

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOW-RESOURCE FINETUNING FOR HALLUCINATION MITIGATION IN LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Hallucinations in Large Language Models (LLMs) pose a significant challenge to their reliable deployment across domains, arising inherently from their design as statistical models that maximize next-token prediction probability based on training data. While methods such as LettuceDetect, RAG-HAT, and prompting techniques have demonstrated efficacy in hallucination detection and mitigation within Retrieval-Augmented Generation (RAG) frameworks, limitations persist. To address these, we propose a novel low-resource hallucination mitigation pipeline that fine-tunes LLMs on synthetic dataset using feedback from LettuceDetect. Our approach reduces hallucination rates in open-source small language models, as validated through evaluations on RAGTruth and PILE-10K benchmarks. We further discuss the pipeline’s extensibility to domain-specific applications.

1 INTRODUCTION

Hallucinations in Large Language Models (LLMs) pose a significant challenge to their deployment across various domains, as the reliability of generated text is a critical requirement. Hallucinations arise inherently in LLMs due to their nature as fundamentally statistical models optimized for next-token prediction, trained on extensive text corpora. Furthermore, their inevitability is underscored by the Impossibility Theorem established by Karpowicz (2025). This theorem proves that no inference mechanism for an LLM can simultaneously satisfy all four of the following essential properties:

- Truthful (non-hallucinatory) generation.
- Semantic information conservation (i.e., faithful preservation of encoded knowledge).
- Relevant knowledge revelation (exposing facts the model recognizes as useful to the query).
- Knowledge-constrained optimality (producing responses optimized within known facts).

The theorem establishes that any inference process must violate at least one of these objectives. A key implication is the inherent trade-off: diverse applications may necessitate different balances, e.g. safety-critical systems prioritizing truthfulness over completeness. Consequently, achieving perfect hallucination control is mathematically infeasible under realistic inference constraints. Nevertheless, numerous approaches have been explored to detect and mitigate LLM hallucinations, most notably through:

- Mechanistic Interpretability of LLM Internals
- Hallucination mitigation via prompting and grounding in external knowledge sources
- Hallucination detection and mitigation via finetuning

1.1 MECHANISTIC INTERPRETABILITY OF LLM INTERNALS

These methods analyze internal activations, attention-head dynamics, and functional module contributions within LLMs to predict hallucinations, moving beyond output-level criteria (e.g. token probability or uncertainty scores). See e.g. Sun et al. (2024); Yu et al. (2024); Sriramanan et al. (2024); Chen et al. (2024); Du et al. (2024); Ravi et al. (2024); Azaria & Mitchell (2023); Yu et al. (2024); Lee & Yu (2025).

054 However, several potential limitations exist. Primarily Dubanowska et al. (August 2025) established
 055 that hallucination detection techniques relying on internal representations are prone to spurious cor-
 056 relations and fail to demonstrate out-of-distribution generalizability. These results warrant a funda-
 057 mental reevaluation of the methodology based on internal representations. Furthermore, approaches
 058 analyzing internal activations and module dynamics face challenges including model-specific archi-
 059 tectural dependencies Yu et al. (2024), absence of causal ground truth linking activations to hallu-
 060 cinations, representational similarity between hallucinated and truthful outputs, sensitivity to noise
 061 and prompt variations Chen et al. (2024), high computational costs hindering real-time deployment
 062 Sun et al. (2024); Chen et al. (2024), ambiguity in distinguishing hallucinations from creative gener-
 063 ations or fine-grained error types Bang et al. (2025), narrow benchmark datasets limiting robustness
 064 Sun et al. (2024), and overfitting risks to specific failure modes Sun et al. (2024); Yu et al. (2024).
 065 While providing mechanistic insights, these methods remain experimental, lacking the generality,
 066 robustness, and efficiency required for production-scale deployment.
 067

068 1.2 HALLUCINATION MITIGATION VIA PROMPTING AND GROUNDING IN EXTERNAL 069 KNOWLEDGE SOURCES

070 Prompting-based strategies and external knowledge integration offer alternative hallucination miti-
 071 gation pathways, though some lack token-level granularity in identifying hallucinated content. Key
 072 developments include proactive prompting that embeds domain-specific context to enhance factual
 073 accuracy Penkov (2024), structured reasoning chains to reduce hallucination rates Braverman
 074 et al. (2024), black box revision frameworks for iterative self-correction Mündler et al. (2023), and
 075 adaptive RAG hybrids balancing parametric and retrieved knowledge Ding et al. (2024). Empirical
 076 evaluations highlight the efficacy of simpler verification-based techniques Barkley & van der
 077 Merwe (2024), while decomposition into atomic facts reveals the reasons behind high hallucination
 078 rates and categorizes error types Ravichander et al. (2025). Triangulated multi-agent frameworks
 079 demonstrate robust detection via consistency analysis Muhammed et al. (2025).
 080

081 1.3 HALLUCINATION MITIGATION VIA FINE-TUNING

082 Recent studies explore fine-tuning strategies to enhance factual grounding in LLMs:

- 084 • **Faithful Fine-Tuning (F²)**: Hu et al. (2024) proposes decomposing QA objectives and
 085 applying layer-wise fine-tuning with explicit loss terms to strengthen factual alignment.
- 086 • **Noise-Regularized Training**: Khadangi et al. (2025) introduces adaptive Gaussian noise
 087 injected into model layers during training, combined with a hybrid loss function.
- 088 • **Expertise-Aware Refusal**: Zhu et al. (2025) trains models to decline answering queries
 089 beyond their parametric knowledge. The method employs gradient-based sample selection
 090 and adaptive weighting to balance accuracy and refusal rates.
- 091 • **Finetuning via Hard Sample-aware Iterative Direct Preference Optimization (HIPO)**
 092 Hu et al. (2025) introduce LegalHalBench, a benchmark comprising ~2,000 legal QA in-
 093 stances annotated with five hallucination categories (e.g. incorrect law names, fabricated
 094 statutes). They introduce novel metrics—Non Hallucinated Statute Rate, Statute Relevance
 095 Rate, and Legal Claim Truthfulness—and develop a two-stage fine-tuning framework com-
 096 bining supervised behavior cloning with HIPO.
- 097 • **Hallucination-Focused Preference Optimization** Tang et al. (2025) construct
 098 hallucination-focused preference datasets by pairing erroneous and corrected translations,
 099 then employ a contrastive preference optimization (CPO) objective for fine-tuning.
- 100 • **Fine-tuning Judge Models** Jiang et al. (2025) introduce Bi'an, featuring a bilingual
 101 (English-Chinese) benchmark with ~22k instances across QA, summarization, data-to-
 102 text, and translation tasks. They fine-tune lightweight judge models via supervised and
 103 preference-based learning, showing their 14B model surpasses larger baselines and is
 104 competitive with leading closed-source systems in detecting hallucinations for retrieval-
 105 augmented generation.
- 106 • **Fine-tuning via Converting Decoder LM into Encoder Detector** ul Islam et al. (2025)
 107 train a multilingual hallucination detector using machine-translated versions of the English

108 FAVA dataset. Validated against human-annotated data in five languages, their model
 109 reveals higher hallucination rates in smaller and more multilingual LLMs during long-form
 110 QA. The study further reports no correlation between length-normalized hallucination rates
 111 and languages’ digital resource levels.
 112

113 2 RELATED WORK

114 2.1 RAG-HAT

117 RAG-HAT Song et al. (2024) is a training pipeline designed to mitigate hallucinations in retrieval-
 118 augmented language models. The framework integrates a LLaMA-based hallucination detector with
 119 model fine-tuning via Direct Preference Optimization (DPO). GPT-4 Turbo is employed to revise
 120 detected hallucinations and the paired (original, revised) outputs guide DPO to align model re-
 121 sponses with factual accuracy. A novel aspect involves training the model to explicitly explain its
 122 hallucinated content.

