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ABSTRACT

Audio watermarking provides an effective approach for tracing and protecting
synthetic audio content. Traditional methods often apply watermarking as a post-
processing step, which makes the watermark vulnerable to removal or degradation
through signal processing or code editing. To address these issues, our paper
introduces GenMark, a novel approach that embeds watermarks directly into the
decoder of neural audio generation models during training. Our approach combines
time-frequency perceptual losses, a mask-based localization model, and adversarial
training to ensure high audio quality and watermark robustness. Experimental re-
sults on speech and music generation tasks demonstrate superior detection accuracy
(TPR: 99.9% for speech, 100.0% for music). GenMark also preserves perceptual
quality with less than 2% degradation in MUSHRA scores, establishing it as a
strong candidate for practical and secure watermarking in generative audio systems.
The replication package can be accessed at the anonymous link.1

1 INTRODUCTION

With the rapid advancement and increasing accessibility of generative audio technologies (Xiang
et al., 2017; You et al., 2021; Wang et al., 2023; Borsos et al., 2023; Suno, 2023; Copet et al.,
2024), concerns about the abuse of synthetic speech are growing. Modern speech synthesis models
like deepfake technology (Shaaban et al., 2023) enable voice cloning that could manipulate public
discourse (News, 2024), damage individual reputations (Findlay, 2025), or compromise national
security (Canadian Security Intelligence Service, 2023). These risks highlight the critical need for
effective detection tools and traceability measures to verify the authenticity of synthetic audio and
enforce accountability.

In such cases, audio watermarking serves as an effective solution by embedding imperceptible identi-
fiers to trace model-generated audio, which effectively prevents malicious users’ misuse of synthetic
audio. Current mainstream audio watermarking methods embed watermarks directly into audio
signals. In audio generation scenarios, it requires first generating audio by a generation model and
then embedding a watermark into the generated audio. However, the post-processing watermarking
strategy poses a serious security risk: malicious users can take control of the watermarking embedding
process. By circumventing the watermark embedding stage, they are able to produce unwatermarked
audio and exploit it in illicit scenarios (Wen et al., 2025; O’Reilly et al., 2025). This poses a huge
challenge to the regulation of synthetic audio. Moreover, audio generation poses unique challenges
for watermarking, such as dealing with intricate frequency patterns and ensuring that the watermark
stays reliable without affecting audio quality (Salah et al., 2025). These difficulties make it hard to
embed robust and imperceptible watermarks.

To address these issues, we propose GenMark, a novel in-process injection watermark method that
embeds the watermark during the audio generation process. GenMark improves traditional post-
generation watermarking by directly generating audio with embedded watermarks. Unlike traditional
post-generation watermarking methods, GenMark allows direct generation of audio with embedded
watermarks. This prevents malicious attackers from manipulating the watermarking process and
ensures reliable regulation of synthetic audio. Instead of modifying the entire generation pipeline, we
focus only on the decoder, which converts tokens into audio samples. This choice enables efficient

1https://anonymous.4open.science/r/Gen-Mark-1F27
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integration while maintaining generation quality. GenMark leverages joint time-frequency losses to
improve perceptual audio quality and incorporates a mask model to enhance watermark robustness
and location accuracy. In addition, it adopts GAN-based training to enhance the imperceptibility of
the watermark. As a result, the generated waveforms inherently encode persistent and identifiable
watermark signatures, regardless of input prompts or decoding parameters.

We evaluate GenMark using four state-of-the-art watermarking models, WavMark (Chen et al., 2024),
AudioSeal (San Roman et al., 2024),and SilentCipher (Singh et al., 2024) on both speech and music
generation tasks. In terms of audio quality, GenMark consistently achieves lower Frechet Audio
Distance (FAD) and Kullback-Leibler Divergence (KLD) scores across multiple datasets, indicating
minimal perceptual and distributional distortion. It also maintains strong semantic alignment, outper-
forming baselines on the CLAP metric. For detection, we report TPR, FPR, and decode accuracy. Our
method outperforms baselines in both detection and watermark recovery. To evaluate robustness, we
subject watermarked audio to 12 common audio transformations and adversarial attacks, comparing
the decoding error rates with those of WavMark, AudioSeal, and SilentCipher. Besides, subjective
MUSHRA evaluations further confirm that GenMark preserves perceptual quality and the ablation
studies show that each component of GenMark contributes to the balance between fidelity, robustness,
and detection precision. We summarize contributions as follows:

• We propose GenMark, a novel framework that embeds inaudible watermarks directly into generative
audio models during training.

• GenMark introduces a multi-scale discriminator and a mask model to improve audio quality and
watermark robustness.

• Experiments show near-perfect detection rates (TPR: 99.9% for Bark, 100.0% for MusicGen) with
FPR ≤0.1%. GenMark maintains low decoding error rates under 12 distortions and less than 2%
perceptual degradation in MUSHRA tests, outperforming state-of-the-art baselines.

2 PRELIMINARIES

2.1 AUDIO GENERATION

The current neural audio generation systems follow a hierarchical processing pipeline. Multi-
modal inputs—such as text or speech prompts—are first encoded into discrete acoustic tokens
through cascaded transformer layers (Vaswani et al., 2017). These tokens serve as high-level latent
representations of the target audio. To synthesize natural-sounding waveforms, the tokens are then
passed through spectral enhancement modules, including neural vocoders (Kong et al., 2020) and
differentiable signal processing components (Engel et al., 2020). Finally, the decoder transforms the
processed acoustic tokens and synthesizes them into the final audio waves.

2.2 LOSS BALANCER

In multi-objective training settings, gradients from different loss terms can vary significantly in scale.
This imbalance may lead to unstable optimization and make the effect of each loss weight λ hard
to interpret. To address this, we adopt loss balancers inspired by EnCodec (Défossez et al., 2022),
which dynamically rescales gradient contributions based on their recent magnitude.

For each loss Li, we compute its gradient gi = ∂L
∂x̂ and track the exponential moving average of its

norm ∥gi∥β2 . Then, the rescaled gradient is,

g̃i =
R · λi∑
j λj
· gi

∥gi∥β2
. (1)

The final gradient used for backpropagation is
∑
i g̃i, instead of the original

∑
i λigi, which helps

stabilize training. The R is a reference gradient scale, and the β is a decay rate.

2.3 WATERMARK

Watermarking embeds extra information (a payload) into an audio signal in a way that is ideally
imperceptible to human listeners, yet still reliably recoverable by a detector under various distortions.
The key design goals are: Audio Quality, Robustness, Efficiency and Detection Reliability.

2
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Figure 1: Overview of the training pipeline. First, a frozen reference codec C generates clean,
unwatermarked audio, while a trainable codec Ĉ updates only its decoder to embed watermarks.
Next, losses between the clean and watermarked outputs are computed to maintain audio quality,
combining standard perceptual and adversarial terms; the discriminator is optimized with Ld, and the
message-loss weight Lm is tuned separately for effective watermark embedding. To further improve
robustness, a mask model is applied, and finally a dedicated decoder network extracts the embedded
watermark from the output. Pseudocode for the complete procedure appears in Appendix B.

