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Abstract

Symbolic Regression (SR) is a well-established framework for generating interpretable or
white-box predictive models. Although SR has been successfully applied to create inter-
pretable estimates of the average of the outcome, it is currently not well understood how
it can be used to estimate the relationship between variables at other points in the dis-
tribution of the target variable. Such estimates of e.g. the median or an extreme value
provide a fuller picture of how predictive variables affect the outcome and are necessary in
high-stakes, safety-critical application domains. This study introduces Symbolic Quantile
Regression (SQR), an approach to predict conditional quantiles with SR. In an extensive
evaluation, we find that SQR outperforms transparent models and performs comparably to
a strong black-box baseline without compromising transparency. We also show how SQR
can be used to explain differences in the target distribution by comparing models that pre-
dict extreme and central outcomes in an airline fuel usage case study. We conclude that
SQR is suitable for predicting conditional quantiles and understanding interesting feature
influences at varying quantiles.

1 Introduction
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Figure 1: Conditional quantile functions at
various quantile levels τ for a distribution
where the variance of the target y changes
with the level of the independent variable
x.

Symbolic regression (SR) offers an approach to uncover math-
ematical expressions that explain patterns in data. It captures
these patterns in interpretable, closed-form expressions that
can then be analyzed and interpreted. First, this is useful in
the so-called discovery settings, where the study of the identi-
fied patterns increases the understanding of some phenomenon,
as is the case in empirical science. Second, this is useful when
making predictions in high-stakes domains, where accountabil-
ity and safety are key considerations to use the use of predic-
tions in decision making (Bellemare et al., 2023). In general,
SR has proven to be suitable for use cases that require under-
standing, mitigation of risks, and keeping in mind the broader
goals of making predictions. It has therefore been applied in
a wide range of fields, including astrophysics (Lemos et al.,
2023), economics (Verstyuk & Douglas, 2022), medicine (Vir-
golin et al., 2020), mechanical engineering (Kronberger et al.,
2018), chemistry (Hernandez et al., 2019), and others (Märtens
& Izzo, 2022; Matsubara et al., 2022), as a result.

Quantile regression (QR), on the other hand, focuses on making
predictions at different locations of the outcome distribution by
estimating different conditional quantile functions as visualized
in Figure 1. Unlike traditional regression, which focuses on
predicting a single central location of the outcome variable, QR accounts for variability and extremes, offering
more robust predictions that can be used for better decision making. This is of paramount importance
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Figure 2: Two two symbolic expression are represented as trees (2a and 2b), and combined through crossover
to form two new expressions (2c and 2d).

in contexts where data exhibit heteroskedasticity, such as in economics (Buchinsky, 1995), or when it is
necessary to ensure that a certain proportion, say 90%, of actual values is lower than the predicted values,
such as in survival analysis, reliability engineering, and healthcare (Hu et al., 2020; Koenker & Geling, 2001;
Zheng et al., 2022).

However, current state-of-the-art QR models are black boxes and lack the interpretability required for high-
stakes decision making that SR offers by design. This study therefore proposes a novel combination of SR and
QR that provides interpretable predictive models for a given quantile level. Symbolic Quantile Regression
(SQR) jointly optimizes for predictive performance and interpretability of the generated expressions by
minimizing an established QR loss known as the pinball loss together with a loss for the interpretability of
the expression.

We compare SQR with a number of state-of-the-art QR approaches in different quantiles in a substantial
benchmark of 122 regression data sets. We assess its predictive performance and interpretability and find
that SQR finds interpretable models while maintaining a predictive performance comparable to or better
than state-of-the-art black-box models. We also present a case study from the commercial aviation domain,
in which we apply SQR to a fuel consumption prediction problem to explore why some flights consume more
fuel with the goal of reducing CO2 emissions. By comparing expressions that describe central and extreme
fuel consumption levels, we find that higher velocities resulting from later departures explain extreme fuel
usage. We thereby not only show that SQR is competitive in its predictive performance but also showcase how
it can be used to create actionable insights on a real-world problem. Hence, SQR addresses key challenges
related to the safe adoption of machine learning techniques in safety-critical and high-stakes domains by
providing interpretable estimates of conditional quantile functions.

2 Background and Related Work

2.1 Symbolic Regression

Symbolic regression (SR) can be defined as a search process over the space of concise, closed-form mathe-
matical expressions for an expression that best fits a dataset, thereby revealing the underlying patterns. For
an i.i.d. data set D := (X, y), where each input Xi,: ∈ Rd and output yi ∈ R, the goal of SR is to find a
function f : Rd → R that accurately predicts the output given the input. In SR, the function f represents a
mathematical expression that captures the relationship between explanatory and target variables, and takes
the form f(Xi,:) = yi + ϵ for an error term ϵ (Koza, 1994).

The expression f is modeled as a sequence of tokens, which include mathematical operations such as addition
(+), subtraction (−), trigonometric functions (sin()), input features (X:,1 . . . X:,d) and constants in R. The
search process aims to minimize a loss function, which is typically a measure of predictive performance,
such as the mean squared error for regression tasks or the F1 score for binary classification, along with
some measure of the interpretability of the expression (Visbeek et al., 2024). The interpretability of the
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Table 1: Complexity scores for operators.

Token Complexity
+, −, ×, feature, constant 1
÷, square 2
sin, cos 3
exp, log,

√
· 4

expression is typically defined as its parsimony, i.e. the sum of the complexity scores assigned to each token,
as illustrated in Table 1.

Historically, SR has been tackled using genetic programming (Koza, 1994), see Figure 2. Genetic program-
ming is inspired by evolutionary biology and mimics natural selection through operations like crossover and
mutation to evolve candidate solutions over generations. By iteratively combining and modifying instances
in a population of solutions, it adheres to the principle of “survival of the fittest” by selecting models based
on their performance according to a predefined loss or fitness function. The flexibility and robustness of
population-based evolutionary methods make it a powerful tool for exploring the combinatorial solution
space of mathematical expressions in SR.

Discovering an expression that is both predictive and interpretable not only enhances understanding of the
phenomena underlying the data (the discovery use case) but also provides a reliable means for predict-
ing the target variable (the prediction use case). In recent years, several extensions of the SR framework
have emerged, including integrations with deep reinforcement learning and adaptations for classification
tasks (Landajuela et al., 2022; Visbeek et al., 2024). Furthermore, the field of SR has been further devel-
oped through the introduction of various data sets and software tools that have advanced the research and
practical applicability of SR (Orzechowski et al., 2018; Cranmer et al., 2020; La Cava et al., 2021).

2.2 Interpretability

Interpretability in machine learning has traditionally been evaluated using sparsity or simplicity metrics
within a given model class (Jo et al., 2023). For instance, in linear models, interpretability is often measured
by counting the number of nonzero coefficients, while in decision trees, interpretability is typically assessed
by the number of nodes (i.e., branches and leaves). However, these metrics are limited because they do not
allow meaningful comparisons across different model classes, as each class defines sparsity differently.

To address this limitation, the concept of decision complexity has been introduced as a more generalizable
metric for sparsity that can be applied across various model classes. Decision complexity is defined as “the
minimum number of parameters required for a classifier to make a prediction on a new data point” (Jo et al.,
2023). This notion is generally referred to as parsimony in recent work and standardizes the measurement of
interpretability by focusing on the essential components needed for decision making, regardless of the model
type.

3 Symbolic Quantile Regression

We now turn to the main technical contribution, which is the extension of SR so that it can be used to predict
various locations of the target distributions while maintaining interpretability. We formalize this problem
as follows. Let (X , Y) be random variables where X ∈ Rd represents a d dimensional input and Y ∈ R the
response variable or target. Our goal is to estimate the conditional quantile function QY(τ |X = X) for a
specified quantile level τ ∈ (0, 1):

QY(τ |X = X) := inf {q ∈ R : P(Y ≤ q|X = X) ≥ τ} . (1)

We assume the presence of a data set of i.i.d. samples D := (X, y) of size n where (Xi,:, yi)n
i=0 ∼ (X , Y).
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3.1 Estimating Conditional Quantiles

ε

Lτ
τ = .1

τ = .5

τ = .75
τ = .9

Figure 3: Pinball loss function for various values of
conditional quantile τ . Errors ε are penalized asym-
metrically for τ ̸= 0.5 to predict values close to the
desired τ .

A common approach to estimating the conditional
quantile function QY(τ |X ) given a dataset is to use
empirical risk minimization with the use of the pin-
ball loss. This loss function resembles an asymmet-
ric absolute value function and penalizes underes-
timation and overestimation differently, making it
well-suited for quantile estimation tasks where such
asymmetries are meaningful. Specifically, for a given
error εi := yi − f(Xi) where f(Xi) is the predicted
value, the pinball loss is defined as:

Lτ (εi) =
{

(τ − 1) (εi) if εi ≥ 0,

τ (εi) if εi < 0
(2)

Figure 3 visualizes this function for different quan-
tile levels τ . For example, with τ = .9, an underes-
timate ε = −1 is penalized nine times more than its
corresponding overestimate ε = 1. As a result, the optimization is biased toward over-prediction, yielding
estimates that align with the 90th empirical conditional quantile.

