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ABSTRACT

Recent advances in deep clustering and unsupervised representation learning are
based on the idea that different views of an input image (generated through data
augmentation techniques) must either be closer in the representation space, or
have a similar cluster assignment. In this work, we leverage this idea together
with ensemble learning to perform clustering and representation learning. Ensem-
ble learning is widely used in the supervised learning setting but has not yet been
practical in deep clustering. Previous works on ensemble learning for clustering
neither work on the feature space nor learn features. We propose a novel ensemble
learning algorithm dubbed Consensus Clustering with Unsupervised Representa-
tion Learning (ConCURL) which learns representations by creating a consensus
on multiple clustering outputs. Specifically, we generate a cluster ensemble us-
ing random transformations on the embedding space, and define a consensus loss
function that measures the disagreement among the constituents of the ensemble.
Thus, diverse ensembles minimize this loss function in a synergistic way, which
leads to better representations that work with all cluster ensemble constituents.
Our proposed method ConCURL is easy to implement and integrate into any rep-
resentation learning or deep clustering block. ConCURL outperforms all state of
the art methods on various computer vision datasets. Specifically, we beat the
closest state of the art method by 5.9 percent on the ImageNet-10 dataset, and
by 18 percent on the ImageNet-Dogs dataset in terms of clustering accuracy. We
further shed some light on the under-studied overfitting issue in clustering and
show that our method does not overfit as much as existing methods, and thereby
generalizes better for new data samples.

1 INTRODUCTION

Supervised learning algorithms have shown great progress recently, but generally require a lot of
labeled data. However, in many domains (e.g., advertising, social platforms, etc.), most of the avail-
able data are not labeled and manually labeling it is a very labor, time, and cost intensive task (Xiao
et al., 2015; Deshmukh, 2019; Mintz et al., 2009; Blum & Mitchell, 1998). On the other hand, clus-
tering algorithms do not need labeled data to group similar data points into clusters. Some popular
clustering algorithms include k-means, hierarchical clustering, DBSCAN (Ester et al., 1996), spec-
tral clustering, etc., and the usefulness of each algorithm varies with the application. In this work, we
deal with the clustering of images. Traditional clustering approaches focus on hand crafted features
on which out of the box clustering algorithms are applied. However, hand crafted features may not
be optimal, and are not scalable to large scale real word datasets (Wu et al., 2019). Advancements
in deep learning techniques have enabled end-to-end learning of rich representations for supervised
learning. On the other hand, simultaneously learning the feature spaces while clustering leads to
degenerate solutions, which until recently limited end to end implementations of clustering with
representation learning approaches (Caron et al., 2018). Recent deep clustering works take several
approaches to address this issue such as alternating pseudo cluster assignments and pseudo super-
vised training, comparing the predictions with their own high confidence assignments (Caron et al.,
2018; Asano et al., 2019; Xie et al., 2016; Wu et al., 2019), and maximizing mutual information
between predictions of positive pairs (Ji et al., 2019). Although these methods show impressive per-
formance on challenging datasets, we believe taking advantage of rich ideas from ensemble learning
for clustering with representation learning will enhance the performance of deep clustering methods.
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Ensemble learning methods train a variety of learners and build a meta learner by combining the
predictions of individual learners (Dietterich, 2000; Breiman, 1996; Freund et al., 1996). In practice
they have been heavily used in supervised learning setting. Ensemble learning methods have also
found their place in clustering i.e. knowledge reuse framework (Strehl & Ghosh, 2002) where a
consensus algorithm is applied on constituent cluster partitions to generate an updated partition that
clusters the data better than any component partition individually. However, the knowledge reuse
framework and much of the consensus clustering literature that followed (Fern & Brodley, 2003;
Fred & Jain, 2005; Topchy et al., 2005) do not make use of the underlying features used to generate
the ensemble. We propose the use of consensus clustering as a way to extend ensemble methods
to unsupervised representation learning. In particular, we define a ’disagreement’ measure among
the constituents of the ensemble. The key motivation for this is that the diversity of the ensemble
drives the minimization of the disagreement measure in a synergistic way, thereby leading to bet-
ter representations. We propose Consensus Clustering with Unsupervised Representation Learning
(ConCURL ) and following are our main contributions:

1. A novel ensemble learning algorithm which learns representations by creating a consen-
sus on multiple clustering outputs generated by applying random transformations on the
embeddings.

2. Our method outperforms the current state of the art clustering algorithms on popular com-
puter vision datasets based on clustering metrics ( A.4).

3. Even though there is no labeled data available while learning representations, cluster-
ing may still be prone to be overfitting to the “training data.” As stated in Bubeck &
Von Luxburg (2007), in clustering, we generally assume that the finite data set has been
sampled from some underlying space and the goal is to find the true approximate partition
of the underlying space rather than the best partition in a given finite data set. Hence, to
check generalizability of the method proposed we also evaluate our models on the “test
data” - data that was not available during training/representation learning. Our method
is more generalizable compared to state of the art methods (i.e. it outperforms the other
algorithms when evaluated on the test set).