In classical audio watermarking, methods often operate in transform domains (e.g. DCT, DWT,
spread-spectrum) or use echo/phase manipulation. With the rise of neural methods, watermarking
is now commonly integrated into the embedding–detection pipeline via learnable networks.The
embedder (or “encoder”) inserts the watermark signal into an audio representation, while the detector
(or “decoder”) extracts it.

3 METHODOLOGY

GenMark employs gradient steganography to embed watermark signals directly into the generative
process by optimizing the decoder component of the model. Instead of modifying the entire genera-
tion pipeline—which is often large and difficult to fine-tune—we target the decoder, the final stage
responsible for converting discrete token sequences into audio waveforms. This position makes it
particularly suitable for learning robust watermark patterns. By training the decoder to produce water-
marked audio without compromising perceptual quality, we enable direct integration of watermarking
into the model. Once trained, the decoder can be seamlessly substituted for the original one, enabling
watermark embedding without modifying the rest of the generation pipeline.

3.1 TRAIN PIPELINE

Overview. To embed watermark information m into the parameters of the decoder, we guide the
decoder’s optimization using a joint loss, which includes perceptual loss (Ltime,Lspec), adversarial
loss (Lgen,Ldisc,Lfeat), and decoding loss (Lmsg). We balance these objectives during training by
scaling their gradient contributions using the Loss Balancer 2.2. The full training pipeline consists of
four stages, as illustrated in Figure 1.

Audio generation. Firstly, we extract the compression model (also known as a codec, such as
EnCodec) from the audio generation model (e.g., Bark). The codec Ĉ consists of an encoder, a
quantizer, and a decoder, which together map raw waveforms to discrete tokens and reconstruct
audio from them. During optimization, we freeze the encoder and quantizer of Ĉ and only update its
decoder, which converts tokens into waveforms. This setup enables efficient watermark embedding
by modifying only the decoder.

Given an input audio signal wo ∈ RT , the codec Ĉ generates a watermarked version ŵ ∈ RT . For
reference, we use an untrained copy of the same codec, denoted C, to reconstruct a non-watermarked

3
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version w. Then, we simultaneously optimize for two objectives: enabling reliable watermark
decoding from ŵ, and minimizing the difference between w and ŵ to preserve audio quality.

Feature extractions. To preserve perceptual audio quality, we compute time-domain Ltimeand
frequency-domain Lspeclosses between w and ŵ. The time-domain loss constrains waveform-level
distortions, promoting time-domain alignment. The frequency-domain loss is calculated using multi-
scale Mel spectrograms, which are widely used to reflect human auditory perception and capture
perceptual differences across resolutions (Kong et al., 2020; You et al., 2021). This hybrid loss
strategy has been shown to be effective in maintaining perceptual fidelity in neural audio synthesis,
such as (Tan et al., 2024; Zhang et al., 2019; Yamamoto et al., 2020), as well as in compression
tasks (Défossez et al., 2022; Zeghidour et al., 2021).

Adversarial Perceptual Optimization. To improve audio quality and reduce perceptual artifacts, we
adopt adversarial training following prior works (Défossez et al., 2022). As illustrated in Figure 1, the
decoder of the codec serves as the generator, producing watermarked audio ŵ, while a lightweight
multi-scale discriminator distinguishes ŵ from the reference audio w. The adversarial loss for the
generator is Lgenand for the discriminator is Ldic. Similarly to previous work (You et al., 2021; Kong
et al., 2020), we also incorporate a feature-matching loss Lfeatfor the generator.

Maks Model and Watermark Injection. The watermarked audio ŵ is further processed by a
mask model M (in Section 3.4) designed to enhance robustness and enable fine-grained watermark
localization. The model comprises two components: a Localization Refinement Module, and a
Robustness Enhancement Module module. They ensures the watermark remains detectable under
common audio modifications while reducing false positives.

After that, the audio is fed to the watermark detector Ddet, which outputs Ddet(ŵ) ∈ [0, 1]18×T . The
first two dimensions of Ddet(ŵ) represent the frame-level probabilities of watermark presence, while
the remaining 16 dimensions correspond to the decoded 16-bit watermark sequence. This prediction
is then compared with the target watermark message m, and the discrepancy is used to compute
the decoding loss Lmsg, guiding the model to embed the watermark into the audio. The architecture
details of Ddet are provided in the Appendix G.

3.2 FEATURE EXTRACTIONS.

Although the primary objective is to embed watermark signals into the audio, it is crucial that the
perceptual quality of the output remains unaffected. To ensure this, the audio fidelity loss incorporates
complementary constraints across both time and frequency domains, informed by principles of human
auditory perception (Xiang et al., 2017),

Ltime = ∥w − ŵ∥1. (2)

Eq. (2) promotes robust waveform similarity while remaining minor phase variations that have
minimal perceptual impact (Engel et al., 2020).

However, as human auditory perception varies in sensitivity across different frequency ranges, op-
timization in the time domain alone may not suffice to achieve high-quality audio perception. To
address this, we introduce a Multi-scale Mel Spectrogram Loss (Gritsenko et al., 2020), which con-
strains the spectral characteristics (frequency domain feature) of the generated audio. Eq. ( 3) uses a
multi-resolution Mel-spectrogram analysis with window sizes set H = {32, 64, 128, 256, 512, 1024}.
And Sh(·) denotes the function of the Mel-spectrogram using a fixed window size h:

Lspec =
∑
h∈H

∑
i=1,2

[
∥Sh(w)− Sh(ŵ)∥i

]
. (3)

The combination of absolute difference (ℓ1) and squared difference (ℓ2) formulation balances spectral
magnitude alignment with overall distribution consistency (Gritsenko et al., 2020), reducing the
over-smoothing effects often observed in pure ℓ2 optimization (Kong et al., 2020).

3.3 ADVERSARIAL PERCEPTUAL OPTIMIZATION.

Although feature-based losses help maintain the overall perceptual quality of audio, they may not
fully capture subtle distortions or unnatural details that can still affect the quality of audio. To further

4
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enhance perceptual realism and improve watermark robustness, we adopt an adversarial training
strategy using multi-scale spectral discriminators, inspired by prior work on neural vocoders and
audio synthesis (Défossez et al., 2022; You et al., 2021; Kong et al., 2020).

The discriminator architecture follows a five-layer dilated convolutional design with dilation rates
[1, 2, 4], weight normalization, and LeakyReLU activations (α = 0.2) for stable convergence. It
processes the input across multiple spectral resolutions in parallel, using STFTs with FFT sizes
{512, 1024, 2048} and corresponding window lengths {128, 256, 512}. This multi-scale structure
enables the discriminator to capture both fine- and coarse-grained spectral artifacts, making it a strong
perceptual sensitivity.

