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Abstract

Trajectory prediction for surrounding agents is a
challenging task in autonomous driving due to its
inherent uncertainty and underlying multimodal-
ity. Unlike prevailing data-driven methods that
primarily rely on supervised learning, in this pa-
per, we introduce a novel Graph-oriented Inverse
Reinforcement Learning (GoIRL) framework,
which is an IRL-based predictor equipped with
vectorized context representations. We develop
a feature adaptor to effectively aggregate lane-
graph features into grid space, enabling seam-
less integration with the maximum entropy IRL
paradigm to infer the reward distribution and ob-
tain the policy that can be sampled to induce mul-
tiple plausible plans. Furthermore, conditioned
on the sampled plans, we implement a hierarchi-
cal parameterized trajectory generator with a re-
finement module to enhance prediction accuracy
and a probability fusion strategy to boost predic-
tion confidence. Extensive experimental results
showcase our approach not only achieves state-of-
the-art performance on the large-scale Argoverse
& nuScenes motion forecasting benchmarks but
also exhibits superior generalization abilities com-
pared to existing supervised models.

1. Introduction
Trajectory prediction for surrounding traffic participants
plays a pivotal role in modern autonomous driving systems,
serving as a crucial bridging module that connects upstream
perception to downstream planning. Accurately anticipating
the future behaviors of nearby agents is paramount to ensure
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Figure 1. A motivating example of the covariate shift issue in tra-
jectory prediction. In a T-junction driving scenario, the target agent
has two potential future trajectories: going straight and turning left.
During the data collection process, the ground-truth trajectory is
labeled as going straight. However, during testing, the presence of
a tentative barricade set up in the intersection renders the original
prediction unreasonable. Hence, the predictor must adapt to this
change and provide an updated prediction, considering only the
option of turning left in this case.

autonomous vehicles can make safe, efficient, and judicious
decisions in intricate urban scenarios. However, the task
of motion forecasting remains challenging because of its
inherent uncertainty and underlying multimodality: an agent
can exhibit multiple plausible future trajectories given its
past tracks and the available scene information (Song et al.,
2021; Shi et al., 2022; Huang et al., 2023a).

Learning-based approaches have emerged as the dominant
paradigm due to their powerful representation capabilities
to encode the historical motion profiles of agents and the
topological and semantic information of environments. In
general, data-driven trajectory prediction can be seen as
imitation learning from human drivers, i.e., neural networks
aim at learning human-like driving behaviors or strategies by
leveraging a large amount of recorded driving data as expert
demonstrations. This typical robotic task can be approached
mainly in two ways: behavior cloning (BC) and inverse
reinforcement learning (IRL). Most advanced methods in
motion forecasting predominantly employ the BC frame-
work, which involves directly learning the distribution of
trajectories from real-world datasets in a supervised manner.
In contrast, the IRL architecture models the agent’s behavior
as a sequential decision-making process (Osa et al., 2018)
and aims to infer the underlying reward function that is con-
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sidered the most parsimonious and robust representation of
the expert demonstrations (Ng & Russell, 2000).

Despite achieving impressive performance in trajectory pre-
diction benchmarks, current supervised models still face
challenges concerning generalization or domain adaptation,
whereas IRL offers a promising pathway to alleviate them.
Specifically, when the situation encountered is significantly
out-of-distribution of training demonstrations (referred to as
covariate shift in BC (Chen et al., 2023; Yao et al., 2024)),
there is a risk of severe compounding error, yielding unrea-
sonable forecasts. For instance, consider a driving scenario
where a temporary roadblock is set up in an intersection,
causing a previously free space to become an undrivable
area, as depicted in Figure 1. Existing supervised models
can hardly react to such changes, resulting in unaltered pre-
dictions since the novel scene substantially differs from the
training time. Besides, few approaches adequately consider
drivable information while also having the capacity to effec-
tively utilize this essential attribute, as the planning module
does. However, IRL can handle such situations in principle,
due to its reward-driven paradigm and learning from inter-
action property rather than directly fitting data distributions
(see Figure 5). Another critical concern associated with the
supervised manner is the modality collapse issue. As only
one ground-truth future trajectory is provided as supervision,
the predictor has to generate diverse plausible predictions
via learning one-to-many mappings (Ridel et al., 2020). In
contrast, the IRL framework holds the potential to address
uncertainty by integrating the maximum entropy (MaxEnt)
principle (Ziebart et al., 2008). The MaxEnt IRL approach
intends to acquire the reward distribution with the highest
entropy (Kretzschmar et al., 2016), which can better capture
the intrinsic multimodality of demonstrations. Moreover,
the learned reward, as an interpretable intermediate repre-
sentation (Zeng et al., 2019), can also benefit downstream
decision-making and behavior planning in highly complex
and interactive scenarios (Huang et al., 2023b).

In light of its superior properties, the MaxEnt IRL frame-
work has garnered significant attention in recent research
(Finn et al., 2016a; Zhang et al., 2018). However, most tra-
ditional IRL algorithms typically operate efficiently in grid-
like environments, which prompts existing work to adopt
rasterized context representations, rendering scene elements
into bird’s-eye-view (BEV) images as input (Kitani et al.,
2012; Guo et al., 2022). Consequently, the performance
of IRL-based predictors is hampered by scene information
loss and inefficient feature extraction when compared to
current supervised models with vectorized representations
(Gao et al., 2020; Liang et al., 2020). To bridge this gap, we
present a feature adaptor capable of aggregating lane-graph
features into grid space, thereby empowering IRL-based
predictors with vectorized context information. Another
bottleneck lies in the computational expense of running IRL,

as it necessitates a forward RL-style procedure in the in-
ner loop (Ho & Ermon, 2016), making it challenging to
scale up for larger state spaces. To mitigate this concern,
we propose a hierarchical architecture that generates pre-
dicted trajectories in a coarse-to-fine manner. Concretely,
on the initial coarse scale, we generate multimodal trajec-
tories conditioned on diverse paths or policies drawn from
the learned reward distribution using Markov chain Monte
Carlo (MCMC) sampling (Hastings, 1970). Additionally,
our approach employs a Bézier curve-based parameteri-
zation method that recurrently forecasts control points to
represent the trajectory, ensuring numerical stability and
smoothness. Furthermore, the MCMC-induced distribution
is also fused to constitute the final hybrid probability for
each modality, thereby enhancing prediction confidence. On
the subsequent fine scale, we introduce a trajectory refine-
ment module that leverages both observed and predicted
trajectories to retrieve fine-grained local context features,
enabling more consistent and precise trajectory forecasts.

