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Abstract

We study the problem of identifying the unknown intervention targets in structural
causal models where we have access to heterogeneous data collected from mul-
tiple environments. The unknown intervention targets are the set of endogenous
variables whose corresponding exogenous noises change across the environments.
We propose a two-phase approach which in the first phase recovers the exoge-
nous noises corresponding to unknown intervention targets whose distributions
have changed across environments. In the second phase, the recovered noises are
matched with the corresponding endogenous variables. For the recovery phase,
we provide sufficient conditions for learning these exogenous noises up to some
component-wise invertible transformation. For the matching phase, under the
causal sufficiency assumption, we show that the proposed method uniquely identi-
fies the intervention targets. In the presence of latent confounders, the intervention
targets among the observed variables cannot be determined uniquely. We provide a
candidate intervention target set which is a superset of the true intervention targets.
Our approach improves upon the state of the art as the returned candidate set is
always a subset of the target set returned by previous work. Moreover, we do not
require restrictive assumptions such as linearity of the causal model or performing
invariance tests to learn whether a distribution is changing across environments
which could be highly sample inefficient. Our experimental results show the
effectiveness of our proposed algorithm in practice.

1 Introduction

Causal relationships among a set of variables in a system can be modeled by a structural causal
model (SCM) where each variable is a function of its direct causes and some exogenous noise. An
intervention on a variable can be considered as modifying its causal mechanism, i.e., changing the
conditional probability distribution of the intervened variable given its direct causes. In randomized
control trials, randomized interventions on a target variable are utilized to estimate the causal effect
of the target. However, in some applications, we may not have full control in terms of which
variables are intervened on. For instance, in recovering causal protein-signaling networks from single-
cell data [SPP+05, NSMV17], drugs are injected into cells to inhibit or activate some signaling
proteins, and gene expression levels are measured. In these experiments, the intervention targets are
unknown. Moreover, in some cases, an intervention is done by an unknown source and we must
locate the source of the intervention in the system. As an example, microservices systems in cloud
clusters are vulnerable to faults such as equipment failures or adversarial attacks. It is crucial to
locate the root cause of faulty operation in the system by identifying the source of fault/intervention
[AGM+21, BMBJ22]. In these examples, the collected data is often heterogeneous and is gathered
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from multiple domains/environments where the causal mechanisms of some of the variables are
changing across the environments.

In this paper, we consider the problem of learning the unknown intervention targets from a collection
of interventional distributions obtained from multiple environments. This problem is closely related
to learning an equivalence class of all causal graphs consistent with the collected interventional data.
The latter problem has been studied in several work, and some of the proposed methods also provide
information about the locations of intervention targets as a byproduct of the returned equivalence
class. These previous methods have several drawbacks such as being limited to linear systems,
requiring a huge number of conditional and invariance tests, or lacking the ability to handle latent
confounders in the systems.

We propose Locating Intervention Target (LIT) algorithm which returns the observed variables that
are intervention targets. LIT has two main phases: the recovery phase and the matching phase. In the
recovery phase, through a contrastive-learning approach, the exogenous noises corresponding to inter-
vention targets are recovered up to some permutation and component-wise invertible transformation2.
In the matching phase, the recovered exogenous noises are matched to their corresponding observed
variables (if any)3 by performing conditional independence (CI) tests. The main contributions of this
paper are:

• For the recovery phase, we provide identifiability results for recovering the exogenous noises
whose distributions change across the environments. In particular, in nonlinear causal models with
exogenous noises belonging to an exponential family, the recovery is possible under some mild
invertibility assumption (Assumption 1(a)) for causally sufficient systems (i.e., there are no latent
confounders). For systems with latent variables, under some further assumptions (Assumption
1(b)), we show that the recovery is still possible (Proposition 1).
• For the matching phase, we prove that LIT algorithm recovers the true intervention targets for

causally sufficient systems using the recovered exogenous noises (Theorem 1). LIT algorithm
requires only quadratic number of CI tests while previous work [JKSB20] requires exponential
number of CI/invariance tests with respect to number of variables in the system. In the presence of
latent confounders, we show that LIT algorithm returns a superset of true intervention targets and
present a graphical characterization for the recovery output (Theorem 2). Unlike previous work,
LIT algorithm allows for latent confounders to change across environments. Moreover, for the
setting studied in the literature (i.e., all latent confounders are not changing across environments),
our recovery output is more informative than the state-of-the-art.

• Experimental results show that LIT outperforms previous work in recovering intervention targets
in the presence of latent confounders or when the underlying SCM is nonlinear.

2 Preliminaries

In this section, we present the notations used in the paper as well as some necessary background.
Upper case letters denote random variables and bold letters indicate sets of random variables. For
ease of notation, we also denote the vectorized form of a set of random variables by bold letters. We
show the cardinality of set X by |X|. We also denote the set {1, · · · , n} by [n].

Structural Causal Models. A structural causal model (SCM)M is a 4-tuple ⟨N,X,F , P (N)⟩
where N is the set of exogenous noises and X is the set of endogenous variables. F represents a
collection of functions F = {fi} such that each endogenous variable Xi ∈ X is determined by
Xi := fi(PAi, Ni) where PAi ⊆ X is the set of parents of Xi and Ni ∈ N is its corresponding
exogenous noise. It is assumed that {Ni} are jointly independent. In a given SCM, we may only
observe a subset of endogenous variables. Thus, we partition X into two disjoint subsets O and
L, where O is the set of observed and L is the set of latent variables. Under the causal sufficiency
assumption, we observe all the endogenous variables, i.e., L = ∅.
The graph G of an SCM is constructed by considering one vertex for each Xi and drawing directed
edges from each parent in PAi to Xj . We assume that the graph G is a directed acyclic graph (DAG),

2In the paper, whenever we say that some exogenous noises can be recovered, it means that they are recovered
up to some permutation and component-wise invertible transformation.

3It is noteworthy that a recovered exogenous noise may correspond to a latent variable. In that case, it should
not be matched with any observed variable.
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i.e., it contains no directed cycle. We say Xj is an ancestor of Xi if there exists a direct path from Xj

to Xi. In graph G, we denote the set of ancestors and children of Xi by AnG(Xi) and ChG(Xi),
respectively. We also consider each variable Xi ∈ X as its own ancestor. The CI relations can be
read from the causal graph using a graphical criterion known as d-separation [Pea88]. For disjoint
subsets of variables U,V,W, we denote the CI relation of U from V given W by U ⊥⊥ V|W.
The analogous d-separation statement, U is d-separated from V given W in graph G, is written as
(U ⊥⊥ V|W)G. In the presence of latent confounders, the causal relationships are often represented
by a maximal ancestral graph (MAG). See [RS02] for the definitions of MAGs and inducing paths.

Soft Intervention. We consider soft interventions on a subset of variables such as W ⊆ X of the
form obtained by replacing structural assignment Xi := fi(PAi, Ni) with Xi := fi(PAi, N

′
i) for all

Xi ∈W. N ′
i is the new exogenous noise corresponding to Xi. Note that in the definition of soft

intervention, neither the set of parents nor causal mechanisms fis change. In some applications, this
operation is more realistic than hard interventions, where intervened variables are forced to take a
fixed value [VSST22]. For instance, in molecular biology, the effect of added chemicals to a cell
cannot be set to some constant value [EM07], or in control theory, for the task of system identification
[Lju98], a mathematical model describing the underlying dynamical system is identified by applying
certain inputs without changing the dynamics of the system.

3 Methodology

3.1 Problem definition

We consider a multi-environment setting comprised of D environments E = {E1, ..., ED}. The
underlying causal DAG and the functional mechanism for generating the variables from their parents
remain the same across all environments while the distributions of exogenous noises may vary due to
some unknown soft interventions. In particular, we have access to a collection of joint distributions
over O, P = {p1(O), · · · , pD(O)} from D environments. We also denote pi(N) as the joint
distribution over the set of exogenous noises N in environment Ei. Let T be the set of variables
whose exogenous noises are changing across environments, i.e., T := {Xi|∃d, d′ ∈ [D], pd(Ni) ̸=
pd′(Ni), 1 ≤ i ≤ n}. These are the variables that are intervened on by some external stimuli and we
seek to learn them. Let NT := {Ni|Xi ∈ T} be the set of exogenous noises whose distributions
are changing across the environments, and TO = T ∩O be the set of observed variables that are
intervened on. Similarly, denote the set of intervention targets in the latent part by TL = T ∩ L.
Note that under causal sufficiency, TO = T. Our goal is to locate interventions, i.e., recover the
unknown observable targets of interventions TO from merely the observational distributions P over
the multiple environments.