Generator Objective. The generator G is trained to generate watermarked audio that is perceptually
indistinguishable from original signals:

Lgen = Eŵ [Ek∈K∥1−Dk(ŵ)∥1] , (4)

where K represents the STFT window size set set, andDk(·) is the discriminator output.

In addition, inspired by prior work (Kumar et al., 2019b; Kong et al., 2020; You et al., 2021; Défossez
et al., 2022), we include a feature-matching loss Lfeatencourages the generator to produce internal
representations that closely resemble those extracted from real audio by the discriminator:

Lfeat = El∈S,k∈K

[
∥Dl

k(w)−Dl
k(ŵ)∥1

E[Dl
k(w)] + ϵ

]
, (5)

where S denotes the set of discriminator layers, and Dl
k represents the output of the l-th layer of the

discriminator corresponding to an STFT window size k. The term ϵ = 10−6 is introduced to prevent
division by zero.

Discriminator Objective. The discriminator D is optimized to differentiate between real and
watermarked audio signals:

Ldic = Ew [Ek∈K∥1−Dk(w)∥1] + Eŵ [Ek∈K∥Dk(ŵ)∥1] .

By leveraging adversarial, feature-matching, and detector losses with multi-scale discriminators, the
model improves the perceptual realism of audio while enhancing the robustness of the watermark.

3.4 MAKS MODEL AND WATERMARK INJECTION

3.4.1 MAKS MODEL

In order to reduce the false positive rate, improve localization accuracy, and enhance watermark
robustness, we additionally include an enhanced mask module, which exposes the decoder to a variety
of masking patterns during training, enabling it to better distinguish true watermark signals, improve
its resilience to common audio attacks.

(1) Localization Refinement Module: To reduce false positives and improve spatial precision, we
introduce two training strategies: (a) part of watermarked segments are replaced with alternative
watermark patterns to prevent overfitting; (b) within each audio, K regions are randomly selected and
partially replaced with clean, unrelated, or silent content. These perturbations force the decoder to
learn precise localization and improve extraction accuracy by distinguishing true watermark regions
from distractors. The parameter settings are elaborated in Appendix C.

(2) Robustness Enhancement Module: To improve the watermark’s resilience to signal processing
attacks, we develop a sequential transformation pipeline that applies nine fundamental audio opera-
tions in carefully calibrated proportions, including frequency filtering, resampling, dynamic range
adjustment, echo effects, noise addition, and waveform smoothing. This transformation is commonly
used in watermark removal attacks and watermark robustness enhancement (Kirovski & Malvar,
2003; Li et al., 2024). By simulating these attacks during training, the decoder learns to maintain
watermark fidelity. The probability and parameters of each operation (e.g., frequency thresholds for
filtering, signal strength for noise addition) are carefully optimized, as outlined in Appendix D.

5
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3.4.2 WATERMARK INJECTION

To ensure stable and accurate watermark recovery, we define a message loss that guides the model to
retain the correct message content during decoding. It consists of two core components:{

Ldet =
1
T

∑T
t=1 [BCE (yt, ŷt)]

Lpayload = 1
T

∑T
t=1 [BCE (mt, m̂t)] ,

(6)

where yt ∈ {0, 1} denotes the presence of a watermark in frame t, and mt ∈ {0, 1}16 corresponds to
the ground-truth 16-bit message. The overall watermark loss function is formulated as:

Lmsg = λdetLdet + λpayloadLpayload, (7)
where λdet and λpayload balance the importance of detection accuracy and payload reconstruction.

As described in the training pipeline, the decoder D receives the masked audio output from the Mask
Model and produces a tensor D(ŵ) ∈ [0, 1]18×T , where each of the T frames contains detection and
decoding information.

4 EXPERIMENTS SETTING

Models and Datasets. We use two state-of-the-art generative models, Bark (Suno, 2023) for speech
synthesis and MusicGen (Copet et al., 2024) for musical audio generation, to insert a watermark. Train-
ing and evaluation are conducted on AudioSet (Gemmeke et al., 2017) and CommonVoice (Foundation,
2020) dataset, ensuring diverse coverage of both general acoustic environments and multilingual
speech. Since Bark requires textual prompts as input, we additionally incorporate several text-based
datasets as test cases to evaluate watermarking performance: HarvardSentences (on Subjective Mea-
surements, 1969) and LJSpeech (Ito, 2017). These setups enable a comprehensive assessment of our
watermarking method across speech and non-speech domains.

Training Configuration. All models are trained on an NVIDIA RTX 3090 GPU with an initial
learning rate of 1 × 10−4, which is gradually decreased for stable convergence. Batch sizes are
set to 24 for Bark and 16 for MusicGen, reflecting their respective computational demands. To
accommodate the inherent sampling preferences of these models, Bark is trained at 24 kHz, while
MusicGen is trained at 32 kHz. We balance our multi-objective loss using the balancer with λtime = 1,
λfreq = 6, λgen = 9, λfeat = 9, λmsg = 10 . The discriminator updates once every two epochs,
allowing the generator sufficient adaptation time and ensuring more stable adversarial training.

Baselines. GenMark is compared with several baselines: (1) AudioSeal (San Roman et al., 2024), (2)
Wavmark (Chen et al., 2024), and (3) SilentCipher (Singh et al., 2024). These methods are recognized
for their effectiveness in audio watermarking, and together, they provide a strong benchmark for
evaluating imperceptibility, robustness, and decoding accuracy across various audio conditions.

5 EXPERIMENTS RESULT

We evaluate GenMark in four key aspects: audio quality, detection accuracy, robustness, and human
perception. Specifically, we assess whether watermarking affects audio quality, measure detection
performance across different models, test robustness under common audio perturbations, and conduct
a subjective listening study to understand the impact on human listeners. In addition, we conduct
ablation studies to validate the effectiveness of key components and analyse the Mel spectrograms of
watermarks.

5.1 QUALITY OF AUDIO

To explore GenMark ’s capability to preserve perceptual and semantic quality in synthetic audio, we
evaluate the similarity between the generated watermarked audio and original audio samples based on
distributional (SISNR, KLD), perceptual (FAD, VISQOL), and semantic metrics (CLAP). A detailed
introduction to the metrics is in the appendix E.

Distributional Quality. In practice, high SI-SNR is indeed not necessarily correlated with good
perceptual quality (San Roman et al., 2024). GenMark has not specifically optimized for SISNR. But
it consistently achieves better performance in other metrics(KLD, FAD, VISQOL and CLAP)

6
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Table 1: Model comparison under perceptual (FAD/VISQOL), distributional (KLD/SI-SNR), and
semantic (CLAP) metrics.