Overall, the main contributions of this paper can be sum-
marized as follows: (1) We present a novel Graph-oriented
Inverse Reinforcement Learning (GoIRL) framework for
the multimodal trajectory prediction task, which, to the best
of our knowledge, is the first to integrate the MaxEnt IRL
paradigm with vectorized context representation through our
proposed feature adaptor. (2) We introduce a hierarchical
parameterized trajectory generator for improving prediction
accuracy and an MCMC-augmented probability fusion for
boosting prediction confidence. (3) Our approach achieves
state-of-the-art performance on two large-scale motion fore-
casting benchmarks, namely Argoverse (Chang et al., 2019)
and nuScenes (Caesar et al., 2020). Further, it demonstrates
superior generalization abilities compared to existing super-
vised models in handling drivable area changes.

2. Related Work
2.1. Scene Context Representation

Scene context, including high-definition (HD) maps, of-
fers valuable information that significantly contributes to
trajectory prediction. Early works often rasterize the envi-
ronment into a BEV image, with distinct colors representing
different types of input information. Scene features are
subsequently extracted using convolutional neural networks
(CNNs) and pooling layers (Cui et al., 2019). Neverthe-
less, these rasterization-based methods have limitations in
capturing long-range spatiotemporal relationships owing to
the lack of detailed geometric information from road maps
(Nayakanti et al., 2022). Therefore, a more effective and
powerful alternative, known as vectorized (Gao et al., 2020)
or graph-based (Liang et al., 2020) representation, is then
proposed, which can provide abundant geometric and se-
mantic information, such as map topology, lane connectivity,
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and correlation relationships among neighborhood agents.
Building upon these vectorized data, graph neural networks
(GNNs) and Transformer-based architectures have been ex-
tensively explored for feature extraction and fusion (Zeng
et al., 2021; Zhou et al., 2023). This paradigm has gained
increasing popularity in current prediction models due to its
remarkable enhancement to overall prediction performance.
Consequently, in our framework, we also adopt the prevalent
vectorized representation to encode the scene context and
employ graph-based models to extract lane-graph features.

2.2. Multimodal Trajectory Prediction

Multimodal trajectory prediction necessitates generating
diverse, socially acceptable, and interpretable future tra-
jectories accompanied by corresponding confidence scores
(Huang et al., 2023a). One practical approach is to utilize
stochastic techniques, such as generative adversarial net-
work (GAN) (Gupta et al., 2018) or conditional variational
autoencoder (CVAE) (Ivanovic et al., 2020), to generate mul-
tiple possible forecasts. However, sampling from a latent
distribution is uncontrollable during inference, prompting
recent efforts to focus on anchor-based methods instead.
Predefined anchors, including goal points (Gu et al., 2021),
reference lanes (Song et al., 2021), or candidate paths (Af-
shar et al., 2024), can act as mode-specific priors to facilitate
forecasting diversity. Nevertheless, the accuracy of predic-
tions heavily relies on the quality of these anchors. By
contrast, our work leverages MaxEnt IRL to infer the in-
trinsic multimodal distribution of rewards by maximizing
entropy. Multiple plausible policies or plans can then be
sampled from the learned reward distribution, generating
diverse trajectories. Furthermore, the probability of each
modality is commonly obtained through classification with
hard assignments using displacement regression (Ye et al.,
2021). Yet, we contend that the confidence scores obtained
in this manner are inadequate to characterize uncertainty
comprehensively and thus propose to augment the confi-
dence scores by fusing the MCMC-induced distribution.

2.3. Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL), a prominent branch
of imitation learning, has been extensively investigated in
the domains of robotic manipulation (Finn et al., 2016b),
navigation (Fu et al., 2018), and control (Yu et al., 2019; Osa
et al., 2018). It aims to recover the underlying reward distri-
bution from expert demonstrations, enabling the derivation
of policies consistent with human behaviors. Supposing that
surrounding agents are mostly rational and thus can be mod-
eled as optimal or suboptimal planners, the IRL approach
becomes a powerful tool for motion forecasting, function-
ing as a planning-based predictor. In order to reason about
uncertainty in decision sequences, a probabilistic approach
known as MaxEnt IRL has been proposed and successfully

applied to infer both future destinations and routes in real-
world navigation tasks (Ziebart et al., 2008). Nevertheless,
previous IRL-based predictors have primarily been designed
for path forecasting (Ziebart et al., 2009), neglecting the
consideration of time profiles. To overcome this disparity,
recent studies integrate kinematics and environmental con-
text into the IRL scheme (Zhang et al., 2018), presenting a
plans-to-trajectories module that can generate continuous
trajectories conditioned on grid-based state sequences sam-
pled from the reward distribution (Deo & Trivedi, 2020; Guo
et al., 2022). However, existing IRL-based predictors solely
utilize rasterized BEV features as input, which limits their
prediction performance. In contrast, our work introduces a
novel feature adaptor designed to incorporate lane-graph fea-
tures into the MaxEnt IRL framework, ultimately enhancing
prediction accuracy.

3. Methodology
3.1. Problem Formulation

The multimodal trajectory prediction task entails generating
multiple plausible future trajectories for the target agent,
each accompanied by corresponding probabilities condi-
tioned on the scene context. More specifically, considering
the driving context C = {X ,O,M}, which consists of the
tracking positions of the target agent X = [x−tp+1, . . . , x0]
and its observed neighboring agents O = [o−tp+1, . . . , o0]
spanning the past tp timestamps, as well as the relevant
map informationM, the motion predictor aims to infer the
probability distribution of future forecasts P (Ŷ|C), where
Ŷ = [ŷ1, . . . , ŷtf ] represents the predicted future trajectory
of the target agent over the future tf timestamps.

To tackle trajectory prediction using IRL-based methods, we
decompose the entire task into two conceptual stages: policy
inference and trajectory generation. The scene context C
is first aggregated into a coarse 2-D grid space. Then, the
IRL framework is characterized as a finite Markov decision
process (MDP) with a fixed horizon H, which is defined
as a four-tuple {S,A, T ,R}. Herein, S represents a set of
states comprising all grid cells, while A represents a set of
actions consisting of nine discrete movements, including
eight adjacent and diagonal directions, along with one end
action for the early rollout termination. T : S × A → S
denotes the deterministic transition model andR denotes re-
ward function which is initially unknown. Next, we leverage
a stationary policy π(a|s) derived from the learned reward
distribution to specify a probabilistic mapping from a state
s ∈ S to a particular action a ∈ A. Ultimately, the tar-
get agent makes forecasts conditioned on grid-based plans
sampled from the optimal policy π∗, where each plan is re-
ferred to as a sequence of states given by τ̂ = [ŝ1, . . . , ŝH].
Consequently, the multimodal future trajectory distribution
P (Ŷ|C) can be decomposed by conditioning on plans and
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Figure 2. Overview of GoIRL, illustrating the generation of multimodal trajectory predictions for the target agent (depicted in blue).

then marginalizing over them:

P (Ŷ|C) =
∑

τ̂∈S(C)

P (Ŷ|τ̂ , C)P (τ̂ |C), (1)

where S(C) denotes the space of plausible plans based on the
driving context, which is derived from the policy inference.

