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Abstract

Vision-language models increasingly power autonomous agents that require precise
spatial actions, from computer-use agents clicking interface elements to robots
grasping objects. We present the first mechanistic analysis of computer-use models,
using UI-TARS 1.5 on a controlled task where models must click colored squares
in grid images. We discover a systematic failure mode where the model misclicks
approximately 50% of the time, often targeting locations exactly one patch below
the correct target despite high confidence. Through activation patching, layer-wise
analysis, and coordinate probing, we reveal that failures stem from biased late-layer
selection rather than visual misunderstanding. The model simultaneously maintains
accurate representations of both correct and incorrect locations yet systematically
outputs wrong coordinates. Our analysis identifies strong patching effects at
specific token positions in the final layers, with probes successfully detecting
the systematic downward bias. Our work establishes coordinate prediction as a
tractable testbed for multimodal interpretability and provides insights for improving
spatial grounding reliability in deployed vision-language agents.

1 Introduction

Vision-language models (VLMs) are rapidly being deployed as autonomous agents in high-stakes
applications where spatial precision matters. Computer-use agents execute financial transactions by
clicking specific interface elements, and robotic systems perform delicate manipulations by grasping
particular objects [Brohan et al., [2023]]. However, the reliability and mechanism of coordinate
prediction in these models remains poorly understood, despite having direct implications for deployed
autonomous systems. Computer-use agents that misclick interface elements can cause significant
errors, while robotic systems with poor spatial grounding pose safety risks.

To investigate this question, we examine coordinate prediction in a state-of-the-art computer-use
model, UI-TARS 1.5 [Qin et al., 2025]], using a controlled synthetic task: clicking on a colored square
with a plain background. We first discover an intriguing failure mode: when instructed to click on the
square, the model misclicks approximately 50% of the time, often consistently targeting a location
exactly one patch below the correct target. This systematic bias provides a concrete case study for
understanding how vision-language models can fail at spatial reasoning, even in seemingly trivial
scenarios.

We then present the first mechanistic analysis of coordinate prediction in computer-use models.
Through activation patching, layer-wise probability analysis, and coordinate probing, we find that
this failure stems not from misidentification but from late-layer selection: the model simultaneously
maintains representations of both correct and incorrect locations, yet systematically outputs the wrong
one. These findings provide essential insights for understanding failure modes and improving spatial
reasoning in deployed vision-language agents.
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2 Background

Vision-Language Model Architecture Vision-language models follow a standard three-component
architecture. A vision encoder divides images into spatial patches and extracts features I € RV *dvis
a cross-modal adapter A transforms these into visual token embeddings V' = A(F) € RV*dcar,
and an autoregressive model processes combined visual and text tokens to generate outputs y =
LM([Vs; Ty]).-

Computer-Use Agents We study UI-TARS 1.5 7B, a state-of-the-art computer-use model. The
model is essentially a vision-language model trained to call actions like "click(x,y)" or "type(‘abc’)"
based on screenshots. Given an instruction like "click on the blue square", UI-TARS analyzes the
visual input, often reasoning about what it observes, then generates specific action commands such as
"click(154,154)." (Refer to Figure@for an illustration)

Interpretability Challenges in Multimodal Models Mechanistic interpretability of vision-
language models faces two key challenges compared to text-only models. First, visual information
exhibits extreme redundancy across tokens. Visual objects are typically represented in a distributed
manner across multiple image patches, with semantic content redundantly encoded in many tokens.
This redundancy is so robust that models can maintain performance even when visual tokens are
randomly scrambled 2025]), making it difficult to identify which specific tokens are crucial
for particular predictions.

Second, vision-language models process sequences with hundreds or thousands of tokens per image,
far exceeding typical text sequence lengths. A single screenshot might be divided into 576 patches,
each becoming a separate token, creating sequences much longer than most language model inputs.
This scale makes comprehensive interpretability analysis computationally prohibitive

2025].

Computer-use tasks offer a more tractable setting because coordinate prediction requires committing to
exact pixel locations rather than approximate descriptions. This constraint forces clearer connections
between visual patches and numerical outputs, providing more direct pathways for mechanistic
analysis.

Hence, we investigate the mechanisms underlying coordinate prediction in vision-language models:
How does a model process visual information to determine where to click?

3 Experimental Setup

We design a synthetic task to address the interpretability challenges outlined above. Our setup uses
476x476 pixel images divided into a 17x17 grid of 28x28 pixel patches, with each image containing
a single colored square positioned at a specific grid location against a uniform gray background. This
ensures that the colored square occupies exactly one visual token. The model is then prompted to
‘Click on the {COLOR} square’’. Refer to Figure[Iabelow for an illustration.

Prompt (Given Task + Model Response)

System: You are a helpful assistant.
User:
You are a GUI agent... H
...<Prompt to get model to reason and make L 5* """""""""" | I
actions>... v
User Instruction: 1
Click on the blue square. <screenshot> R .
—p [Assistant: 28 *’ N g
Thought: | noticed a small blue square in the !
center of the screen, and the task is to click on it.

Input Image

-28

Y Error

This is quite simple; all | need to do is move the t“
mouse over and click on that blue square. Let me 56 *w e
go ahead and complete this straightforward action. i
Action: click(start_box=‘<|box_start|>(154, 154) -28 0 28
<|box_end>’)<|im_end>} X Error
(a) An overview of the image and task (b) Click Error Distributions

Figure 1: In our experimental setup, UI-TARS 1.5 fails ~50% of the time on our synthetic grid task,
with systematic bias toward clicking one patch below the target (negative y-errors).
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We then curate a dataset of 1,445 images spanning 5 colors (red, blue, green, yellow, orange) across
all 17x17 grid positions, with a 80/20 train/test split for probe training. In this setup, we find that the
model gets the coordinates wrong more than 50% of the time. In particular, we find that its clicks are
clustered around the center of patches, and that it is often clicking the patch directly below the square
(Figure[ID). This raises the question: Is the model misidentifying which patch contains the target, or
correctly identifying it but failing to output proper coordinates?

