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ABSTRACT

Accurate control of quantum states is crucial for quantum computing and other
quantum technologies. In the basic scenario, the task is to steer a quantum system
towards a target state through a sequence of control operations. Determining the
appropriate operations, however, generally requires information about the initial
state of the system. Gathering this information becomes increasingly challeng-
ing when the initial state is not a priori known and the system’s size grows large.
To address this problem, we develop a machine-learning algorithm that uses a
small amount of measurement data to construct its internal representation of the
system’s state. The algorithm compares this data-driven representation with a
representation of the target state, and uses reinforcement learning to output the
appropriate control operations. We illustrate the effectiveness of the algorithm
showing that it achieves accurate control of unknown many-body quantum states
and non-Gaussian continuous-variable states using data from a limited set of quan-
tum measurements.

1 INTRODUCTION

Controlling the state of noisy intermediate-scale quantum systems Preskill (2018) is a major chal-
lenge for quantum computing and other quantum technologies. In recent years, reinforcement learn-
ing (RL) François-Lavet et al. (2018) has emerged as a powerful strategy for designing quantum
control policies Chen et al. (2013a); Bukov et al. (2018); Bukov (2018); Zhang et al. (2019); Yao
et al. (2021); Borah et al. (2021); Guo et al. (2021); Sivak et al. (2022); Porotti et al. (2022); Metz
& Bukov (2023); Reuer et al. (2023). One of the benefits of this approach is that, unlike conven-
tional model-based quantum control, RL can be used to adaptively learn quantum control policies
without any knowledge of the underlying quantum dynamics Sivak et al. (2022). Beyond quantum
control, RL has found applications in quantum information science, including quantum error cor-
rection Fösel et al. (2018); Nautrup et al. (2019); Zeng et al. (2023), quantum simulation Bolens
& Heyl (2021), quantum compilation Zhang et al. (2020); Fösel et al. (2021); Moro et al. (2021),
quantum sensing Xiao et al. (2022) and quantum communications Wallnöfer et al. (2020).

Many of the existing control methods focus on the preparation of a known target state from a known
initial state Chen et al. (2013a); Bukov et al. (2018); Zhang et al. (2019); Porotti et al. (2022); Sivak
et al. (2022); Metz & Bukov (2023). In this task, RL algorithms are often used to learn control
policies from exact state descriptions. In practice, however, limited device calibration and imper-
fections in the setup can lead to uncertainty on the initial state of the system. It is then important to
supplement RL algorithms with a state characterization step, in which useful information is gathered
from quantum measurements. In many of the existing protocols, the relevant piece of information is
the fidelity between the system’s state and the target state Chen et al. (2013a); Bukov et al. (2018);
Bukov (2018); Zhang et al. (2019); Porotti et al. (2022); Metz & Bukov (2023). Estimating the
fidelity through measurements, however, becomes challenging as the system size grows Flammia
& Liu (2011); da Silva et al. (2011). To circumvent this problem, a few works explored the possibil-
ity of directly using measurement outcomes for reward calculation Reuer et al. (2023); Borah et al.
(2021); Sivak et al. (2022), but scalability still remains a challenge.
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Figure 1: Schematic of our algorithm for quantum state characterization and control. The measure-
ment statistics obtained by probing a quantum system are fed into a representation network, which
builds its own representation of the quantum state. Using the state representation as input, a re-
inforcement learning agent evaluates the candidate state representations after performing possible
control actions. The agent then selects the optimal action to maximize the expected reward, aiming
to minimize the distance between the controlled state representation and the target state representa-
tion.

In this paper, we introduce a Representation-Guided Reinforcement Learning (RGRL) algorithm,
which combines a neural network for learning unknown quantum states with an RL algorithm to
steer an uncharacterized quantum state towards a target state using only measurement statistics. The
core of our algorithm is a representation network Zhu et al. (2022) that produces its internal repre-
sentation of quantum states and uses it to estimate a measure of the similarity between the state under
control and the target state Wu et al. (2023a). The similarity estimate is then used in the RL stage to
compute rewards and to determine the control operations needed to steer the quantum system to the
desired state. Overall, our algorithm provides an illustration of how a machine without any built-in
knowledge of quantum physics can learn to control a piece of quantum hardware. The effective-
ness of this approach is illustrated through numerical simulations, showing strong performance for
various scenarios of quantum control. The contributions are:

(1) We develop a novel algorithm, RGRL, that combines state representations with reinforcement
learning for quantum control. By leveraging neural representations constructed from limited mea-
surement data, the RGRL algorithm can evaluate the similarity between the current and target states
and determine the optimal control actions. This approach facilitates adaptive learning of control
policies without requiring pre-existing knowledge of the quantum system’s dynamics.

(2) We provide a scalable solution for quantum state preparation with limited initial state informa-
tion. One of the major challenges in quantum state control is dealing with the uncertainty of the
initial state, especially as the system size increases. Our RGRL algorithm addresses this issue by
using measurement statistics to construct an internal representation of the quantum state. This ap-
proach significantly reduces the reliance on precise initial state information, making the algorithm
scalable and applicable to larger quantum systems.

(3) We demonstrate the algorithm’s effectiveness in controlling many-body ground states and
continuous-variable states. Specifically, we demonstrate its application to controlling many-body
ground states, which are crucial for understanding complex quantum systems and phase transitions.
Additionally, we apply the algorithm to continuous-variable states, which are essential for quan-
tum error correction and other quantum information processes. These numerical results highlight
the algorithm’s robustness and adaptability across different types of quantum states and systems,
validating its broad utility in practical quantum technologies.
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2 PRELIMINARIES: QUANTUM STATE AND MEASUREMENT

Here we briefly present the preliminary information necessary for understanding the results in our
paper.

Quantum state and quantum measurement. A quantum state is a mathematical representation
of a physical system encapsulating all the information about that system. A quantum state, mathe-
matically, can be represented by a vector in a Hilbert space. Given a d-dimensional Hilbert space
with computational basis {|i⟩}di=1, a pure state |ϕ⟩ =

∑d
i=1 αi |i⟩ is a superposition of states, where

αi ∈ C satisfy
∑d
i=1 |αi|2 = 1. A mixed state is a convex combination of pure states.