3.2. Framework Overview

An overview of our proposed framework is presented in Fig-
ure 2, which illustrates a two-stage architecture involving
policy inference and trajectory generation. In the first stage,
we encode the driving context in a vectorized manner and
employ a graph-based approach to extract scene features.
The lane-graph features are then aggregated into grid space
using the proposed feature adaptor and further compressed
through CNNs to reduce the state-space dimension. Af-
terward, the grid-based MaxEnt IRL algorithm is utilized
to infer the reward distribution, thereby obtaining the opti-
mal policy that can be sampled to induce multiple plausible
plans or traversals over the 2-D grid. In the second stage,
we introduce a hierarchical structure for generating multi-
modal future trajectories conditioned on the sampled plans
and multiscale scene embedding features. Concretely, we
parameterize predicted trajectories using Bézier curves and
recurrently produce control points to represent continuous
trajectories as initial proposals. Subsequently, a refinement
module is designed to generate location offsets for each
clustered proposal by retrieving fine-grained local context
embedding features via the complete trajectory, which com-
prises both the predicted proposal and past observation, in
order to facilitate temporal consistency and spatial accuracy.

3.3. Graph-Oriented Context Encoder

Considering context rasterization suffers from information
loss and inefficient feature extraction, we employ a graph-
oriented context encoder to aggregate scene features in a
vectorized manner, enabling better capture of complicated
topology connectivity and long-range interactions. Specifi-
cally, we adopt an agent-centric double-layered graph struc-

ture for encoding the driving context. Here, we take both
lane segments and drivable areas into account because the
drivable areas also offer valuable traffic information. Firstly,
we construct a lane graph based on the vectorized map data,
where each lane node represents a polyline segment and
provides essential geometric and semantic attributes, includ-
ing the types of connections. Then, the dilated LaneConv
operator proposed in LaneGCN (Liang et al., 2020) is ap-
plied to extract the lane-graph features. Subsequently, we
uniformly sample nodes within drivable areas and build an
interconnected spatiotemporal occupancy graph. Afterward,
the node features of the drivable area are updated using a
PointNet-like network (Qi et al., 2017) with dilated connec-
tions. In addition, we leverage a 1-D CNN with a feature
pyramid network (FPN) (Lin et al., 2017) to encode the
kinematic profiles of all agents in the scene, encompassing
historical positions, velocities, time intervals, etc. Finally,
a stack of fusion modules with graph attention layers is
employed to capture the interactions among the aforemen-
tioned vectorized embedding features and update the final
fused context features. More details of the encoding process
can be found in Appendix A.1.

Feature Adaptor. As efficient IRL-based methods typically
rely on image- or grid-shaped features as input, we devise
a feature adaptor to aggregate the graph-based context fea-
tures into grid space. To achieve this, we construct a grid
map centered around the target agent, with each grid cell
uniformly spaced and aligned with drivable nodes. The
fused context features within the drivable areas are then
assigned to their corresponding cells based on physical loca-
tions, while the undrivable cells are padded with zeros. This
operation successfully transforms the vectorized features
into grid-shaped driving context features, denoted Cfine,
which can be seamlessly adapted to the IRL framework.
Moreover, considering the high-resolution grid space leads
to the IRL process being extremely time-consuming, we
employ CNNs with strides to downsample the spatial dimen-
sion of the original feature map, effectively alleviating the
computational burden without losing essential information.
Consequently, the coarse-grained context features denoted

4



GoIRL: Graph-Oriented Inverse Reinforcement Learning for Multimodal Trajectory Prediction

Algorithm 1 Approximate Value Iteration
Input: S,A, T ,R
Output: π(a|s)

1: Q(s, a) = 0, V (s)← −∞, ∀s ∈ S, a ∈ A
2: for i = 1 to N do
3: V (s̃)← R(s̃), s̃ ∈ Sgoal
4: Q(s, a) = R(s) + V (s′), s′ = T (s, a)

5: V (s) = log

(∑
a
exp (Q(s, a))

)
6: end for
7: π(a|s) = exp (Q(s, a)− V (s))

Ccoarse are further extracted using 1× 1 CNNs to yield the
reward distribution, denotedR. Overall, the reward can be
regarded as a nonlinear combination of the driving context
throughout the entire encoding process.

3.4. MaxEnt IRL-Based Policy Generator

After modeling the reward function as a neural network, we
aim to infer the optimal policy that can generate multiple
plausible plans within the grid. Following the MaxEnt IRL
framework (Ziebart et al., 2008), the probability of a state
sequence (or plan) is proportional to the exponential of the
total reward accumulated over the planning horizonH:

P (τ) =
1

Z
exp (R(τ)) = 1

Z
exp

( H∑
i=1

R(si)

)
, (2)

where τ = [s1, . . . , sH] represents any given plan and Z
denotes the partition function. Further, we translate the
continuous-valued future trajectories from the dataset into
discrete state sequences using a uniform quantization tech-
nique with a specific resolution, constituting a set of demon-
strations denoted as D = {τ1, . . . , τ|D|}. The objective is
to maximize the log-likelihood of the demonstration data
LD under the MaxEnt distribution. This optimization prob-
lem can be solved using gradient-based approaches, and the
gradient is given by

∇LD = (µD − E[µ])∇R, (3)

where µD represents the average state visitation frequen-
cies (SVFs) from the demonstrations and E[µ] refers to the
expected SVFs under the policy (Wulfmeier et al., 2017),
which can be derived via a forward RL process given the
current reward distribution. Here, we leverage the approxi-
mate value iteration algorithm (detailed in Algorithm 1) to
obtain the MaxEnt policy π(a|s) over N update steps with
the following expression:

π(a|s) = exp (Q(s, a)− V (s)) , (4)

whereQ(s, a) represents the action-value function and V (s)
refers to the state-value function. Note that since the goal
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Figure 3. Structure of Bézier curve-based trajectory proposal de-
coder for each sampled plan.

state set Sgoal is unknown in the trajectory prediction task,
the terminal state distribution is also inferred by the neural
networks. Upon convergence of the reward distribution, we
can acquire the optimal MaxEnt policy π∗, which enables
the generation of multiple plans over the 2-D grid, serving
as trajectory generation priors.

