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ABSTRACT

The subset selection problem is fundamental in machine learning and other fields
of computer science. We introduce a stochastic formulation for the minimum
cost subset selection problem in a black box setting, in which only the subset
metric value is available. Subsequently, we can handle two-stage schemes, with an
outer subset-selection component and an inner subset cost evaluation component.
We propose formulating the subset selection problem in a stochastic manner by
choosing subsets at random from a distribution whose parameters are learned. Two
stochastic formulations are proposed. The first explicitly restricts the subset’s
cardinality, and the second yields the desired cardinality in expectation. The
distribution is parameterized by a decision variable, which we optimize using
Stochastic Mirror Descent. Our choice of distributions yields constructive closed-
form unbiased stochastic gradient formulas and convergence guarantees, including
a rate with favorable dependency on the problem parameters. Empirical evaluation
of selecting a subset of layers in transfer learning complements our theoretical
findings and demonstrates the potential benefits of our approach.

1 INTRODUCTION

This paper proposes a stochastic optimization approach to the Subset Selection Problem in which the
goal is to choose a subset of size k that attains the minimal loss defined by

min
C∈Ck

ℓ(C), (P)

where Ck := {C ⊆ {1, . . . , n}, |C| = k}, C =
⋃n
k=1 Ck, and ℓ : C → R is a set loss function. We

make no assumptions regarding the loss function other than having known lower and upper bounds.
In particular, we neither assume it is defined outside of C nor require it to be differentiable, unlike
previous related research Ahmed et al. (2022); Pervez et al. (2022); Sander et al. (2023); Xie and
Ermon (2019). As a result, our formulation can accommodate loss functions that others cannot, such
as those arising in feature selection or transfer learning via fine-tuning a subset of neural layers.
However, it is important to note that while our convergence results hold for arbitrary ℓ, the properties
of ℓ significantly influence both the convergence rate and the algorithm’s practical performance.

Central in many fields of science, such as machine learning and theoretical computer science, the
subset selection problem is NP-hard (see Bar-Yehuda and Even (1981)). In this paper, we propose
two distributional-based variants for (P) – both optimize distribution parameters to minimize the
expected subset loss. The size of the subsets in the first variant is k (surely), while in the second, it is
k in expectation. We prove that our algorithm converges to a stationary point for both formulations.
To the best of our knowledge, this is the first proof that does not require the differentiability of the
loss function ℓ.

Both formulations are of the general form

inf
w∈X

{
fD (w) := EC∼Dw [ℓ(C)]

}
, (1.1)

where Dw is a distribution on subsets parameterized by w, ℓ is a loss function associated with the
subsets, fD is the expected loss, and X ⊆ Rn.
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The first formulation we consider limits the size of the subset to be exactly k via the distribution
Dw = ψw, and is intended for cases where k = O(1). It is formulated by

inf
w∈∆0

n

{
fψ (w) := EC∼ψw [ℓ(C)]

}
, (Pk)

where ∆c
n := {w ∈ ∆n | wi ≥ c, wi > 0 ∀i} for 0 ≤ c < 1, ∆n is the n-dimensional unit

simplex, and ψw is an unordered choice without replacement according to weights w. Note that this
is a distribution over subsets of size k.

Remark 1.1 (on the closeness of the feasible set of (Pk)). The feasible set in (Pk) is not closed – this
hindrance is addressed in the theoretical analysis of the formulation in Section 5.

The second formulation we consider allows different sizes of the selected subsets via a random
Bernoulli-based mechanism where the expected subset size is k. It is defined by

min
w∈∆0

n,k

{
fϕ (w) := EC∼ϕw [ℓ(C)]

}
, (PB)

where ∆c
n,k :=

{
w ∈ Rn | w ∈ [c, 1 − c]n,

∑n
j=1 wj = k

}
for 0 ≤ c < (n − k)−1. In this

formulation, ϕw is the result of n heterogeneous Bernoulli trials, where the ith element is included in
the subset if the ith trial is successful, and the individual element inclusion probabilities sum up to k.

The choice between fixed (Pk) and expected (PB) cardinality depends on whether cardinality is a strict
requirement (e.g., Subset Sum) or a guideline (e.g., feature selection). While expected cardinality can
approximate fixed cardinality by penalizing subsets of undesired sizes, this may hinder convergence
due to frequent low-quality samples.

The detailed distributions are given in Section 4, and the purpose of the approximation parameter
c will become evident in Section 5. In both formulations, (Pk) and (PB), selecting a subset boils
down to determining a distribution parameterized by the decision variable w. To determine w, we
utilize a nonconvex Stochastic Mirror-Descent (SMD) Zhang and He (2018) based method detailed
in Algorithm 1. Accordingly, we measure the first-order optimality of a solution w using the standard
Bregman stationarity measure Zhang and He (2018); we elaborate on such preliminaries in Section 2.

Contribution. We briefly summarize the main contributions of this work:

• We propose two continuous stochastic formulations for the Subset Selection Problem with
possibly discrete loss, and prove that they can encode the optimal selection. Moreover, by
choosing appropriate distributions for these formulations, we derive constructive gradient
estimators, and the relatively weak convexity of the expected loss functions.

• We prove convergence rate via an SMD-based method, without any assumption on the
underlying loss. We are not aware of such a proof even for differentiable loss functions.

• We derive a concentration bound for the loss of the subsets sampled using our method.

• We demonstrate the efficacy of the proposed algorithm in a deep transfer learning setting.

Related Work. Recent research on stochastic subset selection emphasizes its integration into
computation graph (CG) frameworks, prevalent in modern machine learning applications Sander et al.
(2023); Xie and Ermon (2019); Jang et al. (2016); Maddison et al. (2016); Ahmed et al. (2022); Pervez
et al. (2022). These methods aim to efficiently compute gradient estimators for the subset selection
distribution parameters by encoding subsets as k-hot vectors—binary vectors with k non-zero entries
representing the chosen subsets. While CG frameworks assume the loss is differentiable almost
everywhere, we focus on discrete loss functions where this assumption breaks down, as is common
with metrics like classification accuracy or Spearman correlation for regression tasks.

Sander et al. (2023) provide theoretical guarantees for their gradient estimator, introducing a general-
ized top-k operator with a subgradient and a relaxed version with an exact gradient. While highly
relevant for CG frameworks, their approach does not extend to non-differentiable losses.

Another line of work explores the Gumbel-Softmax trick, a relaxation of top-k sampling Xie and
Ermon (2019). While suitable for differentiable loss functions, it has two drawbacks: (i) the loss must
be defined for continuous relaxations of k-hot vectors, which is challenging for tasks like feature
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selection, and (ii) the relaxation depends on a positive temperature parameter t. Although it converges
to weighted size-k subset sampling as t→ 0, the distributions differ for any fixed t > 0.

Other notable approaches for stochastic subset sampling in the CG setting were proposed by Ahmed
et al. (2022) and Pervez et al. (2022). Ahmed et al. (2022) study a distribution similar to the Poisson-
Binomial distribution but conditioned on selecting exactly k elements. They compute the marginal
probability of selecting a single element under this condition and propose dynamic programming
algorithms for both computing these probabilities and sampling from them. Additionally, they
introduce a gradient estimator based on the conditional probabilities. Although the estimator is
theoretically intuitive, it lacks a rigorous proof.

Pervez et al. (2022) introduce a sampling mechanism that reduces the variance of subset sizes in
the Poisson-Binomial distribution. Their method, like Ahmed et al. (2022) and Section 4 of this
paper, uses Bernoulli random variables but samples subsets of size close to k through sequential
Bernoulli trials. They employ the Straight-Through gradient estimator Bengio et al. (2013), though
without rigorous guarantees on its bias or variance. From a theoretical perspective, their approach
has minimal relevance for our work, as we focus on methods with proven convergence guarantees.
However, from an empirical point of view, we do believe this work can be combined with ours to
produce methods that are of interest – we discuss it at length in Appendix F.

Outside the CG framework, the REINFORCE gradient estimator introduced by Williams (1992)
represents a different approach that does not require the differentiability of the loss function. This
log-differentiation manipulation-based estimator is provably unbiased, albeit with high variance.
Furthermore, we are not aware of any theoretic bounds on the gradient estimator’s variance or
moments, which are required for convergence results of first-order stochastic optimization procedures.

Our work intersects with research on stochastic smoothing techniques, smoothing methods for set-
valued functions, and variational optimization. While a comprehensive review of these topics is
beyond the scope of this paper, we direct interested readers to several foundational works: Lovász
(1983) for an example of deterministic smoothing of a set-valued function, Nesterov (2005) for
smoothing techniques applied to continuous nonsmooth functions, Duchi et al. (2012) for stochastic
smoothing methods, and Staines and Barber (2012) for an overview of variational optimization.

Finally, Combinatorial Multi-Armed Bandits (CMAB), in the stochastic Agarwal and Aggarwal
(2018); Rejwan and Mansour (2020) and adversarial Han et al. (2021); Audibert et al. (2014) settings,
are somewhat related to our research. Similar to CMAB, we select a subset of size k and receive a
subsequent reward. However, in CMAB, it is assumed that each element has a non-constant intrinsic
score, and the total reward is a function of the selected elements, which can be linear Audibert et al.
(2014); Rejwan and Mansour (2020), monotonically increasing in the element scores Agarwal and
Aggarwal (2018), or known in advance Han et al. (2021). The underlying assumption is that selecting
elements with better scores is preferable. In our setting, there are no intrinsic element scores, two
similar subsets can have vastly different rewards, and the reward for a given subset is constant.

2 PRELIMINARIES

Relative weak convexity Zhang and He (2018); Davis and Drusvyatskiy (2019) will be used to obtain
the Mirror Descent method’s desired guarantees.
Definition 2.1 (Relative Weak Convexity). Let f : X → R. We say that f is (ρ, µ) relatively weakly
convex (RWC) if: (i) µ is differentiable and 1-strongly convex over X ; (ii) The function f + ρµ is
convex over X .

The following definitions are taken from (Zhang and He, 2018, Section 2.3).
Definition 2.2 (Bregman Divergence). Let µ : X → R be differentiable and convex. Then for
x,y ∈ X , the Bregman Divergence is defined as

Bµ (x,y) = µ (x)− µ (y)− ⟨∇µ (y) ,x− y⟩.
Definition 2.3 (Bregman Proximal Operator). Let f : X → R differentiable, and µ : X → R,
differentiable and strongly convex, such that f is (ρ, µ) RWC. Let λ < ρ−1. Then the Bregman
proximal operator is defined as

proxλf (z) := argmin
w∈X

f(w) +
1

λ
Bµ(w, z).

3
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The Bregman Proximal Operator is well-defined and unique for every z ∈ X .

Lemma 2.1 ((Zhang and He, 2018, Lemma 2.2)). Suppose a function f is (ρ, µ)-RWC on X and
0 < λ < ρ−1. Then for any input z ∈ X , the function f + Bµ(·, z) is (λ−1 − ρ)-strongly convex.
Moreover, the Bregman proximal operator proxλf (z) is unique.

The Bregman proximal operator is a necessary optimality condition, and is natural when discussing
Mirror Descent based algorithms. Since the Bregman proximal operator is unique, the following
notion of Bregman Stationarity Measure is well defined.

Definition 2.4 (Bregman Stationarity Measure). Let f, µ, λ be defined as in Definition 2.3. Then,

∆λ(w) = λ−2(Bµ(w,proxλf (w)) +Bµ(proxλf (w),w)).

When µ is Lipschitz continuous, we can derive a connection between the Bregman stationarity
measure and the more traditional measure of distance between the subdifferential set and zero (see
(Zhang and He, 2018, Equation 2.12)); We provide a detailed proof for completeness.

Lemma 2.2 (optimality measure). Let ŵ = proxλf (w) and assume that µ has M Lipschitz gradient.
Then, (dist (0, ∂ (f + δX ) (ŵ)))

2 ≤M∆λ(w), where dist (w, S) = inf
y∈S

∥w − y∥ .

3 ALGORITHM

To obtain the desired distribution in our two stochastic formulations (Pk) and (PB)1 we propose a
nonconvex Stochastic Mirror Descent (SMD) -based method detailed in Algorithm 1.

For both (Pk) and (PB) the algorithm we provide: (1) Maintains a parametric distribution of subsets
Dw (Dw = ψw or Dw = ϕw); (2) Samples a subset C ∼ Dw; (3) Computes a stochastic gradient
estimator ∇̃D

w(C) given the subset C; and (4) Performs a SMD update using the gradient estimator.

The main challenges in implementing our SMD approach are strongly linked to the choice of the
distribution. In particular, the distribution must induce an unbiased stochastic gradient estimator with
an explicit formula that can be bounded. Moreover, the expected loss incurred by the distribution must
be Relatively Weakly Convex (cf. Section 2). As we shall demonstrate in the sequel, the distributions
we propose in Section 4 overcome these challenges.