2 RELATED WORK

Clustering is a ubiquitous task and it has been actively used in many different scientific and prac-
tical pursuits such as detecting genes from microarray data (Frey & Dueck, 2007), clustering faces
(Rodriguez & Laio, 2014), and segmentation in medical imaging to support diagnosis (Masulli &
Schenone, 1999). We refer interested readers to these excellent sources for a survey of these uses
Jain et al. (1999); Liao (2005); Xu & Wunsch (2005); Nugent & Meila (2010).

Clustering with Deep Learning: In their influential work, Caron et al. (2018) show that it is possi-
ble to train deep convolutional neural networks with pseudo labels that are generated by a clustering
algorithm (DeepCluster). More precisely, in DeepCluster, previous versions of representations are
used to assign pseudo labels to the data using an out of the box clustering algorithm such as k-means.
These pseudo labels are used to improve the learned representation of the data by minimizing a su-
pervised loss. Along the same lines, several more methods have been proposed. For example,
Gaussian ATtention network for image clustering (GATCluster) (Niu et al., 2020) comprises four
self-learning tasks with the constraints of transformation invariance, separability maximization, en-
tropy analysis and attention mapping. Training is performed in two distinct steps, similar to Caron
et al. (2018) where the first step is to compute pseudo targets for a large batch of data and the sec-
ond step is to train the model in a supervised way using the pseudo targets. Both DeepCluster and
GATCluster use k-means to generate pseudo labels which may not scale well. Wu et al. (2019) pro-
pose Deep Comprehensive Correlation Mining (DCCM), where discriminative features are learned
by taking advantage of the correlations of the data using pseudo-label supervision and triplet mutual
information among features. However, DCCM may be susceptible to trivial solutions (Niu et al.,
2020). Invariant Information Clustering (IIC) (Ji et al., 2019) maximizes mutual information be-
tween the class assignments of two different views of the same image (paired samples) in order to
learn representations that preserve what is common between the views while discarding instance
specific details. Ji et al. (2019) argue that the presence of an entropy term in mutual information
plays an important role in avoiding the degenerate solutions. However a large batch size is needed
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for the computation of mutual information in IIC, which may not be scalable for larger image sizes
which are common in popular datasets (Ji et al., 2019; Niu et al., 2020). Huang et al. (2020) ex-
tend the traditional maximal margin clustering idea to the deep learning paradigm, by learning the
most semantically plausible clustering through minimizing a proposed partition uncertainty index.
Their algorithm PICA uses a stochastic version of the index, thereby facilitating mini-batch train-
ing. PICA fails to assign a sample-correct cluster when that sample either has high foreground or
background similarity to samples in other clusters. SCAN (Van Gansbeke et al., 2020) uses the
learnt representations from a pretext task to find semantically closest images to the given image us-
ing nearest neighbors. SCAN achieves state-of-the-art results on CIFAR-10, CIFAR-100, STL-10,
however using such priors from existing pretext tasks deviates from the main idea of our paper of
end-to-end learning. We believe however that we can benefit by using SCAN on top of the features
learnt using our algorithm to improve the clustering accuracy. Our proposed approach ConCURL is
scalable to large datasets, does not suffer from trivial solutions and shows superior performance on a
challenging set of image data sets. As shown in the experimental results, our proposed method also
generalizes well to data points that were not available during training, when compared to the above
approaches.

Self-supervised Representation Learning: Self-supervised learning is a sub-field of unsupervised
learning in which the main goal is to learn general purpose representations by exploiting user-
defined sub-tasks such as the relationship between different views of the same data. Although
self-supervised learning methods show impressive performance on a variety of problems, it is not
clear whether learned representations are good for clustering. There are many different flavors of
self supervised learning such as Instance Recognition tasks (Wu et al., 2018), contrastive techniques
(Chen et al., 2020), etc. In instance recognition tasks, each image is considered as its own cate-
gory so that the learnt embeddings are well separated. Zhuang et al. (2019) propose a novel Local
Aggregation method based on non-parametric instance discrimination tasks. They use a robust clus-
tering objective (using multiple runs of k-means) to move statistically similar data points closer
in the representation space and dissimilar data points further away. However, instance recognition
tasks usually require a large memory bank which is memory intensive. In contrastive learning (Tian
et al., 2019; He et al., 2020; Hénaff et al., 2019; Hjelm et al., 2018; Chen et al., 2020), represen-
tations are learned by maximizing agreement between different augmented views of the same data
example (known as positive pairs) and minimizing agreement between augmented views of different
examples (known as negative pairs). SimCLR (Chen et al., 2020) achieves state-of-the-art-results
without specialized architectures or a memory bank of negative pairs (usually required by contrastive
learning techniques). However, it still requires negative examples and, as it applies to instance clas-
sification, it has to compare every pair of images. These issues are addressed by Bootstrap your
own latent (BYOL) (Grill et al., 2020) and Swapping Assignments between multiple Views (SwAV)
(Caron et al., 2020). BYOL does not require negative examples and SwAV does not need to compare
every pair of images. For the main study in this paper we use BYOL as a representation learning
block and adapt the soft clustering loss which was used in SwAV to learn prototypes, thereby ad-
dressing both the issues of negative samples and need for comparing every pair of images. Note that
our proposed algorithm can use any representation learning block like SimCLR, BYOL, & SwAV
and can also use other soft clustering loss formulations.