3.5. Hierarchical Multimodal Trajectory Decoder

Based on the converged reward model R and the optimal
MaxEnt policy π∗, along with multiscale driving context
features Ccoarse and Cfine, we present a hierarchical trajec-
tory decoder to generateK multimodal predictions and their
corresponding probabilities in a coarse-to-fine manner.

On the initial coarse scale, we generate multiple plausible
trajectory proposals conditioned on the sampled plans and
associated coarse-grained context features, as illustrated in
Figure 3. Specifically, we first employ the learned Max-
Ent policy to induce plans over the 2-D grid cells using
the Markov chain Monte Carlo (MCMC) sampling strategy.
Each plan is then utilized to extract features from the coarse-
grained context feature map Ccoarse and the reward mapR
along the state sequence. For each state (or grid) si within a
plan τ , we adopt simple multilayer perceptrons (MLPs) to
encode its local context features Ccoarse(si), rewardR(si),
and grid location coordinates I(si), respectively, and con-
catenate them as the state feature embedding e(si), i.e.,

e(si) = (f1(Ccoarse(si))⊞ f2(R(si))⊞ f3(I(si))) , (5)

where ⊞ represents the concatenation operator, and fj , j =
1, 2, 3 denotes a simple MLP block. The state feature em-
beddings e(si) over the entire plan τ are further aggregated
via a bidirectional gated recurrent unit (BiGRU) encoder,
yielding the plan feature E(τ). Next, instead of directly
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predicting the future trajectory positions, we employ an n-
th order Bézier curve to represent continuous trajectories.
Herein, we adopt a GRU decoder with the soft attention
mechanism (Bahdanau et al., 2015) to recurrently generate
n+ 1 control points:

pi = φ(hi+1), (6)

hi+1 = G(Att(E(τ), hi), hi), (7)

where pi, i = 0, . . . , n, is the control point for the Bézier
curve, hi is the hidden state of the GRU, and the initial one
h0 is the updated target agent feature obtained by aggregat-
ing fused context features and interactions among agents
through the agent fusion module. φ denotes an MLP with a
single hidden layer, G represents the GRU cell, and Att(·)
denotes the soft attention module. Once the control points
are generated, the continuous trajectory, denoted B(t), can
be obtained using the following expression:

B(t) =
n∑

i=0

bi,n(t)pi, 0 ≤ t ≤ 1, (8)

where bi,n(t) =
(
n
i

)
ti(1 − t)n−i, i = 0, . . . , n, is the n-

degree Bernstein basis polynomial, and
(
n
i

)
= n!

i!(n−i)! de-
notes the binomial coefficient. In practice, for a given times-
tamp ts, ts ∈ {1, 2, . . . , tf}, the position of the predicted
trajectory proposal ˆ̄yts can be determined by substituting t
with ts

tf
:

ˆ̄yts = B
(

ts
tf

)
=

n∑
i=0

bi,n

(
ts
tf

)
pi. (9)

Considering that sampling only K plans is often inefficient
and redundant, as a small number of samples tend to produce
similar outputs, we oversampleL (L≫ K) plans in parallel,
thereby inducing L continuous valued trajectories to better
capture the trajectory distribution. Subsequently, we apply
the K-means clustering method to derive K possible future
trajectories from the set of L candidates. Moreover, we
determine the probabilities by calculating the proportion of
trajectories associated with each clustered modality, denoted
Pmcmc, which can reflect the statistical property of MCMC
sampling from the MaxEnt policy.

On the second fine scale, we generate trajectory offsets to
refine the K initial trajectory proposals in conjunction with
fine-grained local context features Cfine. Concretely, we
first combine past observations and predicated proposals
together to form the complete trajectory for the target agent,
i.e., [X , ˆ̄Yi], i = 1, . . . ,K, where ˆ̄Yi denotes the i-th pre-
dicted trajectory proposal. For each complete trajectory,
we gather its nearby fine-grained context features. These
embeddings are then aggregated along the entire trajectory
using global average pooling and concatenated with the

previous updated agent features, as well as the location
embeddings obtained by encoding the complete trajectory
locations through an MLP block. The fused features are fur-
ther fed into MLP blocks with residual connections, which
comprises a regression head for producing the predicted
trajectory offsets, denoted ∆Ŷi, and a classification head
followed by a softmax function for generating the probabili-
ties, denoted Pcls.

Eventually, the i-th predicted trajectory Ŷi can be derived
by summing the trajectory proposal and offset:

Ŷi = ˆ̄Yi +∆Ŷi. (10)

Its corresponding fusion probability takes a hybrid form:

P(Ŷi) =
Pcls(Ŷi)Pmcmc(Ŷi)

K∑
i=1

Pcls(Ŷi)Pmcmc(Ŷi)

. (11)

3.6. Learning

Given that our proposed framework consists of two stages,
the training process necessitates a decomposition into two
phases. In the initial MaxEnt IRL stage, our objective is to
maximize the log-likelihood LD through stochastic gradient
descent to derive the reward model and optimal policy, as
explained in Section 3.4. In the second trajectory gener-
ation stage, the overall learning objective is composed of
both regression loss and classification loss. Specifically,
for regression, we apply the Huber loss to the predicted
trajectory proposal LP

reg , the refined trajectory LT
reg , and its

corresponding goal point LG
reg . The winner-takes-all (WTA)

training strategy is employed to mitigate the modality col-
lapse issue, which only considers the best candidate with the
minimum displacement error in comparison to the ground
truth. As for classification, we adopt the Hinge loss Lcls to
distinguish the positive modality from the others, following
the approach outlined in (Liang et al., 2020). The total loss
L in the second training stage can be expressed as follows:

L = LP
reg + αLT

reg + βLG
reg + γLcls, (12)

where α, β, and γ are hyperparameters for balancing each
loss component. In practice, we set α = β = 1 and γ = 3.
More details can be found in Appendix A.2.