In the following, we present our method for learning the intervention targets, which has two main
phases: the recovery phase and the matching phase. In Section 3.2, we present the recovery phase,
which is to recover the set of exogenous noises whose distributions are changing across the environ-
ments (up to some permutation and component-wise invertible transformations). Next, we present
the matching phase in Section 3.3, where we match the recovered noises with the corresponding
variables in X in order to learn TO.

3.2 Recovery phase

For a given SCMM, due to the assumption that the causal graph is a DAG, each observed variable
Xi ∈ X can be written as Xi = gi(N) where function gi only depends on exogenous noises
corresponding to the ancestors of Xi. We collect all these equations in the vector form X = gM(N)
where gM : Rn → Rn and n = |X| is the number of variables in the system. We call function gM,
the “mixing function” of SCMM.

As we have access to a collection of distributions in P , we will exploit the heterogeneity in data to
recover the exogenous noises in NT. Specifically, we utilize a contrastive learning approach. We
observe auxiliary variable U indicating the index of the environment, and train a nonlinear regression
model with universal approximation capability4 for the supervised learning task (Please refer to

4Universal approximation capability refers to the ability to approximate any Borel measurable function to
any desired degree of accuracy. See [HSW89] for more detail.
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Appendix A.1 for more details). We consider a specific exponential family for the distributions of the
exogenous noises (see Appendix A.1 for the definition of the exponential family and the assumptions
on it). To ensure that the noises in NT can be recovered, we require the following assumption:
Assumption 1. For a given SCMM, we assume that either: (a) the corresponding mixing function
gM is invertible, or (b) there exists an invertible function g̃ : R|O| → R|O| such that g̃(O) =
(NT,V) where V ∈ R|O|−|T| is a random vector satisfying V ⊥⊥ U and NT ⊥⊥ V|U .

Assumption 1(a) is standard in contrastive learning algorithms under causal sufficiency assumption.
It is satisfied for all acyclic linear SCMs and nonlinear additive noise models. To extend the results to
the latent confounder setting, we added Assumption 1(b). In particular, vector V is the recovered
part that is invariant across the environments and is independent of NT given the index of the
environment. It corresponds to a function of exogenous noises whose distributions do not change
across the environments.
Proposition 1. Assume that min(D − 1, |O|) ≥ |T| (Recall that D is the number of environments
and O and L are the set of observed and latent variables in the system, respectively). By utilizing the
contrastive-learning approach, the exogenous noises in NT can be recovered up to some permutation
and component-wise strictly monotonic transformations with measure one in the following two
settings: 1) L = ∅ under Assumption 1(a). 2) L ̸= ∅ under Assumption 1(b).

Please refer to Appendix A for a detailed description of the contrastive learning approach and extra
discussion about when Assumption 1 is satisfied.

3.3 Matching phase

Throughout the matching phase, we assume that the exogenous noises in NT are recovered up
to some permutation and component-wise invertible transformations. Denote the recovered noise
corresponding to the noise Ni ∈ NT as Ñi (i.e., Ñi is an invertible transformation of Ni), and denote
the collection of all the recovered noises as ÑT. Note that we cannot learn the correspondence of the
recovered noises to the true noises due to permutation indeterminacy according to Proposition 1. In
fact, the goal of the matching phase is to recover the mapping between the recovered noises in ÑT

and the corresponding exogenous noises in NT.5

We show how to use ÑT from the recovery phase to recover the intervention target. In Section 3.3.1,
we define a new notion of faithfulness assumption called T-faithfulness based on the augmented graph.
In Section 3.3.2, we study causally sufficient models. We present the conditions and the algorithm
for recovering the intervention target, and show that the intervention target set T can be uniquely
identified with quadratic number of CI tests. We also study the model with latent confounders in
Appendix B.2.

3.3.1 T-faithfulness assumption

For a given SCMM with the causal graph G and intervention targets T, we construct an augmented
graph GT as follows. For each variable Xi ∈ TO with corresponding exogenous noise Ni (recall
that TO and TL are the sets of intervention targets in the observed and latent variables, respectively),
we add vertex Ni and edge Ni → Xi to GT. Further, for each latent confounder Xl ∈ TL with
corresponding recovered noise Nl, we replace Xl with Nl since Xl can be recovered up to an
invertible transformation. We denote the set of noises corresponding to the variables in TL by NTL

.
Following this construction, variables in GT consist of all changing noises in NT, and all variables
in X \TL.

It can be shown that the joint distribution p(X \TL,NT) satisfies Markov property with respect to
graph GT (see Appendix B.1). However, in order to infer the graphical properties of the augmented
graph from only observed variables O and the recovered noises ÑT, we need a form of faithfulness.
Assumption 2 (T-faithfulness). The model is T-faithful to the augmented graph GT, in the sense
that for any noise Ni ∈ NT, observed variable Xk ∈ O, and disjoint sets W1 ⊆ O \ {Xk},

5Due to the permutation indeterminacy, there exists a one-to-one mapping σ that maps each noise in NT

to a distinct noise in ÑT. For notation simplicity, we denote σ(Ni) ∈ ÑT as Ñi for each Ni ∈ NT. Since
each noise Ni ∈ NT corresponds to a variable Xi ∈ T, the goal of the matching phase is to learn the inverse
mapping σ−1 that maps the recovered noises to the variables in T.
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W2 ⊆ NT \ {Ni}: (Ni ⊥⊥ Xk|W1,W2)GT
if and only if Ñi ⊥⊥ Xk|W1,W̃2, where Ñi is an

arbitrary invertible transformation of Ni, and W̃2 = {Ñj |Nj ∈W2}.

Assumption 2 implies that for any changing exogenous noise Ni ∈ NT and observed variable Xj ,
the recovered noise Ñi is (marginally or conditionally) dependent on Xj if and only if Ni and Xj are
d-connected in GT. Therefore, given observed variables and the recovered noises, we can construct
the indicator set Ii := {Ñj ∈ ÑT|Ñj ⊥̸⊥ Xi} for each variable Xi in O, which is the set of recovered
noises that are dependent of Xi. Under Assumption 2, the indicator set Ii corresponds to all the
noises in NT that are ancestors of Xi in GT, i.e., AnGT

(Xi) ∩NT. Define I as the collection of
sets {Ii|i ∈ [n]}. In the following, we show how to identify the intervention targets by matching the
recovered noises with the observed variables, based on the indicator sets and a limited number of
extra CI tests.

3.3.2 Matching phase under causal sufficiency

For each variable Xi, define the the possible parent set Si as the set of variables whose indicator set is a
strict subset of Ii, i.e., Si := {Xj |Ij ⊊ Ii, 1 ≤ j ≤ n}. Define the residual setNi as the set of noises
in Ii that does not belong to any indicator set of the variables in Si, i.e. Ii \ ∪j:Xj∈Si

Ij . Si includes
a subset of the ancestors of Xi, and no descendants of Xi are included in Si. Further, Ni represent
the noises in Xi that do not affect Xi through variables in Si. Under causal sufficiency assumption,
|Ni| is either 0 or 1 (see Appendix C.3). The following proposition provides the conditions for
checking whether a variable Xi is in the intervention target set or not given the indicator sets I and
Si. Equipped with this proposition, we devise LIT Algorithm (see Algorithm 1) which recovers T
under the causal sufficiency assumption.

Proposition 2. Under causal sufficiency and Assumption 2, for each variable Xi, the following
statements hold:

(I) Xi ̸∈ T if the residual set is empty, i.e., Ni = ∅.

(II) If Ni ̸= ∅ and Ii is unique in I, then Xi ∈ T.

(III) If Ni ̸= ∅ and Ii is not unique, let Xi = {Xi1 , · · · , Xip}, for some p ≥ 2, be the set of
all variables with the same indicator sets as Xi, including Xi itself.6 Suppose Ni = {Ñl}
for some Ñl ∈ ÑT. Then, the variable Xik satisfying the following condition is the only
variable from Xi that is in T, i.e., Xik ∈ T if all other variables in Xi are independent of Ñl

conditioned on Xik and Si.

Ñl ⊥⊥ Xij |{Xik} ∪ Si, for all 1 ≤ j ≤ p, j ̸= k. (C1)

!!
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Figure 1: An example of SCM: In-
tervention targets T = {X1, X2,
X5} are shown by red circles.

