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Abstract

Large language models (LLMs) like transformers demonstrate impressive in-
context learning (ICL) capabilities, allowing them to make predictions for new
tasks based on prompt exemplars without parameter updates. While existing ICL
theories often assume structured training data resembling ICL tasks (e.g., x-y pairs
for linear regression), LLMs are typically trained unsupervised on unstructured
text, such as web content, which lacks clear parallels to tasks like word analogy. To
address this gap, we examine what enables ICL in models trained on unstructured
data, focusing on critical sequence model requirements and training data structure.
We find that many ICL capabilities can emerge simply from co-occurrence of
semantically related word pairs in unstructured data; word analogy completion,
for example, can provably arise purely through co-occurrence modeling, using
classical language models like continuous bag of words (CBOW), without needing
positional information or attention mechanisms. However, positional information
becomes crucial for logic reasoning tasks requiring generalization to unseen tokens.
Finally, we identify two cases where ICL fails: one in logic reasoning tasks that
require generalizing to new, unseen patterns, and another in analogy completion
where relevant word pairs appear only in fixed training positions. These findings
suggest that LLMs’ ICL abilities depend heavily on the structural elements within
their training data.1

1 Introduction
Large language models (LLMs) such as transformers demonstrate remarkable in-context learning
(ICL) abilities [10]: without any parameter updates, they can recognize tasks and generate predictions
from prompt examples. For instance, given the prompt dog anjing, cat kucing, lion singa, elephant, a
well-trained LLM should detect the English-to-Indonesian pattern in the prompt and predict gajah—
the Indonesian translation for elephant—as the most likely next token. The ICL capabilities of LLMs
are surprising for two main reasons. First, these models are trained in an unsupervised manner
on unstructured natural language data through next-token prediction, without any loss function
specifically designed for ICL. Second, the training data for LLMs likely lacks sequences resembling
typical ICL prompts, i.e., of the form c1d1 · · · cKdK , where (ck, dk)’s represent word pairs with
specific semantic relationships.

Many efforts have sought to understand ICL from theoretical and empirical perspectives, e.g., gradient
descent in regression and Bayesian inference. While insightful, these analyses often rely on structured
training data that mirrors ICL tasks. For instance, they train on sequences of x-y pairs from various
linear regression tasks and test on similar data. In practice, however, LLMs are trained in an
unsupervised manner on unstructured text data, such as web content, which bears little resemblance

1Software that replicates the empirical studies can be found at https://github.com/yixinw-lab/
icl-unstructured. Details on implementation, experiments and data sets are provided in Appendix K.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/yixinw-lab/icl-unstructured
https://github.com/yixinw-lab/icl-unstructured


Figure 1: This paper identifies essential components for in-context learning (ICL) from pre-training on
unstructured natural language data. Left sub-panels, right sub-panels, and boxed letters denote NLP
examples, our abstractions, and expected outputs, respectively. Section 2 shows that ICL for word
analogy tasks can arise via modeling co-occurrence information using classical language models
like continuous bag of words (CBOW) (violet represents relationship-specific nuisance tokens).
Section 3 establishes the necessity of modeling positional information and blocked nuisance structure
for ICL tasks, enabling pattern recognition and generalization to novel tokens (violet represents
nuisance tokens). Section 4 presents scenarios where ICL fails, providing theoretical explanations
that underscore the critical role of training data structure in enabling ICL in language models.

to typical ICL tasks like word analogy. Consequently, these analyses may only partially capture the
complexities of ICL.

This work. We investigate common ICL tasks to identify what tasks can be learned in context by
a model trained on unstructured data. Specifically, we examine essential components of sequence
modeling that enable in-context learning, along with requirements on the unstructured training data.

The first set of (theoretical and empirical) results focuses on ICL for word analogy completion using
frequently co-occurring tokens [10, 50]. This task involves identifying relationships between word
pairs, such as (country)-(capital) and (English word)-(Indonesian translation), then applying the
same relationship to complete a sequence. For this task (see left of Figure 1), we explore cases where
training sentences contain one or two types of word pairs with distinct semantic relationships. We
prove that, in most cases, ICL can arise by simply modeling word co-occurrence using classical
(pre-transformer) language models like continuous bag of words (CBOW) [36], without needing
positional information or attention mechanisms.