SQR estimates the conditional quantiles of a distribution P with empirical risk minimization. Let P be a
distribution in X × R, with X being an arbitrary set equipped with a σ parameter. Here, R represents the
target space and X the input feature space. That is, each x ∈ X corresponds to a set of predictor variables
and each y ∈ R corresponds to an observed response variable. The conditional quantile function F ∗

τ,P (x) for
x ∈ X is defined as:

F ∗
τ,P (x) :=

{
t ∈ R : P ((−∞, t] | x) ≥ τ and
P ([t, ∞) | x) ≥ 1 − τ

}
(3)

This function identifies the threshold t such that the probability of observing a value below t (given x) is
at least τ , and the probability of observing a value above this threshold is at least 1 − τ . The associated
expected risk R for a predictor f : X → R is:

RL,P (f) = E(X,y)∼P [Lτ (y, f(X))]

=
∫
X×R

Lτ (y, f(X)) dP (X, y)
(4)

and the objective is to find f∗
τ,P that minimizes this risk to effectively balance underestimation and overes-

timation for the desired quantile level.

However, while empirical risk minimization provides a principled means to estimate quantiles from data,
it is fundamentally based on the quality and representativeness of the observed sample. As evident in
Equation 4, minimizing the empirical risk does not guarantee that the resulting model perfectly captures
the true conditional quantile. This issue is particularly pronounced in regions of the distribution where data
is sparse or noisy, such as the tails, which are often the focus in high-stakes settings.

Crucially, this challenge is not unique to SQR or the use of pinball loss. Rather, this is a fundamental
limitation that arises in any approach to quantile estimation from finite data. As such, careful evaluation
and validation are essential to ensure robust quantile estimation, and our experiments are designed with
these considerations in mind.

3.2 Optimizing for Interpretability

Having established a suitable loss for estimating the conditional quantile function, we now turn to the objec-
tive of interpretability. We operationalize interpretability as parsimony, defined as a preference for concise
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symbolic expressions with minimal structural and functional complexity. Parsimony is particularly suitable
in high stakes settings, where trust and safety are paramount, as simpler models are more amenable to hu-
man inspection, validation, and understanding, thus promoting trust and perceived trustworthiness (Bansal
et al., 2019).

We define parsimony following established conventions (Petersen et al., 2021; 2020) For an expression f ,
composed of tokens t with associated token complexity scores |t|, as detailed in Table 1, its parsimony |f | is
defined as:

|f | =
∑
t∈f

|t|. (5)

Since we may not know what level of interpretability is necessary and attainable, we construct a Pareto front
(PF) of the best expressions across a range of parsimony levels, from which a single expression with optimal
predictive performance and acceptable interpretability can be selected. A preferred solution can then be
selected from this front based on, e.g., the elbow method or on requirements from the use case or domain at
hand (Thorndike, 1953).

Formally, the optimization problem for SQR is therefore:

PFτ (C, D) =
{

arg min
f∈F

(
n∑

i=1
Lτ (εi)

)∣∣∣∣∣ |f | = c, c ∈ C

}
(6)

where F denotes the space of all possible expressions that can be constructed from the token library and
C ⊂ N a set of possible parsimony scores under consideration.

3.3 Optimization

To perform symbolic quantile regression, we build on PySR, a symbolic regression optimization engine that
combines evolutionary search with local optimization and adaptive regularization by Cranmer (2023). We
use this engine due to its support for these features, its strong empirical performance in noisy conditions,
and ease in implementation of research prototypes.

The core algorithm maintains multiple evolving populations of symbolic expressions across parallel compute
threads. The multi-population architecture promotes diversity and robustness by preventing the global
search process from collapsing prematurely onto narrow regions of the solution space. Each population
undergoes repeated cycles of evolution, simplification, and optimization as visualized in Figure 4. During
evolution, expressions are modified via mutation and crossover operators to explore new structural forms.
The simplification step consists of algebraic rewriting to reduce redundancy and improve interpretability.
To fine-tune numerical parameters, the scalar constants within the expressions are optimized locally with
BFGS (Nocedal & Wright, 2006).

To regulate selection pressure and prevent premature convergence, the algorithm introduces age-based reg-
ularization and simulated annealing. Rather than eliminating the least fit individuals, age-regularization
favors younger individuals to promote exploration and maintain diversity by ensuring that newly generated
expressions are continually integrated into the population Real et al. (2019). Simulated annealing further
helps balance exploration and exploitation by probabilistically accepting weaker candidates early in the
search.

In line with our overall objective, the problem is framed as a multi-objective optimization problem balancing
predictive performance and parsimony. During optimization, an adaptive parsimony penalty is incorporated
into the fitness function to ensure diversity of complexity levels within the population. This penalty is based
on a heuristic quantifying how frequently and recently expressions of a given complexity appear as follows.
Overrepresented complexity levels are temporarily penalized to encourage the search to visit underrepresented
regions, which are associated with simpler or more complex solutions.

After optimization concludes, a Pareto front of non-dominated solutions is constructed, explicitly avoiding
the need to combine accuracy and parsimony into a single scalar objective. The final model is selected
directly from this Pareto front using e.g. the elbow method.
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Figure 4: Evolutionary optimization process (from Cranmer (2023)).

This combination of evolutionary search, local refinement, age-aware diversity mechanisms, and adaptive
complexity control allows symbolic regression to remain effective under high noise, making it well suited for
modeling quantile functions where interpretability and robustness are critical.

4 Experiments

We evaluate SQR empirically on a substantive benchmark consisting of 122 datasets of varying dimension-
ality, and compare it to existing black-box and transparent models for QR. We focus on the predictions in a
central and extreme location of the target variable with τ = .5, τ = .9, respectively, to assess the performance
in typical and extreme conditions. See the appendices for all details about the datasets, statistical testing,
and additional results.

4.1 Datasets

SRBench (La Cava et al., 2021) is the de facto standard for evaluating SR approaches. It comprises 252
synthetic and real-world data sets with and without noise in the target variable. We exclude all data sets
without noise in the target variable for our purposes, because the conditional quantiles for a target without
noise all lie at the same location. The noisy condition is also more realistic. This leaves an evaluation on
122 real-world and synthetic datasets of varying dimensionality and size.

4.2 Baselines

A set of models with state-of-the-art predictive performance and varying degrees of interpretability and
parsimony were selected. Both transparent and black-box models were included to highlight the strengths
and weaknesses of each approach in the context of quantile regression.

Linear Quantile Regressor (LQR) by Seabold & Perktold (2010) is widely adopted for its simplicity
and interpretability. LQR cannot capture nonlinearities, but it is robust to overfitting and generally
considered as highly transparent.

Quantile Decision Tree (QDT) by Pedregosa et al. (2011) is regarded as a transparent model, but may
suffer from poor performance on small datasets, may overfit and some times struggles with modeling
linearities.

LGBM Quantile Regressor (LGBM) by Ke et al. (2017) is selected for its ability to capture com-
plex relationships in large data sets. Since LGBM provides black-box models, it serves as a high-
performance, albeit non-transparent, model.

SQR is our approach trained on the full training data set.
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SQR10k is our approach trained on a random sample of at most 10k train instances. For datasets smaller
than 10k, we train without sampling. We include this version of the approach to assess the effect of
limited data when aiming for a model with high interpretability.

SQR was implemented and evaluated with the PySR software and default hyperparameters were used. (Cran-
mer et al., 2020).1 The hyperparameters of LGBM, QDT, and LQR were optimized per dataset using Optuna
and five-fold cross validation (Akiba et al., 2019).

4.3 Evaluation

We include metrics based on best practices and recommendations from the literature (Steinwart & Christ-
mann, 2011; Chung et al., 2021), and use a combination of metrics to ensure that our evaluations are valid
given the challenges of estimating conditional quantiles on finite samples.

Firstly, we employ a normalized version of the pinball loss that enables comparisons across datasets and is
known as the quantile loss. This measure averages the loss in Equation 2 in all instances of the test set.
This total average loss is then normalized to [0, 1] using the range of the target variable to ensure that data
sets with target variables with a large range do not have an outsized influence on the evaluation:

Normalized Quantile Loss (nql) :=
1
n

∑n
i=1 Lτ (yi, f(Xi,:))

max(y) − min(y) . (7)

for all n items in some test set.

We complement the normalized quantile loss with a measure that expresses whether predictions align well
with the specified quantile level τ , known as the absolute coverage error:

Absolute Coverage Error (ace) := |Cov(τ) − τ | (8)

for an empirical coverage defined as:

Cov(τ, D) = 1
n

n∑
i=1

1 (yi ≤ f(Xi,:)) . (9)

For example, when τ = .9, the empirical coverage ideally reflects a 90% proportion of the test data that falls
below the predicted quantile.

Additionally, we include model parsimony as a measure to capture the notion of interpretability. Since
we are interested in comparing the parsimony of various models across datasets, we opted to use average
parsimony across models and datasets as defined in Equation equation 5. Finally, we report run times to
assess the practical feasibility of our approach. In doing so, we note that this comparison is between a
research prototype implementation for SQR, against highly optimized industry-grade implementations of
the baselines.

Five-fold cross-validation was used, resulting in five different test scores for every measure for the 90th and
50th quantiles. These scores were averaged per dataset, resulting in two scores for each measure per model
for every data set. We present the average (mean) and standard deviation (SD) over all data sets in this
Section. Nonparametric statistical tests were used for all results due to nonnormality of the data according
to the Shapiro-Wilk test (p < 0.05) for most results. For comparisons between measures and quantiles, the
Friedman test was used. Significant results were further analyzed using the Paired Wilcoxon signed rank
test. Bonferroni correction was applied in all cases of multiple comparisons.