Recall that one observed variable is in the intervention target set
T if and only if its corresponding exogenous noise is recovered
in ÑT. The statement in (I) holds because if Xi ∈ T, then Ñi

cannot appear in Ij for any non-descendant Xj of Xi. When
Ni ̸= ∅, this means that the only noise Ñl ∈ Ni is either the
exogenous noise of Xi, or the exogenous noise of some ancestor
of Xi whose indicator set is the same as Ii. We can then use
conditions (II) and (III) to further distinguish between these two
cases. If there are no other variables with the same indicator
set (i.e., Ii is unique), then Xi ∈ T. Otherwise, among the
variables with the same indicator set, there is only one variable
Xik that corresponds to Ñl and belongs to the intervention target set, and the rest are descendants
of Xik . Herein, we use (C1) to find such Xik , as given Xik and Si, Ñl becomes independent from
Xij for all j ̸= k under T-faithfulness assumption. The following example illustrates how the the
conditions in Proposition 2 can be used to recover T.

6As all the variables in Xi have the same indicator set, their corresponding possible parent sets Sik and
residual sets Nik are also equal. In the statement of the proposition, we use Ii, Si, Ni to denote the indicator
set, possible parent set and residual set corresponding to any variable in {Xi1 , · · · , Xip}.
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Figure 2: Comparison of LIT algorithm with previous work in locating intervention targets.

Example 1. Figure 1 depicts the augmented graph of an SCM in which T = {X1, X2, X5} (indicated
by red circles). In the recovery phase, we recover three noises Ñ1, Ñ2, Ñ5, which are invertible
translations of N1, N2, N5, respectively. Note that we do not know the correspondence of the noises
to the variables as there are permutation indeterminacy. The indicator sets for all the variables are:
I1 = {Ñ1}, I2 = {Ñ2}, I3 = {Ñ1, Ñ2}, I4 = ∅, I5 = I6 = I7 = {Ñ1, Ñ2, Ñ5}. For X1 and X2,
the condition in (II) is satisfied. Thus, they are in T. As for X3 and X4, the condition in (I) holds
and therefore they are not in T. For the variables in {X5, X6, X7}, the condition in (III) holds and
the only variable satisfying the condition in (C1) is X5 as Ñ5 is independent of X6 and X7 given
S5 ∪ {X5} where S5 = {X1, X2, X3, X4}.

Algorithm 1: LIT algorithm

1 Obtain ÑT and I; U← X; K← ∅;
2 for Xi ∈ X do
3 if Ni = ∅ then U← U\{Xi};
4 else if (A) holds then U← U\{Xi};

// only with latent confounder
5 else if Ii is unique then K← K ∪ {Xi},

U← U\{Xi};
6 Partition U to disjoint subsets U1, · · · ,Ur

according to the indicator sets;
7 for Ui ∈ {U1, · · · ,Ur} do
8 KUi ← Find Xik ∈ Ui satisfying (C1)

under causal sufficiency (resp. remove
the subset of variables in Ui satisfying
(C2) in the presence of latent
confounders);

9 K← K ∪KUi
;

10 return K

Based on Proposition 2, we propose LIT al-
gorithm (see Algorithm 1) which returns a
candidate intervention set K. Specifically, we
first check if a variable can be added to or ex-
cluded from K according to (I) and (II). We
then partition the remaining variables in U
into disjoint subsets (which correspond to the
collection of all Xi in (III)), and find the candi-
date in each set (denoted by KUi

) using con-
dition (III). Note that LIT algorithm only re-
quires quadratic number of CI tests: O(n|T|)
for constructing the indicator set, and at most
O(n|T|) for checking (C1). This is a signif-
icant reduction from the exponential number
of independence/invariance tests with respect
to n in the literature [JKSB20, MMC20].

Theorem 1. Under causal sufficiency and T-
faithfulness assumption (Assumption 2), Al-
gorithm 1 uniquely identifies the intervention
target set T, i.e., K = T.

Lastly, we extend our results from the causally sufficient case to the case where latent confounders are
present in Appendix B.2. Unlike the former case, the set of observed intervention targets, TO, is not
always uniquely identifiable. However, we provide conditions (Proposition 3) for finding variables
that does not belong to TO, and update the LIT algorithm based on the new conditions (lines 4 and 8).
We then give graphical characterization of the recovered candidate intervention target set K through
auxiliary graph in Definition 2. We show that K is always a superset of TO, and it is always a subset
of the recovery output of existing algorithms (e.g., [JKSB20]). See Appendix B.2 for more details.

4 Experiments

We evaluated the performance of LIT algorithm on randomly generated models. We considered the
following three settings, with different numbers of environments D = {16, 32} for data generation:
(1) Linear Gaussian model under causal sufficiency assumption; (2) Nonlinear model under causal
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sufficiency assumption; (3) Linear Gaussian model in the presence of latent confounders. We
considered the following methods in our empirical studies: 1- LIT (our proposed method); 2-
PreDITEr algorithm [VSST22] which allows for latent confounders (that are not in T) but assumes
the model to be linear; 3- UT-IGSP algorithm [SWU20] which works for both linear and nonlinear
SCMs under merely causal sufficiency; 4- FCI-JCI123 algorithm in [MMC20] which allows for both
latent confounders and nonlinearity in the model.

We repeated each setting for 40 times, and reported the average F1-score in recovering TO for each
setting. The results are shown in Figure 2. Note that FCI-JCI is executable only under the first two
settings with D = 8 due to huge run times. In the first setting, as we expected, PreDITEr has the best
performance as it is designed specifically for linear Gaussian SCMs. UT-IGSP and LIT algorithm
have decent performances, while FCI-JCI123 does not perform well. In the second setting, LIT
and UT-IGSP can both recover the intervention targets with high accuracy. On the contrary, the
performance of PreDITEr becomes worse as it is not designed for nonlinear models. Finally, in the
third setting, in the presence of latent confounders, the performance of UT-IGSP becomes much
worse because it cannot handle any latent confounders. Meanwhile, LIT outperforms PreDITEr and
UT-IGSP for various numbers of variables in the system. Note that the best F1-score that can be
achieved by any algorithm is strictly less than one as there are intervention targets that can never be
recovered. Lastly, we note that LIT algorithm significantly reduces the number of CI tests performed:
LIT algorithm takes at most 80 CI tests while PreDITER requires up to 30000 PDE estimates.

5 Conclusions

We addressed the problem of identifying unknown intervention targets in a multi-environment setting.
Our two-phase algorithm recovers the exogenous noises and matches them with corresponding
endogenous variables. Under the causal sufficiency assumption, our algorithm identifies uniquely
the intervention targets. In the presence of latent confounders, we provided a candidate intervention
target set which is more informative than previous work. Experiment results support the advantages
of the proposed algorithm in identifying intervention targets. As a future work, in the recovery phase,
it is an interesting direction to strengthen the identifiability result of non-linear SCM with latent
variables which would broaden the applicability of our method to more complex systems.
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A Further discussion on the recovery phase

A.1 Detailed description about contrastive learning approach and nonlinear ICA

Nonlinear ICA refers to an instance of unsupervised learning, where the goal is to learn the indepen-
dent components/features that generate multi-dimensional observed data. In particular, suppose that
X = (X1, · · · , Xn), is a n-dimensional vector that is generated from n independent components
N = (N1, · · · , Nn). Let g : Rn → Rn be a smooth and invertible function transforming the latent
components (aka sources) to the observed data, i.e., X = g(N). Function g is called the “mixing
function”. The goal in nonlinear ICA is to recover the inverse function g−1 and also the latent
components in N.

We briefly describe the general approach in recent advances in nonlinear ICA [HST19, KKMH20,
SRK20] for the case where no additional assumptions are made about the class of mixing functions.
The main idea is to exploit non-stationarity in the data to recover the independent components. In
particular, each component Ni depends on some auxiliary variable U and it is independent of other
components given U , i.e., log p(N|U) =

∑
i qi(Ni|U), where qis are some functions. The auxiliary

variable U could be an index of a time segment or the index of some environments where we obtained
samples from variables in X. In this formulation, the distributions of components can change across
the environments or time segments. It is often assumed that the distribution of each Ni given U is a
member of the exponential family.
Definition 1. A random variable Ni belongs to the exponential family of order one given a random
variable U if its conditional probability distribution function (pdf) can be written as: p(Ni|U) =
Qi(Ni)
Zi(U) exp (λi(U)q̃i(Ni)) where Qi, Zi, λis, and q̃is are some scalar-valued functions.