123 Despite its great potential, several limitations warrant consideration:
 124

- 125 • **Operational Dependency:** Correction and explanation stages require frequent GPT-4 API
 126 calls, introducing cost and external reliability concerns.
- 127 • **Potential Bias Transfer:** Reliance on GPT-4 for judgments and revisions risks propagating
 128 inherent biases from its training data.
- 129 • **Optimization Efficiency:** DPO’s slow convergence may prioritize mimicking GPT-4’s re-
 130 sponse style over targeted hallucination reduction, complicating objective alignment.

132 2.2 LUNA

134 Luna Belyi et al. (2024) is an efficient encoder model based on DeBERTa-large (440M parame-
 135 ters), fine-tuned for hallucination detection in Retrieval-Augmented Generation (RAG) systems. It
 136 achieves superior accuracy compared to GPT-3.5 and commercial evaluation frameworks, while re-
 137 ducing inference costs by 97% and latency by 91%. The model supports span-level hallucination de-
 138 tection and employs a novel context chunking mechanism to process exceptionally long sequences.
 139 Demonstrating robust cross-domain generalization, Luna exhibits consistent performance across di-
 140 verse industry verticals and out-of-domain datasets.
 141

142 2.3 LETTUCEDETECT

144 LettuceDetect Kovács & Recski (2025), inspired by Luna Belyi et al. (2024), is a transformer-based
 145 model designed for hallucination detection in Retrieval-Augmented Generation (RAG) systems,
 146 specifically evaluating context-answer pairs. It leverages ModernBERT, selected for its extended
 147 context window (8192 tokens), which is critical for processing extensive documents to determine an-
 148 swer support accurately. The model’s bidirectional architecture captures token relationships across
 149 prompts and outputs, enhancing detection efficacy. Evaluated on the RAGTruth dataset Niu et al.
 150 (2023), the `lettucedetect-large-v1` variant achieves an F1 score of 79.22%, outperforming
 151 prompt-based methods (GPT-4: 63.4%) and approaches the state-of-the-art `LLAMA-3-8B` (83.9%)
 152 Song et al. (2024). Despite inference efficiency, operational challenges persist: instruction-tuned
 153 models may regenerate answers with new hallucinations even when guided by LettuceDetect’s out-
 154 puts, particularly in complex tasks like summarization. This necessitates iterative refinement, limit-
 155 ing real-world scalability.
 156

157 3 OUR CONTRIBUTION

158 We posit that hallucinations arise intrinsically from LLM training dynamics. However, given the
 159 absence of a formalized hallucination definition it is a great challenge to generalize internal-analysis
 160 methods across distributions. Consequently, reducing their prevalence in real-world applications ne-
 161 cessitates domain-specific training or fine-tuning to modulate token-to-token relationship statistics.

This work extends the ideas introduced in RAG-HAT and LettuceDetect frameworks. We propose a lightweight fine-tuning pipeline that leverages domain-specialized hallucination detectors. To demonstrate efficacy, we fine-tune compact open-source models on synthetic data generated by Gemma-3-4b-it, evaluating performance on the RAGTruth and PILE-10K benchmarks. The optimization loss derives from lettucedetect-large-v1’s token-level hallucination probability estimates, which penalize hallucinated tokens and reward factually grounded generation.

Our method addresses critical limitations of existing approaches:

- **Architecture Agnosticism:** Not constrained to specific model architectures.
- **Resource Efficiency:** Eliminates storage-intensive activation caching for internal-state detectors.
- **Transparency:** Operates without black-box model dependencies (e.g. GPT-4-Turbo).
- **Computational Tractability:** Avoids prohibitive inference costs from large judge models (e.g. LLaMA-3-70B-Instruct).
- **Optimization Focus:** Targets hallucination mitigation exclusively, bypassing DPO’s slower convergence and stylistic alignment.

Experimental results indicate significant hallucination reduction even for smaller models, with minimal resource overhead. Extending this pipeline to new domains (e.g. medical or legal) requires: (1) curating a small dataset of prompts and human-annotated hallucinatory responses, and (2) training or adapting a bidirectional BERT-style detector (e.g. fine-tuning lettucedetect-large-v1) for domain-specific hallucination identification. See also Hu et al. (2025); Pandit et al. (2025).

4 DATASETS

4.1 TRAIN SET

We generate a synthetic corpus of $\sim 180k$ texts using the open-source model Gemma-3-4b-it. Each text corresponds to a distinct noun-attribute pair, generated through a three-stage methodological approach:

- **Noun Generation:** Gemma-3-4b-it generates 20k common and proper nouns.
- **Attribute Assignment:** For each noun, the model produces 5-15 closely related attributes.
- **Text Generation:** A single text (1024 or 2048 tokens) is created for each noun-attribute pair.

This structured process addresses the inherent challenge of generating diverse, topic-specific texts with open-source LLMs. While the noun-attribute scope is restrictive, it targets a prevalent failure mode in real-world applications: hallucinated attributes and actions in summarization and question answering.

4.2 TEST SET

We adopt the RAGTruth dataset Niu et al. (2023) for evaluation. Specifically, we utilize prompts from the Summarization (Summary) task, though our framework extends naturally to the Question Answering (QA) task. This selection ensures alignment with lettucedetect-large-v1’s training distribution, enabling controlled assessment of fine-tuning efficacy. Additionally, we evaluate model perplexity on PILE-10K Nanda (2022), a subset of the PILE dataset, to verify that fine-tuned models retain their initial linguistic capabilities.

5 METHODOLOGY

This section delineates our approach for fine-tuning compact open-source language models using feedback from the lettucedetect-large-v1 model. Our hallucination mitigation pipeline, outlined in Algorithm 1, operates in a single stage.

216 **Algorithm 1** Hallucination Mitigation Finetuning

217 **Input:** \mathcal{D} - train set, \mathcal{M} - LLM, \mathcal{L} - LettuceDetect model

218 **Parameter:** N - total number of epochs

219

220 1: **for** epoch in[1,N] **do**

221 2: \mathbf{T} - sample texts from \mathcal{D}

222 3: generate responses \mathcal{A} to texts \mathbf{T} with model \mathcal{M}

223 4: \mathcal{P} - probability tokens obtained by applying \mathcal{L} on texts \mathbf{T} and corresponding answers \mathcal{A}

224 5: calculate logits \mathbf{Z} of model \mathcal{M} on answers \mathcal{A}

225 6: calculate loss from \mathcal{P} and logits \mathbf{Z}

226 7: update parameters of model \mathcal{M}

227 8: **end for**

228

229

230 **5.1 LOSS**

231 Given the answer \mathcal{A} generated by the LLM to the text prompt \mathbf{T} the `lettucedetect-large-v1`
 232 model outputs hallucination probabilities per token $\mathcal{P} = (p_0, \dots, p_s)$, where s is the token sequence
 233 length of the answer. Given the logits $\mathbf{Z} = (z_0, \dots, z_s)$ calculated by the LLM on the hallucinatory
 234 answer \mathcal{A} , the loss is calculated as follows:

235

$$\mathcal{J} = c_l \cdot \sum_k ||l_k||_2^2 + \sum_j z_j \cdot JReLU(p_j, \tau, R) \quad (1)$$