Model HarvardSentence LJSpeech
SISNR KLD FAD VISQOL CLAP SISNR KLD FAD VISQOL CLAP

AudioSeal 24.80 0.2029 0.4533 4.6006 9.28 25.23 0.1727 0.1976 4.5919 8.67
WavMark 27.86 0.1526 1.6092 3.4278 9.15 27.48 0.1641 1.5716 3.4460 9.49
SilentCipher 48.26 0.1370 0.2936 4.5688 9.39 39.00 0.1375 0.1794 4.4247 8.81
Ours 24.25 0.1321 0.0615 4.7172 9.28 25.99 0.1364 0.0227 4.7169 8.11

Perceptual Quality. We use FAD(the lower is better) and VISQOL (the higher is better) as our
Perceptual metrics.Conceptually, FAD captures corpus-level perceptual shift, whereas VISQOL
targets utterance-level signal fidelity; GenMark performs strongly on both, attaining the lowest FAD
and highest VISQOL on HarvardSentence (0.0615 / 4.7172) and LJSpeech (0.0227 / 4.7169),
indicating preserved naturalness at both levels.

Semantic Consistency. GenMark achieves the best CLAP scores on LJSpeech (8.11), outperforming
all baselines. On HarvardSentence, it is slightly behind WavMark (9.28 vs. 9.15), but still ahead of
other methods. These results demonstrate that GenMark consistently preserves semantic alignment
while embedding watermark signals.

From these results we learn that high SI-SNR alone does not guarantee perceptual quality — GenMark
instead achieves state-of-the-art perceptual naturalness while maintaining strong semantic consistency.

5.2 DETECTION ACCURACY

To assess the efficacy of our watermarking technique, we conducted comprehensive detection ex-
periments using two prominent generative audio models: Bark and MusicGen. Bark is designed
for high-quality speech synthesis, whereas MusicGen is tailored for generating musical audio. We
generate and analyze 10,000 audio samples per method for each model to ensure statistically reliable
results. Detection performance is measured using TPR and FPR, as presented in Table 2.

Table 2: Detection results for Bark, Musicgan with
TPR, FPR and Decode Accurate (%).

Model Bark Musicgan
TPR FPR Acc TPR FPR Acc

Audioseal 100.0 0.0 95.4 100.0 0.1 73.3
Wavmark 99.8 0.0 99.8 95.2 0.1 94.4
SilentCipher 92.4 31.4 96.6 98.2 39.6 97.8
Ours 99.9 0.0 99.8 100.0 0.1 94.3

As shown in Table 2, GenMark has strong de-
tection performance. For the Bark model, our
method achieves a TPR of 99.9% with zero
false positives, while attaining perfect detec-
tion (100.0% TPR) on MusicGen with a min-
imal FPR of 0.1%. Although AudioSeal also
achieves high TPRs, especially on Bark, it shows
a noticeable drop in accuracy on MusicGen. In
contrast, our method maintains balanced perfor-
mance across both domains. WavMark exhibits
similar accuracy to our method on Bark but falls
short in TPR on MusicGen. SilentCipher’s performance is less stable overall, with high false positives
observed in both settings.

As the reaults show, Our method delivers consistently robust and precise detection across both speech
and music domains, outperforming prior approaches in stability and reliability.

5.3 ROBUSTNESS OF WATERMARK

We assess GenMark ’s robustness to real-world perturbations using Bark as the generative backbone
and 12 audio transformations. Robustness is measured by the decoding error rate (lower is better) for
each transformation. As shown in Table 3, GenMark attains the lowest error on 9 of 12 transformations
(ties counted), excelling on echo, ducking, speed change, bandpass, boost, and both pink/white noise,
where errors are typically≤ 3%. Even under the difficult lowpass setting—where competing methods
often fail—our error remains about 51%.

Although Highpass, Encodec, and Black-box transformations degrade performance more notice-
ably, GenMark remains strongest overall (mean error 12.69% vs. WavMark 43.14%, SilentCipher
54.84%, AudioSeal 54.92%). The drop under Highpass is expected: to preserve perceptual quality
we intentionally concentrate watermark energy in mid–low frequencies, so aggressive high-pass
filtering removes a larger fraction of the embedded signal. For Encodec and Black-box, we did not

7
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Table 3: Decoding Error Rates (%) under different audio transformations.

Model Audio Transformations (Decoding Error Rates %) TotalBandpass Highpass Lowpass Speed Boost Duck Echo Pink White Encodec White-box Black-box
AudioSeal 92.08 100.00 100.00 99.85 29.24 95.63 15.61 23.68 54.72 42.17 6.03 0.03 54.92
WavMark 0.21 0.13 100.00 97.57 7.83 4.89 3.95 79.23 99.72 6.25 17.95 100.00 43.14
SilentCipher 34.58 43.26 97.70 99.16 6.66 6.78 79.79 100.00 100.00 13.75 28.69 47.73 54.84
Ours 0.05 68.57 50.97 1.36 1.24 0.17 0.17 1.62 3.12 8.53 3.57 12.86 12.69

include codec-specific or pipeline-aware adversarial optimization during training, so quantization and
unknown post-processing introduce an unaddressed domain gap.

From these experiments we learn that the mask model (especially the robustness enhancement
module) can substantially improve robustness to perturbations — as also evidenced in our ablation
studies in Section 5.6.

5.4 USABLE STUDY

referenceanchor35 anchor70 GenMark AudiosealWavmark

30

40

50

60

70

80

90

100

MUSHRA

Figure 2: Distribution of MUSHRA scores for
watermarked audio.

To assess perceptual audio quality from a hu-
man perception perspective, we perform a
subjective evaluation using the standardized
MUSHRA (MUltiple Stimuli with Hidden Ref-
erence and Anchor) protocol (ITU-T, 2015), a
well-established methodology widely adopted
for audio quality benchmarking. We invite 20
audio experts to evaluate 20 audio groups, each
corresponding to a distinct prompt. For every
prompt, one sample was randomly selected from
100 Bark-generated clips. Each group includes
the following: (1) three types of watermarked au-
dio samples (GenMark, AudioSeal, WavMark);
(2) one clean reference; and (3) two anchor sig-
nals, namely Anchor35 (filtered at 3.5 kHz) and Anchor70 (filtered at 7 kHz). Participants rate each
sample on a scale of 0–100, with anchors and references used to guide their judgments. Details are
provided in Appendix H.

As presented in Figure 2, our proposed method achievess the highest MUSHRA score (90.89), closely
followed by AudioSeal (90.06), with WavMark lagging at 77.90. For comparison, the clean reference
audio achieves a MUSHRA score of 92.17, while the Anchor70 and Anchor35 conditions score 80.44
and 58.18, respectively.

These subjective evaluations highlight that GenMark can embed robust watermarks while preserving
perceptual quality nearly indistinguishable from clean audio - less than 2% perceptual degradation in
MUSHRA test.

5.5 MEL-SPECTROGRAM ANALYSE

We analyze a representative utterance and compute Mel spectrograms for the original signal and each
watermark component (Fig. 3). Temporally, the strength of the watermark follows the shape of the
original audio, but across frequencies, each method shows its own differences.