Example 2. For q̃i(Ni) = −N2
i /2, and Qi(Ni) = 1, the above conditional pdf reduces to Gaussian

whose variance is changing across the environments.

The general approach to exploit non-stationarity in data is to use contrastive learning to transform
the unsupervised learning problem in nonlinear ICA to a supervised learning task. Specifically, a
classifier is trained to discriminate samples of a real dataset from their randomized version, i.e.,
X̃ = (X, U) versus X̃′ = (X, U ′), where U ′ is drawn randomly from the distribution of U , which
in practice can be obtained by randomized permutations of the samples of U .

In this approach, a nonlinear regression model is trained with the following form: r(X, U) =
h(X)Tv(U) + a(X) + b(U) where h(X) : Rn → Rn, v(U) : R → Rn, and a, b are some scalar-
valued functions. The model classifies a sample coming from the real data set with probability
1/(1 + exp(−r(X, U))). It has been shown in several work such as in [HST19, KKMH20] that if
all the components are changed enough across the environments, then the independent components
can be recovered from h(X) up to some permutation and component-wise nonlinear transformation.

How constrastive learning approach above is applied in our work As we have access to a
collection of distributions in P , we will exploit the heterogeneity in data to recover the exogenous
noises in NT. Let auxiliary variable U denote the index of the environment and assume that the
exogenous noises belong to the exponential family in Definition 1. Moreover, assume that λis
corresponding to any Ni ∈ NT are randomly generated across the environments and q̃i(Ni)s are
strictly monotonic functions of |Ni|. We utilize a contrastive learning approach similar to what we
discussed above. We train the nonlinear regression model r(O, U) = h(O)Tv(U) + a(O) + b(U)
with universal approximation capability for the supervised learning task of discriminating (O, U)
from (O, U ′) where h(O) : R|O| → R|O|, v(U) : R → R|O|, and a(O), b(U) are some scalar-
valued functions.

A.2 Additional discussion on Assumption 1

Assumption 1(a). We provide two examples on when Assumption 1(a) is satisfied. Note that
Assumption 1(a) requires that |O| = n = |X|, which indicates that the model is causally sufficient.

First, for linear SCMs, the structural equations can be written in vector form as X = BX+N where
B is n× n matrix. Rewrite this equation as X = (I−B)−1N. Therefore, the corresponding mixing
function is given by (I−B)−1 and the above assumption is satisfied if and only if I−B is invertible,
which is already satisfied when the causal graph is a DAG.
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Second, for nonlinear SCMs, invertibility of the mixing function is satisfied when the model is an
additive noise model, which can be written as Xi = fi(Pai) +Ni. In this case, the inverse function
that maps N to O can be constructed according to the following equation: Ni = Xi− fi(Pai). Note
that the invertibility of the mixing function does not depend on fi. This result can be generalized into
the following remark:

Remark 1. For a nonlinear SCM Xi = fi(Pai, Ni), Assumption 1(a) is satisfied if the model is
acyclic, fi is continuous, and the partial derivative ∂fi/∂Ni is strictly negative or positive for all
Xi ∈ X and any values of Pai.

We note that the condition in Remark 3 can be satisfied when fi in the data generating model is
designed as a multi-layer perceptron with ReLU activation function, where all model weights are
positive.

Assumption 1(b). For Assumption 1(b), we note that if the SCM is a linear non-Gaussian model,
i.e., linear SCM with non-Gaussian exogenous noises, and latent confounders are present, then
Assumption 1(b) implies that: (1) All intervention targets must be observed variables, i.e., T ⊆ O;
and (2) Latent variables cannot have children in T. In other words, T can only include observed
variables that do not have latent parents. Please see Appendix C.2 for the proof. However, we
observed experimentally that if the SCM is linear Gaussian within each environment, then we can
recover the noises in NT while allowing latent confounders to be in T using linear ICA methods.

B Further discussions on the matching phase

B.1 Markov property in the augmented graph GT

For the given SCMM, we construct a modified version M̃T as follows. We add NT to the set of
endogenous variables inM and remove them from the set of exogenous noises. Moreover, for any
Xi ∈ T, we change its structural assignment as follows: Xi := f̃i(P̃Ai) = fi(PAi, Ni) where f̃i
is the new causal mechanism of relating it to its new set of parents P̃Ai = PAi ∪ {Ni}. For each
variable Ni ∈ NT, we add an exogenous noise to M̃T and set the value of Ni to its corresponding
exogenous noise. Please note that with this construction, the joint distribution over X entailed by
SCM M̃T is exactly the same as the one entailed by original SCMM. With the exact same argument
in the proof of Theorem 1.4.1 in [Pea09], it can be shown that the distribution p(X\TL,NT) entailed
by SCM M̃T satisfies the local Markov property as the value of each observed variable is uniquely
determined given the values of its parts and the corresponding exogenous noise. Moreover, in causal
DAGs, the local Markov property implies the Global Markov property [GP90]. Hence, the joint
distribution p(X\TL,NT) satisfies Markov property with respect to its corresponding causal graph,
GT.

B.2 Matching phase in the presence of latent confounders

We extend our results from causally sufficient case to the case where latent confounders are present.
Unlike previous work [JKSB20, VSST22], we allow latent confounders to be in T. In this case,
an exogenous noise in NT may correspond to either an observed variable or a latent confounder,
and the task is to recover the observed variables that are in the intervention target set, i.e., TO.
Unlike the causally sufficient case, TO is not always uniquely identifiable. However, by modifying
the LIT algorithm according to the conditions in Proposition 3 below, the algorithm can recover a
superset K of TO. Proposition 3 provides conditions for finding variables that do not belong to TO.
In particular, compared with Proposition 2, the statement in (I) still holds, while condition (III) is
replaced by condition (III-L). Further, the statement in (II) does not hold anymore, and we have one
extra condition (IV) for excluding variables from TO.

Proposition 3. In the presence of latent confounders, under Assumption 2, for each observed variable
Xi, the following statements hold:

(I) Xi ̸∈ TO if the residual set Ni = ∅.
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(IV) Xi ̸∈ TO if Ni ̸= ∅, and every recovered noise in the residual set Ni belongs to at least one
other indicator set Ijl , where Ijl is not a strict superset of Ii:

∀Ñl ∈ Ni, ∃jl s.t. Ñl ∈ Ijl , and Ii ̸⊆ Ijl . (A)

(III-L) IfNi ̸= ∅ and condition (A) does not hold, let Xi = {Xi1 , · · · , Xip} be the set of all variables
with the same indicator set as Xi, including Xi itself. Then for each j ∈ [p], Xij ̸∈ TO if it is
independent of some recovered noise Ñl in Ni, conditioned on certain subsets of observed
variables in Xi, Si and all other recovered noises in Ii:

∃K ⊆ [p] \ {j}, ∃S ⊆ Si, ∃Ñl ∈ Ni s.t.

Ñl ⊥⊥ Xij |
(
∪k′∈KXik′

)
∪ S ∪

(
Ii \ {Ñl}

)
.

(C2)

The statement in (IV) holds because if Xi ∈ TO, then its corresponding exogenous noise Ñi must
be in Ni. Any variable (such as Xjl) that is dependent on Ñl must be a descendant of Xi, and
hence have Ii ⊆ Ijl . For (III-L), similar to the argument for condition (III), there is at most one
variable (say Xik ) in Xi that belongs to TO. Moreover, if Xik ∈ TO, then all other variables in
Xi are its descendants. The recovered noises in Ni cannot be conditionally independent of Xik , as
they correspond to either Xik or some latent confounder that is a parent of Xik . Therefore, if an
observed variable Xij ∈ Xi is conditionally independent of a recovered noise inNi given some other
variables in the system, then it cannot be an intervention target. Note that under the causal sufficiency
assumption, Xik and Si are sufficient for the conditioning set. Therefore condition (III-L) reduces to
(III). When latent confounders are present, Xik and Si may not be sufficient. However, condition
(III-L) states that in order to perform such a CI test, it suffices to consider subsets of Xi\{Xij} and Si

in the conditioning set as their union contains all the ancestors of Xij among the observed variables.