4. Experiments and Results
4.1. Experiment Setup

Real-World Datasets. We train and evaluate the pro-
posed approach on two large-scale public motion forecast-
ing datasets: Argoverse (Chang et al., 2019) and nuScenes
(Caesar et al., 2020). Both datasets provide trajectory se-
quences collected from real-world urban driving scenarios,
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along with HD maps that encompass rich geometric and
semantic information. Specifically, the Argoverse dataset
comprises 205,942 training, 39,472 validation, and 78,143
testing sequences. Each sequence spans 5 seconds and
is sampled at 10 Hz. The task involves forecasting the
subsequent 3-second trajectories based on the preceding 2
seconds of observations. As for the nuScenes dataset, it
contains 32,186 training, 8,560 validation, and 9,041 testing
sequences. Each sequence is 8 seconds long and sampled at
2 Hz. The goal is to predict the future 6-second trajectories
given the past 2 seconds of observations.

Evaluation Metrics. We evaluate the performance of multi-
modal trajectory prediction using the widely accepted met-
rics, including miss rate (MRK ), minimum average displace-
ment error (minADEK), minimum final displacement error
(minFDEK), and the Brier minimum final displacement er-
ror (brier-minFDEK) specific to the Argoverse benchmark.
Concretely, the MRK measures the proportion of scenarios
where none of the K predicted endpoints fall within a 2.0-
meter range of the ground truth. The minADEK calculates
the average pointwise ℓ2 distance between the best fore-
cast among the K candidates and the ground truth, while
the minFDEK solely focuses on the endpoint error. Fur-
thermore, the brier-minFDEK incorporates prediction confi-
dence by adding the Brier score (1.0− P)2 to minFDEK ,
where P corresponds to the probability of the best forecast.

Implementation Details. We employ the target-centric co-
ordinate system, where all context instances and sequences
are normalized to the current state of the target agent through
translation and rotation operations. Note that no augmen-
tation techniques are applied in our method. Moreover,
the spatial dimension of the grid space is initially defined
as 100 × 100 and then downsampled to 25 × 25 for the
MDP. The planning horizon H is configured as 25. Addi-
tionally, during the training phase, we set the degree of the
Bézier curve n = 5, the oversample number L = 600, and
the mode number K = 6 for Argoverse and K = 10 for
nuScenes. The first-stage model size amounts to 2.79M
parameters, while the second-stage model consists of 0.85M
parameters. We train our model on eight GPUs using the
AdamW optimizer with a batch size of 256.

4.2. Quantitative Results

Comparison with State-of-the-Art. We compare our ap-
proach with state-of-the-art methods on both Argoverse and
nuScenes motion forecasting benchmarks. Table 1 shows
quantitative results of the single-model performance on the
Argoverse test split. The official ranking metric is shaded
in gray, and the best results are indicated in bold. All met-
rics follow a lower-the-better criterion. To the best of our
knowledge, no IRL-based predictor is publicly available on
the Argoverse leaderboard. Thus, we compare our GoIRL

Table 1. Single-model results on the Argoverse motion forecasting
benchmark, ranked by the official metric brier-minFDE6.

Method brier-
minFDE6

Brier
score minFDE6 minADE6 MR6

LaneRCNN (Zeng et al., 2021) 2.1470 0.6944 1.4526 0.9038 0.1232
LaneGCN (Liang et al., 2020) 2.0585 0.6945 1.3640 0.8679 0.1634
DSP (Zhang et al., 2022) 1.8584 0.6398 1.2186 0.8194 0.1303
HeteroGCN (Gao et al., 2023) 1.8399 0.6521 1.1878 0.8173 0.1236
GoIRL (Ours) 1.7957 0.6232 1.1725 0.8087 0.1204

Table 2. Ensemble-model results on the Argoverse motion fore-
casting benchmark, ranked by the official metric brier-minFDE6.

Method brier-
minFDE6

Brier
score minFDE6 minADE6 MR6

MultiPath++ (Varadarajan et al., 2022) 1.7932 0.5788 1.2144 0.7897 0.1324
HeteroGCN (Gao et al., 2023) 1.7512 0.5910 1.1602 0.7890 0.1168
SIMPL (Zhang et al., 2024) 1.7469 0.5924 1.1545 0.7693 0.1165
Wayformer (Nayakanti et al., 2022) 1.7408 0.5792 1.1616 0.7676 0.1186
GoIRL (Ours) 1.6947 0.5684 1.1263 0.7828 0.1102

Table 3. Quantitative results on the nuScenes prediction bench-
mark, sorted by the official ranking metric minADE5.

Method minADE5 minADE10 minFDE1 MR5 MR10

P2T (Deo & Trivedi, 2020) 1.45 1.16 10.5 0.64 0.46
PGP (Deo et al., 2021) 1.27 0.94 7.17 0.52 0.34
MacFormer (Feng et al., 2023) 1.21 0.89 7.50 0.57 0.33
Goal-LBP (Yao et al., 2023) 1.02 0.93 9.20 0.32 0.27
GoIRL (Ours) 0.86 0.75 6.53 0.31 0.21

framework against several representative supervised mod-
els with graph-based context encoders. It can be seen that
our proposed method achieves the best results across all
metrics. In particular, GoIRL surpasses the baseline model
DSP (Zhang et al., 2022) by a large margin, highlighting the
effectiveness of the IRL architecture in enhancing trajectory
predictions.

Furthermore, we adopt an ensemble strategy (Zhang et al.,
2024) to boost prediction performance, enabling a com-
prehensive comparison against other supervised ensemble
methods. As shown in Table 2, GoIRL continues to demon-
strate highly competitive performance compared to state-
of-the-art supervised models like the strong baseline Way-
former (Nayakanti et al., 2022). We also report the results
on the nuScenes prediction leaderboard in Table 3 to ex-
hibit the long-term prediction performance of our proposed
framework. As presented, GoIRL achieves top-ranked per-
formance on this benchmark, remarkably outperforming all
other approaches across all evaluation metrics, including the
IRL-based baseline method P2T (Deo & Trivedi, 2020) that
represents the driving context in a rasterized manner. This
outcome illustrates that by leveraging the feature adaptor
to effectively incorporate the lane-graph features, we can
significantly improve the upper bound of performance for
IRL-based predictors. This advancement holds great poten-
tial to empower multimodal trajectory prediction tasks.
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Table 4. Ablation studies on the Argoverse test split.