We use the notation M = (Mi)
n
i=1 to denote a quantum measurement, described by an n-outcome

positive operator-valued measure (POVM) that associates the measurement outcome iwith a positive
operator Mi, satisfying the normalization condition

∑n
i=1 Mi = I (I is the identity operator on the

Hilbert space). For qubit systems, the most common quantum measurement is single-qubit Pauli
measurement, i.e. projective measurement on the eigenbasis of either one of the Pauli matrices σx :=(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, and σz :=

(
1 0
0 1

)
. For each single-qubit Pauli measurement, there are

only two possible outcomes, corresponding to states |+⟩ := 1√
2
(|0⟩+ |1⟩) and |−⟩ := 1√

2
(|0⟩−|1⟩)

after measuring σx, |+i⟩ := 1√
2
(|0⟩+ i |1⟩) and |−i⟩ := 1√

2
(|0⟩ − i |1⟩) after measuring σy , and |0⟩

and |1⟩ after measuring σz . An n-qubit Pauli measurement is measuring each single qubit in a Pauli
basis independently and has overall 3n options.

Many-body ground state. Here we briefly introduce the many-body ground states under investi-
gation in this paper. Given a Hamiltonian, its ground states are defined as the eigenstates of the
Hamiltonian with lowest energy. In this paper, we consider the following Hamiltonian, known as
bond-alternating XXZ model Elben et al. (2020),

HXXZ = J
∑
i=1

(
σx2i−1σ

x
2i + σy2i−1σ

y
2i + δσz2i−1σ

z
2i

)
+J ′

∑
i=1

(
σx2iσ

x
2i+1 + σy2iσ

y
2i+1 + δσz2iσ

z
2i+1

)
,

where J, J ′, δ ∈ R are physical parameters. Here, each subscript denotes the site of qubit, and the
tensor product notations between Pauli matrices on different sites are omitted. In our numerical
experiments, we perform Pauli measurements on three-qubit subsystems, measuring each of the
three neighbouring qubits independently on a Pauli basis while tracing out all the other qubits.

The ground state space of a Hamiltonian can include different phases of matter. The quantum states
within the same quantum phase exhibit similar physical property, whereas the physical behaviours
of those states across the boundaries between two quantum phases become exotic, which is known
as quantum phase transition. Specifically, HXXZ is parametrized by two independent parameters
J/J ′ and δ. In the parameter space (J/J ′, δ) ∈ (0, 3)× (0, 4), there are three phases of matter: the
topological symmetry-protected topological (SPT) phase, the trivial SPT phase, and the symmetry-
broken phase, as indicated by different colors in Fig. 3b.

Optical continuous-variable state. Rather than falling within a finite-dimensional Hilbert space,
continuous-variable (CV) states Serafini (2017) fall on an infinite-dimensional Hilbert space,

spanned by number states {|n⟩}∞n=0. A coherent state |α⟩ := e−
|α|2
2

∑∞
n=0

αn
√
n!
|n⟩ is character-

ized by its physical parameter α ∈ C and can be obtained by applying a displacement operation
D(α) on the vacuum state |0⟩, i.e. |α⟩ = D(α) |0⟩. For data generation, we truncate the Hilbert
space to a finite value Nmax and simulate all the states within the truncated space span

(
{|n⟩}Nmax

n=0

)
.

A particular CV quantum gate we apply on coherent state inputs is the Kerr gate, driving any simple
Gaussian state to a complex nonGaussian state. A common quantum measurement in CV quantum
systems is homodyne measurement characterized by physical parameter θ ∈ [0, π), i.e. projective
measurements on the eigenbasis of cos θx̂ + sin θp̂ with x̂ and p̂ denoting position operator and
momentum operator respectively. The outcome of each homodyne measurement is a bounded real
number in our classical simulation. The collected outcome statistics of a homodyne measurement is
the projection of the Wigner function of a CV state along that direction.
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3 THE RGRL ALGORITHM

3.1 OVERVIEW

Our algorithm applies to the scenario where a classical learning agent gathers information from and
performs actions on a quantum system. Following RL terminology, we will refer to the quantum
system as the agent’s environment. The interactions between the agent and the environment are
mediated by an experimenter, who performs quantum measurements and other quantum operations
based on the agent’s instructions. Our algorithm consists of two stages: quantum state characteriza-
tion/learning and quantum control, as depicted in Fig. 1. In the state learning stage, the agent has
access to many copies of an unknown quantum state. The set of quantum measurements that can
be performed in the state is denoted byM. At the beginning of the protocol, the experimenter ran-
domly chooses a subset S ⊂ M of quantum measurements. In each control step, the experimenter
performs each measurement M ∈ S in multiple copies of the state ρ, obtaining the frequency dis-
tribution of the outcome dM := Tr(ρM). The set of measurement statistics D := {dM}M∈S is
fed into a (pre-trained) representation network to produce the data-driven state representation rρ.
The distance between rρ and rρt in the representation space is taken as an indicator of the distance
between ρ and ρt, where rρt , i.e., the representation of the target state ρt, can be obtained from the
simulated measurement data of ρt corresponding to the measurement set S.

In the kth control step, the agent associated with the RGRL algorithm receives the measurement
data Dk from the environment as its partial observation and selects an action ak ∈ A ( from a finite
set of predefined actions based on the policy π and the measurement observations Dk. Each action
corresponds to a tuning of the physical parameters. Upon receiving the action determined by the
RGRL algorithm, the experimenter implements it on the system, driving the current quantum state
to a new state in the next control step. This process is repeated in each environment-agent interaction
cycle.