4.4 Results

Table 2 lists the predictive performance metrics and shows that SQR is the transparent model that performs
best. The results are consistent at both quantile levels τ = .5 and τ = .9. This table further shows that
SQR achieves this strong performance at a lower cost in terms of parsimony than transparent alternatives.

1https://anonymous.4open.science/r/SQR-184C/README.md
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Table 2: Comparison across normalized quantile loss equation 7, absolute coverage error equation 8, par-
simony equation 5, and transparency (last column). Bold indicates significant best among transparent
models.

Normalized Quantile Loss Absolute Coverage Error Parsimony Transparent
τ = .5 τ = .9 τ = .5 τ = .9 τ = .5 τ = .9

LGBM .042 ± .022 .025 ± .012 .064 ± .070 .039 ± .038 – –
LQR .059 ± .030 .059 ± .044 .065 ± .081 .287 ± .207 19.54 ± 21.14 19.57 ± 21.04 ✓
QDT .039 ± .017 .020 ± .001 .088 ± .10 .066 ± .057 323.46 ± 1306.47 210.82 ± 1080.43 ✓
SQR .030 ± .021 .015 ± .013 .082 ± .092 .049 ± .061 10.04 ± 4.09 9.85 ± 3.67 ✓
SQR10K .033 ± .022 .017 ± .013 .084 ± .084 .058 ± .070 9.82 ± 4.40 9.71 ± 4.22 ✓

Table 3: Average run time (ms).

τ = .5 τ = .9
LGBM 5.01 ± 46.61 9.81 ± 94.02
LQR 10.31 ± 32.36 11.51 ± 37.87
QDT 0.32 ± 0.68 0.35 ± 0.77
SQR 3299.12 ± 11652.14 1906.94 ± 5757.59
SQR10K 166.77 ± 171.50 166.36 ± 167.87

To further evaluate the performance of interpretable models in the three selected metrics, we performed
statistical significance tests to assess differences per pair (metric, quantile level) pair for all transparent
models. Each test’s null hypothesis states that there are no significant differences between two models for a
specific metric-quantile level pair, following this template:

• Hmetric,.5
null : The differences in ‘metric’ between models at the τ = .5 quantile level are not significant,

and model A cannot be said to significantly outperform model B or vice versa.

A two-stage analysis approach was employed to reduce the number of statistical tests. First, significant
differences between results were assessed per pair of metric-quantile level. If differences were significant, we
evaluated which model was the significant best.

Statistical significance at the metric-quantile level was first assessed using a Bonferroni corrected Friedman
test per pair at the metric-quantile level. Given three metrics and two quantile levels, the corrected alpha
level was set to α = 0.05

6 ≈ 0.00833. Significant differences were observed at both quantiles, for all of
normalized quantile loss, absolute coverage error and parsimony.

A second stage of statistical tests was used to assess which of the models significantly outperform the
others using pairwise comparisons in a Bonferroni-corrected Wilcoxon signed rank test. With 18 pairwise
comparisons in total, the corrected alpha level was established at α = 0.05

18 ≈ 0.00278. The performance
improvements of SQR over other transparent models were significant for all metrics and conditions, with the
exception of the improvement of SQR over QDT in absolute coverage error for τ = .5.

Considering all statistical tests together, we evaluate the hypotheses as follows. For τ = .5:

Hnql,.5
null Significant differences in normalized quantile loss were found between SQR and both LQR and QDT,

with SQR performing best.

Hace,.5
null Significant differences in absolute coverage error were found between LQR and the other models,

with LQR performing best.

Hpars,.5
null Significant differences were found in parsimony between SQR and both LQR and QDT, with SQR

showing the lowest parsimony.
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Table 4: Features used for predicting and explaining airline fuel usage.

Abbreviation Name Description
ASF Adjusted Speeding Factor Speeding due to departure delays.
GCD Great Circle Distance Shortest distance between departure and arrival airports (km).
AWC Average Wind Component Average wind component relative to the aircraft’s direction.
TP Total Pax Total number of passengers on the flight.

For τ = .9:

Hnql,.9
null Significant differences were found in normalized quantile loss between SQR and both LQR and

QDT, with SQR performing best.

Hace,.9
null Significant differences for aboslute coverage error were found between SQR and both LQR and

QDT, with SQR performing best.

Hpars,.9
null Significant differences in parsimony were found between SQR and both LQR and QDT, with SQR

showing the lowest complexity.

These results indicate that SQR generally outperforms the other interpretable models in both predictive
performance and interpretability when trained on the full training set.

Looking at the runtime results in Table 3, we find that the prototype implementation of SQR comes at
substantial additional computational cost. However, this cost can be significantly brought down through
sampling as the run times for SQR10K show: these significantly bring down the run times at limited cost
in predictive performance or parsimony. Furthermore, we believe that the runtime of our approach can be
reduced by two orders of magnitude based on a recent comparison of the underlying optimization framework
with a highly optimized implementation citetTonda2024.

5 Understanding Extreme Airplane Fuel Use

We applied SQR to a real-world use case to assess its practical utility for creating interpretable predictions
at different locations of the target variable. In this case study, the first objective is to predict extreme
quantiles to ensure sufficient fuel is loaded. Interpretability is a prerequisite here due to industry regulations
which require transparent models that are subject to human oversight. The second objective is to explain
differences between central and extreme fuel usage in order to reduce fuel consumption and CO2 emissions.

To pursue the initial goal of accurate predictions, we use SQR to create expressions that capture extreme
(τ = .9) fuel consumption across flights between two locations. To pursue the second goal of understanding
differences between central and extreme fuel usage, we additionally create expressions for the central condi-
tional quantile (τ = .5) function. By comparing the resulting expressions. we will gain understanding of why
fuel usage may be high for some flights in comparison to others, demonstrating SQR’s potential to uncover
actionable insights by predicting patterns in the data at different quantiles.

5.1 Dataset

The dataset for this use case contains flights of the Boeing 777 aircraft operated by an internationally
operating airline company. The target variable is the amount of fuel consumed during flight in kg, all
explanatory variables are listed in Table 4. The adjusted speeding factor (ASF) is a concept that captures
pilot speeding behavior. It is defined based on scheduled and actual department times and flight duration.
If the plane departed earlier than scheduled and the actual flight duration is equal to or longer than the
planned flight duration, then ASF is the ratio of actual to planned flight duration. If the plane departs
later than scheduled and the actual flight duration is shorter than the planned duration, ASF is the ratio
of planned to actual duration. In all other cases, ASF is set to 1.0, indicating no speeding adjustment. A
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selection was made of flights operated on two days of the week for a duration of four years (2019-2023) to
ensure a sufficient size and to combat the effects of passenger load conditions, weather conditions and airport
congestion.

5.2 Results

We now present, analyze and compare the expressions for the 50th and 90th quantiles, and compare these in
order to explain extreme airline fuel usage. We highlight how ASF, a variable capturing speeding, impacts
fuel consumption differently under median and extreme conditions.

For the 50th quantile, the selected expression produces a pinball loss of 1746.29 and an empirical coverage
of 0.51:

fτ=50 = 7.216 × GCD + 0.003 × GCD × (TP + 0.045 × GCD −7.22 × AWC ) + 1676.6 (10)

The expression suggests a linear relationship primarily driven by the traveled distance (GCD), with inter-
actions involving the number of passengers (TP) and wind conditions (AWC). The coverage is close to the
target quantile level.

The 90th quantile expression produced a pinball loss of 944.59 and an empirical coverage of 0.91, again close
to the target quantile level:

fτ=90 = 2360.4 × ASF2 + GCD × (TP + 2126.03)
238.2 × ASF + 0.45 × AWC (11)

The expression suggests complex interactions in which the speeding component (ASF) dominates other
factors such as travel distance (GCD), passenger load (TP) and wind conditions (AWC).

The expressions reveal remarkable differences in the impact of speeding (ASF) on fuel consumption. For the
50th quantile, fuel consumption is primarily driven by distance, with moderate effects from passenger load
and wind conditions. In contrast, the 90th quantile shows that speeding plays a crucial role and indicates
that speeding leads to extreme fuel consumption. Hence, a decrease in speeding is expected to decrease
extreme fuel consumption. This insight may be used by airlines that aim to reduce fuel consumption and
CO2 emissions, for instance by focusing efforts on a timely departure or a schedule with planned arrival
times that accommodate for departure delays.

6 Discussion

We introduced Symbolic Quantile Regression (SQR), a novel method that combines Symbolic Regression
(SR) with Quantile Regression (QR) to produce interpretable predictors of conditional quantiles. In an
extensive benchmark, SQR demonstrated competitive accuracy at both the median (50th) and upper (90th)
quantiles, outperforming related methods across predictive performance, empirical calibration, and inter-
pretability metrics.

SQR balances predictive accuracy with model transparency, a key requirement in domains where inter-
pretability is not just desirable but essential. Our results suggest that SQR is effective in estimating quantiles
with concise symbolic models, making it particularly suitable for applications in high-stakes settings such
as healthcare, finance, engineering, and scientific discovery. In these contexts, understanding the conditions
under which certain outcomes arise is as important as the predictions of outcomes themselves.