Consensus Clustering: Strehl & Ghosh (2002) propose a knowledge reuse framework; to build an
unsupervised ensemble by using several distinct clusterings of the same data and assuming that the
underlying features that are used to compute the clustering are not available and fixed. Fern & Brod-
ley (2003) build on the cluster ensemble framework based on random projections. In this framework,
Fern & Brodley (2003) show that a single run of clustering (random projection + Expectation Max-
imization) is highly unstable. They perform multiple runs of clustering and compute an aggregated
similarity matrix which is used to cluster the data using an agglomerative clustering algorithm. Fred
& Jain (2005) propose a voting approach to map the cluster assignments in the ensemble into a new
similarity measure between clusterings. The co-association matrix thus formed can be used with
any clustering algorithm to result in a new data partition. Weighted cluster ensembles (Domeniconi
& Al-Razgan, 2009) uses Locally Adaptive Clustering (LAC) (Domeniconi et al., 2004) as a base
algorithm which assigns weights to each feature of the sample according to the local variance of data
along each dimension. Authors use LAC with different hyperparameters and propose three different
partitioning algorithms to generate consensus among LAC clusterings. Huang et al. (2017) argues
that most ensemble based methods treat all base clusterings equally and a few which weigh the base
clusterings give those weights globally. Authors propose an ensemble clustering approach based
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on cluster uncertainty (calculated by entropic criterion) and a local weighting strategy. There are
also survey papers which have in depth analysis and details of various methods used in consensus
clusteringVega-Pons & Ruiz-Shulcloper (2011); Ghosh & Acharya (2011). It is not clear how any of
these methods can be adapted when one needs to do representation learning along with clustering.
It is also not clear if one can come up with end-to-end learning architecture with any of the above
methods. In contrast, our proposed consensus clustering method ConCURL can easily be integrated
into any deep learning architecture for clustering and trained end-to-end.

3 PROPOSED METHOD

Given a set of observations X = {xi}Ni=1, the goal is to learn a representation f , cluster representa-
tions C (called as prototypes henceforth) and partition N observations into K disjoint clusters (the
value of K is assumed to be known). To check the generalization of the algorithm, the final goal
is to partition previously unseen NT observations XT = {xi}N+NT

i=N+1 into K disjoint clusters given
learnt representation f and prototypes C.

3.1 ALGORITHM

We propose a novel consensus loss to achieve the objective. Along with the novel consensus cluster-
ing loss, the loss function comprises of two more loss terms, namely a representation learning loss,
a soft clustering loss. The three loss terms share a common backbone (such as ResNet) and have
different loss specific layers after the representation layer of the backbone. Given an input batch
Xb ⊂ X of sizeB, we use different data augmentations in the image space, such as random horizon-
tal flip, etc. (more details in A.3) to generate two augmented views X 1

b ,X 2
b of the input batch. f1b , f

2
b

are representations that are corresponding to the two views of the input batch. The superscript is
used to identify the view of the input image. It’s usage will be made clear from context, and ignored
otherwise. Our algorithm is mini-batch based, and end-to-end.

3.1.1 UNSUPERVISED REPRESENTATION LEARNING

The first loss term is an unsupervised representation learning loss based on a pretext task such as
BYOL (Grill et al., 2020), SimCLR (Chen et al., 2020), etc. In this work, we use BYOL which tries
to minimize the distance between the online and target network embeddings of the two augmented
views X 1

b ,X 2
b . We denote this loss by L1. Optimizing for loss L1 alone generally results in good

representations but may not be suitable for a clustering task.

3.1.2 SOFT CLUSTERING

For the second loss term, we use a soft clustering objective. In this work, we follow the framework
presented in Caron et al. (2020), which is a centroid based technique and aims to maintain con-
sistency between the clusterings of the augmented views X 1

b and X 2
b . We store a set of randomly

initialized prototypes C = {c1, · · · , cK} ∈ Rd×K , where K is the number of clusters, and d is the
dimension of the prototypes.

We use a two layer multi-layer perceptron g to project the features f1 and f2 to a lower dimensional
space (of size d). This technique was shown to be useful in improving the representations of the
layer before the MLP (Chen et al., 2020) and thereafter used in Grill et al. (2020) and Caron et al.
(2020). The output of this MLP (referred to as embeddings) is denoted using Z1 = {z11, . . . , z1B}
and Z2 = {z21, . . . , z2B} for view 1 and view 2 respectively.

Soft clustering approaches based on centroids/prototypes often requires one to compute a measure
of similarity between the image embeddings and the prototypes (Xie et al., 2016; Caron et al.,
2020). We compute the probability of assigning a cluster j to image i using the normalized vectors
z̄1i =

z1
i

||z1
i ||

, z̄2i =
z2
i

||zi
2|| and c̄j =

cj

||cj|| as

p1
i,j =

exp( 1
τ 〈z̄

1
i , c̄j〉)∑

j′ exp( 1
τ 〈z̄

1
i , c̄j′ 〉)

, p2
i,j =

exp( 1
τ 〈z̄

2
i , c̄j〉)∑

j′ exp( 1
τ 〈z̄

2
i , c̄j′ 〉)

. (1)
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We concisely write p1
i = {p1

i,j}Kj=1 and p2
i = {p2

i,j}Kj=1. Here, τ is a temperature parameter.
Note that, we use pi to denote the predicted cluster assignment probabilities for image i (when not
referring to a particular view), and a shorthand p is used when i is clear from context.