Based on Proposition 3, we update the LIT algorithm in the presence of latent confounders. We
check condition (IV) in line 4, and replace condition (III) by (III-L) in line 8. We keep line 5 in the
latent case. In fact, if Xi is not ruled out by conditions (I) and (IV), it is added to K if Ii is unique
as it cannot be ruled out by condition (III-L) either. However, the uniqueness of the indicator set
does not necessarily imply that the variable belongs to TO. Lastly, note that under causal sufficiency
assumption, condition (IV) is automatically satisfied, and condition (III-L) reduces to condition (III).
Hence the algorithm remains consistent with the causally sufficient case.
Example 3. Consider an SCM whose corresponding causal graph is depicted in Figure 3(a). It
includes three observed variables X1, X2, X3 and a latent confounder XH , where T = {X1, X2}
(shown in red). Suppose we recovered two noises Ñ1, Ñ2 that correspond to X1, X2, respectively.
We have I1 = {Ñ1} and I2 = I3 = {Ñ1, Ñ2}. Following the LIT algorithm, we find that I1 is unique
and conditions (I) and (IV) do not hold for X1. Therefore X1 ∈ K. Further, Ñ2 ⊥⊥ X3|X1, X2,
and Ñ2 ̸⊥⊥ X2|S for all S ∈ {∅, {X1}, {X3}, {X1, X3}}. Therefore X2 ∈ K, X3 ̸∈ K according
to condition (III-L). In conclusion, we have K = {X1, X2}. Please note that K could be a strict
superset of TO in some cases (see Example 4).

In the following, we provide a theoretical analysis of the candidate intervention target set K returned
by LIT algorithm in the presence of latent confounders. In particular, we show that K contains
the true intervention targets in the observed variables (i.e., TO). Further, we provide a graphical
characterization of what other types of variables are also included in the set K, using the notion of
auxiliary graph which is defined as follows.
Definition 2 (Auxiliary graph). For each variable Xi, denote I0(Xi) as AnGT

(Xi) ∩NT. Given a
SCM and its corresponding augmented graph GT, the auxiliary graph Aux(GT) is constructed from
GT as follows:

(a) For each Xi ∈ TO with its corresponding exogenous noise Ni, add the edge Ni → Xj if (i)
there is an inducing path between them relative to L \TL in GT (i.e., there is an edge between
Ni and Xj in the MAG corresponding to GT) , and (ii) I0(Xi) = I0(Xj).

(b) (i) For each Nl ∈ NT (noise that corresponds to a variable in TL) and each of its child Xi,
keep the edge Nl → Xi if for any other child Xj of Nl in GT, I0(Xi) ⊆ I0(Xj). Otherwise
remove the edge Nl → Xi. (ii) For each remaining edge Nl → Xi, add (remove) the edge
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Figure 3: (a) The causal graph of the SCM considered in Example 4. (b) The corresponding auxiliary
graph according to Definition 2. (c) The MAG of the augmented graph defined in [JKSB20], which
indicates the output of their algorithm. (d) The causal graph of an alternative SCM that has the same
auxiliary graph.

Nl → Xk if there is an (no) inducing path between Xk and all (some) parents of Xi in NT

relative to L \TL in GT, and I0(Xk) = I0(Xi).

Theorem 2. In the presence of latent confounders and Assumption 2, the candidate intervention
target set K returned by LIT algorithm is the set of observed variables that are children of NT in
Aux(GT), i.e., K = ∪Ni∈NT

ChAux(GT)(Ni).

Theorem 2 gives a graphical characterization of the recovered candidate intervention set K. In
particular, according to Definition 2, TO is a subset of K. This is because the edge from Xi ∈ TO to
its corresponding exogenous noise Ni in GT is not removed. This means that LIT algorithm returns
a superset of TO. Further, two other types of variables are added to K according to the conditions in
part (a) and part (b) of Definition 2, respectively.

Remark 2. We can make the following observations from Theorem 2. First, under the causal
sufficiency assumption, Theorem 2 implies that TO can be uniquely identified. This is because no
edges are added to Aux(GT) compared with GT according to Definition 2. Second, if all latent
variables are not intervention targets (i.e., T = TO), then our identifiability result is stronger than
the existing results in [JKSB20, VSST22]. In particular, they showed that in this case, TO can only
be identified up to the neighbors of NT in the MAG corresponding to GT. We improve their results
by adding part (a)(ii) in Definition 2, due to the recovery of ÑT. See Example 4 below.

Example 4. Consider the same example as in Example 3. Following the results in [JKSB20, VSST22],
the MAG of the augmented graph defined in [JKSB20] is shown in Figure 3(c). The recovery output of
their algorithms is {X1, X2, X3} as all the observed variables are the neighbor of the F -node defined
in their work. On the contrary, LIT algorithm has a more accurate recovery of the intervention targets.
Specifically, the auxiliary graph is shown in Figure 3(b). The edge from N1 to X3 is not added since
I1 ̸= I3 (which violates part (a)(ii) in Definition 2), and the edge from N2 to X3 is not added because
there is no inducing path (which violates part (a)(i)). Therefore K = {X1, X2}, which is the same as
the output in Example 3. Lastly, note that K is not always equal to TO. Consider the causal graph
in Figure 3(d) where T = {XH1

, X2}. Its corresponding auxiliary graph is exactly the one in Figure
3(b). However, TO = {X2} ⊊ {X1, X2} = K, and we cannot distinguish whether X1 or XH1

is
the intervention target.

C Proofs

C.1 Proof of Proposition 1

We first prove the statement of proposition for the case of L = ∅. With infinite samples and a model
with universal approximation capability, after training, the regression model will equal the difference
of the log-densities in the two classes:

r(X, U) = log p(N, U) + log |Jg(X)| − log p(N)− log p(U)− log |Jg(X)|
= log p(N|U)− log p(N)

=
∑
i

logQi(Ni)− logZi(U) + q̃i(Ni)λi(U)− log p(N).
(1)

12



If we consider the form of r(X, U) = h(X)Tv(U) + a(X) + b(U) for r(X, U), we can set the
functions h(X), v(U), a(X), and b(U) such that it is equal to the right hand side of above equation.
In particular, we can have the following equality∑

i

hi(X)vi(U)+a(X)+b(U) =
∑
i

logQi(Ni)− logZi(U)+
∑
i

q̃i(Ni)λi(U)− log p(N), (2)

with the following possible solution:

hi(X) = q̃i(Ni), vi(U) = λi(U), a(X) =
∑
i

logQi(Ni)− log p(N), b(U) = −
∑
i

logZi(U).

(3)

The random variable U is equal to d, if the sample is drawn from the environment Ed where
1 ≤ d ≤ D. Let P be D× n matrix where d-th row is equal to [λ1(d), · · · , λn(d)]. We collect q̃is in
the vector q̃(N) = [q̃1(N1), · · · , q̃n(Nn)]

T . We also define the matrix V where d-th row is equal to
[v1(d), · · · , vn(d)]. Finally, we collect −

∑
i logZi(U)− b(U) for different values of U in a vector

Z. Based on these definitions, we have:

Vh(X) = Pq̃(N) + Z+ 1

(∑
i

logQi(Ni)− log p(N)− a(X)

)
, (4)

where 1 is a D × 1 vector of all ones. If from both sides of the above equation, we subtract the first
row from the others,

V′h(X) = P′q̃(N) + Z′, (5)
where V′,P′, and Z′ denote the resulting matrices after subtraction corresponding to V,P, and Z,
respectively.

The columns corresponding to exogenous noises that are not changing across environments are zeros
in P′. Thus, we can remove these columns from P′ and also the corresponding entries in q̃(N). We
denote the resulting matrix and vector by P′′ and q̃(NT), respectively. Hence, we can rewrite the
above equation as follows:

V′h(X) = P′′q̃(NT) + Z′. (6)
As λi(U)s are generated randomly across the environments and D ≥ |T|+1, P′′ is full column rank
with measure one. Therefore, we have:

q̃(NT) = (P′′)†V′h(X)− Z′′, (7)

where (P′′)† is pseudo-inverse of matrix P′′ and Z′′ = (P′′)†Z′. Since we know that the entries of
q̃(NT) are linearly independent, (P′′)†V′ is full row rank. Moreover, qi(Ni)s are non-Gaussian as
they are bounded from above to ensure integrability. Thus, we can recover q̃(NT) from h(X) by
solving an under-complete linear ICA problem.