The second set of results involves ICL for logic reasoning tasks that require recognizing patterns
that do not commonly co-occur in a sentence, such as (word)-(first letter) [13, 62]. For this task (see
middle of Figure 1), we investigate scenarios where training sentences contain one or two distinct
patterns, as well as a more realistic scenario where nuisance tokens are present. We prove that
positional information and blocked nuisance structure (e.g., pqrs in Figure 1) are crucial for the
success of ICL in these tasks. This finding aligns with Chen et al.’s [2024] observation that parallel
structures in pre-training data support ICL. We also find that learned positional embeddings generally
perform better, except in scenarios where the nuisance tokens are not clustered in blocks.

Finally, we present two scenarios where ICL fails regardless of model architectures (see right of
Figure 1). In the first scenario (left example), we consider a logic reasoning task that involves
identifying and completing meta-patterns within sequences. Here, each training sequence repeats
the pattern established by its starting tokens; the ICL task sequence then requires the model to
recognize this meta-pattern of repetition and generalize it to a novel, unseen starting pattern. In the
second scenario (right example), we examine a word analogy completion task in which relevant
word pairs appear in the unstructured training sentences but are restricted to specific fixed positions.
These findings, along with their empirical and theoretical explanations, underscore that LLMs require
specific structures in the pre-training data to exhibit ICL ability.

Summary of contributions. We (1) theoretically and empirically show that ICL for word analogy
tasks with semantically related word pairs can arise from modeling co-occurrence patterns using
CBOW, (2) prove that, to recognize token patterns and generalize them to novel tokens, ICL requires
modeling positional information and blocked nuisance structure, and (3) present scenarios where ICL
fails, highlighting the crucial role of training data structure for ICL.
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Related work. Below, we highlight some of these studies and explain how our research aligns
with, yet differs from, these approaches. We include a detailed discussion of related work in
Appendix A. Numerous studies have connected ICL to classical methods, including gradient descent
[3, 5, 17, 55, 66], Bayesian inference [14, 56, 67], and Newton’s method [20]. In contrast, our work
links ICL to the continuous bag of words (CBOW) model, showing that ICL for word analogy tasks
can be achieved by learning co-occurrence patterns. Several studies have examined the pre-training
aspects of ICL, such as data distribution [11, 30, 37] and task diversity [42, 63]. By comparison,
our work emphasizes the importance of co-occurrence, positional information, and training data
structure for ICL to arise. Other research has explored ICL in specific data-generating processes,
such as discrete functions [8] and autoregressive processes [45]. In contrast, our work centers on
data characterized by semantically related word pairs and repeating token patterns.

2 In-context learning can arise by modeling co-occurrence via CBOW
In this section, we focus on in-context learning (ICL) for word analogy tasks involving word pairs that
frequently co-occur in training sentences; see Figure 1 (left). To motivate the discussion, we present
two experiments using the LLaMA 2 model [51] involving countries (or US states) and their capital
cities (see Appendix K for data sources). The prompts follow the format c1d1, c2d2, · · · , c6d6, c7,
where ci is a country (or US state) and di is its capital city. In this scenario, we consider ICL
successful if the model outputs d7—the capital city of c7—as the most likely token.

Experiment 1. We consider all 160 countries with a population exceeding one million in 2022.
Among these countries, 31 have capital cities that are not their most populous cities, denoted by
type A. The remaining 129 countries fall under type B. Each ICL prompt includes three type A
countries among c1, · · · , c6 to emphasize that the desired relationship is (country)-(capital) rather
than (country)-(largest city). Subsequently, we randomly generate 1,000 prompts, with 500 having a
c7 being a type A country and 500 having a c7 being a type B country. The model’s ICL accuracy is
0.58 for type A and 0.96 for type B.