The idea of predicting assignments p, and then comparing them with high-confidence estimates
q (referred to as codes henceforth) of the predictions is not new (Xie et al., 2016). While Xie
et al. (2016) uses pretrained features (from autoencoder) to compute the predicted assignments and
the codes, doing this in an end to end unsupervised manner might lead to degenerate solutions.
Asano et al. (2019) avoids such degenerate solutions by enforcing an equi-partition constraint (the
prototypes equally partition the data) during code computation. Caron et al. (2020) follow the same
formulation but compute the codes in an online manner for each mini-batch. The assignment codes
are computed by solving the following optimization problem

Q1 = arg max
Q∈Q

Tr(QTCTZ1) + εH(Q) and Q2 = arg max
Q∈Q

Tr(QTCTZ2) + εH(Q), (2)

where Q = {q1, . . . ,qB} ∈ RK×B+ , Q is the transportation polytope defined by

Q = {Q ∈ RK×B+ |Q1B =
1

K
1K ,Q

T1K =
1

B
1B}

1K is a vector of ones of dimension K and H(Q) = −
∑
i,j Qi,j logQi,j . The above optimization

is computed using a fast version of the Sinkhorn-Knopp algorithm (Cuturi, 2013) as described in
Caron et al. (2020).

After computing the codes Q1 and Q2, we compute the loss using the probabilities pij and the
assigned codes qij by comparing the probabilities of view 1 with the assigned codes of view 2 and
vice versa, given as

L2,1 = − 1

2B

B∑
i=1

K∑
j=1

q2
ij log p1

ij , L2,2 = − 1

2B

B∑
i=1

K∑
j=1

q1
ij log p2

ij , L2 = L2,1 + L2,2 (3)

Data Augmentation Network

Output

Figure 1: The resulting ensemble of clusterings {pi,qi, {p̃(i,m)}m}i={1,2} is represented in the
green block. L2,1, L2,2 represent soft clustering loss as in eqn. (3), L3,1, L3,2 represent consensus
loss as in eqn. (4)
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3.1.3 CONSENSUS CLUSTERING

The third loss term is the proposed consensus clustering loss. We generate a cluster ensemble by first
performing transformations on the embeddingsZ1, Z2 and the prototypesC. At the beginning of the
algorithm we randomly initializeM such transformations and fix them throughout training. Suppose
using a particular random transformation (a randomly generated matrixA), we get z̃ = Az, c̃ = Ac.
We then compute the softmax probabilities p̃ij using the normalized vectors z̃/||z̃|| and c̃/||c̃||.
Repeating this with the M transformations results in M predicted cluster assignment probabilities
for each view. When the network is untrained, the embeddings z are random and applying the
random transformations followed by computing the predicted cluster assignments leads to a diverse
set of soft cluster assignments.

There can be many clusterings for any given latent space (either by randomization introduced in the
space or different clustering algorithms). We propose to use consensus clustering so that we can
find a latent space that maximizes performance on many different clusterings. To make the method
effective, we need more diversity in the clusterings among each component of the ensemble at the
start and ideally the diversity should decrease with training and the clustering performance should
get better. Creating such a diverse ensemble leads to better representations and better clusters.

To compute the consensus loss, once the probabilities p̃ij are computed, we compare the codes
generated using (2) of view 1 with the p̃ of view 2 and vice versa, given as

L31 = − 1

2BM

B∑
i=1

M∑
m=1

K∑
j=1

q2
ij log p̃

(1,m)
ij , L32 = − 1

2BM

B∑
i=1

M∑
m=1

K∑
j=1

q1
ij log p̃

(2,m)
ij (4)

L3 = L31 + L32 (5)

The architecture for computing the ensemble and the computation of consensus loss is shown in Fig.
(1). The final loss that we sought to minimize is the combination of the losses L1, L2, L3

Ltotal = αL1 + βL2 + γL3. (6)

where α, β, γ are non-negative constants. L1 minimizes the distance between the embeddings of
different views of the input batch, L2 maintains consistency between clusterings of two augmented
views of the input batch, and L3 maintains consistency between clusterings of the randomly trans-
formed embeddings. During inference, to compute a clustering of the input images, we use the
computed assignments {qi}Ni=1 and assign the cluster index as ci = arg maxk qik for the ith data-
point. The summary of the algorithm is presented in A.2.

3.2 CHOICE OF FEATURE TRANSFORMATIONS

Table 1: Different ways to generate ensembles

Data Representation Clustering algorithms

Different data preprocessing techniques Multiple clustering algorithms (k-means, GMM,
etc)

Subsets of features Same algorithm with different parameters or initial-
izations

Different transformations of the features Combination of multiple clustering and different
parameters or initializations

Fred & Jain (2005) discuss different ways to generate an ensemble of clusterings which are tabulated
in Table 1. In our proposed algorithm, we focus on choosing of data representation to generate
cluster ensembles.