Now, let us assume that there are some latent variables in the system, i.e., L ̸= ∅. As we know that
there exists an invertible function g̃ such that g̃(O) = (NT,V), we have:

r(O, U) = log p(O, U)− log p(O)− log p(U)

= log p(O|U)− log p(O)

= log p(NT,V|U) + log |Jg̃(O)| − log p(NT,V)− log |Jg̃(O)|
= log p(NT|U)− log p(NT),

(8)

where the third equality is due to the existence of invertible function g̃ and the last equality is
according to the assumptions that NT ⊥⊥ V|U , V ⊥⊥ U . Please note that these two assumptions
imply that NT ⊥⊥ V. Similar to the causally sufficient case, based on the form of r(O, U), we can
write the following equation:∑

j

hj(O)vj(U)+a(O)+b(U) =
∑

i:Xi∈T

logQi(Ni)−logZi(U)+q̃i(Ni)λi(U)−log p(NT). (9)

where h(O) : R|O| → R|O|. Let M be D × |T| matrix where d-th row is equal to
[λ1(d), · · · , λ|T|(d)]. We collect q̃is in the vector q̃(NT). We also define the matrix W where

13



d-th row is equal to [v1(d), · · · , v|O|(d)]. Finally, we collect −
∑

i:Xi∈T logZi(U) − b(U) for
different values of U in a vector Z. Based on these definitions, we have:

Wh(O) = Mq̃(NT) + Z+ 1

( ∑
i:Xi∈T

logQi(Ni)− log p(NT)− a(O)

)
, (10)

where 1 is a D × 1 vector of all ones.

Now, if from both sides of the above equation, we subtract the first row from the others, we have

W′h(O) = M′q̃(NT) + Z′, (11)

where V′,L′, and Z′ denote the resulting matrices after subtraction corresponding to W,M, and Z,
respectively.

As λi(U)s are generated randomly across the environments and D ≥ |T| + 1, M′ is full column
rank with measure one. Therefore, we have:

q̃(NT) = (M′)†W′h(O)− Z′′, (12)

where (M′)† is pseudo-inverse of matrix M′ and Z′′ = (M′)†Z′. Since we know that the entries of
q̃(NT) are linearly independent, (M′′)†W′ is full row rank. Moreover, qi(Ni)s are non-Gaussian as
they are bounded from above to ensure integrability. Thus, we can recover q̃(NT) from h(O) by
solving an under-complete linear ICA problem.

So far, we showed that the recovery phase can be performed up to some component-wise nonlinear
transformation (not necessarily an invertible one). However, similar to Corollary 2 in [HM16], it can
be shown that from q̃(NT) and the observed vector O, the exogenous noises in NT can be recovered
up to some strictly monotonic transformation if each function q̃i(Ni) is a strictly monotonic function
of |Ni|.

C.2 Regarding Assumption 1(b) on Linear non-Gaussian Models

In the following we prove that, in the linear non-Gaussian model (i.e., linear SCM with non-Gaussian
exogenous noises) with the causal graph G, if L ̸= ∅, then the conditions in Proposition 1 imply that:
(i) T ⊆ O; (ii) For each latent variable Hi ∈ L, ChG(Hi) ∩T = ∅, i.e., Hi cannot have children in
T where ChG(Hi) is the children of Hi.

The linear SCM has the following matrix form:

L = NL; O = AO+A′L+NO, (13)

where NL and NO represent the vector of exogenous noises associated with latent and observed
variables, respectively. We also denote the exogenous noises whose distributions are not changing
across the environments by NTc . A represents the direct causal relationships among observed
variables and A′ represents the direct causal relations from latent to observed variables. Note that if
we permute the variables such that X = [L,O], then the adjacency matrix B after the same (row and
column) permutation is [0,0;A′,A]. Under the acyclicity assumption, A can be permuted into a
strictly lower triangular matrix. Following (13), O can be written as a linear combination of the noise
terms in (NL,NO):

O = [D C]

[
NL

NO

]
, (14)

where D = (I−A)−1A′ and C = (I−A)−1. Denote W = [D C], which represents the total
causal effects (i.e., sum of product of path coefficients) among variables [SGSH00]. If all exogenous
noises are non-Gaussian and no two columns of W are linearly dependent of each other, then W can
be recovered up to permutation and scaling of the columns using overcomplete ICA. Given that some
variables in X belong to T, we can rewrite (14) as follows:

O = [WT WTc ]

[
NT

NTc

]
, (15)

where WT and WTc represent the submatrix of W that correspond to the exogenous noises in NT

and NTc , respectively.

14



If the conditions in Proposition 1 hold, then there exists an invertible matrix G, such that

GO = [GWT GWTc ]

[
NT

NTc

]
=

[
NT

V

]
. (16)

Partition G into [G1;G2], where G1 ∈ R|T|×n represent the first |T| rows of G, and G2 ∈
R(n−|T|)×n represent the remaining rows. Therefore, according to (16), we have

G1WTNT +G1WTcNTc = NT. (17)

We first show that if all noises in NT and NTc are mutually independent and non-Gaussian, then
(17) implies that G1WT = I, and G1WTc = 0. This is because for each noise Ni ∈ NT, i ∈ [|T|],
according to (17), Ni can be written as a linear combination of exogenous noises in NT∪NTc . Since
all noises are mutually independent and non-Gaussian, according to Darmois-Skitovitch theorem
[Dar53, Ski53], the coefficient of any Nj , j ̸= i on Ni must be zero.

For each exogenous noise N ∈ NT ∪NTc , denote its corresponding column vector in W in (15)
as wN . Then G1WT = I, G1WTc = 0 is equivalent to: For each exogenous noise N and its
corresponding column vector wN , G1wN = 0 if N ∈ NTc , and G1wN = eN if N ∈ NT, where
eN is the basis (one-hot) vector where the entry corresponding to N is one and the rest are zero.
Further, for each latent variable Hi ∈ L, we have

wNHi
=

∑
j:Xj∈ChG(H)

a′jiwNXj
,

where a′ji represent the (j, i)-th entry of matrix A′ in (13). This is because for any observed variable
X ∈ O, the total causal effect of Hi on X can be written as summation of the total causal effect
from each child of Hi to X multiplied by the direct causal effect from Hi to this child (i.e., a′ji).
Therefore, we have

G1wNHi
=

∑
j:Xj∈ChG(Hi)

a′jiG1wNXj
. (18)

Since G1wN corresponds to either zero vector or basis vector, and different noises in NT correspond
to different basis vectors, (18) implies that G1wNHi

= 0, and G1wNXj
= 0 for all latent variable

Hi ∈ L, and all Xj ∈ ChG(Hi). This means that T only includes observed variables that do not
have latent parents.

C.3 Proof of Proposition 2

Consider any recovered noise Ñi ∈ ÑT. Without loss of generality, suppose that Ñi corresponds to
Xi. We first show that Ñi only depends on the descendants of Xi. First, for any node Xj ∈ Des(Xi),
the path Ni → Xi → · · · → Xj in graph GT is not blocked without conditioning on any other
variable and Ñi ⊥̸⊥ Xj . Moreover, for any Xj which is a non-descendent of Xi, there is always a
collider on any path between Xj and Ni and thus it is blocked. Hence, we have: Ñi⊥⊥ Xj .

Remark 3. Based on what we proved above, we can imply that Ii contains only the noises in ÑT

whose corresponding variables are ancestors of Xi.
Remark 4. For any two variables Xi, Xj , if we have Ij ⊊ Ii , then Xj cannot be a descendent of
Xi. Since if Xj is a descendent of Xi, then based on Remark 3, we can conclude that Ii ⊆ Ij which
violates our assumption.

Now, we prove the three statements in the proposition based on the above two remarks:

(I) By contradiction, suppose that Xi is in T. If for a variable Xj , we have Ij ⊊ Ii, then based on
Remark 4, it cannot be a descendent of Xi. Now if the condition in (I) satisfies, then there exists a
set such as Ij , where j ∈ Si, such that i ∈ Ij . But according to Remark 3, this means that Xj is a
descendant of Xi which is a contradiction.

(II) As the condition in (I) is not satisfied, there exists k such that Ñk ∈ Ni = Ii\ ∪j:Xj∈Si
Ij .