Experiment 2. We consider all 50 US states, among which 33 are of type A and 17 are of type B,
similarly defined. Following the setup in Experiment 1, we generate prompts for these states. The
ICL accuracy is 0.69 for type A and 0.84 for type B.

In both experiments, LLaMA 2 performs better on type B prompts (i.e., the capital city as the largest
city). Since larger cities tend to appear more frequently as compared to smaller ones in the model’s
pre-training data, this naturally raises the question: Can/does ICL with frequently co-occuring word
pairs arise purely from modeling co-occurrence patterns?

ICL via classical non-transformer-based language models. We prove that, for word analogy tasks
with frequently co-occurring word pairs, ICL can be achieved by modeling token co-occurrence—
without needing positional encoding or attention mechanisms—using classical, non-transformer
language models such as the continuous bag of words (CBOW) model [36]. (It does not imply
that ICL in transformer-based models arises through learning co-occurrence patterns.) We utilize
CBOW variant where each center word is modeled conditional on all other words in a sentence,
not just neighboring words. Specifically, each word w has center and context embeddings uw

and vw of the same dimension. Given a sentence x1x2 · · ·xI , the i-th word (xi) is distributed
as p(xi = k | x−i) ∝ exp((u⊤

k

∑
j ̸=i vxj

)/(I − 1)), with uw’s and vw’s learned by minimizing
cross-entropy losses across all positions.

Roadmap of Section 2. In Section 2.1, we begin by considering a simple ICL task of the form
ci1di1 · · · ciℓdiℓciℓ+1

, where (ci, di) represents a frequently co-occuring word pair (e.g., a country
and its capital city) and i1, i2, · · · , iℓ+1 are all distinct. The focus is to investigate whether a trained
CBOW model can correctly output diℓ . We also explore two other scenarios: ICL tasks of the form
ci1di1 · · · ciℓdiℓciℓ+1

and ci1ei1 · · · ciℓeiℓciℓ+1
in Section 2.2 (two connected word relationships), as

well as ci1di1 · · · ciℓ−1
diℓ−1

ciℓ and ei1fi1 · · · eiℓfiℓeiℓ+1
(two disjoint word relationships) in Section

2.3. Section 2.4 concludes with synthetic experiments supporting the theory.

2.1 In-context learning on single-relationship word analogy tasks

We investigate ICL in single-relationship word analogy tasks, where the training data contains only
one type of relationship between frequently co-occurring word pairs. This task takes the form of
ci1di1 · · · ciℓdiℓciℓ+1

, where (ci, di) pair represents a frequent co-occurrence, such as a country and
its capital city. The vocabulary consists of c1:K , d1:K , r1:L, where r′is represent other words (e.g.,
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stop words). We first introduce Theorem 1, which states that ICL can arise if each sentence consists of
exactly one (ci, di) pair, as long as the number of in-context examples (ℓ) is not too large. To simplify
calculations, we replace the cross-entropy loss with squared loss by removing the softmax activation
and comparing outputs against the one-hot encoding of target words. The proof is in Appendix B.
Theorem 1 (ICL on single-relationship word analogy tasks). Let K,L ≥ S ≥ 3. Suppose each
training sentence of length S is generated by selecting one (ci, di) pair and S − 2 distinct ri’s
uniformly at random. We train a CBOW model with the squared loss and a sufficiently large
embedding dimension on these sentences. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

with distinct ik’s, the

model correctly predicts diℓ+1
if and only if 2ℓ+ 1 < KL(S−1)3

(K+L)(S−2)2(S−1)+K(S−2)(S−1)2−2(S−2)4 .

As an example, when each training sentence contains exactly one country-capital pair (i.e., (ci, di)),
Theorem 1 says that a trained CBOW model will correctly predict diℓ+1

(i.e., the capital city of ciℓ+1
)

given an ICL prompt of the form ci1di1 · · · ciℓdiℓciℓ+1
, provided that the prompt length is not too

large. Intuitively, this behavior is due to the presence of ciℓ+1
in the ICL prompt, leading the model

to correctly predict diℓ+1
given the frequent occurrences of the pair (ciℓ+1

, diℓ+1
) in the training data.

