaluate our method on six publicly available autonomous
driving datasets, comprising three real-world datasets (nuScenes [13], SemanticKITTI [3], and A2D2
[15]), two synthetic datasets (VirtualKITTI [14] and SynLiDAR [57]), and one adverse-weather
dataset (SemanticSTF [58]). The real-world datasets provide synchronized and calibrated LiDAR
and RGB sensor data, enabling direct 2D-to-3D projection, whereas VirtualKITTI includes depth
maps from which we simulate LiDAR scans by uniformly sampling points. For more details about
the datasets, please refer to the supplementary material. Following standard practice [58, 55, 68], we
evaluate segmentation performance using the mean Intersection over Union (mIoU) averaged over all
classes for each dataset.

4.2 Implementation Details

Following prior works [55, 19], we adopt SparseConvNet [16] with a U-Net-style architecture as
our 3D segmentation model, implemented using the Sparse Convolution Library [11]. The voxel
resolution is set to 5cm, ensuring that each voxel encapsulates a single 3D point and provides sufficient
spatial granularity for semantic segmentation. For the diffusion model, we leverage Stable Diffusion
v2-1 [41], pretrained on the LAION-5B dataset [45], which is kept frozen during the entire training
process. The model is optimized using AdamW [33], with a learning rate of 1e-5 for the 3D backbone
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Table 2: Comparison of previous domain generalization methods on SemanticKITTI→SemanticSTF
and SynLiDAR→SemanticSTF benchmarks.

Method Dense-fog Light-fog Rain Snow Dense-fog Light-fog Rain Snow
SemanticKITTI→SemanticSTF SynLiDAR→SemanticSTF

Dropout [47] 29.3 25.6 29.4 24.8 15.3 16.6 20.4 14.0
Perturbation [58] 26.3 27.8 30.0 24.5 16.3 16.7 19.3 13.4

PolarMix [56] 29.7 25.0 28.6 25.6 16.1 15.5 19.2 15.6
MMD [26] 30.4 28.1 32.8 25.2 17.3 16.3 20.0 12.7
PCL [63] 28.9 27.6 30.1 24.6 17.8 16.7 19.3 14.1

PointDR [58] 31.3 29.7 31.9 26.2 19.5 19.9 21.1 16.9
UniMix [68] 34.8 30.2 34.9 30.9 24.3 22.9 26.1 20.9

XDiff3D 37.5 34.1 38.1 33.7 26.2 24.6 27.9 22.5

Figure 3: Qualitative results of DG3SS. From left to right: the visual results predicted by UniDSeg,
Ours, and Ground Truth. We deploy the white dash boxes to highlight different prediction parts.

and 1e-4 for the decoder and learnable queries. Training is conducted for 50000 iterations with a
batch size of 8. All experiments are performed on 4 NVIDIA RTX 4090 GPUs.

4.3 Comparison with State-of-the-art Methods

We comprehensively compare our method with existing domain adaptive 3D semantic segmentation
(DA3SS) and domain generalized 3D semantic segmentation (DG3SS) methods. We conduct ex-
periments in three standard evaluation settings: synthetic-to-real (VirtualKITTI→SemanticKITTI),
real-to-real (nuScenes:USA→Sing, nuScenes:Day→Night, and A2D2→SemanticKITTI) and normal-
to-adverse (SemanticKITTI→SemanticSTF and SynLiDAR→SemanticSTF). For the 2D branch
architecture, we adopt the same structure as UniDSeg [55]. For DA3SS experiments, we also follow
the exact configurations and training protocols of UniDSeg to ensure consistency and fair comparison.

Synthetic-to-real generalization. In Table 1, we compare our method with existing DG3SS and
DA3SS approaches under the VirtualKITTI→SemanticKITTI setting. Our method significantly
outperforms the previous state-of-the-art method UniDSeg in both 3D-only and 2D–3D fusion (i.e.
xM) settings. Notably, in the 3D-only configuration, our method surpasses UniDSeg by 2.2 points in
mIoU, demonstrating its strong cross-domain generalization capability.