Here, the control policy is modeled by a conditional probability πθ(a|D) of action a depending on
partial observations D, parameterized by a neural network with parameters θ. At the kth step, a
reward rk ∝ −||rρk − rρt || is assigned, where ρk denotes the quantum state at the kth step, and
|| · || denotes the Euclidean distance in the representation space. Note that the partial observation
D can be mapped to a dense representation vector r with a pretrained neural network. From the
initial state to a terminal state, one full trajectory of tuples {(Dk, ak, rk)}Tk=1 is called an episode,
where T denotes the maximum length of an episode. For each episode, a cumulative reward R :=

−
∑T
k=1 γ

k−1rk is assigned, where γ denotes the discount rate. The goal of the RL algorithm is to
learn a policy πθ : D → A that maximizes the averaged cumulative reward R̄ over multiple episodes
by optimizing the parameters θ through gradient ascent, i.e., ∆θ ∼ ∇θR̄ Sutton et al. (1999); Silver
et al. (2014). More details about this neural network structure can be found in the supplementary
material. This model-free RL algorithm can discover the optimal policy without knowledge of the
explicit model of the quantum dynamics of the environment.

3.2 STRUCTURE AND PRETRAINING OF REPRESENTATION NETWORK

Here, we introduce the implementation of the representation network utilized in our framework.
As illustrated in Figure 2a, the representation network fξ takes as input the parameterization mi

of the measurement Mi ∈ S and its outcome statistics di for the specific state ρ. For each pair
Di = (mi,di), the representation network produces a vector ri = fξ(mi,di). These vectors,
corresponding to different pairs, are then combined into a single vector r by an average function.

We utilize two distinct methods to train the representation network. When only measurement data
of the quantum states is available, we employ the GQNQ architecture proposed by Zhu et al. in Zhu
et al. (2022). Specifically, we conduct self-supervised learning based on these measurement data.
The process involves inputting the measurement data into the representation network to generate
representations of the quantum states. Subsequently, we reconstruct the measurement statistics from
these representations using a generation network shown in Figure 2b. During training, we minimize
the reconstruction loss between the predicted measurement statistics pi and the ground truth di for
each measurement Mi ∈ S .
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Figure 2: Structure and pretraining of the representation network. Subfigure a displays an abstract
structure of the representation network. Subfigures b and c present the decoder network used for
unsupervised and supervised pretraining of the representation network, respectively.

When properties of the quantum states, such as mutual information between subsystems, are avail-
able, we utilize the architecture introduced in Wu et al. (2023b). In this approach, the representations
generated by the representation network are fed into a prediction network shown in Figure 2c. Dur-
ing training, given the availability of K labeled property values {f1(ρ), · · · , fK(ρ)}, we employ
a supervised learning manner to minimize the loss between the estimated and true values of these
properties. This ensures that the combination of the learned representations and the prediction net-
work can accurately predict the K properties.

3.3 REINFORCEMENT LEARNING ALGORITHMS

Environment. The environment for the RGRL algorithm is modeled as a quantum oracle, which
applies the control policy to the quantum system and retrieves measurement data from the controlled
quantum state. Based on the control policy generated by the RGRL algorithm, the oracle adjusts the
physical parameters accordingly. The measurement data consist of statistical outcomes obtained
from quantum states measured on various bases.

Algorithm. The environment of controlling the ground state can be modeled as a Markov decision
process (MDP), therefore, it is highly suitable for RL Sutton & Barto (2018). We make use of
model-free RL as the intelligent agent to optimize the control policies. The input of the RL policy
network denoted as r, is the neural representation of the current ground quantum state. The action
a controls the tuning of the physical parameters. The reward is proportional to the negative distance
between the current quantum state and the target quantum state in the representation space. More
precisely, the kth control step of the reward is given by

rk = −
∥rρk − rρt∥2√

d
, (1)

where d is the dimension of the representation space. The goal of RL is to find an optimal policy for
the agent to obtain optimal rewards. We use policy gradient methods, which aim at modeling and
optimizing the policy directly. Specifically, the PPO method is applied to build the RGRL algorithm
Schulman et al. (2017). The detailed mathematical descriptions and pseudocode can be found in
Appendix B.

4 EXPERIMENTS

4.1 CONTROL OF PHASE TRANSITION IN MANY-BODY SYSTEMS

We first apply our RL algorithm for control of intermediate-scale many-body ground state across
phase transition, which is of great significance in the field of many-body physics Pollmann et al.
(2012); Chen et al. (2013b); Smith et al. (2022). Specifically, we consider the ground states of a 50-
qubit bond-alternating XXZ model. We discretize the parameter space (J/J ′, δ) ∈ (0, 3) × (0, 4)
into a 21 × 21 grid. Assuming both the initial state and the target state fall within this grid but in
different phases, we proceed as follows at each control step.

5
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Figure 3: Control of many-body ground states across phase transition in the bond-alternating XXZ
model. Subfigure a displays the quantum fidelities between the controlled quantum state and the
target state in five different control scenarios after 30 control steps, averaged over 500 experiments,
where SB denotes symmetry broken phase, TP dentoes topological SPT phase and TR denotes trivial
SPT phase. The vertical lines atop each bar denote the 95% confidence intervals. Subfigures b and
c illustrate examples of the quantum evolution trajectory of the controlled state from the trivial
SPT phase to the topological SPT phase and from the trivial SPT phase to the phase boundary
in the phase diagram, respectively. In these phase diagrams, the red triangle represents an initial
ground state, the blue star represents a target ground state, and the red, yellow, and blue areas denote
the topological SPT, symmetry broken, and trivial SPT phases, respectively. Subfigures d and e
depict the trajectories of the controlled state corresponding to the trajectories in Subfigures b and c,
respectively, in the representation space, projected by the t-SNE algorithm.