Algorithm 1: Stochastic Subset Learner

Input: c > 0, X ⊆ Rn, w0 ∈ X , µ : X → R, {αt}Tt=1
1 for t = 1 . . . , T do
2 sample C ∼ Dwt

3 evaluate ∇̃D
wt

(C) // Evaluate the gradient estimator

4 wt+1 ∈ argmin
w∈X

⟨∇̃wt
(C),w⟩+ 1

αt
Bµ(w,wt) // Mirror Descent step

5 end

6 sample R ∈ {1, . . . , T}, such that P (R = i) = αi/
T∑
i=t

αt

7 Return wR

Remark 3.1 (inputs of Algorithm 1). Applied to our setting and based on the requirements of the
SMD, we assume that the inputs of Algorithm 1 obey the following: X is either ∆c

n or ∆c
n,k and µ is

differentiable and 1-strongly convex. The step size αt is discussed in Theorem 7.1 and Theorem 7.2.

In Theorem 3.1, we state the convergence guarantees for Algorithm 1 informally and concisely. The
full version of this theorem is established in Section 7.

1The properties of the formulations and their approximations are discussed in Section 4 and Section 5.
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Theorem 3.1 (Algorithm 1 guarantees (informal)). Let xR be the output of Algorithm 1 for one of
the supported formulations, with an appropriately chosen step size. Then there exists ρ > 0 such that

E
[
∆1/2ρ (wR)

]
≤ O

(
n2.5√
T

)
,

where the expectation is taken over the random choices of the algorithm.

We are not aware of any other convergence result in our setting. Even in a CG setting, where the loss
function is assumed to be differentiable rather than discrete, we are not aware of any convergence
results to stationary points. We note that many applications might find the best sampled subset to be
of interest, and indeed, our experiments in Section 8 use this measure.

There are several heuristics which can improve the performance of Algorithm 1. We refer the
interested reader to Appendix F.

4 PROBABILITY DISTRIBUTIONS OVER SUBSETS

In both our formulations, (Pk) and (PB), selecting the best subset is equivalent to determining a
distribution using the decision variable w, which we seek by employing Algorithm 1. In this section
we state the probability distributions we propose for (Pk) and (PB).

For the formulation (Pk), we define a distribution ψw based on an unordered weighted choice without
replacement so that only subsets of cardinality k are chosen. For this purpose, we first introduce
some required notation.

Given a subsetC ∈ Ck, all the possible permutations of the elements of C are denoted by πC1 , . . . , π
C
k!.

We use the concise notation π1, . . . , πk! where the identity of the subset is clear from the context, and
omit the index when it is arbitrary. The lth element of a permutation π will be denoted by π[l]. Here,
too, we will use the concise notation [l] where the permutation is obvious from the context.

Let C1, . . . , CN (N =
(
n
k

)
) be some enumeration of the subsets in Ck. The distribution ψw is defined

by the probability vector pw for a weights vector w ∈ ∆0
n constructed via the probability of choosing

the permutation πCi given by

pwi,π := P(πCi | w) =

k∏
j=1

w[j]

1−
j−1∑
l=1

w[l]

. (4.1)

The probability of choosing the subset Ci is the sum of the probabilities of choosing its ordered tuples

pwi := P(Ci | w) =

k!∑
r=1

P(πCi
r | w) =

k!∑
r=1

pwi,πr
. (ψw)

For every choice of i, k, n, π and w, computing pwi,π is possible in O (k) operations. Given that there
are k! possible permutations, computing pwi takes O (k · k!) = O ((k + 1)!) operations. Therefore,
computing this probability is feasible only for relatively small values of k. On the other hand, note
that the probability computations are completely independent of n.

We now move to define the distribution ϕw for the problem (PB). Let C1, . . . , CN be some enumer-
ation of the subsets in C. Given a weights vector w ∈ ∆0

n,k, the distribution ϕw is defined by the
probability function

p̃wi := P(Ci | w) =
∏
j∈C

wj ·
∏
j /∈C

(1−wj) . (ϕw)

For every n, k, i and weights vector w, calculating p̃wi takes O (n) operations.

5 RELATIONS BETWEEN THE STOCHASTIC FORMULATIONS AND THEIR
APPROXIMATIONS

In this section, we justify our stochastic formulations by establishing connections between the solution
sets of (P), (Pk) and (PB), and their approximations. The approximations allow us to bound the first

5
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and second moments of the gradient estimator, as well as the eigenvalues of the Hessian. These
bounds are required for the convergence result in Section 7; the proofs are deferred to Appendix B.

While it is tempting to use (Pk) and (PB) directly, the resulting gradients and gradient estimators can
have an arbitrarily large norm. Therefore, we tackle formulations with relaxed upper/lower -bounds
on the decision variables instead, that is, we minimize over the sets ∆c

n and ∆c
n,k for c > 0. The

c-approximated problems are:

V ck := min
w∈∆c

n

EC∼ψw [ℓ(C)] , (P ck )

V cB := min
w∈∆c

n,k

EC∼ϕw [ℓ(C)] . (P cB)

Theorem 5.1 provides a bound on the effect of the constraint relaxation in (P ck ) on the optimal value.
Theorem 5.1 (approximation gap in k-cardinality subsets). Denote Lmax = max

C∈Ck
ℓ(C), L∗ =

min
C∈Ck

ℓ(C), and let 0 < τ < Lmax − L∗ be some suboptimality gap.

The minimum element weight c is defined via an auxiliary variable c̃ = c(n − k) and d̃ =
k∏
j=1

(
1− (j − 1)

(
k−1 · (1− c̃)

))
. Define c̃∗ as

c̃∗ = argmin
0≤c̃≤1

∣∣∣∣∣
(
1− d̃−1 · k! ·

(
1

k
(1− c̃)

)k)
· (Lmax − L∗)− τ

∣∣∣∣∣ .
Then for every constraint relaxation of 0 < c < c∗ = c̃∗ · (n− k)

−1, it holds that V ck ≤ L∗ + τ .
Note that the upper bound of c depends on τ .
Theorem 5.2 (approximation gap in k-cardinality expected value subsets). Let Lmax =

max
C⊆{1,2,...,n}

ℓ(C), L∗ = min
C∈Ck

ℓ(C) = inf
p∈∆N

Ei∼p[ℓ(Ci)], and let 0 < τ < Lmax − L∗ be some

suboptimality gap. Let c and 1− c be the lower and upper bound of the element weights, respectively.
We define c∗ as

c∗ = (n− k)−1
(
1−

√
1− τ(Lmax − L∗)−1

)
.

Then for any constraints relaxation 0 < c < c∗ it holds that V cB ≤ L∗ + τ .
Remark 5.1. Note that in both Theorem 5.1 and Theorem 5.2, the upper bound c∗ depends on τ .
Moreover, c∗ is strictly monotonically increasing in τ for τ ∈ (0, Lmax − L∗).

The elements weight bound c enables us to fine-tune the tradeoff between the suboptimality gap of
the approximate problems, and the gradient estimator norm bounds.

6 THE UNBIASED STOCHASTIC GRADIENT

We now turn to obtain our gradient estimator. It is derived by analytically calculating the derivative of
our proposed distributions. The constructive derivation of the gradient estimator allows us to bound
the estimator’s size and variance.

We note that the CG framework literature offers several gradient estimators, all of which assume that
the loss function is differentiable. To name a few: Sander et al. (2023) introduce an unbiased gradient
estimator, Xie and Ermon (2019) present a Gumbel Softmax gradient estimator, and examples of
heuristic gradients that are not related to the Gumbel Softmax trick can be found in Ahmed et al.
(2022); Pervez et al. (2022). None of the aforementioned gradient estimators provides any theoretical
bounds for the size or variance of the gradient estimator.

The stochastic gradient formulas for (Pk) and (PB) are defined next, and then proved to be unbiased.
Definition 6.1 (stochastic gradients). Define the stochastic gradient in the following manner:

If Dw = ψw. Then for Ci ∼ ψw set[
∇̃ψ

w (Ci)
]
q
=

1

pwi

∂pwi
∂wq

ℓ(Ci), ∀q ∈ {1, 2, . . . , n}. (6.1)

6
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The partial derivative is given by
∂pwi
∂wq

=

k!∑
r=1

∂pwi,πr

∂wq
, (6.2)

where π1, . . . , πk! are all possible permutations of Ci and

∂pwi,π
∂wq

=


((

w[m]

)−1
+

k∑
j=m+1

(
1−

j−1∑
l=1

w[l]

)−1
)

· pwi,π, q ∈ Ci, q = πCi [m] =: [m]

0, otherwise.

(6.3)

If Dw = ϕw. Then for C ∼ ϕw set[
∇̃ϕ

w(C)
]
j
=

{
w−1
j ℓ(C), j ∈ C

− (1−wj)
−1
ℓ(C), otherwise.

(6.4)

The fact that both of the gradient estimators are well-defined and unbiased is established next; it is
proved separately for each estimator in Appendix C.
Lemma 6.1 (gradient estimators properties). Suppose that Dw = ψw or Dw = ϕw. Then the
gradient estimators (6.1) defined in Definition 6.1 and (6.4) defined in Definition 6.1 respectively are
well-defined and unbiased, that is, EC∼Dw

[
∇̃D

w (C)
]
= ∇EC∼Dw

[ℓ(C)] , where D ∈ {ψw, ϕw}.

We conclude this section with an informal remark regarding the way in which the properties of ℓ
affect the convergence rate of Algorithm 1 empirically.
Remark 6.1. Definition 6.1 suggests that the subset loss ℓ(C) for any sampled subset C ∈ C
influences the sampling probabilities of all subsets that share elements with C in subsequent rounds,
implicitly assuming that ℓ(C) provides insight into the losses of subsets overlapping with C. Experi-
mental results in Appendix G indeed indicate that when this assumption holds more strongly, the
algorithm performs better.

7 CONVERGENCE RESULTS

The SMD convergence analysis using the framework proposed in Zhang and He (2018) suggests that
the main challenges in deriving the convergence results lie in establishing the RWC of the objective
functions and in obtaining a (stochastic) bound expression for the gradient estimators in Section 6.

The following lemma provides a bound for the gradient and the gradient estimator.
Lemma 7.1 (gradient estimator bounds). Let w ∈ ∆0

n. Then for every C ∈ Ck it holds that:

1.
∥∥∥∇̃ψ

w(C)
∥∥∥
2
≤ k1.5 · |ℓ(C)| ·

(
min
j

wj

)−1

.

2. σmax
(
∇2EC∼ψw [ℓ(C)]

)
≤ n

(
k2 + k + 1

)
·max

i
|ℓ(Ci)| ·

(
min
j

wj

)−2

.

We now establish bounds utilized when proving the RWC in (P cB).
Lemma 7.2. Let w ∈ ∆0

n,k. Then,

1. EC∼ϕw

[∥∥∥∇̃ϕ
w(C)

∥∥∥2
2

]
≤

n∑
j=1

(
1

wj
+

1

1−wj

)
max
C∈C

ℓ(C)2.

2. Let ρB(w) = (n− 1)max
m,r

max{ 1

wmwr
,

1

(1−wm) (1−wr)
,

1

wm (1−wr)
}max
C∈C

|ℓ(C)|.

Then σmax
(
∇2EC∼ϕw [ℓ(C)]

)
≤ ρB(w).

The RWC of the objectives of the approximations is stated next; it is a corollary of the bounds proved
separately for each model in Appendix D.

7
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Corollary 7.1 (RWC). For W ∈ {∆c
n,k,∆

c
n} define µ : W → R to be µ(w) =

1

2
∥w∥2, µ(w) =

−
n∑
i=1

ln(wi), or µ(w) =
n∑
i=1

wi ln(wi). Then EC∼Dw [ℓ(C)] is (ρcB , µ)-RWC where

1. D = ϕw, W = ∆c
n,k, c > 0 defined in Theorem 5.2, ρcB := (n− 1)

1

c2
max
C∈C

|ℓ(C)|;

2. D = ψw,W = ∆c
n, c > 0 defined in Theorem 5.1, ρck := c−2n

(
k2 + k − 1

)
·maxi |ℓ(Ci)|.

Finally, by utilizing the the gradient estimator’s bounds derived above and the RWC property in the
problems, we can conclude with the rate guarantees for (P ck ) and (P cB). While the rate depends on
both n and k, the dependency is disjoint, as opposed to the

(
n
k

)
. In particular, for small values of k,

the rate is of order O
(
n2.5/

√
T
)

, as opposed to O
(
nk
)
.

Theorem 7.1 ((P ck ) rate result). Let wR be the output of Algorithm 1 for (P ck ) with αt = (n2.5
√
T )−1

and let ρ = n · c−2
(
k2 + k − 1

)
· max
C∈Ck

|ℓ(C)|, where c is defined as in (P ck ). Let G := max
C∈Ck

ℓ(C)−

min
C∈Ck

ℓ(C) and M := max
C∈Ck

|ℓ(C)|. Then,

E
[
∆1/2ρ(wR)

]
≤
(
n2.5G+ k3

(
k2 + k − 1

)
·M2 · n−1.5 · c−4

)
/
√
T .

In particular, for c̃ =
c∗

n− k
and c∗ in Theorem 5.1. It holds that

E
[
∆1/2ρ(wR)

]
≤ O

((
G+ k5c̃−4M2

)
n2.5/

√
T
)
,

where c̃ does not depend on n.

The rate result for (P cB) is independent of k, is is therefore suitable for large values of k.

Theorem 7.2 ((P cB) rate result). Let wR be the output of Algorithm 1 for (P cB) with αt = (n2.5
√
T )−1.