GenMark and SilentCipher exhibit the same frequency patterns as the original signal, with most
watermark energy concentrated at or below 4 kHz. SilentCipher, in particular, aligns almost perfectly
with the original distribution, which coincides with the highest SI-SNR among the compared methods.
By contrast, AudioSeal concentrates watermark energy in lower bands (below 2 kHz). WavMark
spreads the watermark across the whole spectrum and leans toward the high end (above 8 kHz). This
can mask or remove high-frequency details. In our MUSHRA tests, listeners noticed a clear loss of
high-band detail in audio processed by WavMark.

Consequently, embedding watermark energy in frequency bands aligned with the original audio’s
dominant energy produces less perceptual degradation — deviations from that alignment tend to
introduce noticeable quality loss.

8
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Figure 3: Mel-spectrograms of (top) the watermarked audio and (bottom) the isolated watermark,
obtained by subtracting the original signal from the watermarked signal.

5.6 ABLATION STUDY

Table 4: Ablation study of GenMark evaluating the
effect of each component.

Variant TPR↑ FPR↓ Acc↑ FAD↓ DER↓

WithoutAdv 99.8 0.0 99.8 0.1493 10.92
WithoutRobust 99.9 0.0 99.9 0.0607 46.22
WithoutLoc 100.0 35.7 100.0 0.0595 6.43
Full Model 99.9 0.0 99.8 0.0615 11.55

To understand the contribution of each compo-
nent, we conduct an ablation study focusing on
three core modules: (1) adversarial perceptual
optimization, (2) the robustness enhancement
module, and (3) the localization refinement mod-
ule. For each variant, we remove or disable one
of the components and evaluate performance
on key metrics, including detection (TPR, FPR,
Acc), perceptual quality (FAD), and robustness
(average decode error rate under transformations), as shown in Table 4. For this table, we observe that
removing adversarial training (WithoutAdv) results in a drop in perceptual quality, as indicated by the
increase in FAD from 0.0615 (full model) to 0.1493. Disabling the robustness enhancement module
(WithoutRobust) has the most significant effect on robustness, with the average decode error rate
(DER) surging from 11.55% to 46.22%. Removing the localization refinement module (WithoutLoc)
improves robustness but at the cost of a substantial increase in FPR, highlighting its importance in
maintaining detection precision.

6 RELATED WORK

Traditional audio watermarking techniques (Cvejic & Seppanen, 2004; Anderson, 1996) typically
embed watermarks by manipulating information in the time or frequency domains (Cox et al.,
1997; Xiang et al., 2018; Su et al., 2018; Liu et al., 2019). These methods depend on manually
crafted heuristic rules and specialized domain expertise to guide their design and implementation.
Simultaneously achieving a high imperceptibility, capacity, and robustness watermark across diverse
audio types remains a significant challenge.

With advancements in deep learning, the ability to automatically learn watermark embedding and
extraction techniques has simplified the design of watermarking methods (Tai & Mansour, 2019;
Pavlović et al., 2022). In particular, current deep learning-based watermarking techniques generally
follow an Encoder-Decoder structure (Qu et al., 2023; Ren et al., 2023; Chen et al., 2024; San Roman
et al., 2024), where the encoder generates watermarked audio, and the decoder extracts the information
from the watermarked audio. The entire model is trained in an end-to-end manner, enabling it to
automatically learn the watermark embedding and extraction processes.

7 CONCLUSION

This work introduces GenMark, a robust and efficient method for embedding traceable, imperceptible
watermarks directly into generative audio models. By integrating watermark objectives directly
into the generation model, GenMark addresses the vulnerabilities of traditional post-generation
watermarking. Extensive evaluation across speech and music generation confirms that GenMark offers
superior detection accuracy, resilience to a wide array of audio attacks, and negligible perceptual
degradation. These results establish GenMark as a strong tool for protecting audio synthesis systems.

9
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LIMITATIONS

While GenMark demonstrates strong performance across multiple generative audio tasks, it requires
model-specific integration during training. Since the watermark is embedded directly into the decoder,
each generative model (e.g., Bark, MusicGen) must be individually fine-tuned with GenMark.
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A EXTENDED RELATED WORK

A.1 SECURITY AND MISUSE IN GENERATIVE MODELS

The rapid advancement of generative models across text (Brown et al., 2020b; Touvron et al., 2023),
image (Rombach et al., 2022), and audio (Kreuk et al., 2022) domains has brought remarkable
synthesis quality and expressiveness. However, with this growth comes increasing concern over
misuse. Recent work has shown that generative pipelines can be tampered with or exploited, such
as backdoor injection in offline reinforcement learning datasets (Gong et al., 2024), data poisoning
in large language models (Carlini et al., 2023), and output evasion in diffusion models (Xu et al.,
2023). These studies highlight the importance of security-aware generative model design, especially
in ensuring traceability and tamper resistance.

In the audio domain, the risk is amplified by the realism of synthetic speech. Voice cloning and TTS
systems have been used for impersonation, misinformation (News, 2024), and fraud (wes, 2020).
Watermarking has emerged as a defense strategy (Mou et al., 2023; Chen et al., 2023; Singh et al.,
2024), yet most approaches apply watermarks after generation, leaving them vulnerable to removal
or circumvention. Our work addresses this gap by embedding watermarks directly during training,
offering stronger protection against post-generation manipulation.

A.2 COMPRESSION MODEL

SoundStream (Zeghidour et al., 2021) and EnCodec (Défossez et al., 2022) are neural audio codecs
designed for high-fidelity audio compression and reconstruction. SoundStream introduces a fully
learnable end-to-end framework using residual vector quantization, while EnCodec builds upon this
design with improved scalability and audio quality through hierarchical quantization and adversarial
training. These models pioneer neural audio compression through self-supervised learning and
hierarchical quantization. Unlike traditional handcrafted feature methods, these approaches efficiently
encode high-dimensional audio into discrete tokens, retaining semantic information.

This tokenization framework empowers Transformer-based systems (e.g., Bark (Suno, 2023), Music-
GAN (Copet et al., 2024), AudioLM (Borsos et al., 2023)) to perform cross-modal audio generation
from text prompts and context-aware audio continuation. By integrating audio compression with
language model architectures, these methods improve efficiency and versatility in generative AI,
facilitating a wide range of multimodal synthesis applications.

A.3 ATTACKS ON AUDIO WATERMARKING SYSTEMS

While audio watermarking enables traceability of generated content, ensuring robustness under
adversarial or lossy conditions remains a major challenge. Watermarks are often vulnerable to signal
manipulations such as compression, noise injection, cropping, pitch shifting, or time-stretching (Cox
et al., 2007; Arnold et al., 2003). Attackers can intentionally apply these distortions to remove or
degrade the watermark information without significantly affecting audio perceptual quality.

Classical attack strategies include re-encoding, filtering, jittering, or frequency band removal (Wang
et al., 2004). Recent works even explore adversarial perturbations designed specifically to confuse
watermark extractors (Wu et al., 2022). Therefore, the evaluation of watermark robustness must
consider both standard degradations (e.g., MP3 compression, resampling) and targeted attacks (e.g.,
masking, inversion, audio remix).