However, when the prompt length is too large, the model will instead predict one of the ri’s (see
Theorem 1’s proof in Appendix B for more details). Moreover, if we let L → ∞ and fix K and S,
the condition in Theorem 1 becomes 2ℓ+ 1 < K(S − 1)2/(S − 2)2. This inequality trivially holds
if the prompt length is set to be S − 1 to match the length of the training sentences.

Furthermore, it is possible to adapt the proof of Theorem 1 to handle the case when each sentence
comprises exactly two (not one) different (ci, di) pairs. In this case, letting L → ∞ and fixing
K and S, the model correctly predicts diℓ+1

given the same ICL prompt if and only if 2ℓ + 1 <
K(K−2)(S−1)2

(K−2)(S−2)(S−4)−K . This upper bound is strictly larger than K(S − 1)2/(S − 2)2: when each
sentence contains exactly two (ci, di) pairs, ICL under the squared loss holds for longer prompts.

Experiments. To empirically verify Theorem 1 and its generalizations, we conduct experiments using
the cross-entropy loss with S = 8, K = 10, L = 20, and ℓ = 3. We explore multiple (p0, p1, p2)
values, where pk denotes the probability of having exactly k pairs of (ci, di) in the sentence. For each
(p0, p1, p2) triple, we also introduce a more realistic setting where ci and di do not always appear
together by considering its corrupted version. In this setup, each (ci, di) pair has a 25% chance of
being replaced with (ci, rj) and a 25% chance of being replaced with (di, rj) for some j ∈ [L]. More
details are provided in Appendix K.

Table 1: ICL on different single-relationship word analogy tasks,
averaged over 10 repetitions, demonstrates stable, good performance
across embedding dimensions (dE), as Theorem 1 suggests. The
corrupted setting also demonstrates excellent ICL ability under
certain scenarios.

Clean Corrupted

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) 0 0 0 0
(0, 0, 1) 0 0 0 0

(1/2, 1/2, 0) 1 0.99 0 0
(1/2, 0, 1/2) 1 1 1 1
(0, 1/2, 1/2) 1 1 0 0.01

(1/3, 1/3, 1/3) 1 1 1 1

Results. Table 1 displays
the average accuracy for
each scenario, calculated
over 10 repetitions. Notably,
when (p0, p1, p2) is (0, 1, 0)
or (0, 0, 1), ICL under the
cross-entropy loss achieves
zero accuracy, in contrast
to perfect accuracy with the
squared loss as shown in
Theorem 1. We believe this
difference in accuracy is an
artifact of the loss functions
used, although its relevance
is limited by the fact that it
is unlikely for every sentence
to contain at least one (ci, di)
pair, in reality. On the other hand, perfect ICL performance is observed in other settings (e.g., when
the training sentences contain either zero, one, or two (ci, di) pairs) in both the clean and corrupted
scenarios. For an in-depth comparison of ICL performance using both the squared and cross-entropy
loss across various numbers of demonstration examples, see Appendix C.

2.2 In-context learning on dual-connected-relationship word analogy tasks

Building on the scenario that contains only a single type of relationship between frequently co-
occurring word pairs, namely (ci, di), we now explore ICL on dual-connected-relationship word
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Table 2: ICL on dual-connected-relationship tasks, averaged over 10 repetitions, achieves perfect
accuracy when (p0, p1, p2) ∈ {(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} regardless of architec-
tures and embedding dimensions (dE), as Theorem 2 suggests. When (p0, p1, p2) = (1/2, 1/2, 0),
ICL performs better under imbalanced or extreme scenarios and with larger dE .