Instead of measuring every single qubit in the spin chain, we perform single-qubit Pauli measure-
ments only on neighboring three-qubit subsystems, which correspond to a marginal of the entire
system. We select 50 different measurements, each corresponding to a Pauli string on three nearest-
neighbor qubits, and use this same set of measurements at each control step. After performing the
quantum measurements, we feed the measurement statistics of short-range spin correlations into the
neural network. The RGRL algorithm then outputs an action to tune the pair of parameters (J/J ′, δ),
chosen from the set of eight options: (J/J ′, δ) ← {(J/J ′ ± 0.15, δ), (J/J ′, δ ± 0.2), (J/J ′ ±
0.15, δ ± 0.2)}.
We investigate five different control scenarios, each corresponding to a different pair of initial and
target states: (1) Control a ground state in the symmetry-broken phase towards the topological SPT
phase. (2) Control a ground state in the trivial SPT phase towards the symmetry-broken phase.
(3) Control a ground state in the trivial SPT phase towards the topological SPT phase. (4) Control a
ground state in the topological SPT phase towards the symmetry-broken phase. (5) Control a ground
state in the trivial SPT phase towards the phase boundary between the trivial SPT and symmetry-
broken phases. Figure 3 shows the quantum fidelity between the controlled state and the target state
for these five scenarios after 30 control steps.
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To demonstrate that the quality of state representations affects the performance of quantum control,
we investigate the same control scenarios using two different types of state representations. The
first type is obtained by predicting the outcome statistics of measurements that have not yet been
performed, as described in Ref.Zhu et al. (2022). The second type is obtained for predicting the
order-two Rényi mutual information between two subsystems of a quantum state, as outlined in
Ref. Wu et al. (2023b). Our results in Figure. 3a indicate that using state representations designed for
predicting Rényi mutual information leads to higher quantum fidelity in our control scenarios. This
improvement is attributed to the fact that these state representations capture the nonlinear properties
of quantum states, thereby more clearly distinguishing different topological phases of matter.

Figure 3b shows an example of the trajectory of the ground state evolution under control, transi-
tioning from a trivial SPT phase to a topological SPT phase. Figure 3c presents an example of a
controlled ground state moving from a trivial SPT phase towards the phase boundary. Our RGRL
algorithm finds the optimal path in phase space for controlling a ground state from the trivial SPT
phase to the topological SPT phase, as illustrated in Figure 3b. For controlling a ground state in
the trivial SPT phase towards a state across the phase boundary, the controlled state successfully
reaches the phase boundary but fails to arrive at the exact critical point, as shown by Figure 3c. This
is because the state representations obtained by our representation network are quite similar near the
phase boundary, preventing the RL algorithm from accurately distinguishing different states across
the boundary.

Figures 3d and e illustrate the control trajectory in state representation space, corresponding to the
ground state evolution trajectories in Figures 3b and c, projected onto a 2D plane using the t-SNE
algorithm. By projecting the state representations of all ground states on the grid onto a 2D plane,
we find that in representation space, the state representations do not follow their pattern in phase
space. Thus, the optimal path in phase space does not correspond to the shortest trajectory in the
representation space, implying that the control task we consider is highly nontrivial.

We used the state representations for predicting mutual information to plot the control trajectories
in Figures 3. We also compare the quantum control trajectories using the state representations for
predicting measurement statistics (Figure 4) with those based on state representations to predict
mutual information (Figure 5). The results indicate that the former takes fewer control steps to
arrive at the target state than the latter, demonstrating that higher-quality state representations yield
higher control efficiency. To demonstrate this, we present the trajectories of the controlled states in
the representation space in Figure 6. It can be observed that the positions of state representations
are more separate when mutual information is used, enabling the algorithm to construct the correct
trajectory with fewer steps.

4.2 GENERATING THE OUTPUT OF A QUANTUM PROCESS

As an additional application, we employ our RGRL algorithm to produce a target output from an
unknown quantum process. We consider the scenario where a known target output state can be
obtained by applying the unknown quantum process to a certain input state. The goal is to find an
input that causes the quantum process to approximately generate the target output.

To achieve this, we apply the unknown quantum process to multiple copies of a randomly chosen
input state, resulting in multiple copies of the corresponding output state. By performing random-
ized measurements on the output, we estimate the similarity between the actual output state and
the target output state. Based on the estimated similarity, we then modify the input preparation.
This learning-and-control cycle is repeated until we identify an appropriate input that produces an
accurate approximation of the target output.

As an example, we apply our algorithm to prepare target output states of a CV Kerr quantum gate.
The input states can be selected from the set of coherent states |α⟩, where α = reiψ , r ∈ [0, 3]
and ψ ∈ [0, 2π). Three homodyne measurement bases are randomly chosen, constituting the set
of measurements S to be performed on the output at each control step. Taking the measurement
statistics corresponding to the measurements in S as input, our RGRL algorithm determines the
tuning of the parameter α out of four options: (|α|, arg(α)) ← {(|α| ± 0.09, arg(α) ± 0.06π)}.
The measurement-and-control cycle is depicted in Fig. 7a. Figure 7b illustrates the quantum fidelity
between the generated output state and the target output state within 55 control steps, averaged over
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a b

d e

c

Figure 4: Trajectory of the controlled state, utilizing state representations to predict measurement
statistics: a from symmetry broken phase to topological SPT Phase, b from trivial SPT phase to
symmetry broken phase, c from trivial SPT phase to topological SPT Phase, d from topological SPT
Phase to symmetry broken phase, e from the trivial SPT phase to the phase boundary in the phase
diagram.

a

d

b c

e

Figure 5: Trajectory of the controlled state, utilizing state representations to predict mutual infor-
mation: a from symmetry broken phase to topological SPT Phase, b from trivial SPT phase to
symmetry broken phase, c from trivial SPT phase to topological SPT Phase, d from topological SPT
Phase to symmetry broken phase, e from the trivial SPT phase to the phase boundary in the phase
diagram.

200 random pairs of initial input states and target output states. The results indicate that, although
the initial output state fidelity is nearly zero, the quantum fidelity exceeds 0.9 after 50 control steps.

5 CONCLUSIONS

We developed a reinforcement-learning algorithm for steering a quantum system, initially in an
unknown state, to a given target state. In our algorithm, each control action is determined by
a neural network based on measurement data from a small set of quantum measurements. The
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No Label

Mutual Information

SB → TP TR → SB TR → TP TP → SB TR → Boundary

Figure 6: Trajectories of the controlled state under control in the representation spaces.