Suppose that Ñk corresponds to Xk. Based on Remark 3, Xk should be an ancestor of Xi. Moreover,
we have Ik ⊆ Ii. As Ii is unique, then Ik ⊊ Ii and Xk ∈ Si. This contradictsthe fact that
Ñk ∈ Ii\ ∪j:Xj∈Si

Ij and the proof is complete.
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(III) As the indicator sets do not satisfy the condition in (I), Ni is not empty. Suppose that Ñk ∈ Ni

and Ñk corresponds to Xk. We know that Xk should be in the set {Xi1 , · · · , Xip}. Otherwise, based
on Remark 3, Ik ⊆ Ii1 . Now, if Ik ⊊ Ii1 , then Xk ∈ Si1 which is a contradiction. Thus, Ik should
be equal to Ii but in that case Xk is in the set {Xi1 , · · · , Xip}. Thus, we can conclude that at least
one of the variables in this set is in T. Please note that at most one of the variable in {Xi1 , · · · , Xip}
can be in T. Otherwise, the variables in this set cannot have the same indicator set. Therefore, exactly
one of the variables in {Xi1 , · · · , Xip} is in T and we can obtain the corresponding recovered noise
by Ii1\ ∪j:Xj∈Si1

Ij . Without loss of generality, suppose that Xi1 ∈ T. Then, based on Remark 3,
other variables in {Xi1 , · · · , Xip} should be descendant of Xi1 . The set Si1 contains the ancestors
of Xi1 . Thus, it also includes parents of Xi1 . Now, for any path between Ni1 and Xij , j ≥ 2, if it is
outgoing from node Xi1 , then it is blocked by Xi1 . If it is in-going toward Xi1 , then it is blocked by
a parent of Xi1 which is inside the set Si1 . Thus, under T-faithfulness assumption, it implies that
Ñi1 ⊥⊥ Xij |{Xi1}∪Si1 , for all 2 ≤ j ≤ p. Please note that the variables in {Xi2 , · · · , Xip} cannot
satisfy the condition in (III) as they cannot block the path Ni1 → Xi1 by any set Sij for j ≥ 2 and
the proof is complete.

C.4 Proof of Theorem 1

It can be easily seen that for any variable Xi ∈ X, only one of the conditions in (I)-(III) in Proposition
2 is satisfied. Moreover, these conditions cover all possible cases regarding the relation of the set
∪j:Xj∈Si

Ij and Ii and also the uniqueness of Ii in I . Furthermore, in either case, we know definitely
whether Xi is in T or not. Thus, the intervention target T can be identified uniquely by checking
these three conditions for any variable Xi ∈ X and the proof is complete.

C.5 Proof of Theorem 2

To better distinguish between intervention targets in TO and in TL, we use Ñhi
to represent the

exogenous noise corresponding to Xi for all Xi ∈ TL. For ease of notation, we denote the true noises
Nj in the augmented graph as Ñj in the following proof, since there is a one-to-one correspondence
between them.
Remark 5. If a group of variables Xi = {Xi1 , · · · , Xip} have the same indicator set and Ni ̸= ∅
(note that Nik is the same for all k ∈ [p]), then any root variable in Xi (i.e., variable with no parent
in Xi) must be a child of all recovered noises in Ni1 .

C.5.1 Proof of sufficiency

We show that if an observed variable Xi is a child of some noise Ñj ∈ ÑT in Aux(GT), then it is
included in the output K of the LIT algorithm. We consider each of the following four cases:

(i) Xi ∈ T.

(ii) Xi ̸∈ T, and Ñj is the exogenous noise of some observed variable Xj .

(iii) Xi ̸∈ T, Ñj is the exogenous noise of some latent confounder Hj , and Hj is a parent of Xi in
G.

(iv) Xi ̸∈ T, Ñj is the exogenous noise of some latent confounder Hj , and Hj is not a parent of
Xi in G.

In the following we show that, under each of these four cases, Xi is included in the output K. That
is, Xi violates the condition in (I), violates the condition in (IV), and either satisfies the condition
in (II) or violates (C2) in (III-L). Note that the conditions in (II) and in (III-L) only depends on the
uniqueness of the indicator set, therefore we do not need to check (II).

Case (i). If Xi ∈ T, then its corresponding exogenous noise Ñi satisfies i ∈ Ñi. Therefore the
condition in (I) Proposition 2 is not satisfied. Further, any observed variable Xjl with i ∈ Ijl must
be a descendant of Xi, and hence satisfies Ii ⊆ Ijl . Therefore the condition in (IV) is not satisfied.
Lastly, if there are no other variables that have the same indicator set, then Xi ∈ K according to
(II). Otherwise, all other variables that have the same indicator set as Ii must be descendants of Xi

(because of Ñi), hence Xi is a child of any recovered noise inNi (according to Remark 5). Therefore
there does not exist l such that (C2) holds, which means that Xi ∈ K.
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Case (ii). If Xi ̸∈ T and Ñj is the exogenous noise of some observed variable Xj , then Ij = Ii, and
there is at least one inducing path from Ñj to Xi. This means that any variable Xk ∈ Si is not a
descendant of Ñj in GT, which implies that j ∈ Ii but not in ∪j′:Xj′∈Si

Ij′ . Therefore the condition
in (I) is not satisfied. Next, note that j ∈ Ni = Nj , Ii = Ij , and (A) in (IV) does not hold for Xj

(explained in Case (i)). Therefore (A) in (IV) does not hold for Xi either.

Lastly, note that there is at least one other variable (Xj) that has the same indicator set as Xi, and
Xj is a root variable in Xi (following the same argument as in Case (i)). Therefore Xj is directly
connected to all recovered noises in Ni. Since Ñj is only directly connected to Xj , this means that if
there is an inducing path from Ñj to Xi, then for any l ∈ Ni, by changing the first edge on this path
from Ñj → Xj to Ñl → Xj , the new path is also an inducing path from Ñl to Xi. Therefore there
does not exist l such that (C2) holds, which means that Xi ∈ K.

Case (iii). If Xi ̸∈ T, Ñj is the exogenous noise of latent confounder Hj , and Hj is a parent of Xi in
G, then according to Definition 2, for all other children Xk of Hj , we have Ii ⊆ Ik. This immediately
implies that the condition in (IV) is not satisfied. This also implies that for any variable Xk′ ∈ Si,
j ̸∈ Ik′ . Therefore, we have j ∈ Ii but not in ∪j′:Xj′∈Si

Ij′ , which means that the condition in (I) is
not satisfied. Lastly, if Ii is unique, then Xi ∈ K. Otherwise, since there is an inducing path from all
recovered noises in Ni to Xi, there does not exist l such that (C2) holds. Therefore Xi ∈ K.

Case (iv). If Xi ̸∈ T, Ñj is the exogenous noise of latent confounder Hj , and Hj is not a parent of
Xi in G, then according to Definition 2, there exists some Xk such that Hj is directly connected
to Xk, and Ik = Ii. Further, there is an inducing path from Ñj to Xi. Note that all children of Ñj

after part (b) have the same indicator set, which is the same as Ii. Therefore the condition in (I)
does not hold. Further, since the condition in (A) does not hold for Xk (explained in Case (iii)) and
Ik = Ii, the condition in (A) does not hold for Xi either. Lastly, since there is an inducing path from
all recovered noises in Ni to Xi, there does not exist l such that (C2) holds. Therefore Xi ∈ K.

Conclusion: We show that if an observed variable Xi belongs to ∪Ñi∈ÑT
ChAux(GT)(Ñi), i.e., it is a

child of some noise Ñj ∈ ÑT in Aux(GT), then it is included in the output K of the LIT algorithm.

C.5.2 Proof of necessity

We show that if an observed variable Xi is included in the output K of the LIT algorithm, then it
must be a child of some noise Ñj ∈ ÑT. That is, if Xi violates the condition in (I) (i.e., Ni ̸= ∅),
and the condition in (IV), and either:

(i) Ii is unique, or
(ii) Ii is not unique, and among all variables with the same indicator set, the condition in (C2) does

not hold for Xi,

then it must be a child of some noise Ñj ∈ ÑT.

Case (i). If Ii is unique. This implies that any recovered noise Ñj ∈ Ni is a parent of Xi in GT.
This is because otherwise the child of Ñj is a ancestor of Xi but does not belong to Si. Hence it has
the same indicator set as Ii, which violates the uniqueness of Ii.

