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Abstract001

AI-generated text (AIGT) detection evasion002
aims to reduce the detection probability of003
AIGT, helping to identify weaknesses in de-004
tectors and enhance their effectiveness and re-005
liability in practical applications. With the in-006
creasing demand for AIGT detection in recent007
years, evasion techniques have gradually be-008
come a prominent research focus. Previous eva-009
sion methods have relied on manually crafted010
modification strategies, such as the selection of011
replacement words and hand-designed exam-012
ples, which requires expert domain knowledge.013
To address above limitations, we propose the014
Tree of Evading Detection (ToED). ToED em-015
ploys a two-tier mixed prompt to construct a016
tree structure that guides Large Language Mod-017
els (LLMs) in autonomously exploring optimal018
modification strategies, thereby enhancing the019
ability of AIGT to evade detection. Experimen-020
tal results demonstrate that our method effec-021
tively reduces the average detection accuracy022
of various AIGT detectors across texts gener-023
ated by different LLMs, surpassing that of three024
other baselines and achieving the best perfor-025
mance in evading detection.026

1 Introduction027

The rapid development of large language models028

(LLMs), such as GPT-4 (OpenAI, 2023), Qwen029

(Bai et al., 2023), Mistral (Jiang et al., 2023) and030

LLaMa2 (Touvron et al., 2023), has greatly en-031

hanced the ability to generate high-quality human-032

like text. As powerful tools for optimizing content033

creation, LLMs are widely applied across various034

fields, including journalism, academia, social me-035

dia, and more. However, these advancements have036

also sparked ethical concerns regarding their inher-037

ent risks, such as academic dishonesty (Wu et al.,038

2023; Zeng et al., 2024), fake news (Su et al., 2024;039

Hu et al., 2024) and false comments (Mireshghal-040

lah et al., 2024). To build the first barrier against041

such threats, developing effective techniques for042

(1) Previous prompt-based methods

Revised Text
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prompt paraphrasing

(2) Ours: ToED
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Figure 1: The comparison of our proposed ToED with
exiting prompt-based detection evasion methods. (1)
Previous prompt-based methods for evading detection
primarily relied on designing prompts to guide LLMs
to generate results directly. These simple prompts are
often insufficient for helping LLMs understand how
to modify the given text, leading to poor performance.
(2) The proposed ToED constructs a tree structure with
mixed prompts, which helps LLMs understand task re-
quirements and guides them to progressively search for
a satisfactory modification strategy.

detecting AI-generated text (AIGT) has become an 043

imperative need. 044

Existing AIGT detection methods can be broadly 045

categorized into two types. The first category, 046

statistical-based methods, detects AIGT by lever- 047

aging various statistical differences between AIGT 048

and human-written text (HWT), including entropy, 049

rank, and conditional probability (Gehrmann et al., 050

2019; Mitchell et al., 2023; Ma and Wang, 2024). 051

The second category, classifier-based methods, in- 052

volves training classifiers on large datasets that 053

contain both AIGT and human-written text to per- 054

form the detection (Yu et al., 2024; Yu et al., 2023; 055

Huang et al., 2024; Zhou et al., 2024b). 056

While AIGT detection has demonstrated promis- 057

ing performance in many scenarios, recent findings 058

suggest that many of them remain fragile under ad- 059
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versarial conditions. To determine vulnerabilities060