Figure 7: Producing target output of CV unitary quantum process. Subfigure a illustrates the
measurement-and-control loop for producing the target output of a quantum process U by controlling
the parameter α of a displacement gate applied to a vacuum state. Subfigure b shows the quantum
fidelity between the output and the target within 55 control steps, averaged over 200 randomly cho-
sen pairs of initial and target states, along with several examples of Wigner function Serafini (2017)
of the controlled states.

measurement set is randomly chosen, independently of the target quantum state, thereby offering
flexibility for a broad set of applications involving the control of uncharacterized, intermediate-scale
quantum systems using a limited set of quantum measurements. Our method provides a novel way
to learn and control the quantum state, which also highlights the significance of representation
learning and RL in quantum computing and information processing.
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Julius Wallnöfer, Alexey A. Melnikov, Wolfgang Dür, and Hans J. Briegel. Machine learning for
long-distance quantum communication. PRX Quantum, 1:010301, Sep 2020. doi: 10.1103/
PRXQuantum.1.010301. URL https://link.aps.org/doi/10.1103/PRXQuantum.
1.010301.

12

https://link.aps.org/doi/10.1103/PhysRevX.12.011059
https://link.aps.org/doi/10.1103/PhysRevX.12.011059
https://link.aps.org/doi/10.1103/PhysRevResearch.4.L022020
https://link.aps.org/doi/10.1103/PhysRevResearch.4.L022020
https://link.aps.org/doi/10.1103/PRXQuantum.2.020348
https://link.aps.org/doi/10.1103/PRXQuantum.2.020348
https://link.aps.org/doi/10.1103/PhysRevLett.123.230504
https://link.aps.org/doi/10.1103/PRXQuantum.1.010301
https://link.aps.org/doi/10.1103/PRXQuantum.1.010301


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ya-Dong Wu, Yan Zhu, Ge Bai, Yuexuan Wang, and Giulio Chiribella. Quantum similar-
ity testing with convolutional neural networks. Phys. Rev. Lett., 130:210601, May 2023a.
doi: 10.1103/PhysRevLett.130.210601. URL https://link.aps.org/doi/10.1103/
PhysRevLett.130.210601.

Ya-Dong Wu, Yan Zhu, Yuexuan Wang, and Giulio Chiribella. Learning quantum properties from
short-range correlations using multi-task networks. arXiv preprint arXiv:2301.11807, 2023b.

Tailong Xiao, Jianping Fan, and Guihua Zeng. Parameter estimation in quantum sensing based on
deep reinforcement learning. NPJ Quantum Inf., 8(1):2, 2022.

Jiahao Yao, Lin Lin, and Marin Bukov. Reinforcement learning for many-body ground-state prepa-
ration inspired by counterdiabatic driving. Phys. Rev. X, 11:031070, Sep 2021. doi: 10.1103/
PhysRevX.11.031070. URL https://link.aps.org/doi/10.1103/PhysRevX.11.
031070.

Yexiong Zeng, Zheng-Yang Zhou, Enrico Rinaldi, Clemens Gneiting, and Franco Nori. Approxi-
mate autonomous quantum error correction with reinforcement learning. Phys. Rev. Lett., 131:
050601, Jul 2023. doi: 10.1103/PhysRevLett.131.050601. URL https://link.aps.org/
doi/10.1103/PhysRevLett.131.050601.

Xiao-Ming Zhang, Zezhu Wei, Raza Asad, Xu-Chen Yang, and Xin Wang. When does reinforce-
ment learning stand out in quantum control? a comparative study on state preparation. NPJ
Quantum Inf., 5(1):85, 2019.

Xiaoqian Zhang, Maolin Luo, Zhaodi Wen, Qin Feng, Shengshi Pang, Weiqi Luo, and Xiaoqi Zhou.
Direct fidelity estimation of quantum states using machine learning. Phys. Rev. Lett., 127:130503,
Sep 2021. doi: 10.1103/PhysRevLett.127.130503. URL https://link.aps.org/doi/
10.1103/PhysRevLett.127.130503.

Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang, and Dong-Ling Deng. Topological quantum compiling
with reinforcement learning. Phys. Rev. Lett., 125:170501, Oct 2020. doi: 10.1103/PhysRevLett.
125.170501. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.
170501.

Yan Zhu, Ya-Dong Wu, Ge Bai, Dong-Sheng Wang, Yuexuan Wang, and Giulio Chiribella. Flexible
learning of quantum states with generative query neural networks. Nat. Commun., 13(1):6222,
2022.

A RELATED WORKS

Numerous studies have explored the use of neural networks to learn quantum systems Carleo &
Troyer (2017); Torlai et al. (2018); Carrasquilla et al. (2019); Zhu et al. (2022); Schmale et al.
(2022) and predict their properties Zhang et al. (2021); Xiao et al. (2022); Du et al. (2023); Wu et al.
(2023a); Qian et al. (2024); Gao et al. (2018); Gray et al. (2018); Koutnỳ et al. (2023); Torlai et al.
(2018; 2019; 2018; 2019); Carrasquilla et al. (2019); Smith et al. (2021); Schmale et al. (2022);
Tang et al. (a;b). Along this line, an interesting approach involves learning concise state represen-
tations Zhu et al. (2022) from the outcome data of randomized measurements Huang et al. (2020);
Elben et al. (2023). These data-driven representations preserve essential information about quantum
states and enable the assessment of their similarities Wu et al. (2023a). This work advances the
field by integrating reinforcement learning (RL) to develop a representation-guided RL algorithm
for efficient quantum control.

While many existing RL-based quantum control methods Chen et al. (2013a); Bukov et al. (2018);
Zhang et al. (2019); Porotti et al. (2022); Sivak et al. (2022); Metz & Bukov (2023) focus on prepar-
ing a known target state from a specified initial state, our algorithm runs in a state-agnostic manner.
The only input to the neural network is the outcome data from randomized measurements, without
any description of the state being controlled, including the initial state. This is a key distinction
from previous approaches. Many quantum control strategies have used quantum fidelity between
states for reward calculations Chen et al. (2013a); Bukov et al. (2018); Bukov (2018); Zhang et al.
(2019); Porotti et al. (2022); Metz & Bukov (2023). However, in our scenario, quantum fidelity is
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not accessible. Instead, we use the distance between state representations as a proxy for quantum
fidelity when calculating rewards.