A real-world case study in the airline sector further illustrated the practical utility of SQR. By modeling
fuel consumption across quantiles, SQR revealed the impact of speeding on high fuel usage. This insight can
inform operational strategies to reduce both costs and environmental impact. The strong empirical coverage
of the model in extreme conditions and its interpretability underscore its potential for integration into daily
decision-making pipelines in the high-stakes domain of commercial aviation.

Despite these promising results, several limitations merit discussion. Our use of a token-based complexity
metric to operationalize interpretability, while standard and scalable across datasets, remains a proxy. Future
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work should explore adaptive and human-centered interpretability functions, potentially learned in human-
in-the-loop settings to better capture domain- and user-specific notions of simplicity and relevance (Nadizar
et al., 2024).

Another possibility for future research lies in the extension of SQR to calibrated prediction intervals, com-
bining it with methods such as conformal prediction (Fontana et al., 2023) or joint optimization frameworks
for interval predictors (Soares & Fagundes, 2018). These directions would extend and complement SQR to
further enhance the reliability of symbolic predictive models, under e.g. distributional shift or uncertainty.

In conclusion, SQR delivers accurate and interpretable quantile estimates with empirical robustness and
demonstrated real-world relevance. It advances the field’s broader goals of safe, explainable and actionable
AI by supporting decision-making with accurate predictions, and by providing an understanding of the
underlying phenomena. With its unique combination of modeling various locations of the target distribution
and the usage of symbolic functions to capture complex relationships concisely, SQR represents a compelling
step in, and useful tool for, transparent and robust machine learning.
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A Quantile Dependence of the Pinball Loss

To illustrate the potential quantile dependence of the pinball loss consider the following example:

For 100 predictions at the 50th quantile, one expects 50 predictions to be below the target and 50 above the
target, resulting in a simplified mean pinball loss of:

Mean Pinball Loss50th = (50 × 0.5) + (50 × 0.5)
100 = 0.5

For 100 predictions at the 90th quantile, one expects 10 predictions to be below the target and 90 above the
target, leading to:

Mean Pinball Loss90th = (10 × 0.9) + (90 × 0.1)
100 = 0.18

Although this calculation does not account for the extent to which the model overpredicts or underpredicts,
it suggests that the pinball loss at the 90th quantile is generally lower than the pinball loss at the 50th
quantile, irrespective of the predictive power. This hypothesis is further supported by the quantitative
results presented in this thesis.

The asymmetrical nature of the pinball loss metric indicates its dependence on the chosen quantile, which
poses challenges for consistent evaluation across different quantiles.

B Model Parsimony Details
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Table 5: Model Parsimony Weights

SQR Complexity
Token Complexity
+, −, ×, Feature, Constant 1
÷, square 2
sin, cos 3
exp, log,

√
· 4

LQR Complexity
Feature, Bias 1

QDT Complexity
Node 1

C Statistical Testing

For the 50th quantile:

• H01,50: SQR does not significantly outperform other quantile regressors in terms of Normalized
Pinball Loss on the benchmark dataset.

• H11,50: SQR significantly outperforms other quantile regressors in terms of Normalized Pinball Loss
on the benchmark dataset.

• H02,50: SQR does not significantly outperform other quantile regressors in terms of empirical cov-
erage (Absolute Coverage Error) on the benchmark dataset.

• H12,50: SQR significantly outperforms other quantile regressors in terms of empirical coverage
(Absolute Coverage Error) on the benchmark dataset.

• H03,50: SQR does not significantly outperform other quantile regressors in terms of Model parsimony
on the benchmark dataset.

• H13,50: SQR significantly outperforms other quantile regressors in terms of Model parsimony on
the benchmark dataset.

For the 90th quantile:

• H01,90: SQR does not significantly outperform other quantile regressors in terms of Normalized
Pinball Loss on the benchmark dataset.

• H11,90: SQR significantly outperforms other quantile regressors in terms of Normalized Pinball Loss
on the benchmark dataset.

Table 6: Significance of results with Bonferroni-corrected Friedman tests.

Metric Abbr. τ Test statistic p-value significant

Normalized quantile loss nql 0.5 311.63 < 0.001 Yes
Absolute coverage error ace 0.5 18.67 < 0.001 Yes
Parsimony c 0.5 516.76 < 0.001 Yes

Normalized quantile loss nql 0.9 495.45 < 0.001 Yes
Absolute coverage error ace 0.9 302.63 < 0.001 Yes
Parsimony c 0.9 242.86 < 0.001 Yes
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Table 7: Pairwise Wilcoxon Signed-Rank Test Results for τ = 0.5.

Metric Abbr. Models T -statistic p-value Significant

Normalized quantile loss nql SQR vs QDT 35440.0 < 0.001 Yes
SQR vs LQR 12151.0 < 0.001 Yes
QDT vs LQR 21771.0 < 0.001 Yes

Absolute coverage error ace SQR vs QDT 67020.5 0.4670 No
SQR vs LQR 53296.0 < 0.001 Yes
QDT vs LQR 53257.0 < 0.001 Yes

Parsimony pars SQR vs QDT 3187.0 < 0.001 Yes
SQR vs LQR 39726.0 < 0.001 Yes
QDT vs LQR 9425.0 < 0.001 Yes

Table 8: Pairwise Wilcoxon Signed-Rank Test Results for τ = .9.

Metric Abbr. Models T -statistic p-value Significant

Normalized quantile loss nql SQR vs QDT 30982.0 < 0.001 Yes
SQR vs LQR 8134.0 < 0.001 Yes
QDT vs LQR 8059.0 < 0.001 Yes

Absolute coverage error ace SQR vs QDT 39604.0 < 0.001 Yes
SQR vs LQR 10842.5 < 0.001 Yes
QDT vs LQR 14197.0 < 0.001 Yes

Parsimony pars SQR vs QDT 11966.0 < 0.001 Yes
SQR vs LQR 39098.0 < 0.001 Yes
QDT vs LQR 30847.5 < 0.001 Yes

• H02,90: SQR does not significantly outperform other quantile regressors in terms of empirical cov-
erage (Absolute Coverage Error) on the benchmark dataset.

• H12,90: SQR significantly outperforms other quantile regressors in terms of empirical coverage
(Absolute Coverage Error) on the benchmark dataset.

• H03,90: SQR does not significantly outperform other quantile regressors in terms of Model parsimony
on the benchmark dataset.

• H13,90: SQR significantly outperforms other quantile regressors in terms of Model parsimony on
the benchmark dataset.

D Settings and hyperparameters
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Table 9: PySRRegressor Parameters

Parameter Value Parameter Value
maxsize 20 fraction_replaced 0.000364
maxdepth None fraction_replaced_hof 0.035
niterations 40 migration True
populations 15 hof_migration True
population_size 33 topn 12
ncycles_per_iteration 550 denoise False
model_selection ’best’ select_k_features None
dimensional_constraint_penalty 1000.0 max_evals None
parsimony 0.0032 timeout_in_seconds None
constraints None early_stop_condition None
nested_constraints None procs cpu_count()
complexity_of_operators None multithreading True
complexity_of_constants 1 cluster_manager None
complexity_of_variables 1 heap_size_hint_in_bytes None
warmup_maxsize_by 0.0 batching False
use_frequency True batch_size 50
use_frequency_in_tournament True precision 32
adaptive_parsimony_scaling 20.0 fast_cycle False
should_simplify True turbo False
weight_add_node 0.79 bumper False
weight_insert_node 5.1 enable_autodiff False
weight_delete_node 1.7 random_state None
weight_do_nothing 0.21 deterministic False
weight_mutate_constant 0.048 warm_start False
weight_mutate_operator 0.47 verbosity 1
weight_swap_operands 0.1 update_verbosity None
weight_randomize 0.00023 print_precision 5
weight_simplify 0.0020 progress True
weight_optimize 0.0 temp_equation_file False
crossover_probability 0.066 tempdir None
annealing False delete_tempfiles True
alpha 0.1 update False
perturbation_factor 0.076 tournament_selection_n 10
skip_mutation_failures True tournament_selection_p 0.86
optimizer_algorithm "BFGS" optimizer_nrestarts 2
optimize_probability 0.14 optimizer_iterations 8
should_optimize_constants True
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Table 10: Hyperparameters optimized through Optuna for each model in the quantitative evaluation

LGBM
Hyperparameter Optimization Range
num_leaves 2 to 100
learning_rate 0.01 to 0.5 (log-uniform)
max_depth 1 to 20
min_child_samples 5 to 100

QDT
min_samples_leaf 1 to 50

LQR
max_iter 1000 to 10000
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E Additional Results

Table 11: Extensive results overview

Parsimony Absolute Coverage Error Quantile Loss Time (ms)
τ ID n d QDT LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR

.5 1027 488 4 127.00 34.00 8.60 0.28 0.05 0.02 0.30 0.03 0.04 0.03 0.04 0.05 0.18 1.55 417.37
1028 1000 10 101.40 31.00 3.00 0.27 0.07 0.03 0.21 0.07 0.08 0.08 0.08 0.06 0.30 1.81 607.82
1029 1000 4 165.80 20.00 3.00 0.30 0.05 0.03 0.23 0.05 0.07 0.06 0.08 0.08 0.35 1.24 644.40
1030 1000 4 42.20 4.00 3.20 0.11 0.06 0.05 0.05 0.08 0.08 0.08 0.08 0.04 0.28 0.09 630.11
1089 47 13 7.00 14.00 11.20 0.16 0.10 0.14 0.14 0.06 0.12 0.06 0.06 0.02 0.02 1.94 278.11
1096 50 4 11.40 5.00 14.40 0.14 0.08 0.06 0.16 0.04 0.08 0.01 0.01 0.02 0.02 0.09 285.53
1193 31104 9 787.80 23.00 3.20 0.01 0.01 0.00 0.00 0.04 0.04 0.04 0.05 1.74 39.87 9.50 46954.57
1199 17496 9 467.80 12.00 2.00 0.01 0.03 0.01 0.15 0.06 0.06 0.06 0.06 1.40 72.87 4.09 11112.44
192 52 2 7.00 2.00 6.40 0.09 0.17 0.17 0.06 0.05 0.07 0.06 0.04 0.02 0.02 0.06 280.82
197 8192 21 580.20 21.00 4.00 0.11 0.02 0.06 0.02 0.01 0.02 0.06 0.02 1.27 1.07 48.82 5003.10
201 15000 48 1180.20 48.00 10.40 0.43 0.18 0.01 0.23 0.01 0.03 0.13 0.07 0.82 2.07 110.24 6569.89
210 108 5 27.00 9.00 5.00 0.08 0.09 0.09 0.09 0.03 0.03 0.02 0.02 0.02 0.07 0.17 309.27
215 40768 10 1013.80 29.00 14.20 0.00 0.00 0.00 0.00 0.02 0.02 0.04 0.03 1.52 222.50 18.67 62236.88
218 22784 8 722.20 8.00 5.00 0.02 0.02 0.01 0.04 0.02 0.02 0.02 0.02 2.10 55.59 23.86 21459.98
225 8192 8 252.60 8.00 3.00 0.01 0.01 0.10 0.16 0.05 0.05 0.08 0.06 0.90 38.36 1.32 10376.78
227 8192 12 744.20 12.00 5.60 0.09 0.02 0.06 0.01 0.01 0.02 0.06 0.02 0.99 1.00 6.54 4147.02
228 55 2 8.20 2.00 7.40 0.14 0.08 0.14 0.17 0.05 0.07 0.14 0.04 0.02 0.04 0.11 285.09
229 200 10 63.40 29.00 9.20 0.06 0.06 0.08 0.11 0.04 0.04 0.04 0.05 0.02 0.10 0.85 331.74
230 209 6 64.60 6.00 5.00 0.08 0.12 0.15 0.11 0.02 0.02 0.02 0.01 0.02 0.10 0.87 332.86
294 6435 36 402.20 36.00 5.40 0.42 0.05 0.03 0.02 0.03 0.05 0.11 0.09 0.95 0.87 6.28 2485.58
344 40768 10 12764.20 14.00 11.60 0.01 0.06 0.01 0.10 0.00 0.01 0.03 0.00 3.48 19.61 3.56 54050.23
4544 1059 117 43.40 117.00 4.20 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.63 0.52 58.03 682.21
485 48 4 11.80 12.00 18.80 0.06 0.17 0.12 0.21 0.06 0.11 0.06 0.05 0.02 0.02 0.04 263.80
503 6574 14 241.40 14.00 2.00 0.02 0.01 0.01 0.01 0.03 0.03 0.03 0.04 0.94 0.98 2.24 2449.37
505 240 124 66.60 124.00 12.60 0.08 0.03 0.06 0.04 0.01 0.02 0.00 0.01 0.09 0.16 212.41 403.18
519 380 2 35.40 5.00 2.00 0.11 0.04 0.05 0.06 0.04 0.04 0.04 0.04 0.03 0.14 0.10 416.16
522 500 7 48.20 7.00 6.20 0.04 0.05 0.06 0.04 0.06 0.06 0.07 0.07 0.04 0.19 0.09 475.29
523 100 2 3.00 6.00 3.00 0.37 0.13 0.25 0.21 0.03 0.04 0.03 0.03 0.01 0.05 0.03 286.35
527 67 14 18.20 14.00 15.20 0.17 0.11 0.50 0.50 0.02 0.04 0.00 0.00 0.02 0.05 0.02 257.00
529 3848 4 477.40 4.00 4.00 0.03 0.02 0.01 0.01 0.03 0.03 0.02 0.03 0.36 0.88 0.22 1670.74
537 20640 8 1590.20 8.00 2.00 0.38 0.38 0.40 0.43 0.04 0.06 0.06 0.08 NaN NaN NaN NaN
542 60 15 7.80 15.00 8.80 0.17 0.07 0.13 0.17 0.06 0.06 0.07 0.07 0.02 0.05 0.50 286.53
547 500 7 32.20 7.00 3.00 0.03 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.06 0.22 0.30 445.13
556 475 3 101.80 11.00 9.00 0.16 0.10 0.06 0.10 0.01 0.02 0.02 0.01 0.05 0.18 0.12 382.88
557 475 3 83.40 11.00 3.80 0.19 0.13 0.06 0.10 0.01 0.02 0.02 0.01 0.04 0.18 0.16 379.58
560 252 14 79.80 14.00 10.80 0.04 0.05 0.10 0.07 0.01 0.01 0.03 0.00 0.04 0.12 0.91 325.69
561 209 7 52.20 7.00 10.60 0.11 0.13 0.05 0.05 0.01 0.01 0.01 0.00 0.03 0.10 0.17 325.50
562 8192 12 744.20 12.00 5.60 0.09 0.02 0.06 0.01 0.01 0.02 0.06 0.02 1.20 0.99 6.76 4128.40
564 40768 10 5656.60 10.00 10.60 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.02 3.60 22.54 6.24 54467.68
573 8192 21 580.20 21.00 4.00 0.11 0.02 0.06 0.02 0.01 0.02 0.06 0.02 1.55 1.14 51.64 4988.03
574 22784 16 921.80 16.00 3.40 0.03 0.03 0.00 0.00 0.02 0.02 0.02 0.03 3.68 65.43 31.43 28777.25
579 250 5 61.00 5.00 14.00 0.03 0.05 0.05 0.03 0.06 0.05 0.05 0.03 0.03 0.13 0.13 369.25
581 500 25 104.60 25.00 10.80 0.03 0.02 0.05 0.07 0.04 0.03 0.06 0.02 0.09 0.22 0.95 587.65
582 500 25 119.00 25.00 11.20 0.06 0.04 0.02 0.08 0.04 0.04 0.08 0.03 0.10 0.24 1.67 589.31
583 1000 50 122.60 50.00 13.60 0.02 0.03 0.03 0.04 0.04 0.03 0.08 0.02 0.35 0.42 31.36 844.05
584 500 25 140.60 25.00 13.00 0.04 0.04 0.01 0.04 0.04 0.03 0.07 0.01 0.09 0.24 0.78 598.48
588 1000 100 138.60 100.00 13.00 0.03 0.04 0.01 0.05 0.03 0.02 0.06 0.01 0.63 0.49 43.78 833.32
589 1000 25 194.20 25.00 10.40 0.02 0.03 0.02 0.05 0.04 0.03 0.07 0.03 0.19 0.39 1.56 954.59
590 1000 50 104.60 50.00 13.80 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.02 0.34 0.44 79.81 742.22
591 100 10 13.00 10.00 16.60 0.07 0.07 0.05 0.15 0.06 0.07 0.09 0.01 0.02 0.07 0.79 314.17
592 1000 25 251.40 25.00 11.60 0.06 0.05 0.05 0.03 0.03 0.03 0.06 0.02 0.24 0.40 1.53 946.77
593 1000 10 250.20 10.00 13.80 0.04 0.04 0.03 0.07 0.03 0.03 0.07 0.02 0.10 0.35 0.20 817.72
594 100 5 17.00 5.00 12.80 0.16 0.13 0.17 0.12 0.06 0.07 0.09 0.04 0.02 0.07 0.16 314.67
595 1000 10 101.00 10.00 14.00 0.02 0.03 0.05 0.02 0.04 0.03 0.04 0.02 0.12 0.37 0.27 680.13
596 250 5 47.40 5.00 13.80 0.05 0.08 0.06 0.02 0.05 0.05 0.09 0.02 0.03 0.13 0.16 386.82
597 500 5 107.80 5.00 14.40 0.06 0.06 0.04 0.04 0.04 0.04 0.08 0.02 0.06 0.21 0.16 504.96
598 1000 25 108.60 25.00 14.20 0.04 0.02 0.03 0.04 0.05 0.04 0.04 0.02 0.26 0.40 1.08 885.33
599 1000 5 329.40 5.00 11.40 0.04 0.03 0.03 0.04 0.03 0.03 0.08 0.02 0.10 0.33 0.28 768.03
601 250 5 79.40 5.00 13.80 0.06 0.06 0.04 0.08 0.04 0.04 0.07 0.02 0.03 0.12 0.12 395.85
602 250 10 63.00 10.00 9.80 0.06 0.08 0.09 0.04 0.04 0.04 0.07 0.02 0.03 0.13 0.16 378.80
603 250 50 16.20 50.00 10.60 0.05 0.09 0.06 0.12 0.05 0.04 0.04 0.02 0.06 0.15 60.95 400.30
604 500 10 122.60 10.00 11.80 0.04 0.06 0.06 0.05 0.03 0.03 0.06 0.02 0.06 0.22 0.38 499.31
605 250 25 34.20 25.00 13.40 0.04 0.03 0.02 0.04 0.05 0.05 0.08 0.02 0.05 0.14 0.91 403.91
606 1000 10 213.40 10.00 13.80 0.01 0.03 0.03 0.04 0.03 0.03 0.07 0.02 0.14 0.36 0.41 815.96
607 1000 50 212.20 50.00 14.60 0.02 0.03 0.03 0.05 0.03 0.02 0.05 0.01 0.41 0.43 17.05 835.50
608 1000 10 289.00 10.00 12.00 0.01 0.05 0.03 0.06 0.03 0.02 0.05 0.02 0.16 0.38 0.45 833.14
609 1000 5 322.20 5.00 14.20 0.02 0.01 0.04 0.06 0.04 0.04 0.04 0.02 0.08 0.35 0.15 657.23
611 100 5 21.40 5.00 13.20 0.12 0.05 0.04 0.10 0.05 0.06 0.08 0.02 0.02 0.06 0.15 320.75
612 1000 5 286.60 5.00 15.00 0.02 0.03 0.03 0.09 0.03 0.03 0.07 0.01 0.14 0.36 0.26 765.92
613 250 5 62.60 5.00 14.80 0.07 0.07 0.04 0.06 0.04 0.04 0.06 0.02 0.03 0.13 0.17 398.97