in AI detectors before deploying them in real-world061

applications, several studies (Krishna et al., 2023;062

Zhou et al., 2024a) have explored various evasion063

techniques. These methods aim to decrease the064

detection probability of given texts by modifying065

the text. For instance, Krishna et al. (2023) con-066

ducted paraphrasing attacks by fine-tuning T5 (Raf-067

fel et al., 2020), and Zhou et al. (2024a) proposed068

a word importance ranking strategy to determine069

substitute words and utilized a masked language070

model for synonym substitution. Although these071

methods can effectively evade detection by AIGT072

detectors, they heavily rely on manual strategies073

manually crafted modification strategies, such as074

model training approaches and the identification075

of critical words for replacement, which require076

expert domain knowledge.077

Given the excellent performance of LLMs in078

recent downstream natural language processing079

tasks, some researchers have begun exploring a new080

paradigm for evading detection using LLMs, which081

involves carefully designing prompts to guide the082

model in directly generating detection-resistant text.083

A resent study by Wang et al. (2024a) attempted to084

use three types of prompts to guide LLMs in gen-085

erating text capable of evading detection. These086

prompt included prompt paraphrasing, in-context087

learning (ICL), and character substitution. While088

their approach introduced a novel angle via prompt089

engineering, their empirical results showed that090

such prompts underperformed traditional evasion091

strategies, as demonstrated by experimental results092

in Table 2 in Wang et al. (2024a). This highlights093

a key challenge in prompt-based evasion: without094

goal-oriented guidance, LLMs often lack a clear095

objective or direction for modification when rely-096

ing solely on simple and straightforward prompts.097

To further improve the performance of prompt-098

based evasion methods, Lu et al. (2023) proposed099

substitution-based in-context example optimization100

method (SICO), which effectively leverages the101

ICL ability of LLMs to improve performance in102

evading detection. However, this approach relies103

on sentences modified by traditional methods as104

in-context examples, which means it still inherits105

the limitations of conventional evasion techniques,106

such as the need for expert knowledge.107

To address the above challenges, we aim to de-108

velop an effective text modification strategy that109

requires no human intervention, improving the effi-110

ciency and performance of AIGT detection eva-111

sion task. Therefore, we propose the Tree of 112

Evading Detection (ToED). Inspired by the Tree 113

of Thought (ToT) reasoning (Yao et al., 2023), 114

ToED aims to construct a tree structure that guides 115

LLMs in autonomously exploring optimal mod- 116

ification strategies. To this end, we design two- 117

tire mixed prompts, consisting of an ICL-based 118

low-level prompt and a feedback-based high-level 119

prompt, to guide the LLMs in effectively building 120

the tree and searching for the optimal modifica- 121

tion strategy. Specifically, the original generated 122

text serves as the root node, with different child 123

nodes representing candidate texts generated by 124

making different modifications to the parent node. 125

Each branch, consisting of several modifications, 126

represents a specific modification strategy. The 127

process begins with the construction of the ICL- 128

based low-level prompt to generate candidate texts 129

with LLM. Meanwhile, the detection probability 130

of each candidate text is yielded by a proxy detec- 131

tor. Based on the probabilities, we then design a 132

feedback-based high-level prompt to guide LLM 133

in modifying a specific candidate text, reducing its 134

detection probability. As shown in Figure 1, un- 135

like the flat, one-step prompting strategies used in 136

prior work, ToED adopts a hierarchical prompt tree 137

that enables LLMs to iteratively refine salient fea- 138

tures during the evasion process, leading to more 139

effective detection evasion. 140

We evaluate the performance of the proposed 141

ToED against four AIGT detectors on various 142

datasets. Experimental results demonstrate that 143

the performance of ToED surpasses that of three 144

other baselines, achieving the best evasion detec- 145

tion performance. Our main contributions can be 146

summarized as follows: 147

• We propose Tree of Evading Detection 148

(ToED), a tree-structured framework that en- 149

ables LLMs to simultaneously explore diverse 150

candidates and iteratively refine evasion strate- 151

gies, leading to broader coverage of the modi- 152

fication space in prompt-based evasion. 153

• We design a two-tier mixed prompt to 154

guide LLMs in effectively building the tree 155

and searching for the optimal modification 156

strategy, containing an ICL-based low-level 157

prompt for initial rewriting and a feedback 158

based high-level prompt that steers the search 159

toward low-detectability candidates. 160

• Experimental results demonstrate that our pro- 161

2



posed method effectively evades detection162

by four detectors, including chatgpt-detector163

(Guo et al., 2023), RADAR (Hu et al., 2023),164

GLTR (Gehrmann et al., 2019) and Fast-165

detectGPT (Bao et al., 2024). It reduces the av-166

erage detection accuracy of these detectors for167

text generated by different LLMs to 47.13%.168

2 Related Work169

2.1 AIGT detection methods170

Mitchell et al. (2023) proposed a text perturba-171

tion method to measure the log probabilities dif-172

ference between original and perturbed texts. Su173

et al. (2023) proposed a zero-shot method that174

measures the log-probability difference between175