236

237 where $\sum_k ||l_k||_2^2$ is the sum of all of the LoRA squared L^2 layers norms and c_l is the weight pre-
 238 venting LoRA adapters from overfitting. Following Rajamanoharan et al. (2024), we define Jump
 239 ReLU function as follows

240

$$JReLU(p_j, \tau, R) := \begin{cases} p_j & \text{if } p_j \geq \tau \\ -R & \text{if } p_j < \tau \end{cases} \quad (2)$$

241

242 In applications we choose the probability threshold τ for hallucinatory tokens to be equal to 0.5
 243 and the reward for non-hallucinatory tokens R to be equal to e.g. 1e-4. The choice of τ is natural
 244 due to the choice of hallucination detection model `lettucedetect-large-v1`, i.e. we classify
 245 hallucinatory tokens as those for which the output probability from LettuceDetect model is above
 246 0.5. The choice of reward R for non-hallucinatory tokens is crucial as it is a key hyperparameter de-
 247 ciding on whether the model will be rewarded for generating correct text. Setting $R \leq 0$ risks model
 248 degradation (overly concise outputs) as was also observed in Song et al. (2024). Furthermore, the
 249 reward function R must scale inversely with $B = N \cdot |\mathcal{D}|$, where N denotes the number of training
 250 epochs and $|\mathcal{D}|$ represents the cardinality of the training dataset, to mitigate model degradation. Hy-
 251 perparameter tuning with excessively large values of both R and B risks compromising the model's
 252 foundational linguistic capabilities. We emphasize that non-hallucinatory responses incur zero loss
 253 to preserve linguistic capabilities.

254 **5.2 FINETUNING STRATEGY AND PARAMETERS**

255 We conducted experiments on H100 80GB GPU card with Python packages **transformers** v.4.53.2,
 256 **torch** v.2.7.1 and a fixed seed 43. We evaluated three fine-tuning strategies. In all of them we have
 257 chosen AdamW optimizer, $\tau = 0.5$ and $R \in \{1e-5, 1e-4, 5e-4, 1e-3\}$, number of epochs N : 1-3.
 258 Each hyperparameter configuration was subjected to a single training run within the experimental
 259 framework.

260

- **Full finetuning:** Learning rate: 1e-7 - 1e-8. Batch size: 1-2.
- **LoRA finetuning:** Learning rate: 1e-5 - 1e-6. Batch size: 1-4. α : 2-32, r : 4-8, c_l : 0.1.
- **8-bit Quantized LoRA:** Identical hyperparameters to LoRA.

270 **6 LETTUCEDETECT AS AN INTEGRATED EVALUATOR AND WEAK**
 271 **SUPERVISOR**
 272

273 This section outlines the rationale for employing LettuceDetect as a dual-purpose tool—serving as
 274 both an imperfect evaluator and a weak supervisor within a unified pipeline. The approach aligns
 275 with established practices in weakly supervised learning and addresses inherent limitations through
 276 systematic safeguards.
 277

278 **6.1 IMPERFECT EVALUATOR**
 279

280 The `lettucedetect-large-v1` detector achieves a precision of 64% and recall of 55.8% on
 281 RAGTruth dataset, significantly exceeding random chance performance, particularly given class
 282 imbalance (for Summarization task on RAGTruth ~30% of the samples are hallucinatory). A ran-
 283 dom flip (binary classification by chance) would then yield approximately 30% precision and 50%
 284 recall, while a naive baseline detector labeling all examples as hallucinatory would achieve ~30%
 285 precision and 100% recall. This indicates that the LettuceDetect captures meaningful data structure.
 286 Despite inherent noise, its outputs correlate with ground truth and serve as an informative proxy for
 287 highlighting relative differences in model performance.

288 Evaluating all models with the same detector ensures systematic noise, enabling fair comparisons
 289 across experiments. This approach mirrors established surrogate metrics in machine learning (e.g.,
 290 BLEU, ROUGE, Inception Score), which imperfectly correlate with human judgment yet provide
 291 consistent benchmarks for model comparison. Here, the detector is solely used to compare pre- and
 292 post-finetuned versions of the same model, not distinct model architectures.

293 The detector’s low recall suggests potential underestimation of true positives, while moderate preci-
 294 sion indicates a non-negligible false positive rate. These limitations necessitate cautious interpreta-
 295 tion of results.

296 Human validation remains viable for targeted spot-checks or final evaluations. Integrating this ap-
 297 proach mitigates detector limitations, ensuring robust assessment.

298 **6.2 WEAK SUPERVISOR**
 299

300 Training leverages a noisy detector as a weak supervisory signal, substituting for ground-truth anno-
 301 tations. This approach aligns with student-teacher knowledge distillation, where a student model is
 302 trained on outputs generated by an imperfect teacher model. Despite the teacher’s limitations (64%
 303 precision, 55.8% recall, significantly outperforming random baselines on imbalanced data), its out-
 304 puts encapsulate meaningful data patterns. Consequently, the student model can generalize beyond
 305 the teacher’s inherent biases, provided the signal retains structural utility.

306 **6.3 WHEN IS IT JUSTIFIABLE?**
 307

308 Employing the same detector for both training and evaluation introduces risks of overfitting to
 309 evaluator-specific artifacts. Models may optimize towards “gaming” the evaluator (e.g., exploi-
 310 ting systematic gaps in detecting subtle positives) rather than achieving genuine improvement. This
 311 circularity risk necessitates caution, as performance gains may reflect evaluator alignment rather
 312 than enhanced real-world capability.

313 This methodology is defensible when consistency in evaluation standards is prioritized, even with
 314 imperfect metrics. To mitigate overfitting, periodic validation via human assessment or alternative
 315 metrics is essential. This ensures models do not merely adapt to evaluator idiosyncrasies but achieve
 316 robust progress.

317 **6.4 APPLICATION IN THE CURRENT STUDY**
 318

319 The following framework was applied within the current study:

320 • **Consistency Framework:** Token-level penalties are applied to true and false positives
 321 while excluding false negatives. Non-hallucinatory tokens in hallucinated responses are
 322 rewarded to prevent model degradation or adversarial optimization.

- **Human verification:** Manual assessment of the LettuceDetect labels on the RAGTruth test split includes systematic checks of true/false positives and random sampling of negatives. Samples transitioning from true positives to false negatives post-finetuning were scrutinized; a high incidence of such transitions indicates adversarial adaptation to systematic gaps in the evaluator, rather than substantive capability enhancement. Conversely, a significant percentage of true negatives—instances correctly classified as non-hallucinations prior to finetuning turning into true hallucinations post-finetuning—indicates model degradation, manifesting as the generation of previously absent hallucinations.
- **Language capabilities preservation** Quantitative assessment ensures foundational language capabilities remain intact post-finetuning, e.g. evaluation on PILE-10K dataset Nanda (2022), Gao et al. (2020).

While this approach provides a consistent benchmarking framework, results must be interpreted with acknowledgment of its limitations. Complementary validation safeguards against conflating evaluator-specific gains with substantive progress.