Using different clustering methods (or multiple runs from different initializations) showed success
when the goal is to aggregate the cluster partitions of the ensemble into a final partition. However,
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since our goal is to learn representations simultaneously using back-propagation, it is natural to
use a clustering algorithm in which we can update its parameters via back-propagation. It is in-
fact possible to use clustering algorithms like IIC (Ji et al., 2019) that enable parameter updates,
however, if multiple such algorithms are used to generate the ensemble, the backward computation
graph consumes an enormous amount of memory. For large datasets (and large architectures), such
techniques may not be practical. However, by using feature transformations, the amount of such
memory overhead is small.

By fixing a stable clustering algorithm, we can generate arbitrarily large ensembles by applying
different transformations on the embeddings. Random projections were successfully used in Con-
sensus Clustering previously (Fern & Brodley, 2003). By generating ensembles using random pro-
jections, we have control over the amount of diversity we can induce into the framework, by varying
the dimension of the random projection. In addition to Random Projections, we also used diago-
nal transformations (Hsu et al., 2018) where different components of the representation vector are
scaled differently. Hsu et al. (2018) illustrate that such scaling enables a diverse set of clusterings
which is helpful for their meta learning task.

4 EXPERIMENTS

We evaluated our algorithm and compared against existing work on nine popular image datasets with
a mix of high and medium resolution datasets: ImageNet-10, ImageNet-Dogs, STL10, CIFAR-10,
CIFAR100-20, CUB, Caltech-101, AwA2 and Intel Image classification. The dataset summary is
given in Table 6 (see A.1). The resolution column shows the size to which we resized the images
in our algorithm. To the best of our knowledge some of these datasets (Intel, Caltech101, CUB,
and AwA2) are being used for systematically evaluating clustering results for the first time (Section
A.5). In our comparison, we considered some recent state-of-the-art methods that directly solve for
a clustering objective in an end-to-end fashion from random initialization, and do not use any prior
information (nearest neighbors for example) derived through other pretext tasks. The metrics for
evaluation are explained in A.4.

4.1 RESULTS

In Table 2, we show the best accuracy we get for the proposed method ConCURL and compare it
against the best accuracy achieved by state-of-the-art methods. For ImageNet-10 and ImageNet-
Dogs, we trained using the train split and evaluated on the train split. For STL10, CIFAR10 and
CIFAR-100, similar to earlier approaches (Huang et al., 2020; Niu et al., 2020) we used both
train and test splits for training and evaluation. Note that PICA also uses unlabelled data split of
100k points in STL10. In all datasets ConCURL outperforms all state-of-the-art algorithms. In the
ImageNet-10 dataset, ConCURL is better by 5.9% and 21% compared to PICA and GATCluster
respectively in terms of clustering accuracy. ConCURL is better than PICA by more than 9% in
terms of NMI and by more than 11% in terms of ARI in the ImageNet-10 dataset. We beat the next-
best DCCM method by 18% in ImageNet-Dogs. We used the popular Iman and Daveport Test to
calculate the p-value for statistical significance test (Garcia & Herrera, 2008). Our proposed method
ConCURL was consistently ranked at the top for all three metrics ACC, ARI and NMI with p-value
of 1.34× 10−4 , 4.57× 10−5 and 1.45× 10−3 respectively. This shows that results presented in the
paper are statistically significant.

Table 2: Clustering evaluation metrics

Datasets ImageNet-10 ImageNet-Dogs STL10 CIFAR10 CIFAR100-20
Methods\Metrics Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

DCCM 0.710 0.608 0.555 0.383 0.321 0.182 0.482 0.376 0.262 0.623 0.496 0.408 0.327 0.285 0.173
GATCluster 0.762 0.609 0.572 0.333 0.322 0.200 0.583 0.446 0.363 0.610 0.475 0.402 0.281 0.215 0.116

PICA 0.870 0.802 0.761 0.352 0.352 0.201 0.713 0.611 0.531 0.696 0.591 0.512 0.337 0.310 0.171
ConCURL 0.922 0.877 0.852 0.452 0.447 0.288 0.728 0.634 0.554 0.720 0.608 0.520 0.385 0.377 0.223

We performed additional experiments to compare ConCURL to PICA when trained only on the
“train” split for STL-10, CIFAR-10 and CIFAR-100. From Table 3, we observe that ConCURL
achieves better clustering on all metrics. From Table 2 and 3, we can observe that increasing the data
for training improves the performance of the algorithm. In order to understand the generalization of
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the algorithm, in Table 4, we show results for the case when the models were trained only on “train”
split and evaluated on “test data” that was not used during training. We can observe that we perform
better when evaluated on the test data.

We also perform an ablation study on the affect of the losses L1, L2, L3 (see A.6) and observe that
the using consensus loss L3 almost always improves accuracy. This shows the importance of con-
sensus loss (L3) and how ensemble learning through proposed consensus helps in achieving better
clusters. Even though proposed method outperforms all state-of-the-art methods there are some as-
sumptions that we make which are same as all state-of-the-methods compared. First assumption is
that “K - number of clusters” are known and second assumption is that the data sample is equally
distributed among “K” clusters. These assumptions are important to make the methodology work
because the final layer in our case needs to know the number of clusters so that we can evaluate it
later for fair comparison with other methods. Also, the fast Sinkhorn-Knopp algorithm used to solve
Eq. 2 may not be optimal if the data samples are not equally distributed among “K” clusters.