B RL ALGORITHMS

Note that for following the convention notation in RL, we replace the neural representation r in the
main text to s. In addition, in fact the observation of the RGRL algorithm isD, i.e. the measurement
statistics, we always map it to r with a pretrained and frozen neural network. Therefore, we present
the policy gradient directly with r (here repalced with s) rather than D. When considering the
policy-gradient method, the expected reward function

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a), (2)

where dπ(s) is the stationary distribution of Markov chain for policy πθ, Qπ(s, a) is the value func-
tion when given by a policy π. A,S denote the action space and observation spaces, respectively.
Here, we omit notation θ when the policy πθ is present in the subscript of other functions. The
policy gradient theorem Sutton et al. (1999) states that the gradient over the reward function is given
by

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s),

= Eπ [Qπ(s, a)∇θ lnπθ(a|s)] ,
(3)

where Eπ refers to Es∼dπ,a∼πθ
when both state and action distributions follow the policy πθ. Eq. (3)

lays the foundation of policy gradient algorithms in RL. Meanwhile, Eq. (3) has no bias but have
large variance. Many methods focus on reducing the variance of the estimated gradient while keep-
ing the bias unchanged. Therefore, during updating the policy parameters, we often use the advan-
tage function A(s, a) = Q(s, a)− V (s) rather than the Q function. V (s) is the state value function
used to evaluate the expected reward of current state whatever actions it takes. To better estimate the
state value function, we often use Actor-Critic architecture to model the policy gradient algorithm.
Critic network is used to estimate the state value function and actor network is used to model the
policies.

In order to improve the sample efficiency and exploration ability, off-policy gradient methods are
often employed. More formally, suppose the generated data trajectories obey the behavior policy
β(a|s), the objective function sums up the reward over the state distribution defined by this behavior
policy

J(θ) =
∑
s∈S

dβ(s)
∑
a∈A

Qπ(s, a)πθ(a | s),

= Es∼dβ

[∑
a∈A

Qπ(s, a)πθ(a | s)

]
,

(4)

where where dβ is the stationary distribution of the behavior policy β. Note that π refers to the target
policy which is used to estimate the state-action function, i.e. Q(s, a). Subsequently, we can rewrite
Eq. (3) as follows

∇θJ(θ) = Eβ
[
πθ(a|s)
β(a|s)

Qπ(s, a)∇θ lnπθ(a|s)
]
, (5)

where we call πθ(a|s)
β(a|s) as importance weight. The off-policy gradient Eq. (5) implies that we can

use behaviour policy generated trajectories to update the policy parameters. One important fact is
that we omit the term of gradient over Q function i.e. ∇θQπ(s, a). Fortunately, it turns out that
approximated gradient with the gradient of Q ignored still guarantees the policy improvement and
eventually achieve the true local minimum Degris et al. (2012).

Trust region policy optimization (TRPO) algorithm Schulman et al. (2015) is used to stabilize the
training process, namely avoiding parameter updates that change the policy too much at one step.
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Consider the objection function,

J(θ) =
∑
s∈S

ρπθold

∑
a∈A

(
πθ(a|s)Âθold (s, a)

)
, (6)

where ρπ denotes the distribution over states following the policy π, θold is the policy parameters
before the update, Â denotes the estimated advantage function. Let the behaviour policy β be πθold

and combines the advantage function, Eq. (6) can be rewritten as

J(θ) = Es∼ρπold ,a∼πold

[
πθ(a|s)
πold(a|s)

Âθold(s, a)

]
. (7)

TRPO aims to maximize Eq. (7) by using policy gradient methods. Besides, TRPO constructs an
extra constraint to enforce the parameter update not causing large variance, that is

Es∼ρπθold [DKL (πθold (. | s)∥πθ(. | s)] ≤ δ , (8)

where DKL denotes the KL divergence of two probability distributions. By constraint (8), the old
and new policy will not be large so that the training process is stabilized. However, although TRPO
has beautiful theoretical formation, it is time-consuming to calculate the KL divergence in reality.
Therefore, we consider using a more efficient algorithm called proximal policy optimization (PPO)
Schulman et al. (2017) to simplify the calculation. PPO uses a clipped objection function, and it is
given by

JCLIP(θ) = Es∼ρπold ,a∼πold

[
min

(
ν(θ)Âθold (s, a), clip(ν(θ), 1− ϵ, 1 + ϵ)Âθold (s, a)

)]
, (9)

where A(·) denotes the advantage function, ν(θ) = πθ(a|s)
πold(a|s) denotes the ratio between the old and

target policy, and the function clip(ν(θ), 1−ϵ, 1+ϵ) clips the ratio to be between 1−ϵ and 1+ϵ. ρπ
denotes the distribution over states following the policy π. The objective function of PPO takes the
minimum one between the original value and the clipped one. As a result, we lose the motivation
for increasing the policy update to extremes for better rewards. In implementation, to encourage the
exploration, the objective function is given by

JCLIP′
(θ) = Es∼ρπold ,a∼πold

[
JCLIP(θ)− c1 (Vθ(s)− Vtarget )

2
+ c2H (s, πθ(·))

]
, (10)

where c1 and c2 are two hyperparameter constants, H(·) denotes the entropy function, and Vtarget
denote the sate value which can be calculated by using the sampled trajectories. This error term
is generally added in Actor-Critic architecture. Besides PPO-CLIP algorithm used in this work,
other RL algorithms like A3C Mnih et al. (2016), DDPG Lillicrap et al. (2015) and SAC Haarnoja
et al. (2018) can also be used to construct our RGRL algorithm. The pseudocode of PPO-RGRL
algorithm is presented in Algorithm 1.