7 EXPERIMENTAL RESULTS

This study evaluated five distinct Small Language Models (SLMs) selected for their suitability in on-device deployment scenarios. The models assessed were as follows:

- LLaMA-3-8B-Instruct AI (2024); AI@Meta (2024), exclusively quantized to 8-bit precision.
- Qwen3-1.7B Alibaba Cloud / QwenLM (2025) , with the "thinking" functionality deactivated.
- DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-AI (2025); deepseek-ai (2025), modified to exclude reasoning outputs, retaining only final summaries post-reasoning blocks.
- Gemma-3-1b-bit Google (2025a); Gemma (2025)
- Gemma-3-4b-bit Google (2025b)

All models utilized a system prompt enforcing English-only summarization and adherence to language-specific chat templates. Initial observations indicated that Qwen3-1.7B and DeepSeek-R1-Distill-Qwen-1.5B, whether quantized or operated without the specified prompt, exhibited inconsistent adherence to language constraints, frequently generating outputs in mixed languages rather than producing coherent English summaries.

7.1 EVALUATION

This section presents a comparative analysis between base models and their finetuned counterparts, as detailed in Table 1. Each base model underwent distinct finetuning strategies to achieve optimal performance. Comprehensive results for individual strategies are provided in Table 2. Notably, LLaMA-3-8B-Instruct was exclusively finetuned in its quantized form.

Two evaluation metrics were employed:

- **Perplexity** measured on the PILE 10K dataset Nanda (2022), Gao et al. (2020), with a maximum input sequence length of 1024 tokens and a stride of 512 tokens between consecutive sequences.
- **Non-Hallucinatory Rate (NHR)**, quantified as the percentage of non-hallucinatory responses to summarization prompts from the RAGTruth dataset. Model outputs were evaluated using `lettucedetect-large-v1`, classifying responses as hallucinatory if any token was flagged, or non-hallucinatory if all tokens were deemed valid. The responses were generated with hyperparameter values `temperature` : 0.7 and `top_p` : 0.7, `do_sample` : `True`, `max_new_tokens` : 128.

378 While non-hallucinatory rate indicates hallucination mitigation efficacy, low perplexity on PILE
 379 10K ensures preserved general language capabilities post-finetuning.
 380

381 The optimal performance, both in Perplexity and Non-Hallucinatory Rate, was achieved with the
 382 hyperparameters configuration $R = 1e - 5$, $N = 3$. For the full-finetuning strategy a learning
 383 rate of $1e - 8$, and a batch size of 1. In contrast, the optimal LoRA fine-tuning approach utilized a
 384 learning rate of $1e - 5$, $alpha = 32$, $r = 8$ in all of the models.

385 Our approach significantly enhances the Non-Hallucinatory Rate for models exhibiting low Per-
 386 perplexity, specifically LLaMA-3-8B-Instruct and Qwen3-1.7B, achieving performance levels
 387 comparable to highly refined models such as Gemma-3-1b-it, Gemma-3-4b-it.
 388

389 However, models Gemma-3-1b-it, Gemma-3-4b-it demonstrated elevated Perplexity on
 390 PILE 10K alongside robust baseline performance on RAGTruth, exhibiting minor improvement
 391 post-fine-tuning. This suggests successful prior instruction-finetuning, while also indicating
 392 potential limitations in the judge model or dataset-specific artifacts, with RAGTruth serving as the
 393 training dataset for lettucedetect-large-v1.

394 Our findings indicate that LoRA finetuning applied to quantized models did not yield improvements
 395 in mitigating model hallucinations. Furthermore, we observed that full finetuning of the models
 396 Qwen3-1.7B and DeepSeek-R1-Distill-Qwen-1.5B failed to enhance their performance
 397 and, in certain cases, resulted in degradation of capabilities. This suggests that these models exhibit
 398 heightened sensitivity to full finetuning procedures.

399 We emphasize that models were deliberately finetuned on synthetic data to avoid overfitting and
 400 spurious correlations inherent in RAGTruth’s topical repetitions. This approach prioritizes gen-
 401 eralization by decoupling training from dataset-specific features.

402 Human verification was conducted for each model to ensure that pre-finetuning positives—answers
 403 initially flagged as hallucinatory by LettuceDetect—did not transition to false negatives post-
 404 finetuning (i.e., true hallucinations erroneously labeled as non-hallucinatory). The emergence of
 405 such instances would indicate adversarial adaptation to the evaluator’s systematic gaps, rather than
 406 substantive model improvement. Additionally, verification confirmed that fewer than 1-2% of
 407 pre-finetuning true negatives transitioned to positives post-finetuning. A high percentage of those
 408 would suggest model degradation, wherein fine-tuned models generate hallucinations absent in pre-
 409 finetuning outputs.

410 411 Model	412 413 414 415 416 PERPLEXITY		417 418 419 420 NHR	
	419 420 Base	421 422 Finetuned	423 424 Base	425 426 Finetuned
427 428 429 430 431 LLaMA-3-8B-Instruct-8-bit-Quantized	428 429 8.1992	430 431 9.1636	432 433 0.7285	434 435 0.8228
432 433 Qwen3-1.7B	433 434 10.6957	434 435 11.2493	435 436 0.7971	437 438 0.8657
436 437 DeepSeek-R1-Distill-Qwen-1.5B	437 438 21.9116	438 439 22.3263	439 440 0.6050	441 442 0.6513
439 440 Gemma-3-1b-it	440 441 22.0388	441 442 22.5979	442 443 0.7898	444 445 0.8044
441 442 Gemma-3-4b-it	442 443 17.0373	443 444 21.2813	444 445 0.8236	446 447 0.8316

448 Table 1: Evaluation results - base models vs best finetuned model. Perplexity was calculated
 449 on PILE 10K dataset. Non-Hallucinatory Rate was calculated on prompts from RAGTruth
 450 Summary task, jointly on both train and test splits.

451 452 8 CONCLUSIONS AND LIMITATIONS

453 This work introduces a hallucination-aware finetuning pipeline that extends LettuceDetect and RAG-
 454 HAT methodologies, addressing limitations of existing LLM finetuning approaches. The pipeline
 455 employs lettucedetect-large-v1 to identify hallucinations, with detector outputs providing
 456 feedback during finetuning. By penalizing incorrect token generation relative to prompt context and
 457 rewarding factually grounded generation, the method preserves pretrained language capabilities,
 458 accelerates convergence, reduces resource demands, processes large datasets, and avoids dependency
 459 on black-box or excessively large models. Our results demonstrate significant hallucination mitigation
 460 in small language models without requiring LLM activation storage, prompting techniques, or
 461 knowledge graphs. Our approach is compatible with aforementioned complementary methods for

Model	Split	Base	Full	LoRA	8-bit QLoRA
LLaMA-3-8B-Instruct-8-bit-Quantized	TRAIN	0.7217	0.8158	-	0.7356
	TEST	0.7644	0.86	-	0.7756
Qwen3-1.7B	TRAIN	0.7870	0.7381	0.8560	-
	TEST	0.8511	0.7989	0.9172	-
DeepSeek-R1-Distill-Qwen-1.5B	TRAIN	0.5970	0.5926	0.6471	-
	TEST	0.6477	0.6522	0.6733	-
Gemma-3-1b-it	TRAIN	0.7845	0.7894	0.7968	-
	TEST	0.8177	0.8278	0.8444	-
Gemma-3-4b-it	TRAIN	0.8158	0.8158	0.8197	0.7898
	TEST	0.8730	0.8777	0.8944	0.8444

Table 2: Non-Hallucinatory Rate. Results on RAGTruth splits, i.e. TRAIN and TEST, for Base models and best models finetuned with each strategy: Full finetuning, LoRA finetuning and 8-bit Quantized LoRA finetuning.

enhanced efficacy.

The pipeline is adaptable to specialized domains (e.g. medical, legal) contingent on existence of domain-specific hallucination detectors. While `lettucedetect-large-v1` offers a foundation, its current training on RAGTruth data limits generalization. Future work should expand detector training to larger, varied datasets. A primary limitation stems from RAGTruth’s specificity; broader datasets would enhance detector robustness and domain transferability.