Real-to-real generalization. In this experimental setting, models are evaluated under the real-to-real
benchmarks, including nuScenes:USA→Sing, nuScenes:Day→Night, and A2D2→SemanticKITTI.
As illustrated from the fifth column onward in Table 1, our method consistently achieves superior
performance across all datasets in both DG and DA scenarios, surpassing previous state-of-the-art
methods by clear margins. These results highlight the robustness and strong generalization capability
of our framework in effectively handling complex and realistic domain variations encountered in
practical 3D semantic segmentation tasks. Figure 3 further provides qualitative comparisons on
the A2D2→SemanticKITTI benchmark, where our approach yields more complete and coherent
predictions for road, sidewalk, building, and vegetation regions, effectively resolving ambiguous
boundaries and reducing unreasonable predictions observed in UniDSeg. More qualitative results and
detailed analyses are included in the supplementary material.

Normal-to-adverse generalization. In this experimental setting, all models are evaluated on the
SemanticSTF dataset, which includes a range of challenging weather conditions. As shown in Table
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Table 3: Ablation study on primary components, where 3D_AQ denotes 3D object agent queries.
3D_AQ Lsup Lconsist

nuScenes:USA/Sing nuScenes:Day/Night A2D2/sKITT
3D xM 3D xM 3D xM

1 64.5 72.3 70.5 70.0 46.3 54.4
2 ✓ 64.9 72.5 70.7 70.1 46.8 54.7
3 ✓ ✓ 66.0 73.1 71.6 71.2 48.0 55.6
4 ✓ ✓ ✓ 66.7 73.5 72.4 71.6 49.1 56.2

Table 4: Ablation study on different timestep se-
lections under the DG3SS setting.

t t′
nuScenes:USA/Sing A2D2/sKITT
3D xM 3D xM

0 50 66.1 72.9 48.4 55.6
50 75 66.5 73.4 48.6 56.0
50 150 66.7 73.5 49.1 56.2

150 300 66.3 73.1 48.3 55.6
300 400 65.7 72.7 47.8 55.3

Table 5: Comparison of diffusion models under
DG3SS on VirtualKITTI→SemanticKITTI.

Model UniDSeg +SD 1.4 +SD 1.5 +SD 2.1
mIoU 44.7 46.1 46.6 46.9

Table 6: Ablation on principal components under
DG3SS on VirtualKITTI→SemanticKITTI.

k 20 50 70 90
mIoU 45.7 46.1 46.9 46.7

2, our method consistently outperforms existing approaches across all adverse scenarios. Notably,
under the SemanticKITTI→SemanticSTF setting, our approach achieves a significant improvement
over the previous state-of-the-art, exceeding it by more than 2 mIoU points on average. These results
demonstrate the strong robustness and generalization ability of our method in the face of severe
domain shifts.

Comparison of the class-wise IoU. We present a class-wise IoU analysis in Figure 4, using UniDSeg
as the baseline model. The results reveal consistent improvements across a wide range of categories.
The heatmap further illustrates the robustness of our method in capturing meaningful semantic
structures and maintaining performance across domain shifts.

4.4 Ablation Study

This section presents comprehensive experimental results to verify the effectiveness of the proposed
method. For more ablation studies and detailed analyses, please refer to the supplementary material.

Effect of components. We conduct ablation studies under DG3SS settings to validate the effectiveness
of key components in our proposed method, specifically examining the contributions of the 3D
object agent queries, Lsup and Lconsist. Using UniDSeg as our baseline model, the results presented
in Table 3 reveal that: (1) Each component individually enhances performance, confirming their
respective effectiveness. (2) Integrating all three components yields the highest mIoU scores across
all benchmarks, underscoring their complementary roles in improving cross-domain segmentation
generalization.

Study of the object agent query dimension c. The object agent queries serve as the core component
of our framework. To assess the impact of their feature dimensionality, we experiment with values
ranging from 64 to 1024. As shown in Figure 5, setting c = 256 yields competitive performance,
achieving mIoU scores of 66.7% and 72.4% on the nuScenes:USA/Sing and nuScenes:Day/Night
benchmarks, respectively.

