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Abstract

Vision-language models increasingly power autonomous agents that require precise1

spatial actions, from computer-use agents clicking interface elements to robots2

grasping objects. We present the first mechanistic analysis of computer-use models,3

using UI-TARS 1.5 on a controlled task where models must click colored squares4

in grid images. We discover a systematic failure mode where the model misclicks5

approximately 50% of the time, often targeting locations exactly one patch below6

the correct target despite high confidence. Through activation patching, layer-wise7

analysis, and coordinate probing, we reveal that failures stem from biased late-layer8

selection rather than visual misunderstanding. The model simultaneously maintains9

accurate representations of both correct and incorrect locations yet systematically10

outputs wrong coordinates. Our analysis identifies strong patching effects at11

specific token positions in the final layers, with probes successfully detecting12

the systematic downward bias. Our work establishes coordinate prediction as a13

tractable testbed for multimodal interpretability and provides insights for improving14

spatial grounding reliability in deployed vision-language agents.15

1 Introduction16

Vision-language models (VLMs) are rapidly being deployed as autonomous agents in high-stakes17

applications where spatial precision matters. Computer-use agents execute financial transactions by18

clicking specific interface elements, and robotic systems perform delicate manipulations by grasping19

particular objects [Brohan et al., 2023]. However, the reliability and mechanism of coordinate20

prediction in these models remains poorly understood, despite having direct implications for deployed21

autonomous systems. Computer-use agents that misclick interface elements can cause significant22

errors, while robotic systems with poor spatial grounding pose safety risks.23

To investigate this question, we examine coordinate prediction in a state-of-the-art computer-use24

model, UI-TARS 1.5 [Qin et al., 2025], using a controlled synthetic task: clicking on a colored square25

with a plain background. We first discover an intriguing failure mode: when instructed to click on the26

square, the model misclicks approximately 50% of the time, often consistently targeting a location27

exactly one patch below the correct target. This systematic bias provides a concrete case study for28

understanding how vision-language models can fail at spatial reasoning, even in seemingly trivial29

scenarios.30

We then present the first mechanistic analysis of coordinate prediction in computer-use models.31

Through activation patching, layer-wise probability analysis, and coordinate probing, we find that32

this failure stems not from misidentification but from late-layer selection: the model simultaneously33

maintains representations of both correct and incorrect locations, yet systematically outputs the wrong34

one. These findings provide essential insights for understanding failure modes and improving spatial35

reasoning in deployed vision-language agents.36
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2 Background37

Vision-Language Model Architecture Vision-language models follow a standard three-component38

architecture. A vision encoder divides images into spatial patches and extracts features F ∈ RN×dvis ,39

a cross-modal adapter A transforms these into visual token embeddings V = A(F ) ∈ RN×dLM ,40

and an autoregressive model processes combined visual and text tokens to generate outputs y =41

LM([VS ;Tq]).42

Computer-Use Agents We study UI-TARS 1.5 7B, a state-of-the-art computer-use model. The43

model is essentially a vision-language model trained to call actions like "click(x,y)" or "type(‘abc’)"44

based on screenshots. Given an instruction like "click on the blue square", UI-TARS analyzes the45

visual input, often reasoning about what it observes, then generates specific action commands such as46

"click(154,154)." (Refer to Figure 1a for an illustration)47

Interpretability Challenges in Multimodal Models Mechanistic interpretability of vision-48

language models faces two key challenges compared to text-only models. First, visual information49

exhibits extreme redundancy across tokens. Visual objects are typically represented in a distributed50

manner across multiple image patches, with semantic content redundantly encoded in many tokens.51

This redundancy is so robust that models can maintain performance even when visual tokens are52

randomly scrambled [Qi et al., 2025], making it difficult to identify which specific tokens are crucial53

for particular predictions.54

Second, vision-language models process sequences with hundreds or thousands of tokens per image,55

far exceeding typical text sequence lengths. A single screenshot might be divided into 576 patches,56

each becoming a separate token, creating sequences much longer than most language model inputs.57

This scale makes comprehensive interpretability analysis computationally prohibitive [Neo et al.,58

2025].59

Computer-use tasks offer a more tractable setting because coordinate prediction requires committing to60

exact pixel locations rather than approximate descriptions. This constraint forces clearer connections61

between visual patches and numerical outputs, providing more direct pathways for mechanistic62

analysis.63

Hence, we investigate the mechanisms underlying coordinate prediction in vision-language models:64

How does a model process visual information to determine where to click?65

3 Experimental Setup66

We design a synthetic task to address the interpretability challenges outlined above. Our setup uses67

476×476 pixel images divided into a 17×17 grid of 28×28 pixel patches, with each image containing68

a single colored square positioned at a specific grid location against a uniform gray background. This69

ensures that the colored square occupies exactly one visual token. The model is then prompted to70

“Click on the {COLOR} square”. Refer to Figure 1a below for an illustration.71

(a) An overview of the image and task (b) Click Error Distributions

Figure 1: In our experimental setup, UI-TARS 1.5 fails ≈50% of the time on our synthetic grid task,
with systematic bias toward clicking one patch below the target (negative y-errors).
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We then curate a dataset of 1,445 images spanning 5 colors (red, blue, green, yellow, orange) across72

all 17×17 grid positions, with a 80/20 train/test split for probe training. In this setup, we find that the73

model gets the coordinates wrong more than 50% of the time. In particular, we find that its clicks are74

clustered around the center of patches, and that it is often clicking the patch directly below the square75

(Figure 1b). This raises the question: Is the model misidentifying which patch contains the target, or76

correctly identifying it but failing to output proper coordinates?77

4 Mechanistic Interpretability Experiments78

In this section, we use several interpretability techniques to investigate how the model performs79

coordinate prediction.80

(a) Predicted Token Probability in
the Last Layers (b) Activation Patching Heatmap

Figure 2: We find that token probabilities spike to high confidence in final layers despite incorrect
predictions, and that patching effects concentrate at <|box_start|> in late layers.