In our experiments, we systematically test GenMark under 11 widely used audio transformations and
adversarial manipulations to benchmark its resistance. Our method demonstrates lower decoding error
rates compared to WavMark, AudioSeal, and SilentCipher, showing enhanced watermark durability
under attack.

A.4 AUDIO GENERATION

Currently, audio generation has evolved significantly through deep learning. For instance, autoregres-
sive models such as WaveNet (Van Den Oord et al., 2016) greatly improve audio quality, whereas
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Algorithm 1 Training pipeline for GenMark

Require: Dataset D = {wo}, message sampler SAMPLEMSG(·), reference codec C (frozen), train-
able codec Ĉ (frozen encoder & quantizer; trainable decoder with params θ), mask model M ,
watermark detector Ddet (params ϕ), multi-scale discriminator D (params ψ), Mel scales H,
STFT scales K

1: for each minibatch B ⊂ D do
2: Sample per-example messages m← SAMPLEMSG(B)

// Stage A: Audio generation
3: for each wo ∈ B do
4: z ← ENCODEQUANTIZE(Ĉ, wo) ▷ stop-grad through encoder/quantizer
5: ŵ ← Ĉdec(z; θ) ▷ trainable decoder outputs watermarked audio
6: w ← Cdec(z) ▷ reference clean (unwatermarked) audio
7: end for

// Stage B: Feature extractions (time/freq)
8: Ltime ← 1

|B|
∑
∥w − ŵ∥1

9: Lspec ← MULTISCALEMELLOSS(w, ŵ,H) ▷ Eq. (3) style
// Stage C: Adversarial perceptual optimization

10: (Lgen, Lfeat, Ldisc)← ADVERSARIALLOSSES(w, ŵ,D,K)
// Stage D: Mask model & watermark injection/decoding

11: w̃ ←M(ŵ) ▷ robustness & localization refinement
12: [ŷ, m̂]← Ddet(w̃) ∈ [0, 1](2+16)×T ▷ ŷ: frame-level presence; m̂: 16-bit payload
13: Ldet ← BCE(y, ŷ), Lpayload ← BCE(m, m̂)
14: Lmsg ← λdetLdet + λpayloadLpayload

// Loss balancing (Section 2.2)
// Loss balancing (EMA-rescale-clip)

15: ĝdec ← LOSSBALANCER
(
{Li}, {λi};R, ρ, β, τ

)
▷ Li∈{Ltime, Lspec, Lgen, Lfeat, Lmsg}

16: BACKPROPFROM(ĝdec → θ)
// Parameter updates

17: UPDATE(ψ; ∇ψLdisc) ▷ discriminator update
18: UPDATE(θ) ▷ decoder update
19: UPDATE(ϕ; ∇ϕLmsg) ▷ optimize detector for stable recovery
20: end for

GAN-based approaches, like MelGAN (Kumar et al., 2019a), enhance synthesis efficiency. These
advancements established the foundation for contemporary neural audio generation techniques.

Recent studies integrate transformers and diffusion models to achieve further development for audio
generation. AudioLDM (Liu et al., 2023) uses contrastive language audio pretraining (Wu et al.,
2023) with latent diffusion (Rombach et al., 2022) for text-guided generation. Audio language
models such as Bark (Suno, 2023), MusicGAN (Copet et al., 2024), and AudioLM (Borsos et al.,
2023) use text-generation techniques (Radford, 2018; Brown et al., 2020a), encoding text and timbre
into tokens using EnCodec (Défossez et al., 2022) and SoundStream (Zeghidour et al., 2021) for
transformer-based sequence-to-sequence synthesis.

B PSEUDOCODE FOR TRAIN PIPELINE

The following four algorithms together describe the complete training process of GenMark. Al-
gorithm 1 provides the overall training pipeline, calling three key subroutines: AdversarialLosses
(Algorithm 3), MultiScaleMelLoss (Algorithm 2), and LossBalancer (Algorithm 4). The main pipeline
orchestrates data sampling, watermarked–clean audio generation, feature extraction, and adversarial
optimization. Within it, AdversarialLosses computes generator, discriminator, and feature-matching
losses; MultiScaleMelLoss measures spectral similarity across multiple Mel scales; and LossBalancer
adaptively rescales and clips gradients from all losses to maintain stable training. Together, these
algorithms define a unified framework for robust watermark embedding and detection.
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Algorithm 2 MultiScaleMelLoss

1: function MULTISCALEMELLOSS(w, ŵ,H)
2: L← 0
3: for each h ∈ H do
4: Sw ← Sh(w), Sŵ ← Sh(ŵ)
5: L← L+ ∥Sw − Sŵ∥1 + ∥Sw − Sŵ∥22
6: end for
7: return L
8: end function

Algorithm 3 AdversarialLosses

1: function ADVERSARIALLOSSES(w, ŵ,D,K)
2: Ldisc, Lgen, Lfeat ← 0, 0, 0
3: for each k ∈ K do
4: pr ← Dk(w), pf ← Dk(ŵ)
5: Ldisc += ∥1− pr∥1 + ∥pf∥1 ▷ discriminator objective Ldic
6: Lgen += ∥1− pf∥1 ▷ generator adversarial objective Lgen
7: for each layer l ∈ S do
8: fr ← Dl

k(w), ff ← Dl
k(ŵ)

9: Lfeat +=
∥fr − ff∥1
E[fr] + ϵ

▷ feature matching Lfeat

10: end for
11: end for
12: return (Lgen, Lfeat, Ldisc)
13: end function

Algorithm 4 LossBalancer (EMA + Rescale + Clip)

Require: losses {Li}, weights {λi}, reference R, EMA decay ρ ∈ (0, 1), exponent β > 0, clip
threshold τ , small ε

1: initialize mi ← 0, ∀i ▷ EMA state
2: for each Li do
3: gi ← ∂Li/∂x̂ ▷ compute its gradient
4: ui ← ∥gi∥β2 ▷ powered norm
5: mi ← ρmi + (1− ρ)ui ▷ track EMA of ∥gi∥β2
6: g̃i ←

R · λi∑
j λj
· gi
mi + ε

▷ rescale by recent magnitude

7: end for
8: g ←

∑
i g̃i ▷ aggregate

9: ĝ ← CLIPBYNORM(g, τ) ▷ clipped gradient
10: return ĝ

C LOCALIZATION REFINEMENT MODULE

To enhance the decoder’s ability to accurately localize watermarked regions and reduce false detec-
tions, we introduce two replacement strategies during training:

Mismatched Watermark Replacement: For each watermarked audio sample, we randomly replace
85% of its embedded watermark segments with segments carrying different (non-target) watermark
messages. This helps prevent the decoder from memorizing fixed patterns and promotes generalization
across diverse watermark structures.