Continued on next page
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Parsimony Absolute Coverage Error Quantile Loss Time (ms)
τ ID n d QDT LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR

615 250 10 80.60 10.00 10.80 0.06 0.06 0.07 0.05 0.04 0.04 0.06 0.02 0.03 0.13 0.17 378.79
616 500 50 107.80 50.00 13.20 0.06 0.06 0.03 0.05 0.04 0.03 0.07 0.02 0.16 0.27 26.79 565.06
617 500 5 143.80 5.00 13.20 0.04 0.05 0.02 0.07 0.03 0.03 0.06 0.01 0.07 0.22 0.20 505.50
618 1000 50 105.80 50.00 13.40 0.02 0.03 0.03 0.05 0.03 0.03 0.06 0.02 0.41 0.42 59.76 855.20
620 1000 25 102.20 25.00 12.80 0.03 0.03 0.02 0.02 0.04 0.03 0.07 0.02 0.21 0.40 1.23 952.61
621 100 10 15.40 10.00 12.60 0.09 0.08 0.07 0.05 0.06 0.06 0.05 0.03 0.02 0.07 0.09 305.17
622 1000 50 120.60 50.00 13.00 0.04 0.02 0.02 0.06 0.04 0.03 0.08 0.03 0.31 0.42 68.44 872.94
623 1000 10 287.00 10.00 11.20 0.02 0.02 0.03 0.10 0.02 0.02 0.05 0.02 0.18 0.39 0.53 808.82
624 100 5 15.80 5.00 13.80 0.09 0.14 0.13 0.12 0.05 0.06 0.04 0.03 0.02 0.06 0.27 311.88
626 500 50 69.80 50.00 12.40 0.06 0.05 0.03 0.05 0.04 0.04 0.08 0.02 0.17 0.27 24.94 570.77
627 500 10 125.00 10.00 14.20 0.05 0.06 0.03 0.05 0.04 0.03 0.07 0.02 0.06 0.22 0.17 488.32
628 1000 5 320.60 5.00 13.00 0.04 0.03 0.03 0.08 0.03 0.02 0.06 0.02 0.10 0.35 0.19 766.35
631 500 5 125.00 5.00 14.80 0.05 0.02 0.02 0.02 0.04 0.04 0.07 0.02 0.05 0.20 0.88 490.51
633 500 25 41.80 25.00 12.40 0.03 0.02 0.06 0.04 0.05 0.04 0.04 0.03 0.10 0.23 1.91 536.16
634 100 10 17.80 10.00 10.80 0.09 0.09 0.09 0.08 0.06 0.07 0.08 0.05 0.02 0.07 0.92 309.55
635 250 10 31.40 10.00 11.60 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.03 0.04 0.13 0.25 359.96
637 500 50 79.80 50.00 12.40 0.04 0.05 0.04 0.03 0.04 0.04 0.08 0.02 0.15 0.27 28.30 567.91
641 500 10 161.80 10.00 14.80 0.03 0.03 0.06 0.07 0.04 0.04 0.08 0.01 0.08 0.23 0.48 495.00
643 500 25 75.80 25.00 11.80 0.05 0.03 0.05 0.03 0.04 0.04 0.08 0.02 0.11 0.24 0.61 610.85
644 250 25 54.20 25.00 12.40 0.04 0.05 0.03 0.05 0.04 0.04 0.08 0.02 0.04 0.13 0.60 417.86
645 500 50 86.20 50.00 12.00 0.03 0.07 0.06 0.05 0.03 0.03 0.06 0.02 0.19 0.25 12.81 558.50
646 500 10 161.40 10.00 13.20 0.06 0.05 0.03 0.05 0.03 0.03 0.06 0.01 0.09 0.24 0.66 494.46
647 250 10 37.80 10.00 14.00 0.04 0.06 0.04 0.03 0.04 0.04 0.08 0.02 0.04 0.14 0.37 393.58
648 250 50 53.40 50.00 13.40 0.05 0.04 0.08 0.05 0.05 0.04 0.09 0.02 0.08 0.15 8.67 424.57
649 500 5 141.80 5.00 13.60 0.03 0.07 0.05 0.07 0.04 0.03 0.03 0.02 0.05 0.19 0.21 435.42
650 500 50 46.60 50.00 13.80 0.04 0.02 0.05 0.04 0.05 0.04 0.04 0.02 0.13 0.25 58.40 513.67
651 100 25 8.60 25.00 10.80 0.06 0.13 0.11 0.13 0.07 0.08 0.06 0.03 0.02 0.08 0.71 319.38
653 250 25 23.80 25.00 12.20 0.06 0.05 0.08 0.10 0.05 0.05 0.04 0.02 0.04 0.14 0.95 389.50
654 500 10 69.40 10.00 12.00 0.03 0.06 0.04 0.04 0.04 0.04 0.04 0.03 0.06 0.23 0.16 437.26
656 100 5 25.00 5.00 11.40 0.11 0.17 0.10 0.12 0.06 0.07 0.09 0.03 0.02 0.07 0.38 316.60
657 250 10 59.00 10.00 11.20 0.07 0.03 0.08 0.06 0.05 0.05 0.08 0.03 0.04 0.14 0.33 378.94
658 250 25 43.80 25.00 11.80 0.04 0.04 0.04 0.06 0.04 0.04 0.06 0.02 0.04 0.15 1.29 411.38
659 47 7 9.80 7.00 11.20 0.20 0.16 0.14 0.16 0.04 0.06 0.04 0.04 0.02 0.02 0.44 280.43
663 120 2 18.60 11.00 14.80 0.12 0.09 0.06 0.07 0.04 0.04 0.01 0.01 0.02 0.07 0.11 314.80
665 147 6 13.40 10.00 2.40 0.19 0.12 0.08 0.07 0.05 0.06 0.06 0.06 0.02 0.09 0.70 309.44
666 508 10 29.00 10.00 2.40 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.05 0.20 0.49 469.00
678 111 3 5.80 3.00 4.40 0.23 0.20 0.10 0.19 0.06 0.07 0.07 0.07 0.02 0.07 0.07 330.22
687 62 5 10.60 5.00 6.80 0.10 0.07 0.13 0.05 0.06 0.08 0.06 0.07 0.02 0.05 0.09 291.70
690 323 4 91.40 10.00 7.40 0.07 0.05 0.03 0.06 0.02 0.02 0.03 0.02 0.05 0.15 0.35 351.65
695 235 12 11.40 12.00 6.80 0.06 0.07 0.05 0.06 0.03 0.03 0.02 0.02 0.03 0.11 0.29 364.61
706 93 6 9.00 11.00 5.20 0.12 0.17 0.05 0.06 0.05 0.06 0.05 0.05 0.02 0.05 1.01 303.72
712 222 2 11.80 2.00 3.40 0.11 0.12 0.09 0.12 0.05 0.05 0.09 0.05 0.02 0.10 0.09 385.31
banana 5300 2 197.40 2.00 8.40 0.44 0.05 0.23 0.05 0.05 0.09 0.22 0.08 0.23 0.80 0.04 4244.90
titanic 2099 8 143.00 31.00 5.20 0.35 0.18 0.15 0.34 0.10 0.11 0.11 0.10 0.17 0.57 0.83 859.30