original text and perturbed text using text pertur-176

bation techniques, significantly improving AIGT177

detection performance. Venkatraman et al. (2024)178

argued that humans tend to evenly distribute in-179

formation during language production, whereas180

AI-generated text may lack this uniformity. There-181

fore, they introduced uniform information density182

features to quantify the smoothness of token distri-183

bution, aiding in the identification of AI-generated184

text. These methods detected AIGT by leveraging185

various statistical differences between AIGT and186

human-written text.187

Additionally, Tian et al. (2024) introduced a188

length-sensitive multiscale positive-unlabeled loss,189

which enhanced the detection performance for190

short texts while maintaining the detection efficacy191

for long texts. These methods achieve strong detec-192

tion performance in detecting datasets belonging to193

the same domain as the training set, but usually fail194

when faced with datasets that are not in the domain195

of the training set. To enhance the generalization196

ability of model in known target domains, Verma197

et al. (2024) proposed Ghostbuster, a method that198

processes documents through a series of weaker199

language models, conducted a structured search200

over possible combinations of their features, and201

then trained a classifier on the selected features to202

predict whether the documents were AI-generated.203

These methods involved training models on large204

labeled datasets to detect AIGT. Existing detec-205

tors are capable of achieving high detection perfor-206

mance, which places higher demands on evasion207

detection methods.208

2.2 Detection evasion methods 209

To reveal vulnerabilities in AI detectors before 210

they are deployed in real-world applications, Kr- 211

ishna et al. (2023) conducted a paraphrasing attack 212

method named discourse paraphraser (DIPPER). 213

This method fine-tuned T5 (Raffel et al., 2020) by 214

aligning, reordering, and calculating control codes, 215

enabling the model to perform diverse modifica- 216

tions and paraphrasing of text without altering its 217

original meaning. Zhou et al. (2024a) proposed 218

humanizing machine-generated content (HMGC). 219

This method first trained a surrogate model based 220

on the output of the victim detector to simulate 221

the victim detector. Using adversarial detection 222

methods, it modified the text to induce errors in 223

the detection of proxy model. HMGC calculated 224

the importance score for each token, ranked them 225

to determine the candidate tokens for modification, 226

and employed a masked language model to perform 227

synonym replacement on the selected tokens. To 228

leverage the capabilities of LLMs, Lu et al. (2023) 229

proposed the substitution-based in-context example 230

optimization (SICO) method. This method guide 231

the model to generate more human-like text by us- 232

ing samples that have undergone synonym replace- 233

ment and paraphrasing as in-context examples. Al- 234

though these methods achieve good performance in 235

evading detection, using simple prompt is difficult 236

for LLMs to fully understand the task objective of 237

evading detection, and these methods still rely on 238

domain expertise. Therefore, to sufficiently lever- 239

age the reasoning capabilities of LLMs, We pro- 240

pose a novel automated evasion method ToED. Its 241

details will be introduced in the following sections. 242

3 Methodology 243

3.1 Problem Formula 244

Given a AI-generated text x, where the detection 245

probability of x is p(x). The goal of the detection 246

evasion task is to modify x into x̃, ensuring that 247

p(x̃) < σ, where σ is a hyperparameter that defines 248

the detection threshold. We define M(· | P ⊕ x) 249

as the function that modifies the text x using the 250

language model, guided by the prompt P , where ⊕ 251

denotes the concatenation operation. The prompt- 252

based detection evasion task involves designing P 253

to guide the LLM in modifying the text into x̃ = 254

M(P ⊕ x), while aiming to ensure that p(x̃) < σ. 255
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As a commoner in Yuan or Ming China, the shift in the emperor's reign 

would not have affected you much…

LLM Response…

Response 2.2

As a farmer in Yuan 

or Ming China, the 

emperor's changing 

would not have …

Response 2.1

As a peasant in Yuan 

or Ming China, the 

emperor's changing 

would not have …

Response 2.3

As a farmer in Yuan 

or Ming China, the 

emperor's changing 

would not have …

Response 3.1

…

Response 3.2

…

Response 3.3

…

Tree of Evading detection

< Instruction >

Given a text, with its current probabilities for AI-generated content 

(AI prob) or human-written content (Human prob), perform random 

word replacements, while maintaining semantic meaning, to lower 

AI prob and increase Human prob. Generate a modified text and 

output the modified text directly:

text: {given_text}

AI prob: {AI_prob}, human prob: {human_prob}, pred: {pred}

< In-Context Examples >

There are five examples of human-written text：
human-written text 1 : Recently, considerable progress has been 

made in understanding finite-size…

human-written text 2 : A time series delta(n), the fluctuation of the 

nth unfolded eigenvalue …

< Feedback >

The text with the lowest AI probability among the original and 

five modified versions is {text}. 

< Instruction >

The text, along with its corresponding AI probability, Human 

probability, and prediction, are as follows:

{text}: {given text}

AI prob: {AI prob}, human prob: {human prob}, pred: {pred} 

Continue to make word substitutions to this text while keeping the 

meaning unchanged to reduce its AI probability. Generate a 

modified text and output the modified text directly.