Consider all these recovered noises Ñj ∈ Ni. If there exists Ñj such that Xi is the only child of Ñj ,
then Ñj is the exogenous noise of Xi, i.e., Xi ∈ TO, which is a subset of ∪Ñi∈ÑT

ChAux(GT)(Ñi).
Otherwise, if all noises Ñj has at least two children, then all of them correspond to the exogenous
noises of latent confounders. Since the condition in (IV) is violated, there exist l ∈ Ni such that for
all jl with l ∈ Ijl , Ii ⊆ Ijl . This implies that the indicator set of any other child of Ñl in GT must be
a (strict) superset of Xi. Therefore the edge Ñl → Xi is kept according to part (b)(i) of Definition 2,
i.e., Xi is the child of Ñl in Aux(GT).

Case (ii). If Ii is not unique. This means that Xi is not a singleton. Consider the root variables in
Xi. Note that following the induced causal order induced on Xi, there is at least one root variable.
If Xi is a root variable, then according to Remark 5, all recovered noises in Ni is a parent of Xi in
GT. In this case we can apply the same proof as in Case (i) to show that Xi is a child of some Ñj in
Aux(GT). That is, if there exists Ñj such that Xi is the only child of Ñj , then Xi ∈ TO. Otherwise,
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if all noises Ñj has at least two children, then since the condition in (IV) is violated, part (b)(i) in
Definition 2 is satisfied, and there is an inducing path from all recovered noises in Ni to Xi (because
a direct connection is an inducing path). Therefore Xi is the child of all Ñj in Aux(GT).

Next, we consider the case if Xi is not a root variable. If there exists Ñj ∈ Ni such that it has only
one direct child Xk in GT, then Xk is a root variable in Xi. Since (C2) does not hold for Xi, this
means that Ñj is not independent of Xi, conditioned on all observed ancestors of Xi in GT (i.e.,
AnGT

(Xi) \ ({Xi} ∪ (L\T))). This is because all observed ancestors of Xi in GT must belong to
one of the three following cases: observed variable whose indicator set is a strict subset of Ii (i.e.,
belongs to Si), observed variable whose indicator set is the same as Ii (i.e., belongs to Xi), and the
recovered exogenous noise of a latent confounder (i.e., belongs to ∪l′∈Ii1\{j} Ñl′ ).

In the following we show that the path that cannot be blocked by these observed ancestors is an
inducing path. Suppose the path Ñj → Xk −− Vk1 −− Vk2 · · ·Xi is not blocked, where {Vkm} are
variables in GT, and −− represents either← or→. Note that Xk is an ancestor of Xi thus it is in the
condition set. Therefore Xk is a collider on this path, and we have the edge Xk ← Vk1 . This means
that Vk1 is a non-collider on this path and an ancestor of Xi in GT. Since the path is active, Vk1 is a
latent confounder that is not changing across environments (i.e., belongs to L \T). Therefore there is
an edge Vk1

→ Vk2
. Next consider Vk2

. If Vk2
is a non-collider and is not in the conditioning set (i.e.,

not an ancestor of Xi), then there is an edge Vk2
→ Vk3

. Since Vk2
is not an ancestor of Xi, neither

is Vk3
. Therefore Vk3

is also a non-collider and we have Vk3
→ Vk4

. Repeat the same analysis on
Vkm

for all m = 4, 5, · · · , the path is Ñj → Xk ← Vk1
→ Vk2

→ Vk3
→ · · · → Xi. This violates

the claim that Vk2
is not an ancestor of Xi. Therefore, Vk2

is a collider and is in the conditioning
set (i.e., an ancestor of Xi). Then we have the edge Vk2

← Vk3
, and following the same analysis

in Vk1
on Vk3

, we have Vk3
∈ L \T and is a confounder. Repeat the same analysis on Vkm

for all
m = 3, 4, 5, · · · , we have that variables Vkm

are either confounders in L \T, or colliders that are
ancestors of Xi. Therefore this path is an inducing path from Ñj to Xi. According to part (a) in
Definition 2, Xi is the child of Ñj in Aux(GT).

Next, we consider the case when each recovered noise Ñj ∈ Ni has at least two children in GT.
Similar to the above argument, there is at least one root variable Xk in Xi that is an ancestor of Xi.
This means that Ik = Ii, and the edge cannot be removed in part (b)(ii) in Definition 2. Further,
for each recovered noise Ñj ∈ Ni, since (C2) does not hold for Xi, Ñj is not independent of Xi,
conditioned on all observed ancestors of Xi in GT. This means that there is a path from Ñj to
Xi that is not blocked by the observed ancestors. Similar to the argument above, suppose the path
Ñj → Vk1

−− Vk2
· · ·Xi is not blocked. If Vk1

is a non-collider and is not an observed ancestor of
Xi (i.e., not in the conditioning set), then there is an edge Vk1

→ Vk2
, and Vk2

is not an ancestor of
Xi either. This means that Vk2

is also a non-collider and there is an edge Vk2
→ Vk3

. Repeat the
same analysis on Vkm

for all m = 3, 4, 5, · · · , the path is Ñj → Vk1
→ Vk2

→ Vk3
→ · · · → Xi.

This violates the claim that Vk2
is not an ancestor of Xi. Therefore, Vk1

is a collider and is an ancestor
of Xi. Then we can repeat the same analysis as above to conclude that this path is an inducing path.
Therefore, there is an inducing path from each recovered noise Ñj ∈ Ni to Xi, hence Xi is a child of
Ñj in Aux(GT), according to part (b)(ii) in Definition 2.

Conclusion: We show that if an observed variable Xi is included in the output K of the LIT
algorithm, then it must be a child of some recovered noise in Aux(GT), hence belongs to
∪Ñi∈ÑT

ChAux(GT)(Ñi).

C.6 Proof of Remark 2

Regarding the equivalency between the condition (C2) and the condition (C1) under causal sufficiency
assumption, note that under causal sufficiency assumption, the condition in (C2) can be rewritten as
follows:

(III-L) Let Xi = {Xi1 , · · · , Xip}, for some p ≥ 2, be a set of all variables whose corresponding
indicator sets are the same as Xi and Ni ̸= ∅. Then for each j ∈ [p], Xij ̸∈ K if and only if
the following condition holds:

∃K ⊆ [p] \ {j}, ∃S ⊆ Si1 , s.t. Ñl ⊥⊥ Xij |
(
∪k′∈KXik′

)
∪ S. (C2)
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Please note that Ni only contains Ñl under causal sufficiency assumption (otherwise, at least two
variables are descendants of each other which is impossible) and each recovered noise only has one
child (i.e., their corresponding intervention target) and cannot block any path. Moreover, for any Xij ,
the set K = {ik} and S = Si1 is enough to guarantee that Ñl ⊥⊥ Xij |Xik ∪Si1 where Xik ∈ T and
Ñl is its corresponding recovered noise. Thus, all Xij with j ̸= k are excluded from K. Moreover,
Xik is added to K as Ñl is the direct parent of Xik and cannot be d-separated by a subset of observed
variables and recovered noises.

About comparing our result with [JKSB20] In the case that TO = T, the augmented graph in
[JKSB20] is constructed as follows (which we show it by G′

T). For any pairs of environments such
as Ei and Ej , a node denoted by Fij is added to the original graph, and it is connected to all variables
in TO. Please note that in our setting, all variables in T are changing across the environments and all
Fijs are directly connected to TO. The candidate set in [JKSB20] is the set of neighbors of F -nodes
in the MAG of the augmented graph. Now, based on Theorem 2, it is just needed to show that if some
Ñi is a parent of some Xj in Aux(GT), then some F -node is also connected to Xj in MAG of G′

T.
If Xj is TO, this is trivial as it should be connected to some recovered noise in Aux(GT) and also
to some F -node in the MAG of G′

T. Thus, suppose that the Xi ̸∈ TO. In that case, based on part
(a)(i) of Definition 2, there should be an inducing path between Ñi and Xj relative to L in GT. This
path starts from Ñi and goes directly to its corresponding observed variable in TO (without loss of
generality, let us say Xi) and continues until getting to Xj in the augmented graph GT. Note that
since there are no changing latent variables, this path only involves variables in O and L. Therefore
we can construct the same path on the original graph G. We denote the part of this path in the original
graph by P . Now, in G′

T, due to symmetry among F -nodes, consider any of them. This node is
connected to Xi as Xi ∈ T. Now, the path starting from the F -node and then going directly to Xi

and continuing based on P until reaching Xj is also an inducing path in G′
T. This shows that our

identifiability result is stronger than the one in [JKSB20] when TO = T, because of part (a)(ii) in
Definition 2.
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