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Abstract

Vision-language models increasingly power autonomous agents that require precise
spatial actions, from computer-use agents clicking interface elements to robots
grasping objects. We present the first mechanistic analysis of computer-use models,
using UI-TARS 1.5 on a controlled task where models must click colored squares
in grid images. We discover a systematic failure mode where the model misclicks
approximately 50% of the time, often targeting locations exactly one patch below
the correct target despite high confidence. Through activation patching, layer-wise
analysis, and coordinate probing, we reveal that failures stem from biased late-
layer selection: the model simultaneously maintains accurate representations of
both correct and incorrect locations yet systematically outputs wrong coordinates.
Our analysis identifies strong patching effects at specific token positions in the
final layers, with probes successfully detecting the systematic downward bias.
Our work establishes coordinate prediction as a tractable testbed for multimodal
interpretability and provides insights for improving spatial grounding reliability in
deployed vision-language agents.

1 Introduction

Vision-language models (VLMs) are rapidly being deployed as autonomous agents in high-stakes
applications where spatial precision matters. Computer-use agents execute financial transactions by
clicking specific interface elements, and robotic systems perform delicate manipulations by grasping
particular objects [Brohan et al., 2023]. However, the reliability and mechanism of coordinate
prediction in these models remains poorly understood, despite having direct implications for deployed
autonomous systems. Computer-use agents that misclick interface elements can cause significant
errors, while robotic systems with poor spatial grounding pose safety risks.

Hence, we study the task of coordinate prediction in a state-of-the-art computer-use model, UI-TARS
1.5 [Qin et al., 2025], under a controlled synthetic setting: clicking on a colored square with a plain
background. The image input is a 476×476 image partitioned into a 17×17 grid of 28px×28px
patches containing a single colored square on a uniform background, with the text instruction being
"Click on the <COLOR> square." (where COLOR is the corresponding color of the square). On this
dataset of 1,445 images spanning all grid locations and five colors, the model misclicks approximately
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50% of the time, with errors concentrated at exactly one patch below the correct target and with high
token-level confidence.

To examine where this error arises, we use three techniques: (1) layer-wise token probabilities
at positions immediately before each coordinate digit, also known as the logit lens, (2) activation
patching of residual stream states across layers and token positions, and (3) linear probes trained
on hidden states to recover ground-truth and predicted coordinates. Through our analysis, we find
that the model encodes accurate ground-truth coordinates in middle layers but fails to decode them
correctly, coordinate predictions become highly confident in final layers despite systematic errors,
and activation patching reveals a two-stage computational process with late-layer transformations at
the <|box_start|> token.

2 Background

Vision-Language Model Architecture Vision-language models follow a standard three-component
architecture. A vision encoder divides images into spatial patches and extracts features F ∈ RN×dvis ,
a cross-modal adapter A transforms these into visual token embeddings V = A(F ) ∈ RN×dLM ,
and an autoregressive model processes combined visual and text tokens to generate outputs y =
LM([VS ;Tq]).

Computer-Use Agents We study UI-TARS 1.5 7B, a state-of-the-art computer-use model. The
model is essentially a vision-language model trained to call actions like "click(x,y)" or "type(‘abc’)"
based on screenshots. Given an instruction like "click on the blue square", UI-TARS analyzes the
visual input, often reasoning about what it observes, then generates specific action commands such as
"click(154,154)." (Refer to Figure 1a for an illustration.)

Concretely, UI-TARS emits actions as function calls like click(x,y) under a fixed grammar:

Thought: <MODEL_RATIONALE>
Action: click(start_box=‘<|box_start|>(154, 154)<|box_end|>’)<|im_end|>

where immediately preceding the first digit, both <|box_start|> and ( are single tokens. The
numerical digits are also tokenized as individual tokens.

Interpretability Challenges in Multimodal Models Mechanistic interpretability of vision-
language models faces two key challenges compared to text-only models. First, visual information
exhibits extreme redundancy across tokens. Visual objects are typically represented in a distributed
manner across multiple image patches, with semantic content redundantly encoded in many tokens.
This redundancy is so robust that models can maintain performance even when visual tokens are
randomly scrambled [Qi et al., 2025], making it difficult to identify which specific tokens are crucial
for particular predictions.