ICL-based low-level prompt

Feedback-based high-level prompt

Response 1 

As a peasant in Yuan or Ming China, the emperor's changing would not 

have mattered much to you. …

optimal candidate texts

Response 3.1

…

Feedback-based high-level prompt

Response 3.2

…

Response 3.3

…

Figure 2: The overall framework of ToED. ToED adopts a two-tier mixed prompt strategy to construct a tree
structure that enables progressive exploration of evasion strategies. The low-level prompt, built upon in-context
learning, provides several representative examples and a task instruction to guide the LLM in generating diverse
initial candidates. The high-level prompt incorporates both an instruction and dynamic feedback that identifies the
current candidate with the lowest detection probability, instructing the LLM to further refine it. This feedback-driven
process will be repeated multiple times until the detection probability of a candidate text falls below the threshold σ.

3.2 Tree of Evading Detection256

In this work, we propose a novel method, Tree257

of Evading Detection (ToED), to address the chal-258

lenges of evading AIGT detection effectively. Our259

method leverages the strengths of the "Tree of260

Thoughts" framework, treating candidate texts gen-261

erated by LLMs as intermediate reasoning steps262

and enabling hierarchical search over varying263

depths and widths.264

The overall framework of ToED is shown in Fig-265

ure 2. A two-tier mixed prompt system containing266

an ICL-based low-level prompt and a feedback-267

based high-level prompt is designed. First, LLMs268

generate various candidate texts under the guidance269

of the low-level prompt. Then, leveraging the feed-270

back from the proxy detector, the LLM searches271

along the current optimal candidate text under the272

guidance of the high-level prompt. Notably, if all273

current candidate texts perform poorly, ToED al-274

lows backtracking to the previous node to recon-275

struct new candidate texts. The latter process will276

be repeated multiple times until the detection prob-277

ability of a candidate text falls below the threshold278

σ, at which point it will be output as the final result. 279

3.3 Two-tier Mixed Prompts 280

ICL-based Low-level Prompt. An intuitive ap- 281

proach to evading detection with LLMs is by us- 282

ing direct prompts, which allow the model to au- 283

tonomously choose from a variety of modification 284

operations, such as synonym replacement, para- 285

phrasing, and style substitution. However, the mod- 286

ified text generated by a one-time direct prompt 287

is unlikely to reduce the detection probability. As 288

shown in Figure 3, using a one-time direct prompt 289

can even increase the detection probability of the 290

modified text to 93.99%. If we reduce the choice 291

space of language model by employing a one-time, 292

restricted direct prompt strategy that only allows 293

synonym replacement, the resulting sentence is bet- 294

ter than a one-time direct prompt, but still unlikely 295

to meet the requirement of lowering the detection 296

probability. As shown in Figure 3, we obtained a 297

sentence with a detection probability of 88.49%. 298

Therefore, we attempt to expand the model’s 299

search space by generating multiple results in one 300

go, selecting the optimal one, and further refining 301
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A + Restricted Direct Prompt: As a farmer in 
Yuan or Ming China, the emperor's succession would 
not have had much significance to you, Individuals in 
your position…

A + Direct Prompt: As a farmer in Yuan or Ming 
China, the emperor’s shifts in power likely wouldn't 
have had much impact on your life, People in your 
position…

A: As a peasant in Yuan or Ming China, the emperor‘s 
changing would not have mattered much to you, 
People in your stature…

< Case Study >

Given the text, please modify it using techniques such as 
paraphrasing, synonym replacement, and style changes to 
reduce the likelihood of the text being detected as AI-
generated.

< Direct Prompt >

Q : If I were a peasant in Yuan or Ming China, how much would 
I have known (or even cared) about the changing of the emperor?

Given the text, please modify it using synonym replacement 
to reduce the likelihood of the text being detected as AI-
generated.

< Restricted Direct Prompt >

A + ICL-based Low-level prompt: As a peasant in 
Yuan or Ming China, the emperor's changes would not 
have mattered much to you. People in your position…

46.09%

72.71%

93.99%

88.49%

Figure 3: Prompt Example and Case Study using GPT-
4o. We use a RoBERTa-based detector (Guo et al., 2023)
to provide the detection probabilities.