Suppose that ρ := n · c−2 max {|ℓ(C)| : C ∈ C} where c is defined in Theorem 5.2. Let Ḡ :=
max
C∈C

ℓ(C)−min
C∈C

ℓ(C) and M̄ := max
C∈C

|ℓ(C)|. Then,

E
[
∆1/2ρ(wR)

]
≤ 2n2.5Ḡ√

T
+

2M̄3

√
n
√
T · c3

.

In particular, setting c̃ =
c∗

n− k
where c∗ is defined in Theorem 5.2. It holds that

E
[
∆1/2ρ(wR)

]
≤ 2

(
Ḡ+ M̄3c̃−3

)
n2.5T−0.5,

where c̃ does not depend on n or k.

We conclude this section with a high probability bound for the value of the sampled subset.
Theorem 7.3. Let wR be the distribution parameter returned from Algorithm 1 applied to either (P ck )
or (P cB), and letDwR

= ψwR
orDwR

= ϕwR
accordingly. Let C1, . . . , Cm ∼ DwR

be independent
samples. Denote u = max

C∈C
ℓ(C) and l = min

C∈C
ℓ(C). Then for every δ > 0,

P
(

min
i∈{1,...,m}

ℓ(Ci)− EC∼DwR
[ℓ (C)] ≥ δ

)
≤ exp

{
− mδ2

2 (u− l)
2

}
.

8 EXPERIMENTS

We experimented in two setups: (i) Transfer Learning (TL) – to demonstrate the application of
our approach to a practical machine learning problem; (ii) Synthetic experiments – providing a
more direct evaluation on subset selection tasks. We present and discuss the TL experiments in the
remainder of this section, and defer the details of the synthetic experiments to Appendix G.
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Figure 1: Layer Subset Selection for Transfer Learning Diagram

Experimental Setup. A natural application that uses a significant portion of the generality of our
model is Transfer Learning (TL), in which the knowledge gained from training a model on one task is
applied to improve learning or performance on a different but related task; see, e.g., Tan et al. (2018);
Zhuang et al. (2020). In our experimental setup, we use the subset selection algorithm as a black-box
to select layers from a frozen pre-trained deep neural network. At each iteration, a subset of k layers
is sampled and connected to a fully connected layer, which is trained while keeping the rest of the
network frozen. The model’s performance is evaluated on a held-out dataset, and the layer selection
algorithm computes a loss based on this performance. This loss is then used to update the selection
probabilities, guiding future layer choices. The process iterates until it outputs the subset of layers
that yields the best performance on the held out dataset as outlined in Figure 1.

Concretely, we experiment on TL in vision classification tasks based on two models, VisionTrans-
former (ViT) Dosovitskiy et al. (2020) and ResNet18 He et al. (2016), and two datasets, CIFAR10
Krizhevsky (2009) and SVHN Netzer et al. (2011). The model weights are pre-trained on Ima-
geNet1K Deng et al. (2009). In the experiments, the layers are chosen from a frozen model for
training where in the training process we choose layers from this pre-trained model and connect the
outputs of the chosen layers to a fully-connected layer. We then train the weights of the new layer
using a logistic loss. The experiments are restricted to a setting in which the target dataset is small so
using a frozen model is preferable to partial or full fine-tunning (see Plested and Gedeon (2022)).

We subsample 5% of the training dataset of CIFAR10 and SVHN. Each subsample is split into training,
calibration, and validation sets at a 60, 20, 20 ratio. We use the full original test sets. We repeat the
experiments with five different subsamples.Three layer-choosing methods act as benchmarks, in the
first two we use hyperparameter tuning (HPO) on the validation set to tune the learning rate and batch
size, and in the third we use HPO from the second method. The methods are:

Last1 Using the last layer with learning rate in [0.001, 0.1] and batch size in {32, 64, 128}.

Last4 Using the last four layers with the same learning rate and batch size ranges.

URand4 Sampling four layers uniformly at random for 50 iterations, training the resulting model on
the training set, evaluating on the calibration set, and then selecting the one with the highest
accuracy on the calibration set.

We propose the following layer selection methods based on Algorithm 1: For any set of Algorithm 1
hyperparameters (τ and α, where αt ≡ α for any t), we sample layers according to Dw. For each
layer-sample, we construct a model, and train it on the training set with the learning rate and batch
size selected by HPO for Last4. The model is then evaluated on the calibration set, and we set the loss
in Algorithm 1 to 1− calibration accuracy. We update the layer weights and repeat for T iterations
according to Algorithm 1 (T = 50). Upon termination of Algorithm 1, the best layers-subset is
evaluated on the validation set to update the HPO process for Algorithm 1. Once HPO is finished, we
repeat Algorithm 1 for the chosen values of τ , α, and evaluate the best in terms of calibration accuracy
on the test set. We set µ(w) = ∥w∥2 and use the following to sample layers at each iteration:

CWR4 Sampling four layers with weighted Choice Without Replacement (ψw).

HIB4 Sampling layers with Heterogeneous Independent Bernoulli experiments (ϕw). Due to
memory considerations, samples with more than five layers are assigned accuracy zero.

The performance of each experiment is evaluated for the best set of hyperparameters. Additionally, the
three sampling experiments are evaluated on calibration accuracy. For the best set of hyperparameters
according to the evaluation accuracy, we show the best observed calibration accuracy per iteration.

9
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ViT-CIFAR10 ViT-SVHN ResNet18-CIFAR10 ResNet18-SVHN

Mean Acc % Acc Std Mean Acc % Acc Std Mean Acc % Acc Std Mean Acc % Acc Std

Last1 91.654 0.365 50.0369 0.971 66.698 1.134 34.700 1.345
Last4 86.414 0.551 72.523 2.316 70.794 0.836 49.975 0.689
URand4 89.362 1.085 75.053 2.553 74.052 1.797 53.317 12.577
CWR4 90.692 0.559 75.827 3.611 71.554 2.296 60.867 4.962
HIB4 90.724 1.045 77.781 2.036 71.336 4.102 60.478 60.478

Table 1: Accuracy (Acc) averaged over the 5 subsamples on the original test set. Bold indicates the best.

Figure 2: Calibration accuracy per iteration for representative subsamples.

The experiments are carried out on AWS Sagemaker, with the instance types “ml.g4dn.16xlarge”,
with 64 vCPU, 1 Nvidia t4 tensor core GPU, and an Intel Xeon Family physical processor.

Experimental Results. The results in terms of test accuracy are displayed in Table 1. In all cases,
selecting the last four layers deterministically (Last4) is inferior to the layer-selection algorithms
URand4, CWR4, and HIB4. Among these algorithms, both our methods outperform the random
greedy method URand4 in three out of four cases.

The comparison to Last1 is of interest only in the context of TL, as this is the simplest way to
use a frozen pre-trained model. In this context, Last1 is the superior method in a single case (ViT
with CIFAR10) and inferior to all other methods in all other cases. In the general context of subset
selection, the Last1 experiment holds little relevance – our experiments aim to compare methods of
selecting subsets of size 4, either deterministically or in expectation.

In a broader sense, our results support the superiority of layer selection algorithms over a deterministic
selection in TL on frozen models. This conclusion is compounded by the use of learning rate and
batch size selected for Last4, instead of optimizing them directly. We speculate that these results can
be extended to more general settings, where the choice of layers can take a different meaning. One
example is using a decaying learning rate between layers, as suggested in Plested and Gedeon (2022).

We found that in the calibration accuracy comparisons, one of our methods outperforms the random
greedy approach in 14 out of 20 experiments (2 models × 2 datasets × 5 subsamples). Actual
numbers are omitted as they provide no further insights. The effect of layer selection algorithms
is much more pronounced in ResNet18 than in ViT – a representative example for each model is
provided in Figure 2. Our experiments also show that CWR4 tends to reach its plateau performance
more quickly. We believe this is because its search space is smaller than that of HIB4, and unlike
URand4, the initial iterations of CWR4 actively encourage exploration.

9 CONCLUSIONS

We introduced a stochastic approach to a non-continuous subset selection formulation facilitating
novel theoretical guarantees. Our results motivate both future theoretical and experimental investi-
gations. In particular, further theoretical study of the stochastic model approach, formulation, and
possible distributions, as well as other optimization frameworks. Numerical experimentation on TL
and other subset selection applications such as Vertex Cover or Independent Set, especially those
with challenging non-differentiable metrics, also provide intriguing research prospects.
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A PROOFS OF SECTION 2

Proof. By the optimality conditions of

proxλf (w) = argmin
z∈X

f(z) +
1

λ
Bµ(z,w) = argmin

z∈X
f(z) +

1

λ
(µ(z)− µ(w)− ⟨∇µ(x), z −w⟩) ,

we have

0 ∈ ∇f(ŵ) + ∂δX (ŵ) +
1

λ
(∇µ(ŵ)−∇µ(w)) ⇒ 1

λ
(∇µ(w)−∇µ(ŵ)) ∈ ∂ (f + δX ) (ŵ).

Hence,

(dist (0, ∂ (f + δX ) (ŵ)))
2 ≤ 1

λ2
∥∇µ(ŵ)−∇µ(w)∥2 .

By (Beck, 2017, Theorem 5.8, part 4), since µ is assumed to have M Lipschitz gradient over X ,

1

λ2
∥∇µ(ŵ)−∇µ(w)∥2 ≤ M

λ2
⟨∇µ(w)−∇µ(ŵ),w − ŵ⟩.

Since
∆λ =

1

λ2
⟨∇µ(w)−∇µ(ŵ),w − ŵ⟩,

this concludes the proof. 2
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B PROOFS OF SECTION 5

The following Lemma formally establishes that the minimum of (P) is equal to the infimum of (Pk),
and is lower bounded by the minimum of (PB).

Lemma B.1 (basic relations between formulations). Denote L∗ := inf
p∈∆N

Ei∼p[ℓ(Ci)] ≡
N∑
i=1

pi ·

ℓ(Ci), and let L∗
B be the optimal value of (PB) and L∗

k be the optimal value of (Pk). Suppose that
C1, . . . , CN is some enumeration of Ck. Then:

1. L∗ = min
i=1,...,N

ℓ(Ci) ≤ L∗
k.

2. There exists a convergent sequence {wl}∞l=1 of feasible solutions to (Pk) such that

EC∼ψwl
[ℓ(C)]

l→∞−−−→ L∗.

3. L∗
B ≤ L∗

k.

Proof. 1. Consider the optimization problem

inf
p∈∆N

Ei∼p[ℓ(Ci)] =
N∑
i=1

pi · ℓ(Ci).

Set

p∗i =

{
1, if i = i∗

0, otherwise
,

where
i∗ ∈ argmin

i=1,...,N
ℓ(Ci).

We note that
N∑
i=1

pi · ℓ(Ci) ≥
N∑
i=1

pi · min
i=1,...,N

ℓ(Ci) = min
i=1,...,N

ℓ(Ci),

where the second equality follows from p ∈ ∆N . Additionally, for p∗,

N∑
i=1

p∗i · ℓ(Ci) = p∗i∗ · ℓ(Ci∗) = min
i=1,...,N

ℓ(Ci).

The relation L∗ ≤ L∗
k follows immediately from the fact that for every w ∈ ∆n ∩ R++,

pwi ∈ ∆N , and that the target functions are identical for fixed distributions.

2. Let i∗ ∈ argmin
i

ℓ(Ci). In part 1 of Lemma B.1 it was shown that

p∗ ∈ argmin
p∈∆N

Ei∼p[ℓ(Ci)]

where p∗ is given by

p∗i =

{
1, if i = i∗,

0, otherwise.

We construct a convergent sequence {wl}∞l=1, such that

pwl
l→∞−−−→ p∗.

Since Ei∼p[ℓ(Ci)] is continuous in p and p∗ ∈ argmin
p∈∆N

Ei∼p[ℓ(Ci)], such construction is

sufficient for the proof.
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Let

(wl)j =


1

k
− 1

2k · l
, if j ∈ Ci∗

1

2 (n− k) · l
, otherwise

.

Clearly, for every l,
n∑
j=1

(wl)j =
∑
j∈Ci∗

(wl)j +
∑
j /∈Ci∗

(wl)j

= k ·
(
1

k
− 1

2k · l

)
+ (n− k) ·

(
1

2 (n− k) · l

)
= 1,

and for every l and j
(wl)j > 0.

Therefore, wl ∈ ∆n ∩ R++. Furthermore, wl
l→∞−−−→ w∗, where w∗ is given by

w∗
j =

{1

k
, if j ∈ Ci∗

0, otherwise
.

Next, we calculate pwl
i∗

pwl
i∗ =

k!∑
r=1

k∏
j=1

1/k − 1/2kl

1− (j − 1) (1/k − 1/2kl)

=

k!∑
r=1

k∏
j=1

2l − 1

2kl − (j − 1) (2l − 1)

=

k!∑
r=1

k∏
j=1

2l − 1

2 (k − j + 1) l + j − 1
.

Clearly,
2l − 1

2(k − j + 1)l + j − 1

l→∞−−−→ 1

k − j + 1
.

Therefore it follows that
k∏
j=1

2l − 1

2 (k − j + 1) l + j − 1

l→∞−−−→
k∏
j=1

1

k − j + 1
=

1

k!

and
k!∑
r=1

k∏
j=1

2l − 1

2 (k − j + 1) l + j − 1

l→∞−−−→ 1.