Second, vision-language models process sequences with hundreds or thousands of tokens per image,
far exceeding typical text sequence lengths. A single screenshot might be divided into 576 patches,
each becoming a separate token, creating sequences much longer than most language model inputs.
This scale makes comprehensive interpretability analysis computationally prohibitive [Neo et al.,
2025].

Computer-use tasks offer a more tractable setting because coordinate prediction requires committing to
exact pixel locations rather than approximate descriptions. This constraint forces clearer connections
between visual patches and numerical outputs, providing more direct pathways for mechanistic
analysis.

Hence, we investigate the mechanisms underlying coordinate prediction in vision-language models:
How does a model process visual information to determine where to click?

3 Experimental Setup

We design a synthetic task to address the interpretability challenges outlined above. Our setup uses
476×476 pixel images divided into a 17×17 grid of 28×28 pixel patches, with each image containing
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a single colored square positioned at a specific grid location against a uniform gray background. This
ensures that the colored square occupies exactly one visual token. The model is then prompted to
“Click on the {COLOR} square”. Refer to Figure 1a below for an illustration.

(a) An overview of the image and task (b) Click Error Distributions

Figure 1: In our experimental setup, UI-TARS 1.5 fails ≈50% of the time on our synthetic grid task,
with systematic bias toward clicking one patch below the target (negative y-errors).

We generate a dataset of 1,445 images spanning 5 colors (red, blue, green, yellow, orange) across all
17×17 grid positions, with a 80/20 train/test split for probe training.

Model Evaluation. We then evaluate UI-TARS 1.5 7B on this dataset. We use deterministic
decoding (T=0) and count the prediction as correct if and only if the predicted coordinate lands
in the square. To compare against the grid, each target cell (i, j) is mapped to its pixel-center
(cx(i), cy(j)) = (14 + 28i, 14 + 28j), and a prediction is counted correct if and only if its predicted
coordinate lands in that cell, i.e., |x− cx(i)| ≤ 14 and |y − cy(j)| ≤ 14.

In this setup, we find that the model gets the coordinates wrong more than 50% of the time. The
clicks are clustered around the center of patches, and that it is often clicking the patch directly below
the square (Figure 1b). In particular, across all 1,445 examples, it clicks on the correct patch in 413
examples (28.6%), one patch down in 837 examples (57.9%), and two patches down in 76 examples
(6%).

This raises the following questions: How does the model compute the (x, y) to be clicked, and can
we trace where the model gets it wrong? In the next section, we attempt to investigate this using
per-layer probability trajectories, activation patching, and probing.

4 Mechanistic Interpretability Experiments

In this section, we use several interpretability techniques to investigate how the model performs
coordinate prediction.

Token Probability over Layers. How confident is the model when it predicts incorrect coordinates?
To investigate this, we analyze how the probability of predicting coordinate digits evolves across
the model’s layers. We conduct forward passes on our synthetic grid dataset and extract hidden
states at each layer. At each position before a coordinate digit, we apply layer normalization and the
language modeling head to the hidden state immediately before each coordinate digit to compute the
probability of the next predicted digit. We do this across our 5-color dataset.

Figure 2a shows how the probability of the predicted digit consistently spikes to high confidence in
the final two layers, even when the predictions are wrong. This points to a follow-up question: at
which layers is the target patch encoded, and how is it rendered into coordinate tokens?

Activation Patching. Given the model’s high confidence in incorrect coordinates, we next investi-
gate where in the model these coordinates are computed. We use activation patching [Vig et al., 2020]
to identify which components causally influence coordinate prediction. We generate two images: a
source with the blue square at (154, 154) (first digit "1") and a target at (238, 238) (first digit "2").
During a forward pass on the source image, we systematically replace activations at each residual

3



(a) Predicted Token Probability in
the Last Layers (b) Activation Patching Heatmap

Figure 2: We find that token probabilities spike to high confidence in final layers despite incorrect
predictions, and that patching effects concentrate at <|box_start|> in late layers.

stream position with corresponding activations from the target image, measuring the change in logit
difference Logit("1")− Logit("2").

Our results are in Figure 2b. First, we observe strong patching effects at the <|box_start|> token
in layers 21-25, suggesting this position stores coordinate information. Second, patching effects peak
at the final "(" token in the last two layers, though this is expected since the model directly decodes
coordinates from this position. Combined with our earlier finding that coordinate probabilities spike
in these same final layers, this may suggest a two-stage process: the model computes and stores
coordinates at <|box_start|>, then retrieves this information when generating outputs. If so, we
should be able to extract full coordinate information from the <|box_start|> representations using
probes.