.9 1027 488 4 127.00 34.00 9.00 0.02 0.02 0.09 0.06 0.01 0.02 0.01 0.02 0.05 0.15 0.83 417.99
1028 1000 10 65.40 31.00 3.00 0.07 0.10 0.04 0.09 0.03 0.04 0.03 0.03 0.06 0.05 2.02 632.44
1029 1000 4 49.80 20.00 4.60 0.07 0.01 0.03 0.06 0.03 0.03 0.03 0.03 0.06 0.30 1.06 670.53
1030 1000 4 34.60 4.00 4.20 0.04 0.03 0.05 0.04 0.03 0.04 0.04 0.04 0.05 0.28 0.21 601.44
1089 47 13 7.00 14.00 9.40 0.14 0.07 0.23 0.15 0.02 0.05 0.06 0.02 0.02 0.03 0.61 278.51
1096 50 4 8.60 5.00 13.20 0.18 0.04 0.16 0.06 0.02 0.05 0.00 0.00 0.02 0.03 0.06 272.76
1193 31104 9 821.80 23.00 3.00 0.02 0.02 0.00 0.00 0.02 0.02 0.02 0.02 1.96 68.27 18.54 17203.20
1199 17496 9 457.00 12.00 3.60 0.03 0.01 0.00 0.00 0.03 0.03 0.03 0.03 1.30 123.39 3.98 6687.39
192 52 2 5.00 2.00 8.80 0.08 0.10 0.10 0.19 0.02 0.03 0.03 0.06 0.02 0.03 0.09 279.64
197 8192 21 250.20 21.00 6.20 0.01 0.02 0.03 0.01 0.00 0.01 0.03 0.01 1.36 0.98 48.52 3736.67
201 15000 48 619.80 48.00 11.40 0.07 0.10 0.01 0.02 0.01 0.07 0.05 0.04 1.28 0.19 104.02 5202.34
210 108 5 11.00 9.00 7.40 0.08 0.07 0.08 0.05 0.02 0.02 0.01 0.01 0.02 0.08 0.19 300.22
215 40768 10 997.80 29.00 12.80 0.02 0.05 0.00 0.01 0.01 0.01 0.02 0.01 2.01 453.39 15.57 35646.02
218 22784 8 613.00 8.00 7.40 0.03 0.03 0.00 0.01 0.01 0.01 0.02 0.01 2.09 59.85 109.11 8624.05
225 8192 8 210.20 8.00 4.20 0.02 0.01 0.50 0.01 0.02 0.02 0.09 0.02 0.70 66.04 1.36 6343.11
227 8192 12 247.80 12.00 4.80 0.01 0.01 0.03 0.01 0.00 0.01 0.03 0.01 1.29 0.92 15.89 4341.78
228 55 2 10.20 2.00 6.40 0.06 0.07 0.09 0.07 0.02 0.04 0.11 0.02 0.02 0.05 0.13 280.17
229 200 10 27.40 29.00 13.00 0.12 0.04 0.08 0.06 0.02 0.02 0.02 0.02 0.03 0.10 0.55 326.27
230 209 6 45.80 6.00 8.80 0.12 0.05 0.05 0.07 0.01 0.01 0.01 0.01 0.03 0.09 0.34 330.85
294 6435 36 234.60 36.00 4.40 0.07 0.06 0.01 0.01 0.02 0.04 0.04 0.04 1.19 0.51 7.32 4016.42
344 40768 10 11315.40 14.00 10.40 0.16 0.04 0.00 0.12 0.00 0.02 0.01 0.00 4.25 51.84 4.05 25496.77
4544 1059 117 37.80 117.00 4.80 0.05 0.02 0.10 0.02 0.02 0.02 0.02 0.02 0.81 0.38 65.80 682.53
485 48 4 10.60 12.00 17.20 0.13 0.13 0.09 0.11 0.04 0.06 0.04 0.04 0.02 0.08 0.81 261.71
503 6574 14 204.60 14.00 2.00 0.04 0.02 0.01 0.00 0.02 0.02 0.01 0.02 0.75 0.81 4.18 2619.56
505 240 124 41.80 124.00 7.00 0.07 0.04 0.15 0.05 0.01 0.03 0.00 0.00 0.10 0.12 207.59 402.95
519 380 2 26.60 5.00 2.00 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.14 0.14 418.44
522 500 7 18.20 7.00 5.80 0.05 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.05 0.18 0.28 486.79
523 100 2 3.40 6.00 3.60 0.05 0.10 0.36 0.04 0.02 0.05 0.02 0.02 0.02 0.04 0.05 284.49
527 67 14 15.40 14.00 16.20 0.17 0.08 0.60 0.10 0.02 0.03 0.00 0.00 0.02 0.06 0.02 251.01
529 3848 4 177.00 4.00 5.40 0.05 0.01 0.39 0.01 0.01 0.02 0.02 0.01 0.29 0.68 0.21 1549.06
537 20640 8 987.00 8.00 3.60 0.03 0.00 0.00 0.02 0.02 0.03 0.03 0.04 2.22 1.26 2.60 5396.63
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Parsimony Absolute Coverage Error Quantile Loss Time (ms)
τ ID n d QDT LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR

542 60 15 5.40 15.00 8.40 0.06 0.05 0.15 0.14 0.03 0.03 0.05 0.04 0.02 0.06 1.83 280.26
547 500 7 31.80 7.00 5.80 0.04 0.02 0.05 0.03 0.02 0.02 0.02 0.02 0.06 0.19 0.30 451.30
556 475 3 87.80 11.00 6.80 0.06 0.03 0.04 0.17 0.00 0.02 0.02 0.01 0.04 0.16 1.33 384.64
557 475 3 83.00 11.00 7.00 0.04 0.03 0.04 0.14 0.00 0.02 0.02 0.01 0.06 0.17 1.18 377.32
560 252 14 70.60 14.00 13.60 0.19 0.06 0.04 0.04 0.00 0.02 0.02 0.00 0.04 0.09 0.77 326.68
561 209 7 58.60 7.00 10.00 0.09 0.06 0.03 0.04 0.01 0.01 0.01 0.00 0.03 0.08 0.94 328.90
562 8192 12 247.80 12.00 4.80 0.01 0.01 0.03 0.01 0.00 0.01 0.03 0.01 1.18 0.90 16.45 4347.84
564 40768 10 2332.60 10.00 11.40 0.06 0.03 0.01 0.00 0.01 0.01 0.01 0.01 4.29 207.23 10.34 25297.07
574 22784 16 677.40 16.00 6.40 0.03 0.03 0.00 0.01 0.01 0.01 0.02 0.02 3.71 65.68 34.81 10718.79
579 250 5 22.60 5.00 10.00 0.07 0.02 0.46 0.04 0.03 0.03 0.05 0.01 0.03 0.11 0.14 348.76
581 500 25 57.00 25.00 14.20 0.11 0.03 0.46 0.04 0.02 0.02 0.07 0.01 0.09 0.18 1.46 577.45
582 500 25 43.40 25.00 13.00 0.06 0.02 0.43 0.03 0.02 0.02 0.08 0.01 0.13 0.21 1.62 567.63
583 1000 50 53.00 50.00 13.00 0.05 0.02 0.43 0.02 0.02 0.02 0.08 0.01 0.34 0.34 56.88 840.03
584 500 25 42.60 25.00 11.20 0.11 0.04 0.43 0.02 0.02 0.02 0.07 0.01 0.11 0.19 2.91 614.10
586 1000 25 89.40 25.00 14.00 0.09 0.02 0.42 0.01 0.01 0.02 0.06 0.01 0.19 0.29 0.96 938.14
588 1000 100 55.80 100.00 12.20 0.06 0.01 0.45 0.02 0.01 0.02 0.07 0.01 0.69 0.36 92.25 807.68
589 1000 25 61.80 25.00 12.00 0.06 0.02 0.43 0.02 0.02 0.02 0.07 0.01 0.18 0.32 1.08 1058.47
590 1000 50 36.20 50.00 11.00 0.05 0.02 0.47 0.02 0.02 0.02 0.04 0.01 0.33 0.34 82.32 663.92
591 100 10 8.60 10.00 12.00 0.08 0.09 0.40 0.07 0.03 0.03 0.10 0.01 0.03 0.08 0.41 312.11
592 1000 25 52.20 25.00 11.20 0.06 0.03 0.44 0.02 0.02 0.02 0.06 0.01 0.22 0.29 1.74 928.71
593 1000 10 61.00 10.00 13.80 0.07 0.01 0.44 0.02 0.02 0.02 0.07 0.01 0.15 0.30 0.35 827.27
594 100 5 9.00 5.00 13.80 0.04 0.04 0.49 0.04 0.02 0.03 0.11 0.01 0.02 0.08 0.28 319.98
595 1000 10 38.60 10.00 10.00 0.06 0.03 0.41 0.01 0.02 0.02 0.04 0.01 0.15 0.31 0.39 624.37
596 250 5 15.40 5.00 12.40 0.09 0.05 0.40 0.07 0.03 0.03 0.09 0.01 0.03 0.13 0.10 404.04
597 500 5 32.60 5.00 12.20 0.05 0.02 0.42 0.03 0.02 0.02 0.08 0.01 0.05 0.19 0.25 521.49
598 1000 25 45.80 25.00 12.60 0.04 0.01 0.43 0.03 0.02 0.02 0.05 0.01 0.20 0.31 0.79 761.18
599 1000 5 77.80 5.00 13.80 0.08 0.02 0.44 0.02 0.02 0.02 0.08 0.01 0.11 0.30 0.20 789.88
601 250 5 16.60 5.00 13.40 0.04 0.04 0.44 0.05 0.02 0.03 0.08 0.01 0.03 0.12 0.13 398.24
602 250 10 39.00 10.00 9.60 0.15 0.04 0.50 0.03 0.02 0.02 0.07 0.01 0.04 0.13 0.39 368.25
603 250 50 12.60 50.00 11.40 0.04 0.04 0.46 0.04 0.02 0.02 0.05 0.01 0.05 0.13 45.19 367.35
604 500 10 67.80 10.00 12.40 0.10 0.04 0.46 0.01 0.02 0.02 0.06 0.01 0.07 0.19 0.80 459.87
605 250 25 10.60 25.00 12.20 0.03 0.03 0.43 0.05 0.02 0.03 0.09 0.01 0.04 0.13 0.97 432.07
606 1000 10 43.40 10.00 10.00 0.05 0.03 0.43 0.02 0.02 0.02 0.07 0.01 0.16 0.32 0.73 875.80
607 1000 50 71.40 50.00 13.40 0.08 0.02 0.42 0.02 0.01 0.01 0.06 0.01 0.39 0.33 27.36 829.80
608 1000 10 53.00 10.00 12.60 0.05 0.02 0.44 0.01 0.01 0.01 0.06 0.01 0.13 0.27 0.71 767.77
609 1000 5 55.80 5.00 9.60 0.05 0.03 0.40 0.03 0.02 0.02 0.04 0.01 0.12 0.30 0.34 589.04
611 100 5 11.40 5.00 12.00 0.08 0.13 0.44 0.08 0.03 0.03 0.09 0.01 0.02 0.07 0.18 307.26
612 1000 5 96.60 5.00 13.60 0.08 0.01 0.43 0.02 0.02 0.02 0.07 0.01 0.11 0.28 0.36 786.96
613 250 5 34.20 5.00 11.80 0.09 0.04 0.42 0.03 0.02 0.02 0.07 0.01 0.03 0.13 0.13 387.20
615 250 10 23.00 10.00 12.60 0.07 0.06 0.44 0.06 0.02 0.02 0.06 0.01 0.03 0.12 0.36 352.36
616 500 50 37.00 50.00 12.40 0.08 0.03 0.44 0.03 0.02 0.02 0.08 0.01 0.17 0.21 51.08 551.43
617 500 5 71.40 5.00 9.60 0.09 0.02 0.41 0.04 0.01 0.02 0.06 0.01 0.05 0.17 0.41 480.17
618 1000 50 46.20 50.00 12.20 0.03 0.02 0.44 0.03 0.01 0.02 0.07 0.01 0.45 0.31 46.20 792.32
620 1000 25 28.20 25.00 12.60 0.03 0.03 0.43 0.02 0.02 0.02 0.07 0.01 0.20 0.32 1.44 955.78
621 100 10 7.40 10.00 11.60 0.05 0.02 0.46 0.08 0.03 0.03 0.05 0.01 0.02 0.08 0.21 287.23
622 1000 50 43.40 50.00 13.40 0.03 0.03 0.43 0.02 0.02 0.02 0.08 0.01 0.45 0.37 37.83 931.59
623 1000 10 57.40 10.00 13.20 0.05 0.02 0.42 0.02 0.01 0.01 0.05 0.01 0.16 0.29 0.64 783.34
624 100 5 8.60 5.00 10.80 0.07 0.07 0.48 0.13 0.03 0.03 0.05 0.02 0.02 0.08 0.27 289.30
626 500 50 40.20 50.00 14.60 0.09 0.05 0.44 0.04 0.02 0.02 0.09 0.01 0.17 0.22 18.70 616.20
627 500 10 33.00 10.00 13.40 0.06 0.03 0.43 0.03 0.02 0.02 0.07 0.01 0.06 0.20 0.33 513.07
628 1000 5 127.00 5.00 9.40 0.09 0.01 0.43 0.02 0.01 0.02 0.06 0.01 0.13 0.27 0.33 743.16
631 500 5 28.60 5.00 14.60 0.05 0.03 0.39 0.03 0.02 0.02 0.07 0.01 0.05 0.17 0.17 501.60
633 500 25 24.60 25.00 11.20 0.06 0.03 0.47 0.03 0.02 0.02 0.04 0.01 0.09 0.20 1.56 515.20
634 100 10 15.40 10.00 11.40 0.07 0.02 0.45 0.11 0.03 0.03 0.09 0.02 0.02 0.07 0.27 322.81
635 250 10 15.80 10.00 10.80 0.04 0.03 0.48 0.06 0.02 0.02 0.05 0.01 0.04 0.12 0.29 339.19
637 500 50 26.60 50.00 12.20 0.05 0.04 0.45 0.04 0.02 0.02 0.09 0.01 0.14 0.24 54.62 576.31
641 500 10 51.00 10.00 14.00 0.07 0.03 0.45 0.03 0.02 0.02 0.08 0.01 0.06 0.19 0.55 473.30
643 500 25 30.20 25.00 13.40 0.04 0.04 0.45 0.04 0.02 0.02 0.08 0.01 0.11 0.20 1.60 647.74
644 250 25 14.20 25.00 10.20 0.04 0.04 0.42 0.04 0.02 0.02 0.08 0.01 0.05 0.13 1.41 419.07
645 500 50 41.80 50.00 15.00 0.09 0.03 0.48 0.03 0.02 0.02 0.06 0.01 0.14 0.21 10.35 529.98
646 500 10 38.60 10.00 12.80 0.08 0.03 0.42 0.02 0.02 0.02 0.06 0.01 0.06 0.17 0.29 461.38
647 250 10 21.40 10.00 14.00 0.06 0.02 0.44 0.03 0.02 0.02 0.08 0.01 0.04 0.13 0.84 381.77
648 250 50 13.40 50.00 12.00 0.06 0.06 0.50 0.08 0.02 0.03 0.11 0.01 0.05 0.14 49.37 424.64
649 500 5 43.00 5.00 10.40 0.06 0.04 0.43 0.04 0.02 0.02 0.03 0.01 0.06 0.17 0.47 405.27
650 500 50 21.00 50.00 11.00 0.05 0.02 0.46 0.02 0.02 0.02 0.05 0.01 0.15 0.22 17.77 466.25
651 100 25 3.80 25.00 10.00 0.04 0.05 0.51 0.07 0.03 0.03 0.09 0.01 0.02 0.08 1.54 297.21
653 250 25 13.40 25.00 11.40 0.05 0.02 0.48 0.04 0.02 0.03 0.05 0.01 0.05 0.13 1.21 362.26
654 500 10 17.80 10.00 11.00 0.04 0.03 0.43 0.03 0.02 0.02 0.04 0.01 0.05 0.18 0.25 396.92
656 100 5 13.00 5.00 11.60 0.08 0.04 0.47 0.10 0.02 0.03 0.09 0.01 0.02 0.08 0.26 325.08
657 250 10 32.20 10.00 14.60 0.08 0.04 0.46 0.04 0.02 0.03 0.09 0.01 0.03 0.13 0.25 392.79
658 250 25 10.20 25.00 12.00 0.06 0.04 0.45 0.04 0.02 0.02 0.07 0.01 0.04 0.14 1.01 416.06
659 47 7 7.00 7.00 12.40 0.14 0.06 0.09 0.11 0.03 0.03 0.02 0.02 0.02 0.04 0.50 270.21
663 120 2 9.80 11.00 14.20 0.08 0.06 0.07 0.05 0.02 0.02 0.01 0.00 0.02 0.08 0.39 306.99
665 147 6 11.40 10.00 6.80 0.05 0.04 0.04 0.07 0.03 0.04 0.04 0.04 0.02 0.09 0.31 306.20
666 508 10 29.00 10.00 3.00 0.06 0.02 0.04 0.04 0.01 0.01 0.02 0.01 0.07 0.17 0.25 481.50
678 111 3 2.60 3.00 3.20 0.09 0.11 0.13 0.12 0.03 0.04 0.04 0.04 0.02 0.09 0.08 324.77
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τ ID n d QDT LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR QDT LGBM LQR SQR

687 62 5 5.80 5.00 7.00 0.10 0.06 0.04 0.17 0.03 0.03 0.03 0.04 0.02 0.06 0.15 282.65
690 323 4 59.80 10.00 7.00 0.07 0.03 0.04 0.03 0.01 0.02 0.01 0.01 0.04 0.12 0.45 357.64
695 235 12 14.20 12.00 2.00 0.07 0.03 0.05 0.04 0.01 0.02 0.01 0.01 0.03 0.11 0.19 359.22
706 93 6 5.40 11.00 8.60 0.04 0.02 0.09 0.09 0.03 0.03 0.02 0.02 0.02 0.07 0.85 300.67
712 222 2 24.60 2.00 3.20 0.04 0.08 0.11 0.05 0.02 0.02 0.06 0.02 0.03 0.12 0.06 376.74
banana 5300 2 146.60 2.00 12.60 0.09 0.10 0.64 0.35 0.03 0.06 0.40 0.04 0.20 0.13 0.05 2141.00
titanic 2099 8 87.40 31.00 3.20 0.07 0.10 0.12 0.10 0.07 0.07 0.07 0.07 0.13 0.11 1.01 903.90

F Reproducibility
All experiments were conducted on a local machine with the following specifications:

• Operating System: Microsoft Windows 10 Enterprise

• Programming Language: Python (with PySR using a Julia backbone)

• Libraries and Frameworks:

– PySR
– LGBM
– scikit-learn
– LogisticRegression (from sklearn.linear_model)
– KFold (from sklearn.model_selection)
– NumPy
– Matplotlib
– Seaborn
– pandas
– pmlb (Python Package for accessing PMLB datasets)
– optuna
– datetime (from Python standard library)
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