Since pwl
i∗

l→∞−−−→ 1 and pwl ∈ ∆N , it follows that for every i ̸= i∗

pwl
i

l→∞−−−→ 0.

Hence,
pwl

l→∞−−−→ p∗.

Since Ei∼pw [ℓ(Ci)] = EC∼ψw [ℓ(C)] is continuous in pw, it immediately follows that

EC∼ψwl
[ℓ(C)]

l→∞−−−→ Ei∼p∗ [ℓ(Ci)] = L∗.
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3. Let C1, . . . , CN be some enumeration of Ck, and let i∗ ∈ argmin
i

ℓ(Ci).

Define w̄ as

w̄j =

{
1, j ∈ Ci∗

0, otherwise
.

Then w̄ ∈ {w ∈ Rn+ |
n∑
i

wi = k} and

p̃w̄i∗ = 1.

Therefore, w̄ is a feasible solution to (PB) whose value is L∗
k. Hence,

L∗
B ≤ L∗

k.

2

Proof of Theorem 5.1. Let C1, . . . , CN be some enumeration of Ck, and let i∗ ∈ argmin
i

ℓ(Ci).

Define

w̄j =

{1

k
(1− c(n− k)) , j ∈ Ci∗

c, otherwise
,

and note that w̄ ∈ ∆n ∩ x ≥ c for 0 ≤ c ≤ (n− k)
−1.

The probability of choosing the optimal subset Ci∗ according to the distribution Dw̄ is

pw̄i∗ =

k! ·
(
1

k
(1− c (n− k))

)k
k∏
j=1

(
1− (j − 1)

(
1

k
(1− c (n− k))

)) .
Denoting c̃ = c (n− k),

pw̄i∗ =

k! ·
(
1

k
(1− c̃)

)k
k∏
j=1

(
1− (j − 1)

(
1

k
(1− c̃)

)) .
Note that this is a strictly monotonic decreasing function in c̃ for 0 ≤ c̃ ≤ 1, whose value is 1 for c̃ = 0
and 0 for c̃ = 1. Therefore, 1− pw̄i∗ is strictly monotonic increasing in c̃. Since 0 < τ < Lmax − L∗,
it follows that τ

Lmax−L∗ ∈ (0, 1), and therefore there exists a single solution c̃∗ ∈ [0, 1] to1−
k! ·
(
1

k
(1− c̃)

)k
k∏
j=1

(
1− (j − 1)

(
1

k
(1− c̃)

))
 · (Lmax − L∗)− τ = 0.

Hence, the same c̃∗ minimizes∣∣∣∣∣∣∣∣∣

1−
k! ·
(
1

k
(1− c̃)

)k
k∏
j=1

(
1− (j − 1)

(
1

k
(1− c̃)

))
 · (Lmax − L∗)− τ

∣∣∣∣∣∣∣∣∣ .

We conclude that for every 0 < c ≤ c∗ =
c̃∗

n− k
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min
w∈∆n∩w≥c

EC∼ψw [ℓ(C)] ≤ pw̄i∗L
∗ + (1− pw̄i∗)Lmax ≤ L∗ + τ.

2

Proof of Theorem 5.2. Note that c∗ is the only root in [0, (n− k)−1] of(
1− (1− c(n− k))

2
)
· (Lmax − L∗)− τ = 0.

Let C1, . . . , CN be some enumeration of subsets of C, and let i∗ ∈ argmin
i

ℓ(Ci).

Define w̄ as

w̄j =

1− c(n− k)

k
, j ∈ Ci∗

c, otherwise
,

and let c̃ = c · (n− k).

We can see that

p̃w̄i∗ =

(
1− c(n− k)

k

)k
· (1− c)

n−k
=

(
1− c̃

k

)k
·
(
1− c̃

n− k

)n−k
.

The sequence um =

(
1− c̃

m

)m
is increasing, and therefore for every k, n such that 1 ≤ k < n

(
1− c̃

n− k

)n−k
≥ 1− c̃

and (
1− c̃

k

)k
≥ 1− c̃,

and at least one of the inequalities is strict.

Therefore,
p̃w̄i∗ > (1− c̃)

2
= (1− c (n− k))

2
.

Note that w̄ ∈ ∆c
n,k.

It follows that,

min
w∈∆c

n,k

EC∼ϕw [ℓ(C)] ≤ (1− c̃)2L∗ +
(
1− (1− c̃)

2
)
Lmax.

For 0 < c ≤ c∗,
min

w∈∆c
n,k

EC∼ϕw [ℓ(C)] < L∗ + τ.

2

C PROOFS OF SECTION 6

The properties of the gradient estimators for our two formulations summarized in Lemma 6.1 are
proved separately in the following two lemmas.

Lemma C.1 establishes that the stochastic gradient (6.1) is well-defined and unbiased.
Lemma C.1 (gradient estimator for (Pk) ). Let C1, . . . , CN be some enumeration of Ck and suppose
that Dw = ψw. Then the gradient estimator (6.1) defined in Definition 6.1 is well-defined and
unbiased, that is,

EC∼ψw

[
∇̃ψ

w (C)
]
= ∇EC∼ψw [ℓ(C)] .
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Proof. Let Ci ∈ Ck. Consider an element index q ∈ Ci and denote by π some permutation of the
elements of Ci. Since q ∈ Ci, there exists an index m, such that q = π[m] ≡ [m].

For j < m,

∂

∂w[m]

 w[j]

1−
j−1∑
l=1

w[l]

 = 0.

For j = m,

∂

∂w[m]

 w[m]

1−
m−1∑
l=1

w[l]

 =
1

1−
m−1∑
l=1

w[l]

.

For j > m,

∂

∂w[m]

 w[j]

1−
j−1∑
l=1

w[l]

 =
w[j](

1−
j−1∑
l=1

w[l]

)2 .

Recall the derivative rule for product (assuming f1(w), . . . , fk(w) ̸= 0)

∂

∂w[m]

 k∏
j=1

fj(w)

 =

k∑
t=1

∂ft(w)

∂w[m]

k∏
j=1,j ̸=t

fj(w) =

k∑
t=1

∂ft(w)

∂w[m]
· 1

ft(w)

k∏
j=1

fj(w).

Combining all the above,

∂pwi,π
∂w[m]

=

 1

1−
m−1∑
l=1

w[l]

·

1−
m−1∑
l=1

w[l]

w[m]

+

k∑
j=m+1

 w[j](
1−

j−1∑
l=1

w[l]

)2 ·
1−

j−1∑
l=1

w[l]

w[j]


·

k∏
j=1

w[j]

1−
j−1∑
l=1

w[l]

.

Equivalently,

∂pwi,π
∂w[m]

=

 1

w[m]
+

k∑
j=m+1

 1

1−
j−1∑
l=1

w[l]


 ·

k∏
j=1

w[j]

1−
j−1∑
l=1

w[l]

.

Since

pwi,π =

k∏
j=1

w[j]

1−
j−1∑
l=1

w[l]

,

(6.3) for q ∈ Ci follows.

On the other hand, if q /∈ Ci, then pwi,π is not a function of wq , and therefore (6.3) for q /∈ Ci holds.

The result that the partial derivative
∂pwi
∂wq

is given by

∂pwi
∂wq

=

k!∑
r=1

∂pwi,πr

∂wq

then follows immediately from the fact that pwi =
k!∑
r=1

pwi,πr
, which verifies the correctness of (6.2)

and that (6.1) is well-defined.
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To prove that (6.1) is unbiased, note that the gradient at index q is given by

∇ (EC∼ψw [ℓ(C)])q =
∂

∂wq

(
N∑
i=1

pwi ℓ(Ci)

)
=

N∑
i=1

∂pwi
∂wq

ℓ(Ci).

On the other hand,

EC∼ψw

[
∇̃ψ

w (C)
]
q
=

N∑
i=1

pwi ·
[
∇̃ψ

w (Ci)
]
q
=

N∑
i=1

pwi · 1

pwi

∂pwi
∂wq

ℓ(Ci) =

N∑
i=1

∂pwi
∂wq

ℓ(Ci).

Hence,

EC∼ψw

[
∇̃ψ

w (C)
]
= ∇ (EC∼ψw [ℓ(C)]) .

2

The following lemma establishes that the stochastic estimator of the gradient is unbiased for (PB).

Lemma C.2 (gradient estimator for (PB)). Suppose that Dw = ϕw. Then the gradient estimator
(6.4) defined in Definition 6.1 is unbiased, that is,

EC∼ϕw

[
∇̃ϕ

w(C)
]
= ∇EC∼ϕw [ℓ(C)] .

Proof of Lemma C.2. Let C̃1, . . . , C̃2n ∈ C be an enumeration of all possible subsets of {1, . . . , n}.

Let i be the index of the subset C. We reformulate ∇̃ϕ
w(C) as

[
∇̃ϕ

w(C)
]
j
=


1

p̃wi

ℓ(C)

wj
p̃wi , j ∈ C

1

p̃wi

(
− ℓ(C)

1−wj

)
p̃wi , otherwise.

Since

p̃wi =

∏
j∈C̃i

wj

 ·

∏
k/∈C̃i

(1−wk)

 ,

it follows that

∂p̃wi
∂wj

=


1

wj
p̃wi , j ∈ C,

− 1

1−wj
p̃wi , otherwise.

Hence,

[∇EC∼ϕw [ℓ(C)]]j =

2n∑
i=1

∂p̃wi
∂wj

(Ci) =

2n∑
i=1, j∈Ci

1

wj
p̃wi ℓ(Ci) +

2n∑
i=1, j /∈Ci

− 1

1−wj
p̃wi ℓ(Ci).

On the other hand,[
EC∼ϕw

[
∇̃ϕ

w(C)
]]
j
=

2n∑
i=1

p̃wi

[
∇̃ϕ

w(Ci)
]
j
=

2n∑
i=1, j∈Ci

1

wj
p̃wi ℓ(Ci)+

2n∑
i=1, j /∈Ci

− 1

1−wj
p̃wi ℓ(Ci).

Consequently,

EC∼ϕw

[
∇̃ϕ

w(C)
]
= ∇EC∼ϕw [ℓ(C)] .

2
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D PROOFS OF SECTION 7

We start with a technical lemma to bound the component
1

w[m]
+

k∑
j=m+1

 1

1−
j−1∑
l=1

w[l]

.

Lemma D.1. Let w ∈ ∆n ∩ Rn++, C ∈ Ck and let π be some permutation on the indices of the
elements of C. Then,

1

w[m]
+

k∑
j=m+1

 1

1−
j−1∑
l=1

w[l]

 ≤ k

min
q∈C

wq
≤ k

min
q∈{1,...,n}

wq
.

Proof. The fact that

1

w[m]
≤ 1

min
j∈C

wj
≤ 1

min
q∈{1,...,n}

wq

follows trivially from the definition of the minimum.

Define w(C) =
k∑

m=1
w[m]. Note that w(C) ≤ 1 since w ∈ ∆n. For every permutation π of the

indices of the elements of C and every j ≤ k,

1−
j−1∑
l=1

w[l] ≥ w(C)−
j−1∑
l=1

w[l] ≥ min
q∈C

wq ≥ min
q∈{1,...,n}

wq.

Since w ∈ ∆n ∩ Rn++, we have

1

1−
j−1∑
l=1

w[l]

≤ 1

min
q∈C

wq
≤ 1

min
q∈{1,...,n}

wq
.

The sum
k∑

j=m+1

 1

1−
j−1∑
l=1

w[l]

 has at most k − 1 elements. Therefore,

1

w[m]
+

k∑
j=m+1

 1

1−
j−1∑
l=1

w[l]

 ≤ k

min
q∈C

wq
≤ k

min
q∈{1,...,n}

wq
.

2

Lemma D.2. Let w ∈ {w ∈ Rn | 0 < wj < 1 ∀j,
n∑
j=1

wj = k}. Then,

∥∥∥[∇EC∼ϕw [ℓ(C)]]j

∥∥∥
∞

≤ max
C∈C

|ℓ(C)| · max
j∈{1,...,n}

max{ 1

wj
,

1

1−wj
}.
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Proof. By the triangle inequality,

∣∣∣[∇EC∼ϕw [ℓ(C)]]j

∣∣∣ =
∣∣∣∣∣∣

2n∑
i=1, j∈Ci

1

wj
p̃wi ℓ(Ci) +

2n∑
i=1, j /∈Ci

− 1

1−wj
p̃wi ℓ(Ci)

∣∣∣∣∣∣
≤

2n∑
i=1, j∈Ci

∣∣∣∣ 1

wj

∣∣∣∣ |p̃wi | |ℓ(Ci)|+ 2n∑
i=1, j /∈Ci

∣∣∣∣− 1

1−wj

∣∣∣∣ |p̃wi | |ℓ(Ci)|
≤ max

C∈C
|ℓ(C)|

2n∑
i=1, j∈Ci

∣∣∣∣ 1

wj

∣∣∣∣ |p̃wi |+ 2n∑
i=1, j /∈Ci

∣∣∣∣− 1

1−wj

∣∣∣∣ |p̃wi | .
Using the fact that 0 < wj ≤ 1, we have that

∣∣∣∣ 1

wj

∣∣∣∣ = 1

wj
and

∣∣∣∣− 1

1−wj

∣∣∣∣ = 1

1−wj
. Since p̃wi is

a probability, |p̃wi | = p̃wi . Therefore,

∣∣∣[∇EC∼ϕw [ℓ(C)]]j

∣∣∣ ≤ max
C∈C

|ℓ(C)|
2n∑

i=1, j∈Ci

1

wj
p̃wi +

2n∑
i=1, j /∈Ci

1

1−wj
p̃wi

≤ max
C∈C

|ℓ(C)| ·max{ 1

wj
,

1

1−wj
} ·

 2n∑
i=1, j∈Ci

p̃wi +

2n∑
i=1, j /∈Ci

p̃wi

 .