The choice of t and t′. Different timesteps in the diffusion process correspond to different denoising
stages, with larger timesteps introducing stronger noise. Prior studies [60, 2] indicate that effective
timesteps typically fall within the range of 0 to 300, and that adjacent timesteps often yield highly
similar features. To ensure sufficient diversity while maintaining semantic integrity, we select
representative intervals from this range. As shown in Table 4, we empirically choose t = 50 and
t′ = 150 to effectively capture high-level semantic information while minimizing interference from
low-level visual details.

Comparing different stable diffusion. As illustrated in Table 5, we adopt UniDSeg as the baseline
and compare the performance of our method using three representative stable diffusion models.
The results demonstrate that our method is robust to the choice of diffusion model, consistently
outperforming the baseline and achieving significant performance gains.
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Table 7: Effect of using different 3D back-
bones on the DA3SS methods.

3D Backbone DA3SS USA/Sing
3D xM

SparseConvNet UniDSeg 67.6 72.9
XDiff3D 69.5 74.1

MinkowskiNet UniDSeg 68.6 73.1
XDiff3D 70.2 74.3

Figure 4: Comparison of the class-wise
IoU on VirtualKITTI → SemanticKITTI
under the DA3SS setting, using UniDSeg
with and without our method.

Figure 5: Ablation study on agent queries dimension c.

The number of principal components k. The results in Table 6 indicate that the selection of k—the
number of retained principal components—significantly influences segmentation performance, with
k = 70 achieving the highest mIoU. Increasing k beyond this value introduces fine-grained visual
details, which interferes with the learning of domain-invariant semantics and leads to performance
degradation.

Ablation on different backbones. As shown in Table 7, we evaluate the performance of various
backbones integrated into our framework under consistent parameter settings. The results indicate
that stronger backbones yield improved performance, and our method consistently outperforms the
baseline across all configurations.

Table 8: Performance comparison under different noise levels.
σ (m) 0.05 0.1 0.2 0.3
UniDSeg (baseline) 40.3 37.1 33.8 30.6
Ours 44.7 43.2 39.6 34.7

Robustness to noisy point clouds. To evaluate robustness against measurement noise, we conducted
an ablation study on A2D2 → SemanticKITTI benchmarks by adding zero-mean Gaussian noise
with varying standard deviations σ. As shown in Table 8, our method consistently outperforms the
UniDSeg baseline across all noise levels, maintaining higher mIoU even under severe perturbations.
This demonstrates that our model possesses strong robustness and effectively preserves semantic
consistency under noisy conditions.

5 Conclusion

In this work, we propose XDiff3D, a novel cross-modal framework guided by diffusion models to
enhance the generalization of 3D semantic segmentation. XDiff3D constructs object agent queries to
capture semantic dependencies among objects from diffusion features and infuses them into the 3D
representation space. To mitigate interference from visual details, we further propose a dual-queries
consistency scheme that encourages object-agent queries to focus on domain-invariant semantics.
Extensive experiments on DG3SS and DA3SS benchmarks demonstrate that XDiff3D significantly
outperforms previous SOTA methods, underscoring its effectiveness. This work addresses a significant
gap in existing research and sets a new benchmark for cross-domain 3D semantic segmentation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim our contribution, that is, a cross-modal learning framework to
enhance the generalizability of cross-domain 3D semantic segmentation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of the the work is detailed discussed in the Appendix A.4
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results with proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the necessary information needed to reproduce the main experimental
results are fully stated in the Section 4 and Appendix A. This information ensures the
understanding the results which support the main claims and conclusions of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All results are evaluated on the public 3D datasets. We will make the code
publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4.2, we illustrate the training details, including networks, learning
rates, batch size, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our experimental results do not contain statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.2, we state that all experiments are conducted on four NVIDIA
RTX 4090 GPUs, each equipped with 24GB of RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper has no societal impact of the work performed. No AI ethics are
involved, and no private data is involved.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets are properly credited and the license
and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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