it. The model will continue selecting the best op-302

tion based on the detection probability after each303

prompt, ensuring that every prompt yields a better304

candidate than the previous one.305

Given the strong ICL capabilities of LLMs (Rad-306

ford et al., 2019; Brown et al., 2020; Chowdhery307

et al., 2023), in the first step of generating can-308

didates, to avoid indiscriminate modifications by309

LLM, we employ ICL to provide the model with310

few examples to guide it in modifying the text to-311

wards reducing the detection probability.312

In selecting the optimal candidate text, to avoid313

random and indiscriminate choices by the model314

and help the LLM better understand the task re-315

quirements, we provide the detection probability316

of each sentence as a reference. However, directly317

using the LLM to evaluate the quality of specific318

candidate texts is unreliable, as shown in Figure319

4. Therefore, we introduce a proxy detector in the320

process of evaluating the detection probabilities,321

which can accurately assess the effectiveness of the322

candidate sentences.323

As shown in the case study in Figure 3, our pro-324

posed ICL-based low-level prompt, which intro-325

< Case Study >

Please provide the sentence you'd like me to score on a 
scale of 0 to 10, where a higher score indicates the 
sentence is more likely to be detected as AI-generated.

< Score Prompt >

Human Text: The dynastic changes in China were not simply 
political changes, a peaceful passing of the mantle from one 
family to the next. They were *events* in a very profound way. 
When the Mongols conquered Song China, it was not a matter 
of two armies…

Score: 3

Machine Text: As a peasant in Yuan or Ming China, the 
emperor's changing would not have mattered much to you. 
People in your stature focused on farming, earning an 
adequate living, and supporting their families. Concerns 
about the emperor …

Score: 4

Figure 4: Score Prompt Example and Case Study using
GPT-4o.

duces in-context examples and the detection prob- 326

ability of given text, further reduces the detection 327

probability of the modified text to 46.09%. The 328

case study indicates that our proposed ICL-based 329

low-level prompt can effectively guide the LLM in 330

generating higher-quality candidate texts compared 331

to other two prompts. 332

Feedback-based High-level Prompt. It consists 333

of two components: feedback and instruction. 334

(1) Feedback. To guide the LLMs in generating 335

candidate texts in each iteration, we introduce a 336

feedback mechanism. Specifically, we first use a 337

proxy detector to score each generated candidate 338

text and use the candidate text with the lowest de- 339

tection probability as the optimal choice for the 340

next iteration. We then provide a supervised feed- 341

back signal to LLMs by introducing the phrase 342

"The text with the lowest AI probability among the 343

original and the modified versions is..." to stimulate 344

the reasoning ability of LLMs. 345

(2) Instruction. Similar to low-level prompt, the 346

instruction in high-level prompt also guide LLMs 347

to modify the text with lowest detection probability 348

based on the feedback received in new iterations 349

via restricted direct prompt. Meanwhile, the text 350

detection probability from proxy detector is pro- 351

vided to help LLMs generate better candidate texts. 352

By combining the reasoning capabilities of 353

LLMs with feedback-driven refinement, ToED 354

can generate high-quality, detection-evading texts, 355

which offers a systematic approach to optimizing 356
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text modification strategies and enhancing the eva-357