We underscore that our method is aimed at small language models (SLMs) optimized for on-device deployment, where inference speed constitutes a critical constraint. Existing approaches—such as prompting, knowledge graph integration, internal activation analysis, and response regeneration—impose additional computational overhead, increasing latency and memory usage, hindering real-time applicability in resource-constrained settings.

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility, this paper provides comprehensive details across the main text. Training dataset creation processes are outlined in section 4. The methodology section 5 describes main algorithm, training procedures, loss function, software and hardware specifications, and hyperparameters (e.g., batch size, learning rate, optimizer). Novel contributions, such as the proposed new loss function and training pipeline, are detailed in subsection 5.1. Tested model architectures are outlined in section 7, while evaluation procedure, metrics and benchmark datasets used for validation are referenced in subsections 7.1 and 6.4.

REFERENCES

Meta AI. Meta llama 3 8b instruct. <https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct>, April 2024. Instruction tuned 8B parameter LLaMa3 model via SFT RLHF, trained on 15T tokens.

AI@Meta. Llama 3 model card. <https://github.com/meta-llama/llama3/blob/main/MODELCARD.md>, 2024.

Alibaba Cloud / QwenLM. Qwen3-1.7b. <https://huggingface.co/Qwen/Qwen3-1.7B>, May 2025. 1.7B parameter model in the Qwen3 series supporting dual thinking modes.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 967–976, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL <https://aclanthology.org/2023.findings-emnlp.68/>.

486 Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola Can-
 487 cedda, and Pascale Fung. Hallulens: Llm hallucination benchmark, 2025. URL <https://arxiv.org/abs/2504.17550>.
 488

489 Liam Barkley and Brink van der Merwe. Investigating the role of prompting and external tools in
 490 hallucination rates of large language models. *arXiv preprint arXiv:2410.19385*, 2024.
 491

492 Masha Belyi, Robert Friel, Shuai Shao, and Atindriyo Sanyal. Luna: An evaluation foundation
 493 model to catch language model hallucinations with high accuracy and low cost, 2024. URL
 494 <https://arxiv.org/abs/2406.00975>.
 495

496 Alexander Braverman, Weitong Zhang, and Quanquan Gu. Mitigating hallucination in large lan-
 497 guage models with explanatory prompting. *OpenReview*, 2024.
 498

498 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping
 499 Ye. Inside: Llms' internal states retain the power of hallucination detection. *arXiv preprint*
 500 *arXiv:2402.03744*, 2024.
 501

501 deepseek-ai. Deepseek-r1-distill-qwen-1.5b. <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B>, January 2025. 1.5B parameter reasoning focused model distilled from
 502 Qwen2.5 Math 1.5B.
 503

504 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
 505 <https://arxiv.org/abs/2501.12948>, 2025.
 506

507 Hanxing Ding, Liang Pang, Zihao Wei, Huawei Shen, and Xueqi Cheng. Retrieve only when it
 508 needs: Adaptive retrieval augmentation for hallucination mitigation in large language models.
 509 *arXiv preprint arXiv:2402.10612*, 2024.
 510

510 Xuefeng Du, Chaowei Xiao, and Sharon Li. Haloscope: Harnessing unlabeled llm generations for
 511 hallucination detection. *Advances in Neural Information Processing Systems*, 37:102948–102972,
 512 2024.
 513

514 Zuzanna Dubanowska, Maciej Zelaszczyk, Michal Brzozowski, P Mandica, and Michal P. Kar-
 515 powicz. Representation-based broad hallucination detectors fail to generalize out of distribution.
 516 *EMNLP 2025. Association for Computational Linguistics*, August 2025.
 517

517 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 518 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
 519 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.
 520

521 Gemma. Gemma 3. <https://goo.gle/Gemma3Report>, 2025.
 522

522 Google. google/gemma-3-1b-it. <https://huggingface.co/google/gemma-3-1b-it>, April 2025a. In-
 523 struction tuned 1B multilingual model in the Gemma3 series.
 524

525 Google. google/gemma-3-4b-it. <https://huggingface.co/google/gemma-3-4b-it>, March 2025b. In-
 526 struction tuned 4B multimodal model in the Gemma3 series.
 527

527 Minda Hu, Bowei He, Yufei Wang, Liangyou Li, Chen Ma, and Irwin King. Mitigating large
 528 language model hallucination with faithful finetuning. *arXiv preprint arXiv:2406.11267*, 2024.
 529

530 Yinghao Hu, Leilei Gan, Wenyi Xiao, Kun Kuang, and Fei Wu. Fine-tuning large language models
 531 for improving factuality in legal question answering, 2025. URL <https://arxiv.org/abs/2501.06521>.
 532

533 Zhouyu Jiang, Mengshu Sun, Zhiqiang Zhang, and Lei Liang. Bi'an: A bilingual benchmark and
 534 model for hallucination detection in retrieval-augmented generation, 2025. URL <https://arxiv.org/abs/2502.19209>.
 535

536 Michal Karpowicz. On the fundamental impossibility of hallucination control in large language
 537 models. *arXiv preprint arXiv:2506.06382*, 2025.
 538

539 Afshin Khadangi, Amir Sartipi, Igor Tchappi, and Ramin Bahmani. Noise augmented fine tuning
 for mitigating hallucinations in large language models. *arXiv preprint arXiv:2504.03302*, 2025.

540 Ádám Kovács and Gábor Recski. Lettucedetect: A hallucination detection framework for llm applications. *arXiv preprint arXiv:2502.17125*, 2025.

541

542

543 DongGeon Lee and Hwanjo Yu. Refind at semeval-2025 task 3: Retrieval-augmented factuality hallucination detection in large language models, 2025. URL <https://arxiv.org/abs/2502.13622>.

544

545

546 Diyana Muhammed, Gollam Rabby, and Sören Auer. Selfcheckagent: Zero-resource hallucination detection in generative large language models, 2025. URL <https://arxiv.org/abs/2502.01812>.

547

548

549 Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucinations of large language models: Evaluation, detection and mitigation. *arXiv preprint arXiv:2305.15852*, 2023.

550

551

552 Neel Nanda. Pile 10k dataset. <https://huggingface.co/datasets/NeelNanda/pile-10k>, 2022.

553

554

555 Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Junlong Song, and Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented language models. *arXiv preprint arXiv:2401.00396*, 2023.

556

557

558 Shrey Pandit, Jiawei Xu, Junyuan Hong, Zhangyang Wang, Tianlong Chen, Kaidi Xu, and Ying Ding. Medhallu: A comprehensive benchmark for detecting medical hallucinations in large language models, 2025. URL <https://arxiv.org/abs/2502.14302>.

559

560 Stanislav Penkov. Mitigating hallucinations in large language models via semantic enrichment of prompts: Insights from biobert and ontological integration. In *Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)*, pp. 272–276, 2024.

561

562

563 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse autoencoders. *arXiv preprint arXiv:2407.14435*, 2024.

564

565

566 Selvan Sunitha Ravi, Bartosz Mielczarek, Anand Kannappan, Douwe Kiela, and Rebecca Qian. Lynx: An open source hallucination evaluation model, 2024. URL <https://arxiv.org/abs/2407.08488>.

567

568

569 Abhilasha Ravichander, Shruti Ghela, David Wadden, and Yejin Choi. Halogen: Fantastic llm hallucinations and where to find them, 2025. URL <https://arxiv.org/abs/2501.08292>.