4 Mechanistic Interpretability Experiments

In this section, we use several interpretability techniques to investigate how the model performs
coordinate prediction.
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Figure 2: We find that token probabilities spike to high confidence in final layers despite incorrect
predictions, and that patching effects concentrate at <Ibox_startl> in late layers.

Token Probability over Layers. How confident is the model when it predicts incorrect coordinates?
To investigate this, we analyze how the probability of predicting coordinate digits evolves across the
model’s layers. We conduct forward passes on our synthetic grid dataset and extract hidden states at
each layer. At each position before a coordinate digit, we apply layer normalization and the language
modeling head to compute the probability of the predicted token. We do this across our 5-color
dataset.

Figure [2a] shows how the probability of the predicted digit consistently spikes to high confidence in
the final two layers. This high confidence in wrong coordinates suggests the model’s error stems
from incorrectly identifying which patch to click, not from uncertainty in translating patch locations
to pixel coordinates.

Activation Patching. Given the model’s high confidence in incorrect coordinates, we next investi-
gate where in the model these coordinates are computed. We use activation patching 2020]
to identify which components causally influence coordinate prediction. We generate two images: a
source with the blue square at (154, 154) (first digit "1") and a target at (238, 238) (first digit "2").
During a forward pass on the source image, we systematically replace activations at each residual
stream position with corresponding activations from the target image, measuring the change in logit
difference Logit("1") — Logit("2").

Our results are in Figure 2b] First, we observe strong patching effects at the <|box_start | > token
in layers 21-25, suggesting this position stores coordinate information. Second, patching effects peak
at the final "(" token in the last two layers, though this is expected since the model directly decodes
coordinates from this position. Combined with our earlier finding that coordinate probabilities spike
in these same final layers, this may suggest a two-stage process: the model computes and stores
coordinates at <|box_start | >, then retrieves this information when generating outputs. If so, we
should be able to extract full coordinate information from the <|box_start | > representations using
probes.
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Figure 3: The model simultaneously encodes both correct (a) and predicted (b) coordinates, and as
well as the systematic “one-patch-below” error (c).

Training Probes To test our hypothesis that coordinates are stored at <|box_start|>, we train
linear probes to extract (x,y) coordinates from hidden states from our 5-color dataset at both
<|box_start|> and ( token positions across all layers. Each probe predicts the normalized co-
ordinates (z/500,y/500), with hyperparameters selected via grid search (Appendix [A)). We train
three types of probes: (1) ground truth coordinates (X4, Yy¢), (2) the model’s predicted coordinates
(Xpreds Ypred), and (3) the binary class on if the model will clicks one patch below target.

Our findings are in Figure [3] First, we find that linear probes accurately recover ground truth
coordinates (MAE < 10 pixels) around layer 14, but achieve only 16-20 pixel MAE for predicted
coordinates, which is beyond the 14-pixel threshold for correct patch selection. This means that the
model better represents where the square is than where it will click. Second, probe performance
degrades in layers 20-27, where activation patching also shows strong effects, suggesting that the
activations are transformed from coordinate representations into token representation.

Thirdly, the probes can detect the "one patch below" error with 80% accuracy in late layers. This
shows that the downward bias is systematically encoded in the model’s representations, and the model
effectively "knows" it will make this specific error before outputting coordinates. Together, these
results show the model maintains parallel representations of correct and incorrect locations, and even
its own failure patterns, yet outputs the wrong coordinates through a biased selection mechanism.

5 Discussion & Conclusion

We find a counterintuitive failure mode: the model simultaneously maintains accurate representations
of target locations while consistently outputting incorrect coordinates. This dual-representation
phenomenon, where models "know" the right answer but systematically choose the wrong one,
suggests that coordinate prediction failures stem from biased late-layer selection mechanisms rather
than visual misunderstanding. The systematic downward bias, combined with the model’s ability to
predict its own errors, suggests that the model may have learned spatial biases.

While our synthetic grid task is simplified, we believe that it establishes computer-use models as a
tractable testbed for multimodal interpretability research. Our finding that models can simultaneously
represent both correct and incorrect spatial information opens new questions about how these repre-
sentations compete during inference. As computer-use agents become more prevalent, understanding
these basic failure modes provides a foundation for improving reliability in deployed systems.

Open Questions and Future Work Why does the model select biased coordinates despite ac-
curate representations? Is the downward error learned or architectural? Future work should test if
such failures persist in realistic interfaces and explore fixes to late-layer selection without harming
performance.
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A Probe Hyperparameters

We extract representations from both <|box_start|> and ( token positions across all layers.
Each probe uses a dual-output architecture to simultaneously predict normalized coordinates
(2/500,y/500). We do a train/test split of 80/20 and report test results in the main body. We
train for up to 100 epochs with early stopping (patience=15), employing grid search over learning
rates (10*4, 1073, 10*2), batch sizes (32, 64, 128), and for MLP probes, hidden dimensions (256,
512, 1024). Performance is evaluated using mean absolute error (MAE) on held-out data. We then
report our results on the best performing probe. Note that we also train MLP probes but did not find
substantially better results.
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