Refine Bézier
curve

Recurrent
strategy Pmcmc

brier-
minFDE6

Brier
score minFDE6

✗ ✓ ✓ ✓ 1.8280 0.6468 1.1812
✓ ✗ ✓ ✓ 1.7993 0.6242 1.1751
✓ ✓ ✗ ✓ 1.8000 0.6236 1.1764
✓ ✓ ✓ ✗ 1.8039 0.6310 1.1729
✓ ✓ ✓ ✓ 1.7957 0.6232 1.1725

Ablation Study. We conduct thorough ablation studies on
the Argoverse test split to investigate the functionality of
several key components of the trajectory decoder. Each of
them is ablated from the complete pipeline to quantify its
individual impact on the final performance, as presented
in Table 4. The results reveal that the refinement module
makes a substantial contribution to prediction accuracy, un-
derscoring that the hierarchical architecture with effective
aggregation of fine-grained features can notably improve
location precision. In addition, both the Bézier curve-based
trajectory parameterization and the recurrent strategy for
point generation bring benefits to distance-aware metrics
while also ensuring kinematic feasibility and temporal con-
sistency. Furthermore, the comparison of the Brier score
metric clearly demonstrates that the probability fusion with
the MCMC-induced distributionPmcmc leads to remarkable
enhancements to the predictive confidence score, thereby
emphasizing its efficacy in capturing the multimodal distri-
bution of future trajectories. In summary, all components
within our proposed framework play vital roles in attaining
superior prediction performance.

4.3. Qualitative Results

We showcase some visualizations of our proposed method
under diverse traffic scenarios from the Argoverse validation
set, as depicted in Figure 4. From the qualitative results, it is
evident that our approach successfully anticipates accurate
and feasible multimodal future trajectories that conform to
the scene layout. Additionally, we apply our model to the
Argoverse tracking dataset without any further fine-tuning,
as detailed in Appendix C.1. The consecutive trajectory
prediction results are available in the supplementary video1.

IRL-based v.s. BC-based predictor. We conduct an in-
vestigation into the generalization and domain adaptation
abilities of our GoIRL framework with respect to the driv-
able area attribute. To achieve this, we modify the drivable
attribute of a traffic scenario within the original dataset,
transforming a previously designated free space into an un-
drivable area, as demonstrated in Figure 5. Our primary
objective is to evaluate the capability of predictors in han-
dling such distribution-shifting cases. Unfortunately, exist-
ing methods often fall short of adequately reacting to such

1https://youtu.be/MPECgueGRaQ

Ground truth
Predictions

Observations

Figure 4. Visualizations of GoIRL on the Argoverse validation
set. The historical trajectory, ground-truth future trajectory, and
multimodal predictions are depicted in red, magenta, and green,
respectively. Other traffic participants have been excluded to em-
phasize the predictions for the target agent.

Updated predictions

Ground truth
Original predictions

Observations

Undrivable areaSTOP

STOP

(a) GoIRL

Updated predictions

Ground truth
Original predictions

Observations

Undrivable areaSTOP

STOP

(b) DSP

Figure 5. Qualitative comparisons between GoIRL (left) and DSP
(right) in handling drivable area changes. The original predictions
are depicted in blue, while the updated trajectories are in green.
The undrivable area is indicated with a “STOP” sign symbolizing
the transformed region.

changes due to the lack of consideration for drivable infor-
mation, resulting in irrational predictions or even potential
crashes. Hence, we compare our approach against DSP
(Zhang et al., 2022), which, to the best of our knowledge,
is the only supervised model that incorporates drivable in-
formation. As shown in Figure 5(a), GoIRL can effectively
adapt to changes in the environment and generate reason-
able predictions, thanks to the inherent interaction learning
property of the IRL paradigm. In contrast, Figure 5(b) show-
cases that the DSP model fails to respond appropriately,
thereby highlighting the superior generalization ability of
IRL-based predictors in addressing such domain bias issues.
More qualitative results can be found in Appendix C.2.
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5. Conclusion
In this paper, we introduce GoIRL, a graph-oriented inverse
reinforcement learning framework for multimodal trajec-
tory prediction tasks. To the best of our knowledge, GoIRL
is the first motion prediction scheme that integrates the
MaxEnt IRL paradigm with graph-based context represen-
tations through the proposed feature adaptor, facilitating
effective scene feature extraction and aggregation. More-
over, the hierarchical parameterized trajectory generator
remarkably enhances prediction accuracy, while the MCMC-
augmented probability fusion strategy amplifies prediction
confidence. Experimental results on large-scale motion
forecasting benchmarks demonstrate that GoIRL excels in
generating scene-compliant multimodal future trajectories
and outperforms the current state-of-the-art methods. The
advantages of the IRL paradigm also empower GoIRL with
exceptional generalization and domain adaptation capabili-
ties, allowing it to effectively address distribution-shifting
challenges, such as drivable area changes, when compared
to existing supervised models. Our work underscores the
effectiveness of IRL-based motion predictors and provides
a promising baseline for further investigations. Future work
will concentrate on extending the IRL paradigm to encom-
pass joint multi-agent trajectory forecasting.
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A. Additional Implementation Details
In this section, we provide a more detailed description of
the context encoder, feature fusion, and adaptation, along
with the specific formulations of the various training losses.

A.1. Graph-Oriented Context Encoder

Our graph-oriented context encoder follows a structure simi-
lar to the one used in DSP (Zhang et al., 2022), which adopts
an agent-centric, double-layered, graph-based representa-
tion. This encoder consists of three components: an agent
feature encoder, a lane segment encoder, and a drivable area
encoder.

Agent Feature Encoder. Given the observed past times-
tamps tp, we define the agent trackings as A ∈ RNa×tp×F ′

a ,
where Na is the number of agents in the scene, and F ′

a

encompasses kinematic attributes such as positions, veloc-
ities, time intervals, and binary masks. To be specific, the
agents include the target agent X and surrounding agents
O. Next, We utilize a 1-D CNN with a feature pyramid
network (FPN), as implemented in (Liang et al., 2020), to
capture multi-scale features. This results in the agent feature
CA ∈ RNa×Fa , where Fa = 128 is the number of feature
channels.

Lane Segment Encoder. Given the map informationM,
we define the lane node matrix Vl ∈ RNl×2, where Nl

is the number of lane segments, and each entry represents
the midpoint between two neighboring nodes along the lane
centerline. The connections between these nodes include the
predecessor, successor, left, and right neighbors, which are
captured by four adjacency matrices {Υi}i∈{pre, suc, left, right},
where each Υi ∈ RNl×Nl . For each lane node vi ∈ Vl, we
define its node feature ui ∈ U as:

ui = ψ1(∆vi) + ψ2(vi), (13)

where ψ1 and ψ2 are MLP blocks, and ∆vi denotes the
displacement of neighboring lane nodes. The resulting node
feature matrix is U ∈ RNl×Fl , where Fl = 128 is the
number of lane feature channels. We then apply the multi-
scale dilated LaneConv operator, as proposed in (Liang
et al., 2020), to aggregate the topology features across a
larger lane graph:

CL =
∑
σ

(
Υσ

preUΘσ
pre +Υσ

sucUΘσ
suc

)
+ΥleftUΘleft +ΥrightUΘright +UΘ0,

(14)

where σ = {1, 2, 4, 8, 16, 32} represents the dilation sizes,
and Θi are the weight matrices associated with the i-th
connection type. The resulting lane features are represented
as CL ∈ RNl×Fl .