C HYPERPARAMETER SPECIFICATIONS IN RGRL

The hyperparameters of PPO-Clip based RGRL algorithm are presented in detail in this section. In
general, RL algorithm has more hyerparameters than supervised machine learning models. It gen-
erally includes the number of layers, the number of neurons of each layer with respect to actor and
critic neural network, and the learning rate α. Except for the general hyperparameters, particular RL
parameters includes the total number of steps M , the number of steps per policy roll out kstep, the
mini-batch size B, the number of epochs K to update the policy, the discount rate γ, the surrogate
clipping coefficient ϵ, the entropy coefficient c2, and the value loss coefficient c1. Besides, to stabi-
lize training, we use the gradient clipping strategy and set the maximum gradient norm allowed to be
gmax. We also use the learning rate annealing technique, which aims to linearly decay the learning
rate. The decay equation is given by

αk ←
(
1− k − 1

M

)
× α0, (11)

where α0 is the initial learning rate. In reality, we find the algorithm performance is not sensitive
to hyperparameters. All examples in this work share the same RL-specified hyperparameters. We
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Algorithm 1: PPO-RGRL
input : Initial policy (actor) parameters θ0, initial value (critic) function parameters ϕ0; The

maximum length (horizon) of each episode T .

for k = 0, 1, 2, · · · do
Collect sampled trajectories Dk = {τi} by running current policy πk = π(θk) in the

environment with τi = (si, ai, rk, sρi+1).
Compute the return (rewards-to-go) Ĝt;
Compute advantage function estimates, Ât(st, at) = Qπ(st, at)− V πϕk

(st) based on the
current value function V πϕk

.
Update the policy by maximizing the PPO-Clip surrogate,

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

JCLIP′
(θk),

via stochastic gradient ascent with Adam method Kingma & Ba (2014).
Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ (st)− Ĝt

)2

,

typically also via stochastic gradient descent algorithm such as Adam.

Hyperparameter name Value
M 50, 000
B 64 or 128
K 4
kstep 512
γ 0.99
ϵ 0.2
c1 0.5
c2 0.01
gmax 0.5
α0 4× 10−4

Table 1: The hyperparameters used in RGRL algorithm for all control examples. Fine-tuning the
these hyperparameters may further improve the training efficiency.

present these hyperparameters in Table 1. The RL-specified hyerparameters can be further optimzied
to enhance the performance such as the sample efficiency.

Moreover, the hyperparameters of actor and critic neural networks are presented in the following.
All actor and critic neural network contain three layers. The first layer maps the partial observation
(neural representation of current quantum state) into the next hidden layers. The number of input
neurons equals to the dimension of the neural representation d. The hidden layer contains 64 or 128
neurons and the last output layer contains only single neuron for citric network and nactions neurons
for actor network. The activation function used in RGRL is Tanh(·) non-linear function. Note that
in case d = 32, the number of neurons in hidden layer is set to be 64. In case d = 96, the number of
neurons in hidden layer is set to be 128.

For different examples, the dimension of neural representation and the number of actions are also
various. In all examples, we make use of discrete policy to control the parameters of quantum
systems. Generally, to enhance the control efficiency, we make use of multi-discrete control policy
to interact with the environment except for the XXZ model. It is quite intuitive since the parameters
of quantum systems or Hamiltonian can be viewed independently from each other. For example, for
Ising example, the number of actions is 18, i.e. nactions = 18 as each parameter Ji has three possible
actions, namely +1,−1 and 0. For XXZ model, the actions is set to be 8 as there are nactions = 8
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possible movements in the 2-dimensional parameter space except for the case of no movement.
More specifically, each parameter can move towards left or right. Only one parameter moves or two
parameters move simultaneously. For Kerr system, it is desirable to control the amplitude and phase
of the light field. The amplitude and phase can be independently controlled and each has 3 possible
movements. Therefore, there are nactions = 6 possible movements in this environment. For quantum
state retrodiction, the number of actions are also set to be nactions = 6 as the gate parameters of initial
quantum state control the amplitude and phase of one coherent state.

One more important hyperparameter is the discrete action step ∆a for each control example. The
specific value is presented in Table 2. For Kerr model, the action step in each control loop is linearly

Quantum Model Discrete action step Number of observales to measure
Random Ising model ∆a = 0.05 nobs = 5

XXZ model ∆a = 1 nobs = 50
Kerr model ∆a = 0.3 (linear decay) nobs = 3

Generate output state of ∆a = (0.09, 0.06π) nobs = 3
an unknown process

Table 2: The action steps and number of observables to measure for each quantum system.

decayed following the same rule with Eq. (11). It is worthy noting that the discrete action step will
determine the convergence of the proposed algorithm. A moderate action step is necessary to obtain
a higher fidelity as the fidelity may be sensitive to control parameters. During the late stage of the
training, the action step should be small enough to ensure the convergence with high fidelity. In
general, all examples can make use of the strategy of linear decay strategy. However, it is not our
focus in this work to optimize this hyperparameters to obtain the optimal performance.

C.1 ADDITIONAL RESULTS ON CONTROL OF DISORDERED ISING MODEL GROUND STATE

We apply our RL algorithm for controlling the ground state of a disordered Ising model towards a
target ground state. Specifically, suppose the quantum state under control is a 6-spin ground state of
Hamiltonian

HI := −
4∑
i=0

Jiσ
z
i σ

z
i+1 −

5∑
j=0

σxj , (12)

where each Ji ∈ (−1, 1) is an independent parameter. In this task, at each step, we must determine
the change of each individual parameter, yielding a difficult high-dimensional control problem.