Token Probability over Layers. How confident is the model when it predicts incorrect coordinates?81

To investigate this, we analyze how the probability of predicting coordinate digits evolves across the82

model’s layers. We conduct forward passes on our synthetic grid dataset and extract hidden states at83

each layer. At each position before a coordinate digit, we apply layer normalization and the language84

modeling head to compute the probability of the predicted token. We do this across our 5-color85

dataset.86

Figure 2a shows how the probability of the predicted digit consistently spikes to high confidence in87

the final two layers. This high confidence in wrong coordinates suggests the model’s error stems88

from incorrectly identifying which patch to click, not from uncertainty in translating patch locations89

to pixel coordinates.90

Activation Patching. Given the model’s high confidence in incorrect coordinates, we next investi-91

gate where in the model these coordinates are computed. We use activation patching [Vig et al., 2020]92

to identify which components causally influence coordinate prediction. We generate two images: a93

source with the blue square at (154, 154) (first digit "1") and a target at (238, 238) (first digit "2").94

During a forward pass on the source image, we systematically replace activations at each residual95

stream position with corresponding activations from the target image, measuring the change in logit96

difference Logit("1")− Logit("2").97

Our results are in Figure 2b. First, we observe strong patching effects at the <|box_start|> token98

in layers 21-25, suggesting this position stores coordinate information. Second, patching effects peak99

at the final "(" token in the last two layers, though this is expected since the model directly decodes100

coordinates from this position. Combined with our earlier finding that coordinate probabilities spike101

in these same final layers, this may suggest a two-stage process: the model computes and stores102

coordinates at <|box_start|>, then retrieves this information when generating outputs. If so, we103

should be able to extract full coordinate information from the <|box_start|> representations using104

probes.105
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(a) MAE (Ygt) (b) MAE (Ypred) (c) Balanced Acc. (Error)

Figure 3: The model simultaneously encodes both correct (a) and predicted (b) coordinates, and as
well as the systematic “one-patch-below” error (c).

Training Probes To test our hypothesis that coordinates are stored at <|box_start|>, we train106

linear probes to extract (x, y) coordinates from hidden states from our 5-color dataset at both107

<|box_start|> and ( token positions across all layers. Each probe predicts the normalized co-108

ordinates (x/500, y/500), with hyperparameters selected via grid search (Appendix A). We train109

three types of probes: (1) ground truth coordinates (Xgt, Ygt), (2) the model’s predicted coordinates110

(Xpred, Ypred), and (3) the binary class on if the model will clicks one patch below target.111

Our findings are in Figure 3. First, we find that linear probes accurately recover ground truth112

coordinates (MAE < 10 pixels) around layer 14, but achieve only 16-20 pixel MAE for predicted113

coordinates, which is beyond the 14-pixel threshold for correct patch selection. This means that the114

model better represents where the square is than where it will click. Second, probe performance115

degrades in layers 20-27, where activation patching also shows strong effects, suggesting that the116

activations are transformed from coordinate representations into token representation.117

Thirdly, the probes can detect the "one patch below" error with 80% accuracy in late layers. This118

shows that the downward bias is systematically encoded in the model’s representations, and the model119

effectively "knows" it will make this specific error before outputting coordinates. Together, these120

results show the model maintains parallel representations of correct and incorrect locations, and even121

its own failure patterns, yet outputs the wrong coordinates through a biased selection mechanism.122

5 Discussion & Conclusion123

We find a counterintuitive failure mode: the model simultaneously maintains accurate representations124

of target locations while consistently outputting incorrect coordinates. This dual-representation125

phenomenon, where models "know" the right answer but systematically choose the wrong one,126

suggests that coordinate prediction failures stem from biased late-layer selection mechanisms rather127

than visual misunderstanding. The systematic downward bias, combined with the model’s ability to128

predict its own errors, suggests that the model may have learned spatial biases.129

While our synthetic grid task is simplified, we believe that it establishes computer-use models as a130

tractable testbed for multimodal interpretability research. Our finding that models can simultaneously131

represent both correct and incorrect spatial information opens new questions about how these repre-132

sentations compete during inference. As computer-use agents become more prevalent, understanding133

these basic failure modes provides a foundation for improving reliability in deployed systems.134

Open Questions and Future Work Why does the model select biased coordinates despite ac-135

curate representations? Is the downward error learned or architectural? Future work should test if136

such failures persist in realistic interfaces and explore fixes to late-layer selection without harming137

performance.138
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A Probe Hyperparameters165

We extract representations from both <|box_start|> and ( token positions across all layers.166

Each probe uses a dual-output architecture to simultaneously predict normalized coordinates167

(x/500, y/500). We do a train/test split of 80/20 and report test results in the main body. We168

train for up to 100 epochs with early stopping (patience=15), employing grid search over learning169

rates (10−4, 10−3, 10−2), batch sizes (32, 64, 128), and for MLP probes, hidden dimensions (256,170

512, 1024). Performance is evaluated using mean absolute error (MAE) on held-out data. We then171

report our results on the best performing probe. Note that we also train MLP probes but did not find172

substantially better results.173
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