570

571

572 Junlong Song, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong, and Cheng Niu. Rag-hat: A hallucination-aware tuning pipeline for llm in retrieval-augmented generation. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 1548–1558, 2024.

573

574

575 Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda, and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language models. *Advances in Neural Information Processing Systems*, 37:34188–34216, 2024.

576

577

578 Zhongxiang Sun, Xiaoxue Zang, Kai Zheng, Yang Song, Jun Xu, Xiao Zhang, Weijie Yu, and Han Li. Redep: Detecting hallucination in retrieval-augmented generation via mechanistic interpretability. *arXiv preprint arXiv:2410.11414*, 2024.

579

580

581 Zilu Tang, Rajen Chatterjee, and Sarthak Garg. Mitigating hallucinated translations in large language models with hallucination-focused preference optimization, 2025. URL <https://arxiv.org/abs/2501.17295>.

582

583

584 Saad Obaid ul Islam, Anne Lauscher, and Goran Glavaš. How much do llms hallucinate across languages? on multilingual estimation of llm hallucination in the wild, 2025. URL <https://arxiv.org/abs/2502.12769>.

585

586

587

588

589

590

591

592

593

594 Lei Yu, Meng Cao, Jackie Chi Kit Cheung, and Yue Dong. Mechanistic understanding and mitigation
 595 of language model non-factual hallucinations, 2024. URL <https://arxiv.org/abs/2403.18167>.
 596

597 Runchuan Zhu, Zinco Jiang, Jiang Wu, Zhipeng Ma, Jiahe Song, Fengshuo Bai, Dahua Lin, Li-
 598 jun Wu, and Conghui He. Grait: Gradient-driven refusal-aware instruction tuning for effective
 599 hallucination mitigation. *arXiv preprint arXiv:2502.05911*, 2025.
 600

601
 602 **A APPENDIX**
 603

604 **A.1 LLM USAGE**
 605

606 The LLM was employed for text refinement and proofreading, including correction of grammatical
 607 and spelling errors. Additionally, it facilitated the identification of relevant literature, particularly
 608 within the domains of Mechanistic Interpretability and Hallucination mitigation through knowledge
 609 grounding techniques.
 610

611 **A.2 EXAMPLES**
 612

613 Below we present representative examples from the RAGTruth test split wherein responses from
 614 the pre-trained base model were uniformly hallucinatory and nearly identical, whereas responses
 615 generated by the fine-tuned models were all correct and non-hallucinatory.
 616

- 617 • True positive turning into true negative
 618

Prompt: Summarize the following news within 137 words: Getting caught napping on
 619 the job is never good. Getting caught napping on the job in the cargo hold of a plane
 620 takes it to a whole different level. Alaska Airlines Flight 448 was just barely on its way
 621 to Los Angeles from Seattle-Tacoma International Airport on Monday afternoon when the
 622 pilot reported hearing unusual banging from the cargo hold. "There could be a person in
 623 there so we're going to come back around," he told air traffic control. The banging in the
 624 cargo hold did come from a person and he turned out to be a ramp agent from Menzies
 625 Aviation, a contractor for Alaska Airlines that handles loading the luggage, the airline
 626 said. The man told authorities he had fallen asleep. It appears he was never in any danger.
 627 The cargo hold is pressurized and temperature controlled, the airline said. The plane was
 628 also only in the air for 14 minutes. The passengers knew something wasn't right, almost
 629 as soon as the plane took off. "All of a sudden we heard all this pounding underneath
 630 the plane and we thought there was something wrong with the landing gear," Robert
 631 Higgins told CNN affiliate KABC. The pounding grew louder. "At that point, we started
 632 hearing yelling, screams for help, very, very faint," Jamie Davis said. "That's when
 633 we notified the flight attendant that there was somebody underneath us." As the banging
 634 continued, a federal air marshal sprang into action. "At some point, the marshal kind of
 635 made himself known," said Troi Ge. "He started banging back, and he yelled really loud
 636 and said, 'We're getting ready to land, hold on to something.' " The emergency landing
 637 spooked the folks aboard Flight 448. Affiliate KOMO spoke to Marty Collins, another one
 638 of the passengers. "We just took off for L.A. regular and then ... about five minutes into
 639 the flight the captain came on and said we were going back and we'd land within five to
 640 seven minutes, and we did," Collins said. "When we landed was when all the trucks and the
 641 police and the fire trucks surrounded the plane." "I think it's scary and really unsafe, too,"
 642 Chelsie Nieto told affiliate KCPQ. "Because what if it's someone who could have been a
 643 terrorist?" The ramp agent appeared to be in OK after the ordeal. He was taken to an area
 644 hospital as a precaution, the airline said. He passed a drug test and was discharged. The
 645 employee started work at 5 a.m. and his shift was scheduled to end at 2:30 p.m., just before
 646 the flight departed. "During a pre-departure huddle, the team lead noticed the employee
 647 was missing. The team lead called into the cargo hold for the employee and called and
 648 texted the employee's cell phone, but did not receive an answer. His co-workers believed
 649 he finished his shift and went home," the airline's blog said. Alaska Airlines said it's
 650 investigating. The man had been on a four-person team loading baggage onto the flight.
 651 All ramp employees have security badges, and undergo full criminal background checks
 652

648
649
650
651

before being hired, according to the airline. After the delay, the flight with 170 passengers and six crew members on board made it to Los Angeles early Monday evening. CNN's Greg Morrison contributed to this report. output:

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

Base model answer: A ramp agent from Menzies Aviation, a contractor for Alaska Airlines, fell asleep in the cargo hold of a plane during a flight from Seattle-Tacoma International Airport to Los Angeles. The pilot reported unusual banging from the cargo hold, and the flight was diverted back to Seattle. The ramp agent was found sleeping and was taken to a hospital as a precaution. He passed a drug test and was discharged. The incident is under investigation by Alaska Airlines. The passengers were unaware of the situation until the pilot announced that the flight was being diverted back to Seattle. The flight was delayed for about an hour before continuing to Los Angeles. The incident highlights the importance of proper security procedures and employee accountability. It also raises questions about the safety and security of cargo holds on commercial flights. The ramp agent's actions were deemed "unacceptable" by the airline, and he may face disciplinary action. The incident is a reminder that even in the most unlikely of places, safety and security must always be a top priority.

LettuceDetect output: [”start”: 251, ”end”: 258, ”confidence”: 0.5677386522293091, ”text”: ” flight”, ”start”: 262, ”end”: 279, ”confidence”: 0.5964633226394653, ”text”: ” diverted back to”, ”start”: 615, ”end”: 624, ”confidence”: 0.6059316992759705, ”text”: ” about an”, ”start”: 854, ”end”: 959, ”confidence”: 0.9523929953575134, ”text”: ” The ramp agent’s actions were deemed ”unacceptable” by the airline, and he may face disciplinary action.”]

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

Finetuned model answer: A man was caught napping in the cargo hold of an Alaska Airlines flight from Seattle to Los Angeles on Monday. The pilot reported hearing unusual banging from the cargo hold and the plane was turned around and returned to the airport. The banging was found to be a ramp agent from Menzies Aviation, a contractor for Alaska Airlines, who had fallen asleep. The man was not in any danger as the cargo hold is pressurized and temperature controlled. The plane was only in the air for 14 minutes. The passengers were aware of something was not right as soon as the plane took off and heard the banging and yelling. A federal air marshal sprang into action and the plane made an emergency landing. The ramp agent was taken to a hospital as a precaution and passed a drug test. The airline is investigating the incident. The man had been on a four-person team loading baggage onto the flight and all ramp employees have security badges and undergo full criminal background checks before being hired. The flight with 170 passengers and six crew members on board made it to Los Angeles early Monday evening. The incident has raised concerns about safety and security. ”I think it’s scary and really unsafe, too,” said one passenger. ”Because what if it’s someone who could have been a terrorist?”