Table 3: Clustering evaluation metrics: Models trained using only train split, and evaluation on train
split

Datasets STL10 CIFAR10 CIFAR100-20
Methods\Metrics Acc NMI ARI Acc NMI ARI Acc NMI ARI

PICA 0.494 0.424 0.297 0.559 0.510 0.402 0.295 0.273 0.138
ConCURL 0.623 0.514 0.428 0.705 0.545 0.507 0.366 0.351 0.195

Table 4: Clustering evaluation metrics: Models trained using only train split, and evaluation on test
split of the data

Datasets ImageNet-10 ImageNet-Dogs STL10 CIFAR10 CIFAR100-20
Methods\Metrics Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

PICA 1 0.758 0.724 0.602 0.375 0.399 0.208 0.484 0.422 0.293 0.559 0.504 0.393 0.291 0.276 0.138
ConCURL 0.864 0.840 0.770 0.455 0.477 0.274 0.611 0.498 0.410 0.693 0.527 0.488 0.363 0.354 0.193

4.2 EFFECT OF NUMBER OF RANDOM TRANSFORMATIONS AND EMBEDDING SIZE

In order to study the sensitivity of the algorithm to the random transformations, we performed an
ablation study for STL10 trained on the train split (Table 5). Recall that M is number of transfor-
mations used in algorithm 1 and M = 30, 50 yield good results for the two types of transformations
(random projections and diagonal transformations). We can also observe that there isn’t a large dif-
ference between results obtained using either of the transformations. The results fluctuate with a
margin of ± 0.06 and still outperform the other baselines in almost all cases. In the first column of
the Table 5, we used diagonal transformations, and varied the number of transformations. The sec-
ond column of the Table 5 contains results with a fixed dimension of random projection (=64), and
varies the number of transformations. The third column of the Table 5 contains results with a fixed
number of transformations (=100), and varies the dimension of projection (the original embedding
size is 256).

Table 5: Ablations on the number of transformations and dimension of random projections. These
results were obtained by training ConCURL on train split of STL10 for 1000 epochs.

Number of Diagonal Transformations Number of Random Projections Embedding Dimension Size
#Trans\Metrics Acc NMI ARI

10 0.567 0.514 0.373
30 0.534 0.481 0.338
50 0.582 0.525 0.397
100 0.530 0.489 0.344

PICA 0.494 0.424 0.297

#Proj\Metrics Acc NMI ARI
10 0.520 0.468 0.317
30 0.586 0.515 0.386
50 0.562 0.512 0.377

100 0.533 0.503 0.343
PICA 0.494 0.424 0.297

#dim\Metrics Acc NMI ARI
64 0.533 0.503 0.342
128 0.487 0.488 0.310
256 0.525 0.502 0.338
512 0.584 0.499 0.375

PICA 0.494 0.424 0.297
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Figure 2: NMI as a way to measure the consensus/diversity in the ensemble. The result are for
STL10 trained using the train split.

4.3 CONSENSUS AMONG EACH COMPONENT OF THE ENSEMBLE

We also measure the diversity of the ensemble at every epoch to observe the affect of consensus as
training progresses. For each component of the ensemble, we use the softmax probability estimates
p and compute cluster assignments by taking an arg max on p of each image. If there are M
components in the ensemble, we get M such cluster assignments. We then compute a pairwise
NMI (Normalized Mutual Information) (similar analysis to Fern & Brodley (2003)) between every
two components of the ensemble, and compute the average and standard deviation of the pairwise
NMI across the M(M−1)

2 pairs. We observe from Figure 2a that the pairwise NMI increases as
training progresses and becomes closer to 1. At the beginning of training, the ensemble is very
diverse (small NMI score with a larger standard deviation); and as training progresses, the diversity
is reduced (large NMI score with a smaller standard deviation).

5 CONCLUSION

In this work, we leverage the ideas in unsupervised representation learning along with ensemble
learning to perform clustering. We propose a novel ensemble learning algorithm which learns a
representation by creating a consensus on multiple clustering outputs. Our proposed method outper-
forms all state of the art methods on various computer vision datasets. We also present the issue of
overfitting in clustering and show that our method generalizes well on new data samples that were
not available during training. This work is one of the first successful applications of ensemble learn-
ing in the deep clustering domain. This idea could easily be extended to use other general purpose
representation and soft clustering algorithms than the ones used in this paper. A possible extension
can be to leverage the knowledge reuse framework of Strehl & Ghosh (2002) and use the clusterings
output by the ensemble to compute a better quality partition of the input data. We believe that en-
semble learning algorithms could also be effective in increasing robustness in clustering and we are
planning to investigate this point further.
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A APPENDIX

A.1 DATASET SUMMARY

The dataset summary is given in Table 6. For ImageNet-10 and ImageNet-Dogs are subsets of Deng
et al. (2009). We used the same classes as Chang et al. (2017) for evaluating on these two datasets.