Therefore, since
2n∑

i=1, j∈Ci

p̃wi +
2n∑

i=1, j /∈Ci

p̃wi = 1, we conclude that

∣∣∣[∇EC∼ϕw [ℓ(C)]]j

∣∣∣ ≤ max
C∈C

|ℓ(C)| ·max{ 1

wj
,

1

1−wj
}.

Finally, we conclude that∥∥∥[∇EC∼ϕw [ℓ(C)]]j

∥∥∥
∞

≤ max
C∈C

|ℓ(C)| · max
j∈{1,...,n}

max{ 1

wj
,

1

1−wj
}.

2

Next, we provide an entrywise bound for the gradient estimator.

Lemma D.3. Let w ∈ {w ∈ Rn | 0 < wj < 1 ∀j,
n∑
j=1

wj = k}. Then, for every C ∈ C,

∥∥∥∇̃w(C)
∥∥∥
∞

≤ max
C∈C

|ℓ(C)| · max
j∈{1,...,n}

max{ 1

wj
,

1

1−wj
}.

Proof. By the triangle inequality and the fact that 0 < wj < 1, for every j ∈ {1, . . . , n},∣∣∣∣[∇̃w(C)
]
j

∣∣∣∣ = ∣∣∣∣1j∈C 1

wj
ℓ(C)− 1j /∈C

1

1−wj
ℓ(C)

∣∣∣∣ ≤ |ℓ(C)|max{ 1

wj
,

1

1−wj
}.

Hence, ∥∥∥∇̃w(C)
∥∥∥
∞

≤ max
C∈C

|ℓ(C)| · max
j∈{1,...,n}

max{ 1

wj
,

1

1−wj
}.

2

An immediate corollary follows from the relation ∥a∥2 ≤
√
n ∥a∥∞ for every a ∈ Rn.
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Corollary D.1. Let w ∈ {w ∈ Rn | 0 < wj < 1 ∀j,
n∑
j=1

wj = k}. Then, for every C ∈ C,

∥∥∥∇̃w(C)
∥∥∥
2
≤

√
nmax
C∈C

|ℓ(C)| · max
j∈{1,...,n}

max{ 1

wj
,

1

1−wj
}.

Proof of Lemma 7.1. Let C ∈ Ck. We now prove the two bounds.

1. In order to establish the first bound, we first show that∥∥∥∇̃ψ
w(C)

∥∥∥
∞

≤ k

min
q∈C

wq
· |ℓ(C)|.

LetC1, . . . , CN be some enumeration of Ck. Denote the index ofC by i. Let q ∈ {1, . . . , n}.
By the triangle inequality,∣∣∣∣[∇̃ψ

w(C)
]
q

∣∣∣∣ =
∣∣∣∣∣ 1pwi

k!∑
r=1

∂pwi,πr

∂wq
ℓ(C)

∣∣∣∣∣ ≤
∣∣∣∣ 1pwi

∣∣∣∣ k!∑
r=1

∣∣∣∣∂pwi,πr

∂wq

∣∣∣∣ |ℓ(C)| .
Since pwi is the probability of a subset that was sampled, pwi > 0, and therefore

1

pwi
> 0.

By the first part of Definition 6.1, which was proven in Lemma C.1, and by w ∈ ∆n ∩Rn++,

it follows that
∂pwi,πr

∂wq
≥ 0. Hence,

∣∣∣∣ 1pwi
∣∣∣∣ = 1

pwi
and

∣∣∣∣∂pwi,πr

∂wq

∣∣∣∣ = ∂pwi,πr

∂wq
.

Furthermore, if q ∈ Ci then by Lemma D.1,

∂pwi,πr

∂wq
≤ k

min
j

wj
pwi,π.

If q /∈ Ci, then it trivially holds that

0 =
∂pwi,πr

∂wq
≤ k

min
j

wj
pwi,πr

.

Therefore,
∂pwi,πr

∂wq
≤ k

min
q∈C

wq
· pwi,πr

,

and consequently, ∣∣∣∣[∇̃ψ
w(C)

]
q

∣∣∣∣ ≤ 1

pwi

k!∑
r=1

k

min
q∈C

wq
· pwi,πr

|ℓ(C)| .

Since
k!∑
r=1

pwi,πr
= pwi , ∣∣∣∣[∇̃ψ

w(C)
]
q

∣∣∣∣ ≤ k

min
q∈C

wq
|ℓ(C)| ,

and we can conclude that ∥∥∥∇̃ψ
w(C)

∥∥∥
∞

≤ k

min
q∈C

wq
· |ℓ(C)|. (D.1)
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By the fact that
∂pwi,π
∂wq

= 0 for every q /∈ C, it follows that ∇̃ψ
w has at most k nonzero

elements. By (D.1), it follows that each entry if bound by
k

min
q∈C

wq
· |ℓ(C)|. Therefore,

∥∥∥∇̃ψ
w(C)

∥∥∥
2
=

√√√√ n∑
j=1

[
∇̃ψ

w(C)
]2
j
≤

√√√√ k3

min
q∈C

w2
q

· |ℓ(C)|2 =
k1.5

min
q∈C

wq
· |ℓ(C)|.

2. If q /∈ Ci or q̃ /∈ Ci,
∂2pwi,π
∂wq∂wq̃

= 0.

Otherwise, there exist indices m, o such that q = π[m], q̃ = π[o].

Denote di,πm (w) :=
k∑

j=m+1

 1

1−
j−1∑
l=1

w[l]

. Note that

∂

∂w[o]

(
di,πm (w)

)
=

k∑
j=max{m,o}+1

 1(
1−

j−1∑
l=1

w[l]

)2

 . (D.2)

If m = o, using the derivative rule for multiplication, it follows that

∂

∂w[m]

(
∂pwi,π
∂w[m]

)
=

∂

∂w[m]

((
1

w[m]
+ di,πm (w)

)
· pwi,π

)
(D.3)

=

(
∂

∂w[m]

(
1

w[m]
+ di,πm (w)

))
· pwi,π +

(
1

w[m]
+ di,πm (w)

)
·
∂pwi,π
∂w[m]

.

By (6.3), (
1

w[m]
+ di,πm (w)

)
·
∂pwi,π
∂w[m]

=

(
1

w[m]
+ di,πm (w)

)2

pwi,π.

Plugging into (D.3),

∂

∂w[m]

(
∂pwi,π
∂w[m]

)
=

((
− 1

w2
[m]

+
∂di,πm (w)

∂w[m]

)
+

(
1

w2
[m]

+
2

w[m]
· di,πm (w) +

(
di,πm (w)

)2)) · pwi,π

(D.4)

=

(
∂di,πm (w)

∂w[m]
+

2

w[m]
· di,πm (w) +

(
di,πm (w)

)2) · pwi,π.

Using the definition of di,πm (w), the fact that 1 −
j−1∑
l=1

w[l] ≥ min
j

wj > 0 and w[m] ≥

min
j

wj , and (D.2), it follows that

(a)
∂di,πm (w)

∂w[m]
≤ (k − 1)

(
min
j

wj

)−2

.

(b)
2

w[m]
· di,πm (w) ≤ 2k

(
min
j

wj

)−2

.

(c)
(
di,πm (w)

)2 ≤
(
k2 − 2k + 1

)(
min
j

wj

)−2

.
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Combining with (D.4), we get

∂

∂w[m]

(
∂pwi,π
∂w[m]

)
≤
(
k2 + k

)(
min
j

wj

)−2

pwi,π. (D.5)

If o ̸= m, the same arguments lead to

∂

∂w[o]

(
∂pwi,π
∂w[m]

)
=

∂

∂w[o]

((
1

w[m]
+ di,πm (w)

)
· pwi,π

)
(D.6)

=
∂di,πm (w)

∂w[o]
pwi,π +

(
1

w[m]
+ di,πm (w)

)(
1

w[o]
+ di,πo (w)

)
pwi,π.

By the definition of di,πm (w), (D.2), 1 −
j−1∑
l=1

w[l] ≥ min
j

wj > 0 and w[m],w[o] ≥

min
j

wj > 0,

(a)
∂di,πm (w)

∂w[o]
≤ (k − 1)

(
min
j

wj

)−2

.

(b)
1

w[m]w[o]
≤
(
min
j

wj

)−2

.

(c)
1

w[o]
di,πm (w) +

1

w[m]
di,πo (w) ≤ 2k

(
min
j

wj

)−2

.

(d) di,πm (w) di,πo (w) ≤
(
k2 − 2k + 1

)(
min
j

wj

)−2

.

Plugging into (D.6), it follows that

∂

∂w[o]

(
∂pwi,π
∂w[m]

)
≤
(
k2 + k + 1

)(
min
j

wj

)−2

pwi,π. (D.7)

By (D.4) and (D.6), it also follows that for every q, q̃ ∈ Ci,
∂2pwi,π
∂q∂q̃

> 0. Since if either

q /∈ Ci or q̃ /∈ Ci it holds that
∂2pwi,π
∂q∂q̃

= 0, we conclude

∂2pwi,π
∂q∂q̃

≥ 0 ∀q, q̃ ∈ {1, . . . , n} . (D.8)

Using the triangle inequality, it immediately follows that∣∣∣∣ ∂2

∂wq̃∂wq
(EC∼ψw [ℓ(C)])

∣∣∣∣ =
∣∣∣∣∣
N∑
i=1

k!∑
r=1

∂2

∂wq̃∂wq

(
pwi,πr

ℓ(Ci)
)∣∣∣∣∣

≤
N∑
i=1

k!∑
r=1

∣∣∣∣ ∂2

∂wq̃∂wq

(
pwi,πr

)∣∣∣∣ |ℓ(Ci)|
≤

N∑
i=1

k!∑
r=1

∂2

∂wq̃∂wq

(
pwi,πr

)
·max

i
|ℓ(Ci)|

≤
(
k2 + k + 1

)
·
(
min
j

wj

)−2

·max
i

|ℓ(Ci)|.

Let ρk(w) = n
(
k2 + k + 1

)
·
(
min
j

wj

)−2

·maxi |ℓ(Ci)|. Since

ρk(w)+
∂2

∂wi∂wi
(EC∼ψw [ℓ(C)]) ≥ ρk(w)−

(
k2 + k + 1

)
·
(
min
j

wj

)−2

·max
i

|ℓ(Ci)|,
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and

ρk(w)− ∂2

∂wi∂wi
(EC∼ψw [ℓ(C)]) ≥ ρk(w)−

(
k2 + k + 1

)
·
(
min
j

wj

)−2

·max
i

|ℓ(Ci)|,

and in addition

max
i

n∑
j=1, j ̸=i

∣∣∣[∇2EC∼ψw [ℓ(C)]
]
i,j

∣∣∣ ≤ (n−1)
(
k2 + k + 1

)
·
(
min
j

wj

)−2

·max
i

|ℓ(Ci)|,

it follows that for all i

ρk(w) +
[
∇2EC∼ψw [ℓ(C)]

]
i,i

≥
n∑

j=1, j ̸=i

∣∣∣[∇2EC∼ψw [ℓ(C)]
]
i,j

∣∣∣ ,
and

ρk(w)−
[
∇2EC∼ψw [ℓ(C)]

]
i,i

≥
n∑

j=1, j ̸=i

∣∣∣[∇2EC∼ψw [ℓ(C)]
]
i,j

∣∣∣ .
Therefore, both ρk(w)I +∇2EC∼ψw [ℓ(C)] and ρk(w)I − EC∼ψw [ℓ(C)] are diagonally
dominant. Since diagonally dominant matrices are positive definite, it follows that

ρk(w)I +∇2EC∼ψw [ℓ(C)] ≻ 0 ⇒ ∇2EC∼ψw [ℓ(C)] ≻ −ρk(w)I,

ρk(w)I −∇2EC∼ψw [ℓ(C)] ≻ 0 ⇒ ρk(w)I ≻ ∇2EC∼ψw [ℓ(C)] .

In conclusion,
ρk(w)I ≻ ∇2EC∼ψw [ℓ(C)] ≻ −ρk(w)I.

2

Proof of Lemma 7.2. We prove the two parts.

1. For every j ∈ {1, . . . , n} by the law of total expectation and the definition of ∇̃ϕ
w(C),

EC∼ϕw

[([
∇̃ϕ

w(C)
]
j

)2
]

= P (j is chosen) · 1

w2
j

· EC∼ϕw | j is chosen
[
ℓ(C)2

]
+ (1− P (j is chosen)) · 1

(1−wj)
2 · EC∼ϕw | j is not chosen

[
ℓ(C)2

]
.