LettuceDetect output: []

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

- False positive turning into true negative

Prompt: Summarize the following news within 139 words: Every morning, Sissa Abu Dahou puts on traditional male dress, known as a jalabiya, and heads into the streets of the Egyptian city of Luxor for a day of hard work. But this man of the house is actually a woman. The grandmother of two has dressed as a man for 43 years to avoid oppression and eek out a living in the conservative Muslim state. ”Why did you do this mother?” her daughter asked during a recorded interview with Egyptian television network CBC. ”Your father died and I was six months pregnant with you.” she replied. ”None of my siblings helped me. I raised you and sent you to school. Without money I could not have gotten you an education.” A widow at just 21, Dahou was forced to fend for herself in Egypt’s patriarchal south, where decades ago it was unheard of for women to earn their own living. Even in recent years, women make up barely 24% of Egypt’s workforce, according to the World Bank. ”It is considered wrong that I dressed as a man but no one can judge. Not you or anyone else. Only God can judge me,” Dahou said, ”People talked but I said I decided to be a man so I can take care of my small daughter.” The breadwinner worked as a brick maker for just 25 piasters, the equivalent of a few cents, until she saved up enough money to buy a shoeshine kit. She found a place for her wooden box, painted with red hearts and

702 the Egyptian flag, alongside the all-male shoe shiners of her community. "If it wasn't for
 703 my mother, I would have been on the streets" Houda, her daughter, told TV host Mona
 704 al-Shazly through tears. "Honestly I would have been in the streets. I did not find a home
 705 except with my mother. And even today my children rely on her." The years of sun and
 706 sand weathered and darkened Dahou's face and left her with a voice so deep and raspy
 707 she can easily be mistaken for a man. Her only child, Houda, eventually married and had
 708 two children of her own. Through the years the one-time housewife dreamed of owning
 709 her own business one day, a small street stand to sell snacks and cigarettes. After her
 710 interview on CBC television, the governor of Luxor province offered Dahou a kiosk and
 711 a cash advance. The maverick had one requirement- she would only agree to meet with
 712 the governor in male attire. "Even if I die, I will not take it off," Dahou said as she pulled
 713 on the male jalabiya in front of a TV camera, "When I had to dress in a woman's jalabiya
 714 when I went to Cairo I felt suffocated. No, I thank God. I don't want anyone to look at
 715 me or look at my daughter." Now the 65-year-old who earned respect as a man has gained
 716 praise as a woman. Egypt's President, Abdel Fattah el-Sisi, crowned her as one of Egypt's
 717 ideal mothers in an official ceremony last month. "If I was really a man, I would not have
 718 done this," Dahou told her daughter, "I would have gotten remarried. I would have left you
 719 who knows where. You would have been treated without dignity or left homeless. Thank
 720 God I was able to protect you. output:

721 **Base model answer:** Sissa Abu Dahou, a 65-year-old grandmother, has been dress-
 722 ing as a man for 43 years to avoid oppression and make a living in Egypt's conservative
 723 society. A widow at 21, she was forced to fend for herself and her daughter, Houda. Dahou
 724 worked as a brick maker and later as a shoeshine, earning just a few cents a day. Despite
 725 the challenges, she saved up enough to buy a shoeshine kit and eventually started her own
 726 business. After an interview on Egyptian TV, the governor of Luxor province offered her
 727 a kiosk and cash advance. Dahou has gained praise as a woman, being crowned one of
 728 Egypt's ideal mothers by President Abdel Fattah el-Sisi. She remains proud of her decision
 729 to dress as a man, saying it allowed her to protect her daughter and provide for her family.
 730 **LettuceDetect output:** ["start": 439, "end": 475, "confidence": 0.7992850542068481,
 731 "text": " eventually started her own business"]

732 **Finetuned model answer:** Sissa Abu Dahou, a 65-year-old grandmother, has been
 733 dressing as a man for 43 years to avoid oppression and make a living in the conservative
 734 Muslim state of Egypt. She put on traditional male dress, known as a jalabiya, and heads
 735 into the streets of the Egyptian city of Luxor for a day of hard work. Dahou, a widow at
 736 21, was forced to fend for herself in Egypt's patriarchal south, where it was unheard of
 737 for women to earn their own living. She worked as a brick maker for just 25 piasters, the
 738 equivalent of a few cents, until she saved up enough money to buy a shoeshine kit. She
 739 found a place for her wooden box, painted with red hearts and the Egyptian flag, alongside
 740 the all-male shoe shiners of her community. Dahou's daughter, Houda, said "If it wasn't
 741 for my mother, I would have been on the streets" and "Honestly I would have been in the
 742 streets. I did not find a home except with my mother. And even today my children rely on
 743 her." The governor of Luxor province offered Dahou a kiosk and a cash advance, and she
 744 only agreed to meet with the governor in male attire. "Even if I die, I will not take it off"
 745 **LettuceDetect output:** []

746 • True positive turning into true negative (python code and comments removal)
 747 **Prompt:** Summarize the following news within 161 words: Blue Bell ice cream has
 748 temporarily shut down one of its manufacturing plants over the discovery of listeria
 749 contamination in a serving of ice cream originating from that plant. Public health officials
 750 warned consumers Friday not to eat any Blue Bell-branded products made at the company's
 751 Broken Arrow, Oklahoma, plant. That includes 3-ounce servings of Blue Bell ice cream
 752 from this plant that went to institutions in containers marked with the letters O, P, Q, R, S or
 753 T behind the coding date. The warning by the Centers for Disease Control and Prevention
 754 does not affect other Blue Bell ice cream, including other 3-ounce servings, not made at
 755 the plant. But Blue Bell has recalled other products. The company is shutting down the
 Broken Arrow facility "out of an abundance of caution" to search for a possible cause of