Drivable Area Encoder. We construct the drivable area
(DA) graph, as in (Zhang et al., 2022), by uniformly sam-

A2A

L2L

L2A

A2L

D2L

D2DL2D
CD

CL

CA

Figure 6. Information flow of agent-map feature fusion.

pling drivable nodes centered around the target agent within
a 100-meter range and a resolution of 1 meter. These nodes
are denoted Vd ∈ RNd×2, where Nd is the number of driv-
able nodes. We use eight-neighbor dilated connections to
model relationships between the drivable nodes. The fea-
tures are encoded using a PointNet-like architecture, termed
PointDA. Specifically, we map surrounding node features
to the target node using an MLP block, followed by max-
pooling to extract global features. These global features are
then concatenated with the target node feature and passed
through another MLP block to fuse the features. The final
drivable area features are denoted as CD ∈ RNd×Fd , with
Fd = 32 being the number of feature channels.

Feature Fusion. To capture agent-map interactions, we
perform feature fusion on the agent features CA, lane seg-
ment features CL, and drivable area features CD, following
the approach in (Liang et al., 2020; Zhang et al., 2022).
We employ graph attention layers (Vaswani et al., 2017;
Liang et al., 2020) to fuse features across different node
types: agent-to-lane (A2L), lane-to-agent (L2A), drivable-
to-lane (D2L), lane-to-drivable (L2D), and agent-to-agent
(A2A). Additionally, we use the LaneConv operator for
lane-to-lane (L2L), and PointDA for drivable-to-drivable
(D2D). All attention layers are set to 128 feature channels.
The information flow for all fusion processes is shown in
Figure 6.

Feature Adaptor. To integrate the MaxEnt IRL framework
with vectorized features, we design a feature adaptor that
transforms the lane-graph features into grid space. We con-
struct a HG × WG grid map centered around the target
agent within a 50-meter range, uniformly sampling grid
nodes at a resolution of 1.0 meter, which aligns with the
drivable area graph. Thus, we have HG = WG = 50. For
each grid node with physical coordinates (xi, yi), we assign
the corresponding nearest drivable area features CD(xi, yi)
as its fused feature. For grid nodes whose distance to the
nearest drivable node exceeds 1.0 meter, indicating they are
undrivable, we pad their features with zeros. In this way, we
complete the adaptation of the vectorized context features
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into a grid-based format, which can then be used in the
subsequent MaxEnt IRL process.

A.2. Training Objectives

We detail the mathematical formulations of the training ob-
jectives, including both regression and classification losses.

Given K predicted trajectories Ŷk = [ŷk1 , ŷ
k
2 , . . . , ŷ

k
tf
] for

k = 1, 2, . . . ,K, and the ground-truth future trajectory
YGT = [yGT

1 , yGT
2 , . . . , yGT

tf
], we identify the positive trajec-

tory k∗ as the one with the minimum final displacement
error relative to YGT.

Regression Loss. The regression loss is calculated using
the Huber loss. Taking the refined trajectory loss LT

reg as an
example, it is defined as:

LT
reg =

1

tf

tf∑
i=1

Huber(∥ŷk
∗

i − yGT
i ∥2), (15)

where ∥ · ∥2 represents the ℓ2-norm, and the Huber loss
function Huber(·) is the smooth ℓ1 loss given by:

Huber(x) =

{
0.5x2 if ∥x∥1 < 1,

∥x∥1 − 0.5 otherwise,
(16)

where ∥ · ∥1 denotes the ℓ1-norm.

In addition, for the trajectory proposal loss LP
reg , we replace

ŷk
∗

i with the trajectory proposal ˆ̄yk
∗

i . Similarly, for the goal
point loss LG

reg, only the final term ŷk
∗

tf
is considered.

Classification Loss. The classification loss Lcls is com-
puted using the Hinge loss (max-margin loss) for binary
classification. It is defined as:

Lcls =
1

K − 1

∑
k ̸=k∗

max(Pcls(Ŷk)− Pcls(Ŷk∗
) + ε, 0),

(17)
where ε is the margin, and Pcls(Ŷk) represents the proba-
bility of trajectory Ŷk for k = 1, . . . ,K.

B. Additional Quantitative Results
To comprehensively demonstrate the effectiveness of our
GoIRL in trajectory prediction, we provide several recent
entries from the Argoverse leaderboard, as shown in Table 5,
including both supervised and self-supervised models. Our
GoIRL achieves a competitive brier-minFDE6 and a supe-
rior Brier score relative to strong supervised baselines, such
as those with more powerful scene encoders (Zhou et al.,
2023) as well as recent self-supervised methods (Lan et al.,
2023), highlighting both reliable predictions and strong
overall performance. In summary, our approach employs a
graph-based IRL framework that effectively mitigates co-
variate shift while maintaining competitive performance on
standard trajectory prediction benchmarks.

Table 5. Results on the Argoverse motion forecasting benchmark.

Method brier-
minFDE6

Brier
score minFDE6 minADE6 MR6

LaneRCNN (Zeng et al., 2021) 2.147 0.694 1.453 0.904 0.123
LaneGCN (Liang et al., 2020) 2.059 0.695 1.364 0.868 0.163
AutoBot (Girgis et al., 2022) 2.057 0.685 1.372 0.876 0.164
THOMAS (Gilles et al., 2022a) 1.974 0.535 1.439 0.942 0.104
GOHOME (Gilles et al., 2022b) 1.983 0.533 1.450 0.943 0.105
GO + HOME (Gilles et al., 2021) 1.860 0.568 1.292 0.890 0.085
DSP (Zhang et al., 2022) 1.858 0.639 1.219 0.819 0.130
HiVT (Zhou et al., 2022) 1.842 0.673 1.169 0.774 0.127
MultiPath++ (Varadarajan et al., 2022) 1.793 0.579 1.214 0.790 0.132
GANet (Wang et al., 2023) 1.790 0.629 1.161 0.806 0.118
HeteroGCN (Gao et al., 2023) 1.751 0.591 1.160 0.789 0.117
SIMPL (Zhang et al., 2024) 1.747 0.592 1.155 0.769 0.117
Wayformer (Nayakanti et al., 2022) 1.741 0.579 1.162 0.768 0.119
QCNet (Zhou et al., 2023) 1.693 0.626 1.067 0.734 0.106
SEPT (Lan et al., 2023) 1.682 0.625 1.057 0.728 0.103

GoIRL (Ours) 1.695 0.569 1.126 0.783 0.110

C. Additional Qualitative Results
In this section, we provide additional consecutive trajectory
prediction results, examples of generalization to drivable
area changes, and some representative failure cases.