We suppose the quantum state under control is initialized either in the state |+⟩⊗6 that is the ground
state when Ji = 0 for each i, or in a ground state corresponding to a randomly parameterized model
in Eq. (12). We consider four control scenarios, each of which corresponds to a different target state:
(1) a ground state in ferromagnetic phase corresponding to Ji = 0.8 for 0 ≤ i ≤ 5, (2) a ground
state in antiferromagnetic phase corresponding to J0 = J2 = J4 = 0.8 and J1 = J3 = J5 = −0.8,
(3) a ground state corresponding to J0 = J1 = J2 = 0.8 and J3 = J4 = J5 = −0.8, and
(4) a ground state corresponding to a randomly chosen Hamiltonian parameters. We randomly
choose five 6-qubit Pauli bases out of 36 possibilities and measure each single qubit, recording
the outcome frequency distributions. At each control step, we perform the same set of quantum
measurements. The measurement outcome statistics are fed into the neural network and then the RL
algorithm outputs the actions on all six independent Hamiltonian parameters, where the action on
each parameter is chosen out of the set Ji ← {Ji + 0.1, Ji, Ji − 0.1}.
Figure 8a illustrates the quantum fidelity between the controlled state after 50 control steps and
the target state in four different control scenarios including both types of quantum initial states. The
quantum fidelity achieved starting from |0⟩⊗6 is higher than those achieved starting from a randomly
disordered initial state, indicating that controlling a general disordered state towards a target state
is much more difficult. In Figure 8b, we show both the quantum fidelity and reward for the control
scenarios (2) and (3) at every control step from the beginning to 100 steps.
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Figure 8: Control of Ising model ground states. Subfigure a shows the quantum fidelity between
the controlled state and the corresponding target state in the four different control scenarios after
100 control steps averaged over 100 experiments. The vertical line at the top of each bar represents
the confidence interval with confidence level 95%. Subfigure b shows the quantum fidelity of the
controlled state in 100 control steps, together with the reward at every step.

D CONTROLLING THE PREPARATION OF CV CAT STATES

Our RGRL algorithm can also be applied for controlling CV quantum states. Here, we focus on
manipulating a superposition of two coherent states, known as a cat state |Cα⟩ ∝ |α⟩+ |−α⟩, where
|α⟩ and |−α⟩ represent coherent states with amplitudes α ∈ C and −α, respectively. This cat state
serves as an eigenstate of the HamiltonianHKerr := −â† 2â2+α2â† 2+α∗ 2â2 Dykman (2012), with
â and â† denoting annihilation and creation operators, respectively. Tuning the parameter α within
the Hamiltonian HKerr enables control the preparation of the cat state |Cα⟩ Puri et al. (2017); Grimm
et al. (2020), which is useful for quantum error correction Mirrahimi et al. (2014).

Here we consider four different control scenarios, each sharing the same target state |C+0.5−1.8i⟩, but
starting from different initial states, as shown in Figure 9 (The initial state amplitudes are represented
by black squares, and the target state amplitude is represented by a red star). We randomly choose
three different quadratures

(
eiθâ† + e−iθâ

)
/2 associated with phases θ ∈ [0, π) and the homodyne

measurements on these three quadratures form the set of measurements S at every control step. Each
homodyne measurement outcome is binned into one of 100 possibilities. At each control step, the
outcome frequency distributions are fed into the neural network, and our RGRL algorithm outputs
one control action out of eight options α← {α± β, α± βi, α± β ± βi}, where β denotes the size
of the parameter change at each control step.

Figure 9a shows the quantum fidelity between the controlled state and the target state in four dif-
ferent scenarios after only 20 control steps. The figure includes both cases of ideal measurement
statistics and measurement statistics with shot noise due to finite sampling. In the noiseless case, the
quantum fidelity always exceeds 0.95 for each initial state. In the noisy case, we simulate the shot
noise by adding Gaussian white noise with a variance of 0.1 to each frequency and renormalizing
the overall frequency distribution. The resulting quantum fidelity is degraded by shot noise when
the initial cat state has a large amplitude. Figure 9b shows the trajectories of controlled amplitudes
in different control scenarios. Although the Wigner functions of the four initial states indicate sig-
nificant differences, the final amplitude of the controlled state is close to that of the target state in all
cases.

Now we demonstrate a different scenario in which we randomly select three different measurement
quadratures at each control step, rather than keeping them consistent throughout the entire process
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Figure 9: Control of preparing cat states. Subfigure a shows the quantum fidelity between the
controlled state and the target cat state in four different scenarios after 20 control steps, averaged
over 100 experiments. This includes both the noiseless case and the shot-noise case. Cases 1, 2,
3, and 4 correspond to four different control scenarios depicted in Subfigure b. The vertical line
at the top of each bar represents the confidence interval with confidence level 95%. Subfigure b
illustrates four trajectories of amplitude under quantum evolution in phase space, along with the
Wigner functions of four different initial states and one target cat state.
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Figure 10: Control of preparing cat states in the scenario where measurement quadratures are ran-
domly selected at each control step. The figure shows the quantum fidelity between the controlled
state and the target cat state in four different scenarios after 20 control steps, averaged over 100
experiments.

of preparing the target cat state. We utilize the same four scenarios to test the performance of our
proposed algorithm. Figure 10 shows the quantum fidelity between the controlled state and the target
cat state in these four different scenarios after 20 control steps.

As shown in the results, the performance of our algorithm in this scenario surpasses its performance
in the scenario where the measurement quadratures are fixed throughout the entire process. We
believe this improvement is because the neural network collects more comprehensive information
about the state when the measurement quadratures are varied. This variability likely enables the net-
work to capture a richer set of state features, thereby enhancing the control precision and ultimately
leading to higher quantum fidelity.
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E LIMITATIONS

In this study, we focus on controlling the ground states of a Hamiltonian or the output state of
an unknown quantum process. While these tasks are critical for quantum information processing,
the types of quantum states currently under consideration remain limited to specific categories. In
the future, it will be possible to generate a wider variety of quantum states using tailored quantum
circuits, which can then be utilized to learn neural representations. Ultimately, our proposed RGRL
algorithm can be applied to efficiently control these quantum states. To achieve this, we can train
on a diverse set of quantum states generated by highly parameterized circuits, offering significant
flexibility. A representation network, such as a large language model, could then be used to learn
the structure of these quantum states. Looking ahead, large language models could play a crucial
role in characterizing quantum states with sufficiently broad variability, enabling RL to efficiently
manage both the dynamic evolution and computational behavior of these states.
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