Table 6: Dataset Summary

Dataset Classes Train Data Test Data Resolution

ImageNet-10 (Deng et al., 2009) 10 13000 500 224× 224
Imagenet-Dogs (Deng et al., 2009) 15 19500 750 224× 224

STL-10 (Coates et al., 2011) 10 5000 8000 96× 96
CIFAR10 (Krizhevsky et al., 2009) 10 50000 10000 32× 32

CIFAR100-20 (Krizhevsky et al., 2009) 20 50000 10000 32× 32
CUB (Wah et al., 2011) 200 5994 5794 224× 224

Caltech-101 (Fei-Fei et al., 2004) 101 7020 1657 224× 224
Intel 6 14034 3000 128 × 128

AwA2 AwA2(Xian et al., 2018) 50 29865 7457 224 × 224

A.2 ALGORITHM - PSEUDO CODE

The pseudo code for our algorithm is given in Algorithm 1.

Algorithm 1: Consensus Clustering algorithm (ConCURL )

Input: Dataset X = {xi}Ni=1, K,B, α, β, γ,M,d
Output: Cluster label ci of xi ∈ X

1 Randomly initialize network parameters w,K prototypes c1:K ,M random projection matricesR1:M to dimension d and e = 0;
2 while e < total epoch number do
3 for b ∈ {1, 2, . . . , bNB c} do
4 SelectB samples as Xb from X ;
5 Make a forward pass on two views of the input batch (X 1

b ,X
2
b ), and obtain the features z1

1:B , z2
1:B ;

6 Compute loss L1 which is the representation loss
7 Compute probability of ith sample belonging to the jth cluster, pi,j for both views separately, using normalized z, c eq ( 1);
8 Compute codes of the current batch q using eq (2);
9 Compute loss L2 using eq(3);

10 form ∈ {1, 2, . . . ,M } do
11 z̃, c̃←− Compute random transformations of z, c;

12 Compute probability of ith sample belonging to the jth cluster, (p̃(1,m)
i,j , p̃

(2,m)
i,j ) using normalized z̃, c̃ eq (1);

13 end
14 Compute loss L3 using eq (5) ;
15 Compute total loss using eq (6). Update the parameters, and prototypes using gradients
16 end
17 e := e+ 1

18 end
19 Make forward pass on all the data and store the features;
20 foreach xi ∈ X do
21 Compute probability of ith sample belonging to the jth cluster, pi,j using normalized zi, cj eq (1);
22 Compute codes q using eq (2);
23 ci := argmaxk qik;
24 end

A.3 IMPLEMENTATION DETAILS

We use a residual network (He et al., 2016) with 34 layers (current state of the art clustering results
Huang et al. (2020) also use the same architecture). The MLP projection head consists of a hidden
layer of size 2048, followed by batch normalization and ReLU layers, and an output layer of size
256. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0005. We imple-
mented our algorithm using the Pytorch framework and trained our algorithm using a V100 GPU,
taking 8 hours to train ImageNet-10 (13,000 training size) with a batch size of 128 for 500 epochs
using 1 GPU.

13



Under review as a conference paper at ICLR 2021

We explain the generation of multiple augmented views that are shown to be very effective in unsu-
pervised learning (Chen et al., 2020). Note that these augmented views are different from the views
of a Multi-view image data set such as Schops et al. (2017). Indeed it is possible to use more than
two augmented views, but we limit to two for the sake of simplicity. Caron et al. (2020) propose an
augmentation technique (Multi-Crop) to use more than two views. In this work, we use the augmen-
tations used in Chen et al. (2020); Grill et al. (2020). We first crop a random patch of the image with
scale ranging from 0.08 to 1.0, and resize the cropped patch to 224×224 (128×128 and 96×96 in
the case of smaller resolution datasets such as Intel and STL10 respectively). The resulting image
was then flipped horizontally with a probability of 0.5. We then apply color transformations, start-
ing by randomly changing the brightness, contrast, saturation and hue with a probability of 0.8. The
image was then changed to gray-scale with a probability of 0.2. Then we applied a Gaussian Blur
with kernel size (23×23) and a sigma chosen uniformly randomly between 0.1 and 2.0. The prob-
ability of applying the Gaussian Blur was 1.0 for view 1 and 0.5 for view 2. During evaluation, we
resized the image such that the smaller edge of the image is of size 256 (not required for STL, Intel,
CIFAR10, CIFAR100-20), and a center crop is performed with the resolution mentioned in Table 6.
The color transformations were computed using Kornia (Riba et al., 2020) which is a differentiable
computer vision library for Pytorch.

To compute the random transformations on the embeddings z, we followed two techniques. We
used random projections (Bingham & Mannila, 2001) with output dimension d, and transformed the
embeddings z to the new space with dimension d. We also used diagonal transformation (Hsu et al.,
2018) where we multiply z with a randomly generated diagonal matrix of the same dimension as z.
We initializedM random transformations at the beginning and remain fixed throughout the training.

We performed model selection on the hyperparameters of the random transformations on the em-
bedding space such as the number of random transformations M (ranging from 10 to 100) and the
dimensionality of the output space if using a random projection (we used [32, 64, 128, 256, 512]).
We evaluated the models based on the metrics mentioned in Section A.4 on the data used for training
the representations. Note that we fixed the number of prototypes to be equal to the number of ground
truth classes. It was shown however that over-clustering leads to better representations (Caron et al.,
2020; Ji et al., 2019; Asano et al., 2019) and we can extend our model to include an over-clustering
block with a larger set of prototypes (Ji et al., 2019) and alternate the training procedure between
the blocks.