C.1. Consecutive Trajectory Prediction

Experimental Settings. To effectively demonstrate the
prediction performance of our proposed GoIRL model, we
directly apply it to the Argoverse tracking dataset (Chang
et al., 2019) without any additional training. The experimen-
tal settings are fully consistent with those of the Argoverse
motion forecasting benchmark. For clarity and relevance,
we filter the predictions to include only vehicles within a
50-meter radius of the ego agent and traveling at speeds
above 2 m/s, excluding all others from the visualization. We
predict six future trajectories for each vehicle, each associ-
ated with a probability score. To enhance the visual clarity
in the demo video, multimodal trajectories are rendered with
varying transparency based on their corresponding proba-
bilities. Specifically, as shown in Figure 7, trajectories with
lower probabilities are displayed with greater transparency,
ensuring a clean and intuitive visualization.

Snapshots in the Demo Video. In consecutive prediction
scenarios, we expect the multimodality of predictions to be
more evident initially; as the vehicle continues, its intent
becomes clearer, leading to reduced diversity in predictions.
For example, in straightforward scenarios where vehicles
travel straight, the prediction with the highest probability
should closely align with the ground truth, while alternative
predictions capture slight variations in velocity or endpoint.
Conversely, at intersections, significant multimodality typi-
cally arises, capturing various potential maneuvers. Some
snapshots showcasing these multimodal predictions are high-
lighted in Figure 7. The visualizations indicate that GoIRL
performs robustly in such consecutive predictions, under-
scoring its effectiveness in practical applications. Additional
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Surrounding vehiclesEgo vehicle Pedestrians Predicted trajectories

Figure 7. Snapshots with multimodal predictions in the demo video.

STOP

STOP

STOP

Updated predictions

Observations
Ground truth

Undrivable areaSTOP

Figure 8. Examples of generalization to changes in drivable areas.
The forecasted trajectories are in green, and the undrivable area is
indicated with a “STOP” sign symbolizing the transformed region.

qualitative results can be found in the latter half of the sup-
plementary video2 for further evaluation.

C.2. Generalization to Drivable Area Changes

To further demonstrate GoIRL’s capability to address the
covariate shift issues, we provide additional qualitative ex-
amples, as shown in Figure 8. These case studies illustrate
that our GoIRL model can effectively adapt to changes in
drivable areas and generate feasible forecasted trajectories,
underscoring its strong generalization ability across diverse
scenarios involving drivable area changes.

C.3. Failure Cases

We present several representative failure cases of our model.
Figure 9(a) illustrates how poor observations of static or
slow-moving agents can negatively impact trajectory predic-
tions. Figure 9(b) demonstrates that inaccuracies in speed
prediction can affect longitudinal accuracy. Figure 9(c) high-
lights a limitation where the model fails to anticipate a lane
change in the absence of explicit cues. These examples offer
some insights into the conditions under which our model

2https://youtu.be/MPECgueGRaQ?t=178

Ground truth
Predictions

Observations

(a) Poor observation. (b) Imperfect speed 
prediction.

(c) Unpredictable lane 
changing.

Figure 9. Visualizations of several representative failure cases.

may underperform and point to potential directions for en-
hancing the capability of the IRL-based trajectory predictor.

D. Discussion: IRL v.s. BC
Inverse reinforcement learning (IRL) and behavior cloning
(BC) are two primary paradigms in imitation learning (IL).
While BC has been widely applied across various domains,
including trajectory prediction, IRL offers several advan-
tages for autonomous driving scenarios. Below, we present
an intuitive comparison of these two approaches across three
key aspects.

Understanding Underlying Intentions. A fundamental
difference between BC and IRL lies in their approach to
learning behavior. BC directly replicates expert behavior
using standard supervised learning without attempting to
understand the reasons behind the actions. In contrast, IRL
aims to infer the underlying objective or reward function
that explains the expert’s behavior based on demonstrations
(Osa et al., 2018). By understanding the motivations behind
actions, IRL allows for better generalization to novel, unseen
scenarios, enabling the agent to make decisions that align
with the inferred intentions even in different contexts.
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Handling Distribution Shift (Covariate Shift). In IL, the
source domain comprises expert demonstrations, while the
target domain represents the learner’s reproductions. Since
demonstration datasets cannot cover all possible situations,
learners often encounter states that were not included in the
dataset, leading to out-of-distribution or covariate shift sce-
narios. BC, which heavily relies on patterns in the training
data, struggles to adapt to such unseen states. This limita-
tion often results in compounding errors: small mistakes
lead the agent into unfamiliar states, causing further errors
and eventual divergence. Conversely, IRL learns a reward
function that succinctly encapsulates the desired behavior.
This reward function enables the agent to re-optimize its
policy dynamically, reducing error accumulation, recover-
ing from unfamiliar states, and adapting more effectively
to changes in the environment. Consequently, IRL is more
robust in real-world driving conditions, where uncertainty
and unpredictability are common, resulting in more reliable
trajectory predictions.

Interpretability. BC operates as a black-box approach, of-
fering little insight into why certain actions are taken. It
also lacks the ability to inherently account for constraints
unless they are explicitly represented in the training data.
In contrast, IRL provides a learned reward function that
offers valuable insights into the decision-making process,
enhancing interpretability. Additionally, IRL enables the
integration of explicit constraints directly into the reward
function. It can also model interactions between multi-
ple agents by incorporating them into the inferred rewards,
making it a promising tool for improving the safety and so-
cial acceptability for joint multi-agent trajectory prediction
tasks. Moreover, by optimizing actions over the inferred
reward function, IRL accounts for long-term consequences,
allowing the agent to plan trajectories that are optimal over
extended horizons. This not only enhances safety and effi-
ciency but also facilitates seamless integration with down-
stream decision-making and motion planning modules.

In summary, while BC is effective in scenarios with well-
represented data, IRL’s ability to infer intentions, handle
distribution shifts, and provide interpretability makes it a
promising alternative for complex trajectory prediction tasks
in autonomous driving.
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