sion of AIGT detection systems.358

4 Experiment359

4.1 Experiment Setting360

Datasets. To evaluate the performance of ToED361

in modifying texts generated by various LLMs, we362

use the M4 (Wang et al., 2024b) and RAID (Dugan363

et al., 2024) as the benchmark datasets. M4 is364

multigenerator, multi-domain, and multi-lingual365

corpus for the AIGT detection task. We sample366

500 examples from Reddit Davinci (R-Davinci)367

and Reddit ChatGPT (R-ChatGPT) (Ouyang et al.,368

2022) respectively, with each sample consisting of369

500 human-written texts and 500 AIGT samples.370

Additionally, RAID is also the latest AIGT detec-371

tion dataset, including over 6 million generations372

spanning 11 models, 8 domains, 11 adversarial373

attacks, and 4 decoding strategies. In this paper,374

We sample 500 human-written texts and 500 texts375

generated by LLaMA2-70B-Chat (Touvron et al.,376

2023) and GPT-4 (OpenAI, 2023) respectively.377

AIGT Detectors. We employ various AIGT de-378

tectors to evaluate the performance of ToED: (1)379

chatgpt-detector (Guo et al., 2023) is a widely used380

and powerful pretraining-based detector. (2) Radar381

(Hu et al., 2023) is a robust detector based on adver-382

sarial learning. (3) GLTR (Gehrmann et al., 2019)383

proposes three simple tests to assess whether the384

text is generated in a specific assumed manner. In385

this work, we use the most powerful Test-2 feature,386

which is the absolute rank of a word, consistent387

with Guo et al. (2023). (4) Fast-detectGPT (Bao388

et al., 2024) utilizes conditional probability cur-389

vature to elucidate discrepancies in word choices390

between LLMs and humans within a given context.391

In this study, both the sampling model and the scor-392

ing model used in the method are GPT-2 (Radford393

et al., 2019).394

Baselines. We use three evasion methods as395

baselines to evaluate the performance of ToED:396

(1) DIPPER (Krishna et al., 2023) rewrites text397

by fine-tuning T5. Following Zhou et al. (2024a),398

we employ dipper with lex=40 and order=40, the399

most effective setting in their paper. (2) HMGC400

(Zhou et al., 2024a) employs adversarial strategies401

to replace key terms critical for detection with syn-402

onyms. Consistent with the original, we compute403

the text perplexity using pythia-2.8b-deduped (Bi-404

derman et al., 2023). Additionally, the victim de-405

tector used in this method also employs chatgpt-406

detector. (3) SICO (Lu et al., 2023) guides the 407

model to generate more human-like text by using 408

samples that have undergone synonym replacement 409

and paraphrasing attacks as in-context examples. 410

In this study, we use GPT-3.5 to paraphrase text. 411

Evaluation metrics. We use the accuracy (ACC) 412

and F1 score to evaluate the performance of detec- 413

tors. In our experiments, lower values indicate 414

better evasion performance. 415

Implementation Setting. In our experiments, 416

we conduct experiments using Grok-beta (xAI 417

team, 2024) and GPT-3.5, respectively. And 418

chatgpt-detector is employed as proxy detector 419

across all scenarios. We set the detection threshold 420

σ = 0.5. The maximum number of iterations for 421

the tree is set to 10, and the number of candidate 422

texts generated per iteration is set to 4. By default, 423

we provide 5 human-written texts as in-context 424

examples in our experiments. The modification 425

process terminates when the detection probability 426

of a candidate text is lower than σ, or when the 427

maximum number of iterations is reached. We 428

evaluate the performance of each detector on 8GB 429

RTX 4090, with a batch size of 1 for the test set. 430

4.2 Main Results 431

We compare our method with three baselines across 432

four datasets, as shown in Table 1. ToED consis- 433

tently outperforms the other baselines by causing 434

a greater reduction in the average detection accu- 435

racy of the four detectors across all datasets. No- 436

tably, when using Grok-beta, the average detection 437

performance across all four datasets drops below 438

50%, with a decrease of approximately 30% in 439

detection accuracy compared to the original texts. 440

We believe that DIPPER lacks targeted design for 441

the characteristics of the detectors, which results 442

in its mediocre performance in evasion detection 443

tasks. HMGC is adversarially optimized against 444

a target detector, ensuring that the modified text 445

can evade detection by that specific detector. How- 446

ever, it exhibits poor generalization to unseen de- 447

tectors. As shown in Table 1, when optimizing 448

GPT-4-generated text, the accuracy of the target de- 449

tector (chatgpt-detector) drops to 50%, indicating 450

complete evasion. Nevertheless, the optimized text 451

remains detectable by other detectors. For example, 452

the detection accuracy of fast-detect decreases by 453

only 0.1%. As for the SICO, We argue that such 454

directly generated evasion methods do not alter 455

the underlying probability distribution of the gen- 456

erated text and thus retain intrinsic characteristics 457
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Dataset Method
Orignal DIPPER HMGC SICO ToED (ours)

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

R-Davinci

chatgpt-detector 69.40 56.41 94.70 94.45 49.60 0.00 54.90 19.03 49.90 1.18
Radar 80.10 76.11 70.30 59.59 82.00 78.87 60.50 38.00 64.60 47.79
GLTR 68.17 45.58 71.82 46.10 67.04 45.64 27.80 26.14 10.30 10.24

fast-detectGPT 72.00 77.95 72.50 78.43 71.30 77.28 46.40 47.14 86.50 85.56

R-ChatGPT

chatgpt-detector 93.00 92.54 96.60 6.51 49.60 0.00 55.10 19.68 50.09 5.03
Radar 95.90 95.86 81.80 78.59 96.30 96.28 67.40 53.82 71.20 61.29
GLTR 68.00 45.38 69.72 46.10 62.75 45.25 30.80 28.48 11.40 11.38

fast-detectGPT 72.50 78.43 72.50 78.43 69.90 75.90 47.30 48.48 82.70 81.46

LLama2

chatgpt-detector 76.70 69.62 75.80 68.07 50.00 0.00 50.00 0.00 50.00 0.00
Radar 72.10 61.83 70.10 57.95 79.10 73.91 50.08 5.02 57.90 28.52
GLTR 64.83 60.31 90.23 80.23 63.83 59.40 40.10 32.22 37.40 27.59

fast-detectGPT 85.00 86.70 85.90 87.60 84.90 86.60 62.60 58.63 6.30 0.64

GPT-4

chatgpt-detector 54.90 17.85 66.30 49.17 50.00 0.00 50.00 0.00 50.00 0.00
Radar 84.60 82.01 97.70 97.67 84.60 82.00 74.80 66.75 69.40 56.53
GLTR 86.53 78.36 96.73 86.69 86.51 78.26 63.70 63.30 38.30 29.17

fast-detectGPT 73.20 73.41 82.80 84.42 73.10 73.29 42.60 18.23 17.02 13.39
Average 76.06 68.65 80.97 68.75 70.03 54.54 51.51 32.81 47.13 28.74