Since
P (j is chosen) = wj

and

max{EC∼ϕw | j is chosen
[
ℓ(C)2

]
,EC∼ϕw | j is not chosen

[
ℓ(C)2

]
} ≤ max

C∈C
ℓ(C)2,

we can derive that

EC∼ϕw

[([
∇̃ϕ

w(C)
]
j

)2
]
≤
(

1

wj
+

1

1−wj

)
max
C∈C

ℓ(C)2.

Therefore,

EC∼ϕw

[∥∥∥∇̃ϕ
w(C)

∥∥∥2
2

]
≤

n∑
j=1

(
1

wj
+

1

1−wj

)
max
C∈C

ℓ(C)2.
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2. Recall that

EC∼ϕw [ℓ(C)] =

2n∑
i=1

∏
j∈Ci

wj

∏
j /∈Ci

(1−wj) ,

and that
p̃wi =

∏
j∈Ci

wj

∏
j /∈Ci

(1−wj) .

For every i and every j,
∂2p̃wi
∂w2

j

= 0,

and hence for every j ∈ {1, . . . , n}

∇2 [EC∼ϕw [ℓ(C)]]jj = 0.

For j ̸= l, if j, l ∈ Ci,
∂2p̃wi
∂wj∂wl

=
1

wjwl
p̃wi .

If j ∈ Ci, l /∈ Ci,
∂2p̃wi
∂wj∂wl

= − 1

wj (1−wl)
p̃wi .

If j /∈ Ci, l ∈ Ci,
∂2p̃wi
∂wj∂wl

= − 1

(1−wj)wl
p̃wi .

If j, l /∈ Ci,
∂2p̃wi
∂wj∂wl

=
1

(1−wj) (1−wl)
p̃wi .

Therefore,

∂2

∂wj∂wl

EC∼ϕw [ℓ(C)]

=

2n∑
i=1

(
1j,l∈Ci

·
1

wjwl

− 1j∈Ci,l/∈Ci

1

wj (1 − wl)
− 1j /∈Ci,l∈Ci

1

(1 − wj)wl

+ 1j,l/∈Ci

1

(1 − wj) (1 − wl)

)
p̃
w
i ℓ(Ci).

Using the facts that

−max
m,r

1

wm (1−wr)
≤ − 1

wj (1−wl)
< 0

and

0 ≤ max{ 1

wjwl
,

1

(1−wj) (1−wl)
} ≤ max

m,r
max{ 1

wmwr
,

1

(1−wm) (1−wr)
},

as well as the fact that for every i

ℓ(Ci) ≤ max
C∈C

|ℓ(C)|

and that
2n∑
i=1

p̃wi = 1,

we can deduce that

−max
m,r

1

wm (1−wr)
·max
C∈C

|ℓ(C)| ≤ ∂2

∂wj∂wl
EC∼ϕw [ℓ(C)]

≤ max
m,r

max{ 1

wmwr
,

1

(1−wm) (1−wr)
}max
C∈C

|ℓ(C)| .
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Consequently,∣∣∣∣ ∂2

∂wj∂wl
EC∼ϕw [ℓ(C)]

∣∣∣∣ ≤ max
m,r

max{ 1

wmwr
,

1

(1−wm) (1−wr)
,

1

wm (1−wr)
}max
C∈C

|ℓ(C)| .

(D.9)
By (D.9), for every j,

ρB(w) ≥
n∑

l=1,l ̸=j

∣∣∣∣ ∂2

∂wj∂wl
EC∼ϕw [ℓ(C)]

∣∣∣∣ ,
and hence ∇2EC∼ϕw [ℓ(C)] + ρB(w)I is diagonally dominant. Since every diagonally
dominant matrix is positive semi-definite, it follows that

∇2EC∼ϕw [ℓ(C)] + ρB(w)I ⪰ 0

and therefore
λmin

(
∇2EC∼ϕw [ℓ(C)]

)
≥ −ρB(w).

For similar reasons, ρB(w)−∇2EC∼ϕw [ℓ(C)] is also diagonally dominant, and hence

ρB(w)I −∇2EC∼ϕw [ℓ(C)] ⪰ 0,

which leads to
λmax

(
∇2EC∼ϕw [ℓ(C)]

)
≤ ρB(w).

2

Proof of Theorem 7.1. The result follows immediately from (Zhang and He, 2018, Corollary

3.1), with the parameters ρ =
n
(
k2 + k − 1

)
c2

· max
C∈Ck

|ℓ(C)| (as proven in Corollary 7.1), L =

k1.5

c
max
C∈Ck

|ℓ(C)| (proven in Lemma 7.1), T1/2ρ(w0) ≤ max
C∈Ck

ℓ(C), Tmin ≥ min
C∈Ck

ℓ(C).

Using the fact that c ≤ c̃

n− k
, where c̃ is independent of n, yields that particular result. 2

Proof of Theorem 7.2. The result follows immediately from (Zhang and He, 2018, Corollary 3.1),

with the parameters ρ = n
1

c2
max
C∈C

|ℓ(C)| (as proven in Corollary 7.1), L2 =
2n

c
max
C∈C

ℓ(C)2 (proven

in Lemma 7.2), T1/2ρ(w0) ≤ max
C∈Ck

ℓ(C), Tmin ≥ min
C∈Ck

ℓ(C). 2

Proof of Theorem 7.3. Note that

min
i∈{1,...,m}

ℓ(Ci)− EC∼DwR
[ℓ (C)] ≥ δ ⇔ ℓ(Ci)− EC∼DwR

[ℓ (C)] ≥ δ ∀i.

By Hoeffding’s inequality, for all i,

P
(
ℓ(Ci)− EC∼DwR

[ℓ (C)] ≥ δ
)
≤ exp

{
− δ2

2 (u− l)

}
.

Since C1, . . . , Cm are i.i.d,

P
(

min
i∈{1,...,m}

ℓ(Ci)− EC∼DwR
[ℓ (C)] ≥ δ

)
= P

(
ℓ(Ci)− EC∼DwR

[ℓ (C)] ≥ δ
)m

≤ exp

{
− mδ2

2 (u− l)

}
.

2
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E MIRROR DESCENT STEP CALCULATION ALGORITHMS

Let 0 < c <
1

n
. We consider the mirror descent step for all the combinations of

1. X1 := ∆c
n = {x ∈ ∆n | c ≤ xj ∀j ∈ {1, . . . , n}}

2. X2 := ∆c
n,k = {x ∈ Rn | c ≤ xj ≤ 1− c ∀j ∈ {1, . . . , n},

n∑
j=1

xj = k}

and µi : Xj → R for i ∈ {1, 2, 3} and j ∈ {1, 2}, where

1. µ1(x) =
1

2
∥x∥2.

2. µ2(x) = −
n∑
i=1

ln(xi).

3. µ3(x) =
n∑
i=1

xi ln(xi).

Lemma E.1. Let µ1 : ∆c
n → R be defined as µ1(x) =

1

2
∥x∥2. Then,

argmin
z∈∆c

n

⟨g, z⟩+ 1

α
Bµ1

(x, z) = {z∗},

where z∗ is given by

z∗i =

{
xi − α (gi + µ∗) , µ∗ ≤ xi − c

α
− gi

c, otherwise
,

and µ∗ is the unique solution of∑
i: µ>(xi−c)/α−gi

c+
∑

i: µ≤(xi−c)/α−gi

(xi − α(µ+ gi)) = 1.

Furthermore, µ∗ can be found using bisection.

Proof. We start by proving that µ∗ exists, is unique, and can be found using bisection. The function
is continuous, strictly decreasing when there exists at least one index i such that µ ≤ (1− c)/α− gi,
and ∑

i: µ>(xi−c)/α−gi

c+
∑

i: µ≤(xi−c)/α−gi

(xi − α(µ+ gi))
µ→ −∞−−−−−→ ∞,

∑
i: µ>(xi−c)/α−gi

c+
∑

i: µ≤(xi−c)/α−gi

(xi − α(µ+ gi))
µ→∞−−−−→= n · c− 1 < 0.

Therefore, µ∗ exists, is unique, and can be found using bisection.

Since ⟨g, x⟩+Bµ1
(x, z) is continuous and ∆c

n is compact, a minimizer exists. Since ⟨g, x⟩+Bµ1
(x, z)

is strongly convex, the minimizer is unique. Furthermore, due to the convexity, the KKT conditions
are sufficient.

Define the Lagrangian L : Rn × Rn+ × R,

L(z, λ, µ) = ⟨g, z⟩+ 1

2α
∥z − x∥2 + µ

 n∑
j=1

zj − 1

+

n∑
j=1

λj(c− zj).

The KKT conditions are

1. gj +
1

α
zj −

1

α
xj + µ− λj = 0 for all j ∈ {1, . . . , n}.
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2. λj(c− zj) = 0 for all j ∈ {1, . . . , n}.

3.
n∑
j=1

zj = 1.

4. zj ≥ c for all j ∈ {1, . . . , n}.

5. λ ≥ 0.

We can see that z∗, µ∗, λ∗, where λ∗ is given by

λ∗j =

0, µ∗ ≤ xj − c

α
− gj

µ∗ − xj − c

α
+ gj , otherwise

,

is a valid solution to the KKT system. Hence, z∗ is the optimal solution. 2

Lemma E.2. Let µ2 : ∆c
n → R be defined as µ2(x) = −

n∑
i=1

ln(xi). Assume that x ∈ ∆c
n. Then,

argmin
z∈∆c

n

⟨g, z⟩+ 1

α
Bµ2(x, z) = {z∗},

where z∗ is given by

z∗i = max{ 1

1/xi + α (gi + µ∗)
, c}

and µ∗ is the unique solution of
n∑
i=1

max{ 1

1/xi + α (gi + µ)
, c} = 1

on µ ∈ (max
j

− 1

αxj
− gj ,∞). Furthermore, µ∗ can be found using bisection.

Proof. We start by proving that µ∗ exists, is unique, and can be found using bisection. The function
is continuous. Additionally,

n∑
i=1

max{ 1

1/xi + α (gi + µ∗)

µ→∞−−−−→= n · c < 1,

and

n∑
i=1

max{ 1

1/xi + α (gi + µ∗)

µ→(max
j

−
1

αxj
−gj)+

−−−−−−−−−−−−−−→= ∞,

Therefore, a solution µ∗ exists.

For µ > max
j

− 1

αxj
− gj ,

1

1/xi + α (gi + µ∗)
is strictly decreasing.

Therefore, the solution µ∗ is unique on (max
j

− 1

αxj
− gj ,∞), and can be found using bisection.

Define the Lagrangian L : Rn × Rn+ × R,

L(z, λ, µ) =

n∑
i=1

((
gi +

1

αxi
+ µ− λi

)
zi −

1

α
ln(zi)

)
− µ+ c

n∑
i=1

λi.

The problem is continuous and the feasible set is compact, therefore an optimal solution exists. Since
the problem is also convex, the KKT conditions are sufficient for optimality. The KKT conditions are
given by
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1. gj +
1

αxj
+ µ− λj −

1

α

1

zj
= 0 for all j ∈ {1, . . . , n}.

2. λj(c− zj) = 0 for all j ∈ {1, . . . , n}.

3.
n∑
j=1

zj = 1.

4. zj ≥ c for all j ∈ {1, . . . , n}.

5. λ ≥ 0.

A solution to the KKT conditions is given by (z∗, λ∗, µ∗), where z∗ and µ∗ were defined above and

λ∗j =

0, z∗j > c

gj + µ∗ +
1

αxj
− 1

αc
, otherwise .

To complete the proof, we will prove that λ∗ ≥ 0. If z∗j > c, then λ∗j ≥ 0 trivially. If z∗j = c, then

1

1/xj + α (gj + µ∗)
≤ c. (E.1)

Since both sides of the inequality are non-negative, it follows that

1

αc
≤ 1

αxj
+ gj + µ∗,

and therefore
λ∗j = gj + µ∗ +

1

αxj
− 1

αc
≥ 0.

2

Lemma E.3. Let µ3 : ∆c
n → R be defined as µ2(x) =

n∑
i=1

xi ln(xi). Assume that x ∈ ∆c
n. Then,

argmin
z∈∆c

n

⟨g, z⟩+ 1

α
Bµ3(x, z) = {z∗},

where z∗ is given by
z∗i = max{xie−α(gi+µ

∗), c}
and µ∗ is the unique solution of

n∑
j=1

max{xie−α(gi+µ), c} = 1.

Furthermore, µ∗ can be found using bisection.

Proof. Note that as long as there exists an index i such that

xie
−α(gi+µ∗) > c,

the function
n∑
j=1

max{xie−α(gi+µ), c}

is strictly decreasing in µ. Furthermore,
n∑
j=1

max{xie−α(gi+µ), c}
µ→−∞−−−−−→ ∞,
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and
n∑
j=1

max{xie−α(gi+µ), c}
µ→∞−−−−→= n · c < 1.

Therefore, the value of µ∗ can be efficiently calculated using bisection.

The Lagrangian L : Rn × Rn+ × R is given by

L(z, λ, µ) = ⟨g, z⟩+
1

α

(
n∑

i=1

zi ln(zi) −
n∑

i=1

xi ln(xi) −
n∑

i=1

(ln xi + 1) (zi − xi)

)
+µ

(
n∑

i=1

zi − 1

)
+

n∑
i=1

λi (c− zi) .

Rearranging,

L(z, λ, µ) =

n∑
i=1

(
1

α
ln

(
zi
xi

)
− 1

α
+ gi + µ− λi

)
zi − µ−

n∑
i=1

λic+ const.