Training Probes To test our hypothesis that coordinates are stored at <|box_start|>, we train
linear probes to extract (x, y) coordinates from hidden states from our 5-color dataset at both
<|box_start|> and ( token positions across all layers. Each probe predicts the normalized co-
ordinates (x/500, y/500), with hyperparameters selected via grid search (Appendix A). We train
three types of probes: (1) ground truth coordinates (Xgt, Ygt), (2) the model’s predicted coordinates
(Xpred, Ypred), and (3) the binary class of if the model will click one patch below target. We report
Mean Average Error for the coordinates probe, and balanced accuracy for the binary class probe.

Our findings are in Figure 3. First, we find that linear probes accurately recover ground truth
coordinates (MAE < 10 pixels) around layer 14, but achieve only 16-20 pixel MAE for predicted
coordinates, which is beyond the 14-pixel threshold for correct patch selection.

Second, probe performance degrades in layers 20-27, where activation patching shows strong effects.
This may suggest that the activations are transformed from from generic coordinate representations
into task-specific representations.

Lastly, the probes can detect the "one patch below" error with 80% balanced accuracy in late layers.
This suggests that the downward error is encoded in the model’s representations.

5 Discussion & Conclusion

The results are surprising: The middle layers carry an accurate estimate of the target location,
yet the final decoding stages output the wrong coordinates. We see this because linear probes at
<|box_start|> recover ground-truth coordinates with lower error than they recover the model’s
own output coordinates, yet token probabilities surge to high confidence in the last one or two layers
even when the digits are wrong. Furthermore, activation patching shows that the largest causal effect
at <|box_start|> appears in late layers (e.g., 21–25) after the layers where the probe reads out
ground-truth coordinates best (roughly 12–16).
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(a) MAE (Ygt) (b) MAE (Ypred) (c) Balanced Acc. (Error)

Figure 3: The model simultaneously encodes both correct (a) and predicted (b) coordinates, and as
well as the systematic “one-patch-below” error (c).

We consider several hypotheses for how this failure arises. The model may employ two-stage
computation where middle layers (12-16) form accurate coordinate representations that later undergo
a corrupting transformation at <|box_start|> in layers 20-25, where we observe strong patching
effects.

A possible non-mechanistic explanation for this behavior is action-grounding priors from pre-training.
Computer-use models learn on real UIs where clickable elements exhibit systematic spatial relation-
ships—buttons in vertical lists, downward-stacking menus, and text baseline alignment causing clicks
to statistically fall below visual centers. The systematic downward error might reflect a learned prior
that "clickable elements appear below salient features," confidently applied even when inappropriate
for our synthetic task. This would explain both the high confidence and the specific directional bias.

We hope to continue building on this work to better understand how the mid-layer coordinate state is
transformed into a task-specific state, and to pinpoint how the model ends up choosing the wrong
patch to click on.

Lastly, while our synthetic grid task is simplified, we believe that it establishes computer-use
models as a tractable testbed for multimodal interpretability research. Our finding that models can
simultaneously represent both correct and incorrect spatial information opens new questions about
how these representations compete during inference. As computer-use agents become more prevalent,
understanding these basic failure modes provides a foundation for improving reliability in deployed
systems.

Open Questions and Future Work Why does the model select biased coordinates despite accurate
representations? Is the downward error learned or architectural? Future work should test if such
failures persist in realistic interfaces, and if so, solve such failures without harming performance.
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A Probe Hyperparameters

We extract representations from both <|box_start|> and ( token positions across all layers.
Each probe uses a dual-output architecture to simultaneously predict normalized coordinates
(x/500, y/500). We do a train/test split of 80/20 and report test results in the main body. We
train for up to 100 epochs with early stopping (patience=15), employing grid search over learning
rates (10−4, 10−3, 10−2), batch sizes (32, 64, 128), and for MLP probes, hidden dimensions (256,
512, 1024). Performance is evaluated using mean absolute error (MAE) on held-out data. We then
report our results on the best performing probe. We also note that we trained MLP probes in addition
to linear probes, but did not find substantially better results.
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