Table 1: The effectiveness of detection evasion methods across different detectors for various LLMs.

of machine-generated content. For example, on458

GPT-4-generated text, applying SICO results in de-459

tection accuracies of 63.70% for GLTR and 42.60%460

for Fast-detectGPT, both of which are higher than461

the accuracies achieved by our method, which are462

38.30% and 17.02%, respectively. As a result, their463

performance tends to be limited when attempting464

to evade statistical-based detectors.465

4.3 Ablation Study466

Effectiveness Validation of the Mixed Prompts.467

We validate the effectiveness of the mixed prompt468

through ablation experiments. As shown in Ta-469

ble 2, "w/o ICL" represents removing in-context470

examples in low-level prompt and directly using471

instructions to guide the LLM for text modification.472

"w/o Feedback" represents removing the feedback473

component from the high-level prompt. The results474

show that removing the in-context examples gener-475

ally leads to an increase in average evade detection476

performance form 47.13% to 50.79%, demonstrat-477

ing that the LLM is able to understand the task478

objectives under the guidance of ToED. Addition-479

ally, removing feedback results in an increase of480

both accuracy and F1 score, which demonstrates481

that the LLM can benefit from the feedback pro-482

vided by the proxy detector.483

Performance Validation of Different Proxy484

Detectors. We conduct experiments using the ro-485

R-Davinci R-ChatGPT Llama2 GPT-4
Comparison of average results using grok-beta
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Figure 5: Comparison of results of ToED with different
proxy detectors.

bust detector RADAR as the proxy detector, with 486

the results shown in Figure 5. We find that using 487

different proxy detectors can effectively reduce the 488

average detection accuracy, but the choice of proxy 489

detector significantly impacts the evasion effective- 490

ness. Experiments show that the average detection 491

accuracy with chatgpt-detector is consistently bet- 492

ter than with the robust detection model RADAR. 493

We believe that chatgpt-detector offers sufficiently 494

informative feedback for the LLM to grasp the task 495

objective, while more advanced proxy detectors 496

may hinder the LLM’s ability to discover an effec- 497

tive modification strategy. This result aligns with 498

our previous observation, confirming that the LLM 499

adapts its modification strategy according to the 500

feedback from different proxy detectors, leading to 501
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Dataset Method
Grok-beta

ToED ToED w/o Feedback ToED w/o ICL
AUROC F1 AUROC F1 AUROC F1

R-Davinci

chatgpt-detector 49.90 1.18 49.60 0.00 49.60 0.00
Radar 64.60 47.79 65.00 48.68 60.90 39.00
GLTR 10.30 10.24 10.00 9.93 9.20 9.08

fast-detectGPT 86.50 85.56 86.10 85.10 89.20 88.68

R-ChatGPT

chatgpt-detector 50.09 5.03 49.50 9.66 48.40 5.84
Radar 71.20 61.29 70.40 59.78 67.60 54.24
GLTR 11.40 11.38 11.20 11.18 8.70 8.55

fast-detectGPT 82.70 81.46 89.29 82.09 93.22 84.71

LLama2

chatgpt-detector 50.00 0.00 50.00 0.00 50.00 0.00
Radar 57.90 28.52 58.30 29.68 58.60 30.54
GLTR 37.40 27.59 37.50 27.78 46.00 41.33

fast-detectGPT 6.30 0.64 7.70 6.50 7.40 1.91

GPT-4

chatgpt-detector 50.00 0.00 50.00 0.00 50.00 0.00
Radar 69.40 56.53 68.80 55.30 80.90 76.68
GLTR 38.30 29.17 38.30 29.17 73.90 73.90

fast-detectGPT 17.02 13.39 16.60 12.76 19.07 23.11
Average 47.13 28.74 47.40 29.23 50.79 33.60

Table 2: Ablation study of mixed prompts.