Random Segment Perturbation: We divide the audio into K segments and randomly select starting
points for content replacement. Each selected segment (of length 2T/K) is then altered with one
of the following: 40% probability of clean (unwatermarked) waveform insertion, 20% probability
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of substitution with unrelated audio, and 20% probability of silence padding. The remaining 20%
is left unchanged. These manipulations simulate realistic confusion patterns that the decoder may
encounter in practice.

By combining these techniques and optimizing using the decoding loss Lmsg, the decoder is ex-
plicitly trained to focus on truly watermarked regions and reject irrelevant or misleading segments,
significantly improving localization reliability during inference.

D ROBUSTNESS ENHANCEMENT MODULE

To improve the watermark’s resilience against signal processing attacks, we introduce a robustness
enhancement module composed of 11 commonly used audio transformations. These operations are
applied stochastically during training, with their parameters drawn from calibrated ranges. This helps
the decoder learn to preserve watermark fidelity under real-world distortions:

1. Bandpass Filter Removes both low- and high-frequency components while preserving
a specific mid-frequency range. Parameters: center frequency = 2750 Hz, quality factor
Q = 0.707

2. Highpass Filter Attenuates frequencies below the cutoff, simulating microphone or channel
filtering. Parameters: cutoff frequency = 1500 Hz

3. Lowpass Filter Attenuates frequencies above the cutoff, emulating bandwidth-limited
scenarios. Parameters: cutoff frequency = 500 Hz

4. Speed Adjustment Alters playback speed by resampling, affecting both pitch and timing.
Parameters: speed factor ∈ [0.8, 1.2]

5. Resampling Converts to an intermediate sampling rate and back, introducing temporal
interpolation artifacts. Parameters: resampled to 32kHz and then resampled back to the
original frequency

6. Boost Multiplies the audio amplitude to simulate volume spikes or clipping. Parameters:
boost factor = 10

7. Duck Reduces signal amplitude to mimic audio underpowering or suppression. Parameters:
duck factor = 0.1

8. Echo Adds delayed and scaled versions of the signal to simulate reverberation. Parameters:
delay time ∈ [0.1, 0.5] seconds, echo volume ∈ [0.1, 0.5]

9. Pink Noise Adds pknk noise to simulate natural ambient environments. Parameters: target
SNR = 20 dB

10. White Noise Adds flat- Gaussian noise, resembling synthetic interference. Parameters:
target SNR = 20 dB

11. Smoothing Applies a moving-average filter to blur waveform details. Parameters: window
size ∈ [2, 10] samples

The parameter settings here are generally consistent with those used in the experiment 5.3, where
additional adversarial attacks such as Encodec - using an offical 24khz encodec model, white_box -
pgd attack, and black_box- square attack were also incorporated to further evaluate robustness.

In this experiment, some values were omitted from the main table due to width constraints; the
missing decoding error rates (%) for the Resample, Smooth, and MP3 columns are:

• AudioSeal: Resample = 4.66, Smooth = 0.00, MP3 = 0.00

• WavMark: Resample = 0.12, Smooth = 26.33, MP3 = 0.00

• SilentCipher: Resample = 7.01, Smooth = 70.06, MP3 = 0.00

• Ours (GenMark): Resample = 0.15, Smooth = 1.04, MP3 = 0.00
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E QUALITY METRICS

NOTATION

Let x ∈ RT denote the reference (original) audio waveform and x̂ ∈ RT the corresponding generated,
watermarked audio. For a dataset D of paired clips {(xn, x̂n)}Nn=1, all metrics are computed per
clip and then aggregated over D (mean ± std unless stated otherwise). Unless noted, signals are
resampled to a common sampling rate and time-aligned.

E.1 DISTRIBUTIONAL METRICS

Scale-Invariant Signal-to-Noise Ratio (SI - SNR). SI-SNR measures the fidelity of a target signal
preserved in an estimate, while being invariant to global scaling. Let

x̃ = x−mean(x), ˜̂x = x̂−mean(x̂).

Project ˜̂x onto x̃:

xtarget =
⟨˜̂x, x̃⟩
∥x̃∥22

x̃, enoise = ˜̂x− xtarget.

The utterance-level SI-SNR (in dB) is

SI−SNR(x, x̂) = 10 log10
∥xtarget∥22
∥enoise∥22

.

Range/Interpretation: Higher is better; +∞ dB only when x̂ is a scaled copy of x. We report the
average SI-SNR over clips.

Kullback–Leibler Divergence (KLD). KLD quantifies distributional mismatch between features
extracted from x and x̂. Let z = f(x) and ẑ = f(x̂) be frame- or clip-level features (e.g., log-mel
histograms or embeddings from a fixed pre-trained network). We consider two common instantiations:

(i) Discrete/bin-wise KLD. Let P and Q be normalized histograms over the same bins:

DKL(P∥Q) =
∑
i

P (i) log
P (i)

Q(i)
.

Smoothing with a small ε is used to avoid log 0.

(ii) Gaussian embedding KLD. If we approximate clip embeddings as Gaussians with N(µP ,ΣP )
and N(µQ,ΣQ) in Rd:

DKL(NP ∥NQ) = 1
2

[
tr
(
Σ−1
Q ΣP

)
+ (µQ − µP )⊤Σ−1

Q (µQ − µP )− d+ ln
detΣQ
detΣP

]
.

Range/Interpretation: DKL ≥ 0; lower is better (0 iff the distributions match).

E.2 PERCEPTUAL METRICS

Fréchet Audio Distance (FAD). FAD compares the distribution of embeddings computed from
a large set of reference audio against that from generated audio. Let {ϕ(xn)} and {ϕ(x̂n)} be
embeddings from a fixed audio model. Estimate Gaussian statistics

(µr,Σr) from {ϕ(xn)}, (µg,Σg) from {ϕ(x̂n)}.

The FAD is the Fréchet distance between the two Gaussians:

FAD = ∥µr − µg∥22 + tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
.

Range/Interpretation: FAD ≥ 0; lower is better and indicates a distribution of generated-audio
embeddings closer to that of the reference set.
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ViSQOL (Virtual Speech Quality Objective Listener). ViSQOL is a full-reference perceptual
metric that estimates a MOS-LQO (Mean Opinion Score—Listening Quality Objective) by comparing
time–frequency patches of a reference signal to those of a test signal using a spectro-temporal
similarity measure. We use ViSQOL in speech mode for spoken content and audio mode for general
audio. The output is mapped to a MOS-like scale.

MOS−LQO ∈ [1, 5] (higher is better).

Notes: Ensuring consistent loudness normalization and resampling (e.g., 16 kHz speech / 48 kHz
audio) improves robustness. We report the average MOS-LQO per condition.

E.3 SEMANTIC METRIC

CLAP (Contrastive Language–Audio Pretraining). CLAP provides a shared embedding space
for audio and language. We use it to quantify whether the semantic content of x̂ matches that of x
(audio–audio) and/or matches a text description t (audio–text).