The problem is continuous over a compact set, and therefore, by Weierstrass’ theorem, a minimum
exists. Since the target function is convex, the KKT conditions are sufficient. The KKT conditions
are given by

1.
1

α
ln

(
zi
xi

)
+ gi + µ− λi = 0 for all i ∈ {1, . . . , n}.

2. λj(c− zj) = 0 for all j ∈ {1, . . . , n}.

3.
n∑
j=1

zj = 1.

4. zj ≥ c for all j ∈ {1, . . . , n}.

5. λ ≥ 0.

The KKT conditions are fulfilled by (z∗, λ∗, µ∗), where z∗ and µ∗ are as defined above, and λ∗ is
given by

λ∗j =


0, z∗j > c

ln

(
c

xie−α(gi+µ)

)
α

, otherwise
.

If z∗j > c, then λ∗j ≥ 0 trivially. Otherwise, by our choice of z∗j , it follows that

xie
−α(gi+µ) ≤ c,

and hence that λ∗j ≥ 0. 2

Lemma E.4. Let µ1 : ∆c
n,k → R be defined as µ1(x) =

1

2
∥x∥2, and c < min{0.5, 1/n}. Then,

argmin
z∈∆c

n,k

⟨g, z⟩+ 1

α
Bµ1

(x, z) = {z∗},

where z∗ is given by
z∗j = min{max{xj − α (gj + µ∗) , c}, 1− c}.

and µ∗ is the unique solution of
n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c} = k.

Furthermore, µ∗ can be found using bisection.
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Proof. Note that as long as there exists an index j such that

c < xj − α (gj + µ∗) < 1− c,

the function
n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c}

is strictly decreasing in µ. Furthermore, the function is continuous, and

n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c} µ→−∞−−−−−→ n · c < 1 ≤ k,

and
n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c} µ→∞−−−−→ n · (1− c) > n− 1 ≥ k.

Therefore, a solution µ∗ exists and can be found using bisection, proving the latter part of the lemma.

To see that the proposed z∗ is indeed the optimal solution, note that

Bµ1(z, x) =
1

2
∥z − x∥2 .

Therefore,

⟨g, z⟩+ 1

α
Bµ1(x, z) = ⟨g, z⟩+ 1

2α
∥z − x∥2 .

The Lagrangian L : Rn × Rn+ × Rn+ × R is given by

L(z, λ, η, µ) = ⟨g, z⟩+ 1

2α
∥z − x∥2 +

n∑
i=1

λi (c− zi) +

n∑
i=1

ηi (zi − 1 + c) + µ

(
n∑
i=1

zi − k

)
.

Rearranging,

L(z, λ, η, µ) =

n∑
i=1

(
1

2α
z2i +

(
gi −

xi
α

− λi + ηi + µ
)
zi

)
+

n∑
i=1

c·λi+
n∑
i=1

(c−1)·ηi+k·µ+
1

2α
∥x∥2 .

The function is continuous and the feasible set is compact, and hence, by Weierstrass’ theorem, a
minimizer exists. The feasible set and target function are convex, and therefore the KKT conditions
are sufficient for optimality.

The KKT conditions are given by

1.
1

α
zj + gi −

xi
α

− λi + ηi + µ = 0 for all j ∈ {1, . . . , n}.

2. λj(c− zj) = 0 for all j ∈ {1, . . . , n}.

3. ηj(zj − 1 + c) = 0 for all j ∈ {1, . . . , n}.

4.
n∑
j=1

zj = k.

5. zj ≥ c for all j ∈ {1, . . . , n}.

6. zj ≤ 1− c for all j ∈ {1, . . . , n}.

7. λ ≥ 0.

8. η ≥ 0.
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The vectors (z∗, λ∗, η∗, µ∗) are a solution to the KKT system, where z∗ and µ∗ were defined above,
λ∗ is given by

λ∗j =

{
0, z∗j > c
c− xj
α

+ gj + µ∗, otherwise
,

and η∗ is given by

η∗j =

{
0, z∗j < 1− c
xj − 1 + c

α
− gj − µ∗, otherwise

.

λ∗j ≥ 0 trivially when z∗j > c. When z∗j = c, it implies

xj − α (gj + µ∗) ≤ c,

and hence
λ∗j =

c− xj
α

+ gj + µ∗ ≥ 0.

Likewise, η∗j ≥ 0 trivially when z∗j < 1− c. When z∗j = 1− c, it implies

xj − α (gj + µ∗) ≥ 1− c,

and hence
η∗j =

xj − 1 + c

α
− gj − µ∗ ≥ 0.

2

Lemma E.5. Let µ2 : ∆c
n,k → R be defined as µ2(x) = −

n∑
i=1

ln(xi). Assume that c <

min{0.5, 1/n}. Then,

argmin
z∈∆c

n

⟨g, z⟩+ 1

α
Bµ2

(x, z) = {z∗},

where z∗ is given by

z∗i = min{max{ 1

1/xi + α (gi + µ∗)
, c}, 1− c}

and µ∗ is the unique solution of
n∑
i=1

min{max{ 1

1/xi + α (gi + µ)
, c}, 1− c} = k

on
(
max
j

− 1

αxj
− gj ,∞

)
. Furthermore, µ∗ can be found using bisection.

Proof. Note that as long as there exists an index j such that

c <
1

1/xi + α (gi + µ∗)
< 1− c,

the function
n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c}

is strictly decreasing in µ ∈
(
max
j

− 1

αxj
− gj ,∞

)
. Furthermore, the function is continuous in(

max
j

− 1

αxj
− gj ,∞

)
, and

n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c}
µ→

(
max

j
−

1

αxj
−gj

)+

−−−−−−−−−−−−−−−→ n · (1− c) < n− 1 ≥ k,
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and
n∑
j=1

min{max{xj − α (gj + µ∗) , c}, 1− c} µ→∞−−−−→ n · c < 1 ≤ k.

Therefore, a solution µ∗ exists and can be found using bisection, proving the latter part of the lemma.

Note that

Bµ2(x, z) = −
n∑
i=1

ln(zi) +

n∑
i=1

ln(xi) +

n∑
i=1

zi
xi

− n.

Therefore, the Lagrangian L : Rn × Rn+ × Rn+ × R is given by

L(z, λ, η, µ) = ⟨g, z⟩ +
1

α

(
−

n∑
i=1

ln(zi) +
n∑

i=1

zi

xi

)
+

n∑
i=1

λi(c− zi) +
n∑

i=1

ηi(zi − 1 + c) + µ

(
n∑

i=1

zi − 1

)
+ const.

Rearranging,

L(z, λ, η, µ) =

n∑
i=1

((
gi +

1

αxi
− λi + ηi + µ

)
zi −

1

α
ln(zi)

)
+ const

The feasible set is compact and the target function is continuous, and therefore, by Weierstrass’
theorem, a minimizer exists. Since the problem is convex, the KKT conditions are suffcient for
optimality. The KKT conditions are given by

1. gi +
1

αxi
− λi + ηi + µ− 1

αzi
= 0 for all j ∈ {1, . . . , n}.

2. λj(c− zj) = 0 for all j ∈ {1, . . . , n}.

3. ηj(zj − 1 + c) = 0 for all j ∈ {1, . . . , n}.

4.
n∑
j=1

zj = k.

5. zj ≥ c for all j ∈ {1, . . . , n}.

6. zj ≤ 1− c for all j ∈ {1, . . . , n}.

7. λ ≥ 0.

8. η ≥ 0.

The vectors (z∗, λ∗, η∗, µ∗) are a solution to the KKT system, where z∗ and µ∗ were defined above,
λ∗ is given by

λ∗j =

0, z∗j > c

gj +
1

αxj
+ µ∗ − 1

αc
, otherwise ,

and η∗ is given by

η∗j =

0, z∗j < 1− c
1

α (1− c)
− gj −

1

αxj
− µ∗, otherwise .

Note that since c < 0.5, z∗j = c and z∗j = 1− c are mutually exclusive, and therefore at least one of
λ∗j , η

∗
j is zero.

If z∗j > c, λ∗j ≥ 0 trivially. Otherwise, by the choice of z∗j ,

1

1/xi + α (gi + µ∗)
≤ c,

and therefore
λ∗j = gj +

1

αxj
+ µ∗ − 1

αc
≥ 0.
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If z∗j < 1− c, then η∗j ≥ 0 trivially. Otherwise, by the choice of z∗j ,

1

1/xi + α (gi + µ∗)
≥ 1− c,

and therefore
η∗j =

1

α (1− c)
− gj −

1

αxj
− µ∗ ≥ 0.

2

Lemma E.6. Let µ3 : ∆c
n,k → R be defined as µ3(x) =

n∑
i=1

xi ln(xi). Assume that x ∈ ∆c
n,k and

c < min{0.5, 1/n}. Then,

argmin
z∈∆c

n

⟨g, z⟩+ 1

α
Bµ3(x, z) = {z∗},

where z∗ is given by
z∗i = min{max{xie−α(gi+µ

∗), c}, 1− c}
and µ∗ is the unique solution of

n∑
j=1

min{max{xie−α(gi+µ
∗), c}, 1− c} = k.

Furthermore, µ∗ can be found using bisection.

Proof. Note that as long as there exists an index i such that

c < xie
−α(gi+µ∗) < 1− c,

the function
n∑
j=1

min{max{xie−α(gi+µ
∗), c}, 1− c}

is strictly decreasing in µ. Furthermore,
n∑
j=1

max{xie−α(gi+µ), c}
µ→−∞−−−−−→ n · (1− c) > n− 1,

and
n∑
j=1

max{xie−α(gi+µ), c}
µ→∞−−−−→= n · c < 1.

Therefore, the value of µ∗ can be efficiently calculated using bisection.

Note that

Bµ3(x, z) =

n∑
i=1

zi ln(zi)−
n∑
i=1

xi ln(xi)−
n∑
i=1

(ln(xi) + 1) (zi − xi)

=

n∑
i=1

zi ln(zi)−
n∑
i=1

(ln(xi) + 1) zi +

n∑
i=1

xi

=

n∑
i=1

zi ln

(
zi
xi

)
−

n∑
i=1

zi +

n∑
i=1

xi.

Therefore, the Lagrangian L : Rn × Rn+ × Rn+ × R is given by

L(z, λ, η, µ) = ⟨g, z⟩ +
1

α

(
n∑

i=1

zi ln

(
zi

xi

)
−

n∑
i=1

zi +
n∑

i=1

xi

)

+ µ

(
n∑

i=1

zi − 1

)
+

n∑
i=1

λi (c− zi) +

n∑
i=1

ηi (zi − 1 + c) .
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Rearranging,

L(z, λ, η, µ) =

n∑
i=1

((
gi + µ+ ηi − λi −

1

α
ln (xi)−

1

α

)
zi +

1

α
zi ln (zi)

)
+ const.

The feasible set is compact and the target function is continuous, and therefore, by Weierstrass’
theorem, a minimizer exists. Since the problem is convex, the KKT conditions are suffcient for
optimality. The KKT conditions are given by

1. gi + µ+ ηi − λi −
1

α
ln (xi) +

1

α
ln (zi) = 0 for all j ∈ {1, . . . , n}.

2. λj(c− zj) = 0 for all j ∈ {1, . . . , n}.

3. ηj(zj − 1 + c) = 0 for all j ∈ {1, . . . , n}.

4.
n∑
j=1

zj = k.

5. zj ≥ c for all j ∈ {1, . . . , n}.

6. zj ≤ 1− c for all j ∈ {1, . . . , n}.

7. λ ≥ 0.

8. η ≥ 0.

The vectors (z∗, λ∗, η∗, µ∗) are a solution to the KKT system, where z∗ and µ∗ were defined above,
λ∗ is given by

λ∗j =


0, z∗j > c

ln

(
c

xie−α(gi+µ
∗)

)
α

, otherwise
,

and η∗ is given by

η∗j =


0, z∗j < 1− c

ln

(
xie

−α(gi+µ∗)

1− c

)
α

, otherwise

.

Note that since c < 0.5, z∗j = c and z∗j = 1− c are mutually exclusive, and therefore at least one of
λ∗j , η

∗
j is zero.

If z∗j > c, then λ∗j ≥ 0 trivially. Otherwise, by the choice of z∗j ,

xie
−α(gi+µ∗) ≤ c.

Hence,

λ∗j =

ln

(
c

xie−α(gi+µ
∗)

)
α

≥ 0.

If z∗j < 1− c, then η∗j ≥ 0 trivially. Otherwise, by the choice of z∗j ,

xie
−α(gi+µ∗) ≥ 1− c,

and it follows that

η∗j =

ln

(
xie

−α(gi+µ∗)

1− c

)
α

≥ 0.

2

Remark E.1. If c > 0.5, the feasible set ∆c
n,k is always empty. If c = 0.5, a feasible solution exists

if and only if n = 2, in which case the only feasible solution is z = (0.5, 0.5).
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F SCALABILITY AND PERFORMANCE CONSIDERATIONS

Regarding the practicality and relevance to large-scale applications, below we provide adaptations
which may improve the performance of Algorithm 1.