Dataset Grok-beta GPT-3.5
ACC F1 ACC F1

R-Davinci 52.83 36.19 53.97 48.09
R-ChatGPT 54.05 39.79 49.60 45.70

Llama2 37.90 14.19 69.00 54.12
GPT-4 43.73 24.77 60.05 39.53

Average 47.73 28.74 58.15 48.86

Table 3: Comparison of results using different LLMs.

varying attack performance.502

Performance Validation of Different LLMs.503

As shown in Table 3, we compare the performance504

of different LLMs used in ToED and find that Grok-505

beta outperforms GPT-3.5 in most cases. This indi-506

cates that as the capabilities of the LLMs improve,507

the performance of ToED will also enhance. No-508

tably, when detecting texts generated by ChatGPT,509

using ChatGPT for evading detection yields better510

performance than using Grok. This indicates that511

modifying texts with the same LLM as the one used512

for generation is more effective than using a more513

advanced LLM for modification.514

Additionally, we analyze the impact of the num-515

ber of candidate texts generated per iteration. Ex-516

perimental results show that performance of ToED517

improves as the number of candidates increases.518

Detailed results can be found in Appendix A.519

5 conclusion 520

In conclusion, we propose a novel prompt-based de- 521

tection evasion method ToED. The crux of ToED is 522

to build a tree structure with two-tier mixed prompt 523

to search for a satisfactory modification strategy, 524

improving the detection evasion ability of AIGT. 525

The two-tier mixed prompt consist of an ICL-based 526

low level prompt and a feedback-based high level 527

prompt. The former consists of several in-context 528

examples and an instruction, used to guide the LLM 529

in generating candidate texts. The latter includes 530

a feedback and an instruction. The feedback re- 531

veals the text with the lowest detection probability 532

among all previous candidate texts, and the instruc- 533

tion guides the LLM to modify this specific text. 534

Our extensive experiments on evasion demonstrate 535

the superior performance of ToED, which signifi- 536

cantly reduces the detection capabilities of virous 537

existing AIGT detectors among texts generated by 538

different LLMs. 539

Limitations 540

ToED requires multiple API calls, which may lead 541

to increased costs. In addition, experimental results 542

show that using proxy detectors to provide feed- 543

back can effectively reduce the average detection 544

accuracy across multiple detectors. However, since 545

each modification requires the proxy detector to 546
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evaluate the text, this incurs additional resource547

consumption and reduces the overall practicality548

of the method. Future work will explore more549

lightweight and user-friendly alternatives.550

Ethics Statement551

The primary objective of this paper is not to pro-552

vide techniques for evading AIGT detection sys-553

tems, but rather to expose vulnerabilities in current554

detection mechanisms. With the widespread adop-555

tion of LLMs, adversaries can more easily lever-556

age these models to generate detection-resistant557

text through carefully crafted prompts. This study558

aims to call upon the research community to priori-559

tize the development of more robust text detection560

methods to address these emerging challenges. We561

firmly believe that with increased attention and ef-562

forts toward this issue, the research community563

can devise more sophisticated and effective tech-564

niques to enhance the robustness and reliability of565

machine-generated text detection systems in the566

face of evolving adversarial threats. We affirm that567

all research activities strictly adhere to academic568

ethics and privacy protection principles. All data569

used complies with relevant laws and regulations570

and does not infringe upon the rights of any indi-571

viduals or organizations.572
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A The Impact of the Number of772

Candidate Texts Generated Per773

Iteration.774

As shown in Figure 6, increasing the number of775

candidates text enables the model to search more776

modification strategies, which can enhance evade777

detection performance by identifying an effective778

modification. However, when the number of gen-779

erated candidate texts is too large, it also make it780

difficult for the LLM to find an effective modifica-781

tion strategy, leading to a decrease in performance.782

This is consistent with the analysis presented above.783

R-davinci R-chatgpt LLama2 gpt4
Different Datasets using grok-beta

30

35

40

45

50

55

AC
C

number=1
number=2
number=3

number=4
number=5

Figure 6: The average ACC of ToED using Grok-beta
across four LLMs as the number of candidate texts gen-
erated per iteration increases.

784

11

https://doi.org/10.1109/LSP.2024.3394264
https://doi.org/10.1109/LSP.2024.3394264
https://doi.org/10.1109/LSP.2024.3394264

	Introduction
	Related Work
	AIGT detection methods
	Detection evasion methods

	Methodology
	Problem Formula
	Tree of Evading Detection
	Two-tier Mixed Prompts

	Experiment
	Experiment Setting
	Main Results
	Ablation Study

	conclusion
	The Impact of the Number of Candidate Texts Generated Per Iteration.