Audio–audio semantic similarity:

sAA(x, x̂) = cos

(
ϕa(x)

∥ϕa(x)∥2
,

ϕa(x̂)

∥ϕa(x̂)∥2

)
=

ϕa(x)
⊤ϕa(x̂)

∥ϕa(x)∥2 ∥ϕa(x̂)∥2
.

Audio–text semantic similarity:

sAT(x̂, t) = cos

(
ϕa(x̂)

∥ϕa(x̂)∥2
,

ϕt(t)

∥ϕt(t)∥2

)
.

Range/Interpretation: s ∈ [−1, 1]; higher is better. Optionally, retrieval-style metrics (e.g., Re-
call@K) can be reported using the same embeddings.

F TPR AND FPR

First, we compared our method with the current state-of-the-art models (WavMark and AudioSeal)
on several audio generation tasks, using True Positive Rate (TPR) and False Positive Rate (FPR) as
evaluation metrics. TPR represents the proportion of watermarked audio correctly identified by the
model, and its formula is:

TPR =
TP

TP + FN
(8)

where TP refers to true positives (samples correctly identified as watermarked) and FN refers to false
negatives (samples with watermarks not detected).

FPR represents the proportion of non-watermarked audio that is incorrectly classified as watermarked,
and its formula is:

FPR =
FP

FP + TN
(9)

where FP refers to false positives (non-watermarked samples misclassified as watermarked) and TN
refers to true negatives (samples correctly identified as non-watermarked). For watermarking models,
our optimization goal is to maximize TPR while minimizing FPR.

G DETECTOR ARCHITECTURE

Inspired by the design of the AudioSeal watermark detector (San Roman et al., 2024), we implement
a lightweight yet effective watermark detection model tailored for generative audio. Our detector
operates directly on the raw audio waveform and outputs both a detection confidence and an optional
binary message.
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The architecture consists of two main components: an audio encoder and a classification head.
The encoder, denoted as self.encoder, follows the same architectural design as the EnCodec en-
coder (Défossez et al., 2022), consisting of a series of downsampling convolutional blocks interleaved
with residual connections. Specifically, the encoder comprises N convolutional layers with progres-
sively increasing channel dimensions and strides to reduce temporal resolution, while preserving
essential information for watermark detection. To restore alignment with the input resolution, a
transposed convolution layer is applied after encoding.

Following the encoder, we apply a 1× 1 convolution to produce a multi-head output. The first two
channels represent the confidence scores (via softmax) for the presence or absence of a watermark.
The remaining n channels represent the per-bit logits of the embedded binary watermark message,
which are decoded via a temporal average followed by a sigmoid activation. This design allows the
detector to perform both binary watermark detection and payload recovery in a unified forward pass.

H SUBJECTIVE EVALUATION PROTOCOL AND HUMAN STUDY INFORMATION

H.1 MUSHRA TEST SETUP

To evaluate the perceptual audio quality of watermarked audio, we conducted a subjective study using
the standardized MUSHRA protocol (Multiple Stimuli with Hidden Reference and Anchor), follow-
ing ITU-T Recommendation BS.1534-1. This method is widely used in audio quality benchmarking
and provides robust human preference data across fine-grained quality levels.

Each test session included:

• One fixed reference audio clip (original unwatermarked audio),
• Three watermarked outputs (GenMark, AudioSeal, WavMark),
• Two lossy anchors: Anchor70 (band-limited at 7 kHz), Anchor35 (band-limited at 3.5 kHz),
• One hidden reference (identical to the original, included to assess rating consistency).

Participants evaluated the samples using an interactive web-based MUSHRA interface that supports
waveform visualization, looping playback, and blind randomized ordering of stimuli. The interface
was customized to guide the listener through the evaluation, showing condition names only during
the training phase, and hiding them during formal scoring.

We recruited 20 expert listeners with backgrounds in audio engineering or speech synthesis. All
participants voluntarily agreed to take part in the study and were informed that their responses
would be used for academic research purposes only. No personally identifying information (PII) was
collected. As the evaluation involved non-sensitive, low-risk listening tasks, no formal IRB approval
was required.

Each participant rated 20 audio groups, each corresponding to a different prompt. Ratings were
provided on a 0–100 scale via slider interfaces, with the ability to replay any sample as needed.
Anchor and reference scores were used to validate listener consistency, and all results were aggregated
by condition across listeners. For quantitative analysis and comparisons, please refer to Section 5.4
of the main paper.

The testing interface was implemented as a browser-based system supporting:

• Interactive MUSHRA scoring with waveform display and audio looping,
• Randomized presentation of audio conditions per trial,
• Automated anchor generation using standard low-pass filters.

H.2 INSTRUCTIONS PROVIDED TO PARTICIPANTS

Participants received the following instructions (translated and paraphrased from the interface):

Welcome to the Audio Quality Evaluation Test
This test assesses your subjective perception of audio quality.
Testing Process:
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• Left panel: Reference audio (always visible)
• Right panel: Six randomized test samples (three algorithmic outputs, two

lossy anchors, one hidden reference)
Scoring Guide:

• 0–35: Severe degradation
• 45–60: Moderate degradation
• 61–80: Mild degradation
• 80–100: Nearly indistinguishable from reference

Please ensure a quiet environment and use high-quality headphones. Focus on
high-frequency regions (e.g., fricatives like /s/, /z/) to detect perceptual differences.

I INFORMATION-THEORETIC COMMUNICATION ANALYSIS

I.1 CAPACITY AND SNR ANALYSIS

To establish an information-theoretic perspective on the proposed watermarking scheme, we model
the embedding process as a communication channel, where the original audio acts as noise and the
watermark represents the transmitted signal. Under this model, the average signal-to-noise ratio
(SNR) measured across the watermarked audio samples is –22.21 dB, corresponding to a low-SNR
regime.

According to Shannon’s capacity formula,

C =W log2(1 + SNR), (10)

and considering that the watermark signal is predominantly distributed below 4 kHz, we set the
channel bandwidth to

W = 4,000 Hz.

This yields a theoretical channel capacity of approximately 34.76 bits per second.

Given that the typical duration of our audio samples is about 1 second, the achievable payload is
on the order of 17.38 bits, assuming a conservative 50% Shannon efficiency, which is common in
engineered communication systems. Based on this analysis, we select a 16-bit message length for
the watermark, which is well aligned with the theoretical capacity limits.

I.2 SPECTRAL AND TEMPORAL DISTRIBUTION OF THE EMBEDDED WATERMARK

We further examine the spectral and temporal characteristics of the watermark embedding:

• Spectral Domain: More than 90% of the energy of both clean and watermarked audio
resides below 4 kHz, and the watermark itself is constrained to the same frequency region.
This alignment enhances imperceptibility and robustness while avoiding high-frequency
artifacts (see Fig. 3).

• Temporal Domain: The watermark is distributed across the entire audio signal, rather
than being confined to short segments. Its temporal pattern closely follows the natural
structure of the host audio, thereby improving both perceptual transparency and resistance
to removal (see Fig. 3).
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