F.1 THEORY-PRESERVING ADAPTATIONS

1. Permutation sampling: Sampling a permutation instead of a subset and adapting the
gradient estimator accordingly can reduce the computational cost of gradient evaluation.
While we have not yet proven this rigorously, we believe the gradient estimator bounds
would still hold. This approach may, however, increase the gradient’s variance.

2. Caching subset evaluations: Storing values of previously evaluated subsets in a hash table
can reduce redundant calculations, especially when the algorithm is close to convergence
and repeatedly samples the same subsets.

F.2 HEURISTIC ADAPTATIONS

1. Combining sampling techniques: For large k, we can integrate our approach for sampling
subsets with expected cardinality k with the method in Pervez et al. (2022). This would
yield subsets of exact size k, albeit at the cost of slightly biased gradient estimators. Given
the design of the sampling process in Pervez et al. (2022), we expect the bias of the gradient
estimator to remain low.

2. Objective evaluation for hyperparameter tuning: Direct evaluation of the objective
function is computationally expensive for large-scale problems. Instead, sampling can
be used to estimate the objective efficiently. With upper and lower bounds available, the
sampling average converges at a sub-Gaussian rate.

3. Early stopping criterion: If a sufficiently good subset is encountered during sampling,
we can terminate the process early. This approach avoids unnecessary computation and
provides a practical stopping condition for the algorithm.

G SYNTHETIC EXPERIMENTS

In this section, we present synthetic experiments for three Subset Selection tasks: Subset Sum, an
unstructured Subset Selection problem, and Sparse Least Squares. The Subset Sum experiment
evaluates the performance of our algorithm on a combinatorial problem with no evident continuous
analog. The unstructured problem assesses the effectiveness of our method in a setting devoid of
underlying structure. Lastly, the Sparse Least Squares experiment benchmarks our approach against
a continuous optimization algorithm specifically suited for that problem.

G.1 SUBSET SUM

G.1.1 SETTING

The first set of synthetic experiments focuses on the Subset Sum problem. In this problem, we are
given n numbers Y = {y1, . . . , yn ∈ R}, a subset size k, and a target value t ∈ R. The goal is to
determine whether a subset of k elements from Y exists such that the sum of the elements equals t.
The Subset Sum problem is well-known to be NP-Complete. In our synthetic setup, we set n = 10,
k = 4, and yi ∼ Uniform[0, 10] for all i ∈ {1, . . . , n}. The target t is chosen as the sum of a
randomly selected subset of size k from Y , ensuring that a solution always exists.

We evaluate the Subset Sum problem under the two settings proposed in this paper: selecting subsets
of size k = 4 exactly (formulated by (Pk)) and selecting subsets of size k = 4 in expectation
(formulated (PB)). In both cases, for any given subset C ⊆ Y , the loss function is defined as:

ℓ(C) =

∣∣∣∣∣∣
∑
y∈C

y

− t

∣∣∣∣∣∣ .
Clearly, C solves the Subset Sum problem if and only if ℓ(C) = 0.
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In the (Pk) setting, we utilize Algorithm 1 with three Bregman divergence variants outlined in
Corollary 7.1. For comparison, we implement two baseline stochastic algorithms:

1. Uniform Sampling: At each iteration, a subset is chosen uniformly at random, and the best
observed subset is returned.

2. Stochastic 1-Flip: It is based on the 1-Flip algorithm, which is discussed for example, in
Szeider (2011). Tt each step, this method randomly selects two candidate elements, one that
is not in the subset to replace the other that is in the subset.

For the (PB) model, we only compare with the uniform sampling procedure due to the lack of a
straightforward analog for the stochastic 1-Flip algorithm in this setting.

G.1.2 PARAMETER TUNING

In both settings, experiments have shown that the theoretical values of α derived in Theorem 7.1
and Theorem 7.2 yield very slow convergence rate when the Bregman divergence base function is
µ2(x) =

∑n
i=1 xi ln(xi) or µ3(x) = −

∑n
i=1 ln(xi). Consequently, we adopt larger values of α:

α = n2.5T 0.5c0.5 for µ2(x), and α = n2.5T 0.5c for µ3(x).

Although these step sizes are not directly supported by our theoretical analysis, they are strongly
inspired by it. The Hessians of µ2(x) and µ3(x) are:

∇2µ2(x) = diag
(

1

x1
, . . . ,

1

xn

)
, ∇2µ3(x) = diag

(
1

x21
, . . . ,

1

x2n

)
.

The bound on ρ derived in Lemma 7.1 and Lemma 7.2 is O
(
(mini=1,...,n xi)

−2
)

, relying on the
condition:

∇2fD(x) +O

((
min

i=1,...,n
xi

)−2
)
I ⪰ 0.

If we assume the stronger result:

∇2fD(x) +O(1) diag
(

1

x21
, . . . ,

1

x2n

)
⪰ 0,

then the values of ρ improve to O
(
1
c

)
for µ2(x) and O(1) for µ3(x). Based on the proofs of

Lemma 7.1 and Lemma 7.2, we believe that this heuristic-type assumption is reasonable. Indeed,
under this assumption, the chosen α values align with the convergence guarantees in (Zhang and He,
2018, Corollary 3.1).

G.1.3 RESULTS

The results of the Subset Sum experiments under the (Pk) setting are presented in Figure 3 and
Table 2. Figure 3 plots the function values and best observed subsets for two representative instances,
while Table 2 summarizes the outcomes of 1000 experiments. Across all configurations, the methods
implemented using Algorithm 1 significantly outperform the uniform sampling baseline.

Among the three Bregman divergence-based approaches, those utilizing µ1(x) = ∥x∥2 (Euclid-
Squared) and µ2(x) =

∑n
i=1 xi lnxi (Negative Entropy) as the base functions outperform the

Stochastic 1-Flip algorithm. However, the approach based on µ3(x) = −
∑n
i=1 ln(xi) (Minus Ln)

performs slightly worse than Stochastic 1-Flip.

Interestingly, the Negative Entropy method outperforms EuclidSquared in terms of minimizing
the function value, despite achieving poorer results in identifying the best observed subset. We
hypothesize that this discrepancy arises from the higher variability in function values exhibited by the
Negative Entropy approach during optimization. This increased fluctuation may lead to sampling
subsets from less favorable distributions at certain iterations compared to the EuclidSquared method
under equivalent conditions.
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Figure 3: Function values and best observed subset values per iteration – representative samples for
(Pk) setting

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std

CWR4 - EuclidSquared 0.1453 0.2703 3.6070 1.1614
CWR4 - Negative Entropy 0.1600 0.2938 2.8883 1.3580
CWR - Minus Ln 0.2184 0.4673 4.1556 2.0223
Uniform Sampling 0.2444 0.4740 NA NA
Stochastic 1-Flip 0.2080 0.3132 NA NA

Table 2: Average value of best observed subset and function value for 1000 subset sum instances – (Pk) setting

The results for the (PB) setting are presented in Figure 4 and Table 3. Figure 4 displays two
representative problem instances, while Table 3 provides a summary of results across multiple
experiments. All three variants of the Algorithm 1 method outperform the stochastic sampling
baseline, with the Minus Ln approach achieving the most significant improvement.

In terms of function value, the Minus Ln approach achieves substantially lower values compared to
the Negative Entropy method, with both approaches significantly outperforming the EuclidSquared
method. We hypothesize that these differences are primarily attributable to variations in the step size
parameter, which may impact the optimization dynamics for each divergence function.

Figure 4: Function Values and Best Observed Subset Values Per Iteration – Representative Samples
For (PB) Setting
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Best Observed Subset Last Iterate Function Value

Mean Std Mean Std

HIB4 - EuclidSquared 0.2691 0.3132 7.8154 1.3626
HIB4 - Negative Entropy 0.2669 0.3074 6.4315 1.2869
HIB4 - Minus Ln 0.2392 0.2645 5.7597 1.8946
Uniform Sampling 0.2783 0.3320 NA NA

Table 3: Average value of best observed subset and function value for 1000 subset sum instances – (PB) setting

G.2 UNSTRUCTURED SUBSET SELECTION

G.2.1 SETTING

In the unstructured experiment, the value of each subset is assigned independently, with values
sampled uniformly at random from the range [0, 10]. To ensure that the optimal subset value is 0, we
subtract the value of the optimal subset from all subset values. The same algorithms, iteration counts,
and step sizes as described in Appendix G.1 are used in this setting.

The unstructured nature of this experiment poses a significant challenge for algorithms that rely on
structural patterns, as little to no structure is present.

G.2.2 RESULTS

The results for the (Pk) setting are summarized in Table 4, and two representative instances are
visualized in Figure 5. The results show that the 1-Flip algorithm, which assumes a strong underlying
structure, struggles significantly in this setting while the variants of Algorithm 1 demonstrate better
performance, only the EuclidSquared version marginally outperforms the uniform sampling baseline,
and even this improvement is minimal.

These findings highlight the inherent difficulty of the unstructured problem, where information about
one subset offers no predictive insight into other subsets and very little insight regarding the value of
individual elements. This lack of interdependence severely limits the ability of algorithms to exploit
any structural advantages, resulting in diminished overall performance.

Figure 5: Function values and best observed subset values per iteration – representative samples for
(Pk) setting
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Best Observed Subset Last Iterate Function Value

Mean Std Mean Std

CWR4 - EuclidSquared 0.1975 0.2348 4.7883 0.3301
CWR4 - Negative Entropy 0.2280 0.2558 4.4261 0.8399
CWR - Minus Ln 0.2474 0.2780 4.7806 0.5236
Uniform Sampling 0.2032 0.2376 NA NA
Stochastic 1-Flip 0.3802 0.4051 NA NA

Table 4: Average value of best observed subset and function value for 1000 subset sum instances – (Pk) setting

In the (PB) setting, Figure 6 and Table 5 illustrate that all variants of Algorithm 1 struggle to
significantly reduce the function value within the allotted number of iterations. The function value
remains nearly identical to that of the uniform distribution, and the average best observed subset is
similarly close to the one produced by the uniform sampling method.

Figure 6: Function values and best observed subset values per iteration – representative samples for
(PB) setting

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std

HIB4 - EuclidSquared 0.2343 0.2350 4.9795 0.1113
HIB4 - Negative Entropy 0.2397 0.2444 4.9519 0.1551
HIB - Minus Ln 0.2389 0.2492 4.9013 0.3360
Uniform Sampling 0.2376 0.2455 NA NA

Table 5: Average value of best observed subset and function value for 1000 subset sum instances – (PB) setting

G.3 SPARSE LEAST SQUARES

G.3.1 SETTING

The final set of experiments is conducted in a Sparsity-Constrained Least Squares setting, defined as

min
x∈Rn

{
∥Ax− b∥2 subject to ∥x∥0 ≤ k

}
,

where the ∥·∥0 "norm," which counts the number of nonzero entries, is given by

∥z∥0 =

n∑
i=1

1zi ̸=0.

In each problem instance, we sample the matrix A ∈ R8×10, where each entry is independently
sampled from a standard normal distribution: Ai,j ∼ N (0, 1). The ground truth vector x̂ is generated
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by first sampling entries xi ∼ N (0, 1) independently, and then setting all but 4 randomly selected
entries of x̂ to zero. Finally, we set b = Ax̂ + ϵ, where the noise vector ϵ has entries sampled
independently from ϵi ∼ N (0, 0.1).

We apply all the algorithms and settings discussed in Appendix G.1. Additionally, in the (Pk) setting,
we also test a projected gradient descent algorithm, with a step size of 1

L , where L is the Lipschitz
constant of g(x) = ∥Ax− b∥2. The convergence properties of projected gradient descent in this
setting are discussed in Beck and Eldar (2013).

G.3.2 RESULTS

The results for the (Pk) setting are provided in Figure 7 and Table 6. Two of the three variants of
Algorithm 1 outperform all other methods, despite the relatively structured nature of the problem,
which we believe to be advantageous for an algorithm such as 1-Flip.

Figure 7: Function Values and Best Observed Subset Values Per Iteration – Representative Samples
For (Pk) Setting

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std

CWR4 - EuclidSquared 1.0559 1.3804 8.2075 8.9862
CWR4 - Negative Entropy 1.0261 1.5052 7.4930 11.3114
CWR - Minus Ln 1.2220 1.5995 10.7716 10.3118
Uniform Sampling 1.3307 1.6575 NA NA
Stochastic 1-Flip 1.0669 1.5315 NA NA
Projected Gradient Descent 3.6896 4.4379 NA NA

Table 6: Average value of best observed subset and function value for 1000 subset sum instances – (Pk) setting

In the (PB) setting, the variants of Algorithm 1 outperform the Uniform Sampling approach. Similarly
to the results for the (PB) in Appendix G.1, we can see that the best average function value result
does not necessarily translate to the best observed subset result. As before, we speculate that this is
due to fluctuations in the function value in the Minus Ln approach which are very apparent in the
sample instances illustrated in Figure 8.
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Figure 8: Function values and best observed subset values per iteration – representative samples for
(PB) setting

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std

HIB4 - EuclidSquared 8.9824 9.1402 34.6052 27.8652
HIB4 - Negative Entropy 8.6878 8.3719 32.0843 32.3746
HIB4 - Minus Ln 10.4829 10.7479 28.6632 30.8095
Uniform Sampling 10.8629 9.7982 NA NA

Table 7: Average value of best observed subset and function value for 1000 subset sum instances – (PB) setting
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