756 contamination. It is the third time Blue Bell has taken action in light of a listeria outbreak
 757 at a Kansas hospital that served the company's ice cream. Listeria monocytogenes was
 758 recently found in a cup of ice cream recovered from the hospital. The cup contaminated
 759 with the bacteria was produced at the Broken Arrow plant in April 2014, Blue Bell said.
 760 And, according to the CDC, listeria bacteria was found in additional samples of the same
 761 product that were recovered from the plant. The bacteria in the hospital sample and the
 762 factory sample appeared to match each other genetically, the CDC said. But they did not
 763 appear identical to listeria samples taken from patients infected in the Kansas outbreak. In
 764 a separate outbreak in Texas, the CDC did find that listeria samples taken from patients
 765 who came down with listeriosis between 2010 and 2014 in a hospital that served 3-ounce
 766 Blue Bell cups matched the listeria in recovered samples. None of this means the ice
 767 cream is the source of either spate of the infections. "Investigation to determine whether
 768 these illnesses are related to exposure to Blue Bell products is ongoing," the CDC said. In
 769 early March, in light of the Kansas listeria outbreak, Blue Bell recalled a group of products
 770 made at a plant in Texas. It later added 3-ounce cup servings to the recall. Five people
 771 were infected and three died in the past year in Kansas from listeria that might be linked to
 772 Blue Bell Creameries products, according to the CDC. All five of them were hospitalized
 773 at the same hospital before developing listeriosis, the CDC said. At least four of them
 774 had consumed milkshakes made with Blue Bell ice cream before developing the infection.
 775 "We are devastated and know that Blue Bell has to be and can be better than this," Paul
 776 Kruse, Blue Bell CEO and president, said in a statement. "Quality and safety have always
 777 been our top priorities. We are deeply saddened and concerned for all those who have been
 778 affected." The CDC advises that individuals and institutions should check their freezers
 779 for the recalled products and throw them away. In a statement on its website, Blue Bell
 780 said "this recall in no way includes Blue Bell ice cream half gallons, pints, quarts, 3
 781 gallons or other 3 oz. cups." This has been the first product recall in the 108-year history
 782 of Blue Bell Creameries, the company said. Listeriosis is a serious infection caused by
 783 eating food contaminated with listeria, and primarily affects the elderly, pregnant women,
 784 newborns and people with weakened immune systems, according to the CDC. Symptoms
 785 of a listeria infection are fever and muscle aches, sometimes associated with diarrhea or
 786 other gastrointestinal symptoms. In the United States, an estimated 1,600 people become
 787 seriously ill each year, and approximately 16% of these illnesses result in death. Cervical
 788 infections caused by listeriosis in pregnant women may result in stillbirth or spontaneous
 789 abortion during the second or third trimesters. CNN's Debra Goldschmidt, Amanda Watts
 790 and Jacque Wilson contributed to this report. output:
 791

792 **Base model answer:** Blue Bell ice cream has temporarily shut down one of its
 793 manufacturing plants due to listeria contamination. The company has recalled certain
 794 3-ounce servings of ice cream made at the Broken Arrow, Oklahoma, plant. The recall
 795 affects products with the letters O, P, Q, R, S, or T behind the coding date. The Centers for
 796 Disease Control and Prevention (CDC) has warned consumers not to eat these products.
 797 Blue Bell has shut down the plant to search for the cause of contamination. This is the third
 798 time the company has taken action due to a listeria outbreak. The CDC is investigating
 799 whether the illnesses are related to exposure to Blue Bell products. Listeriosis is a
 800 serious infection that primarily affects the elderly, pregnant women, and people with
 801 weakened immune systems. Symptoms include fever, muscle aches, and diarrhea. The
 802 CDC advises individuals and institutions to check their freezers for the recalled products
 803 and throw them away.]] \\end{code} I used the following code to summarize the text:
 804 \\n\\n\\{code} \\\\nimport nltk\\nfrom nltk.tokenize import word_tokenize, sent_tokenize
 805 \\nfrom nltk.corpus import stopwords \\nfrom nltk.stem import WordNetLemmatizer
 806 \\nfrom collections import
 807

808 **LettuceDetect output:** [{"start": 1080, "end": 1244, "confidence": 0.9907045960426331,
 809 "text": "import nltk\\nfrom nltk.tokenize import word_tokenize, sent_tokenize \\nfrom
 810 nltk.corpus import stopwords \\nfrom nltk.stem import WordNetLemmatizer \\nfrom
 811 collections import"}]

812 **Finetuned model answer:** Blue Bell ice cream has temporarily shut down one of
 813 its manufacturing plants due to listeria contamination. The Centers for Disease Control
 814 and Prevention (CDC) has warned consumers not to eat contaminated products. Blue

Bell has shut down the plant to search for the cause of contamination. It is the third time Blue Bell has taken action in light of a listeria outbreak. The CDC is investigating whether the illnesses are related to exposure to Blue Bell products. Listeriosis is a serious infection caused by eating food contaminated with listeria, and primarily affects the elderly, pregnant women, newborns and people with weakened immune systems.

LettuceDetect output: []

- True positive turning into true negative (hallucinatory links removal)

Prompt: Summarize the following news within 85 words: Washington (CNN) In a broad bipartisan vote, the Senate on Tuesday gave final approval to a Medicare reform bill that includes a permanent solution to the "doc fix," a method the government has used to ensure payments to Medicare providers will keep up with inflation. The bill, which passed 92 to 8, also includes a two-year extension of a popular children's health insurance program. The issue of payments to Medicare providers has been a thorny issue for years. Senate Finance Committee Chairman Orrin Hatch of Utah called passage of the bill a "major, major accomplishment." "Tonight, the Senate is voting to retire the outdated, inefficiency-rewarding, common sense-defying Medicare reimbursement system," said Sen. Ron Wyden of Oregon, the top Democrat on the Finance Committee just before the final vote. The House approved the same bill overwhelmingly more than two weeks ago and President Barack Obama is expected to sign it. Senate passage came just hours before cuts to physicians would have taken place since the last temporary "doc fix" had already expired. Some conservative senators, including Republican presidential candidate Ted Cruz of Texas, balked at the more than \$200 billion price of the bill and pushed an amendment to have the costs offset. The bill, "institutionalizes and expands Obamacare policies that harm patients and their doctors while adding roughly half a trillion dollars to our long-term debt within two decades," Cruz said in a statement. "Any deal should be fully paid for and include significant and structural reforms to Medicare." But that amendment was defeated, as were several others from each party that came up for votes. Earlier, House Speaker John Boehner of Ohio warned the Senate not to change the bill. "Unless the Senate passes the House-passed 'doc fix,' significant cuts to physicians' payments will begin tomorrow," Boehner said. "We urge the Senate to approve the House-passed bill without delay." Cruz voted against the bill, as did Sen. Marco Rubio of Florida, another Republican running for president. GOP presidential contender Sen. Rand Paul of Kentucky voted for the bill. output:

Base model answer: The Senate has passed a Medicare reform bill that includes a permanent solution to the “doc fix” and a two-year extension of a popular children’s health insurance program. The bill passed 92-8 and is expected to be signed by President Obama. The bill addresses a long-standing issue of payments to Medicare providers and includes a cost of over \$200 billion. Some conservative senators, including Ted Cruz, opposed the bill, citing concerns about the cost and the expansion of Obamacare policies. The bill is seen as a major accomplishment by Senate Finance Committee Chairman Orrin Hatch. (https://www.cnn.com/2015/03/31/politics/senate-medicare-reform-bill/index.html)](https://www.cnn.com/2015/03/31/politics/senate-medicare-reform-bill/index.html)](https://www.cnn.com/2015/03/31/politics/senate-medicare-reform-bill/index.html)](https://www.cnn.com/2015/03/31/politics/senate-medicare-reform-bill/index.html)](https://www.cnn.com/2015/03/31/politics/senate-medicare-reform-bill/index.html”,

LettuceDetect output: [{"start": 593, "end": 608, "confidence": 0.8013504147529602, "text": "https://www.cnn", "start": 609, "end": 633, "confidence": 0.7843217849731445, "text": "com/2015/03/31/politics/"}]

Finetuned model answer: The Senate has given final approval to a Medicare reform bill, which includes a permanent solution to the "doc fix" and a two-year extension of a popular children's health insurance program. The bill passed 92 to 8 and includes a permanent solution to the issue of payments to Medicare providers, which has been a thorny issue for years. The House has already approved the same bill and President Barack Obama is expected to sign it. The bill is a "major, major accomplishment" and will ensure that

864 payments to Medicare providers will keep up with inflation. Some conservative senators,
865 including Ted Cruz, opposed the bill, citing the cost of over \$200 billion and the addition
866 of half a trillion dollars to the long-term debt. However, the bill was passed and is expected
867 to be signed by the President.
868 **LettuceDetect output:** []
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917