A.4 EVALUATION METRICS

We evaluate our algorithm by computing traditional clustering metrics (Cluster Accuracy, Normal-
ized Mutual Information, and Adjusted Rand Index). Note that for measuring clustering metrics, the
usual approach taken in literature is to evaluate the cluster metrics on the train data. Here, we report
results on both the train data, as well as test data separately.

Cluster Accuracy The clustering accuracy is computed by first computing a cluster partition of
the input data. Once the partitions are computed and cluster indices assigned to each input data point,
the linear assignment map is computed using Kuhn-Munkres (Hungarian) algorithm that reassigns
the cluster indices to the true labels of the data. Clustering accuracy is then given by

ACC =

∑N
i=1 1{ytrue(xi) = c(xi)}

N
,

where ytrue(xi) is a true label of xi and c(xi) is the cluster assignment produced by an algorithm
(after Hungarian mapping).

Normalized Mutual Information For two clusteringsU, V , with each containing |U |, |V | clusters
respectively, and let |Ui| be the number of samples in cluster Ui of clustering U (similarly for V ) ,
Mutual Information (MI) is given by

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vi|
N

log
N |Ui ∩ Vj |
|Ui||Vj |
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where N is the number of data points under consideration. Normalized Mutual Information is
defined as

NMI(U, V ) =
MI(U, V )√

MI(U,U)MI(V, V )

Adjusted Rand Index (Hubert & Arabie, 1985; Skl) Suppose R is the groundtruth clustering and
S is a partition, the RI of S is given as follows. Let a be the number of pairs of elements that are in
the same set in R as well as in S; b be the number of pairs of elements that are in diferent sets in R,
and different sets in S. Then

RI =
a+ b(
n
2

)
ARI =

RI − E[RI]

max(RI)− E[RI]

A.5 MORE DATASETS RESULTS

In Table 7, we show evaluation metrics on other four datasets for our method on both train and test
split.

Table 7: More datasets: Clustering evaluation metrics of ConCURL on train and test splits

Datasets Intel Caltech101 CUB AwA2
Split\Metrics Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

Train 0.910 0.801 0.800 0.339 0.651 0.223 0.127 0.452 0.033 0.539 0.681 0.448
Test 0.899 0.783 0.776 0.361 0.691 0.218 0.113 0.442 0.025 0.542 0.685 0.446

A.6 ABLATION STUDY ON THE LOSSES

In this subsection, we study the effect of weights α, β and γ on the final metrics.Results for the
weight configuration corresponding to α = 1, β = 1, γ = 1 is what is shown in the main paper. For
the case of (α = 1, β = 0, γ = 0), we computed the cluster accuracy, NMI, ARI by computing the
embeddings of all the data output by the representation learning algorithm used for L1 (here Grill
et al. (2020)). Then we computed a K-means clustering on the embeddings (the target projection
layer embeddings in this case) to obtain a partition of the data, and follow the same procedure
mentioned in A.4. For all the experiments in this section, we trained only on the train split of the
datasets.

Table 8: Cluster metrics evaluation on data points that available during training

Datasets ImageNet-10 ImageNet-Dogs STL10 Intel Caltech101 CUB AwA2
Methods\Metrics Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI
α = 1, β = 0, γ = 0 0.818 0.843 0.757 0.492 0.464 0.289 0.29 0.31 0.137 0.889 0.764 0.758 0.348 0.641 0.212 0.134 0.460 0.041 0.528 0.713 0.416
α = 1, β = 1, γ = 0 0.905 0.875 0.841 0.400 0.386 0.245 0.565 0.503 0.373 0.907 0.797 0.795 0.309 0.634 0.190 0.128 0.454 0.034 0.539 0.684 0.461
α = 1, β = 1, γ = 1 0.922 0.877 0.852 0.452 0.447 0.288 0.623 0.514 0.428 0.910 0.801 0.800 0.339 0.651 0.223 0.127 0.452 0.033 0.539 0.681 0.448

Table 9: Cluster metrics evaluation on data points that were not available during training

Datasets ImageNet-10 ImageNet-Dogs STL10 Intel Caltech101 CUB AwA2
Methods\Metrics Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI
α = 1, β = 0, γ = 0 0.782 0.778 0.630 0.444 0.507 0.279 0.276 0.299 0.130 0.893 0.772 0.765 0.325 0.644 0.136 0.128 0.453 0.034 0.552 0.701 0.413
α = 1, β = 1, γ = 0 0.884 0.867 0.811 0.408 0.441 0.238 0.560 0.484 0.362 0.903 0.787 0.785 0.325 0.667 0.181 0.117 0.445 0.027 0.541 0.681 0.456
α = 1, β = 1, γ = 1 0.864 0.840 0.770 0.455 0.477 0.274 0.611 0.498 0.410 0.899 0.783 0.776 0.361 0.691 0.218 0.113 0.442 0.025 0.542 0.685 0.446

A.7 T-SNE PLOTS

In figure 3, we show t-sne plot of the ImageNet-10 embeddings obtained from ConCURL trained
model. One can clearly see the separation between various clusters with the exception of airline and
airship clusters. Airline and airship clusters are mixed together on leftmost and righmost part of the
t-sne plot.
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Figure 3: t-sne plot of ImageNet-10
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