Balanced Imbalanced Extreme

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0.07, 0.10) (0, 0)

(1/2, 1/2, 0) (0.53, 0.47) (0.51, 0.50) (0.69, 0.68) (1, 1) (0.94, 0.93) (1, 1)
(1/2, 0, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1/2, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(1/3, 1/3, 1/3) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

analogy tasks. Here, some words frequently co-occur with two different types of words in the training
data, represented by the relationships (ci, di) and (ci, ei). For instance, ci might represent a country,
di its capital city, and ei its currency. The vocabulary is comprised of c1:K , d1:K , e1:K , r1:L, where
ri’s represent other words. Moreover, the corresponding ICL tasks take the form ci1di1 · · · ciℓdiℓciℓ+1

and ci1ei1 · · · ciℓeiℓciℓ+1
, where the model is expected to output diℓ+1

and eiℓ+1
, respectively. These

can be regarded as task selection since the model should use the in-context examples to infer the
tasks. We present Theorem 2, stating that a trained CBOW model can perform task selection if each
sentence contains exactly two distinct (ci, di) or two distinct (ci, ei) pairs with uniform probability.2

Theorem 2 (Task selection in CBOW). Let K,L ≥ 2 and S ≥ 5. Suppose each training sentence of
length S is generated by selecting two distinct (ci, di) pairs or (ci, ei) pairs, and S − 4 distinct ri’s
uniformly at random. We train a CBOW model with the squared loss and a large enough embedding
dimension. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

(ci1ei1 · · · ciℓeiℓciℓ+1
) with distinct ik’s, the model

is more likely to predict diℓ+1
(eiℓ+1

) than eiℓ+1
(diℓ+1

). (The proof is in Appendix D.)

According to Theorem 2, when each training sentence includes two (ci, di) pairs or two (ci, ei) pairs,
a trained CBOW model is capable of performing task selection. To intuitively understand this result,
consider the ICL prompt of the first type, i.e., ci1di1 · · · ciℓdiℓciℓ+1

. Here, the output is more likely to
be diℓ+1

than eiℓ+1
since diℓ+1

co-occurs with the other dij ’s in the training data (and eiℓ+1
does not).

Note that in Theorem 2, we unrealistically require each sentence to contain either two distinct (ci, di)
pairs or (ci, ei) pairs. However, this condition is not necessary as we empirically show next.

Experiments. We use the cross-entropy loss with S = 8, K = 10, L = 60, and ℓ = 3. Each
training sentence is equally likely to be a cd sentence (i.e., containing (ci, di) pairs) or a ce sentence
(i.e., containing (ci, ei) pairs), but not both. We explore multiple (p0, p1, p2)’s, where pk is the
probability of having exactly k pairs of (ci, di) for a cd sentence, or k pairs of (ci, ei) for a ce
sentence. Additionally, we introduce three different scenarios: balanced, where all L random words
are equally likely to occur in both cd and ce sentences; imbalanced, where L/3 words are more
likely to occur in cd (ce) sentences; and extreme, where L/3 of the words can only occur in cd (ce)
sentences. More details are provided in Appendix K.

Results. Table 2 shows the accuracies of both tasks for each scenario, averaged over 10 repetitions.
We observe a perfect accuracy when (p0, p1, p2) ∈ {(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)}
across all embedding dimensions and scenario types. The near-zero accuracy when (p0, p1, p2) or
(0, 1, 0) or (0, 0, 1) is again an artifact of the cross-entropy loss, as discussed in Section 2.1.

Interestingly, ICL works in the imbalanced and extreme scenarios when (p0, p1, p2) = (1/2, 1/2, 0),
where sentences do not contain more than one (ci, di) or (ci, ei) pair. To see this, consider the
balanced scenario where each ri is equally probable to appear in both types of sentences. Given a
prompt of the form ci1di1 · · · ciℓdiℓciℓ+1

, it is easy to see that the model should output diℓ+1
or eiℓ+1

with equal probability. On the other hand, in the imbalanced and extreme scenarios, the information
from the ri’s can allow for task selection, thus contributing to the success of ICL.

2We can also theoretically show that ICL works (up to a certain number of training examples) in this scenario,
but the calculations are extremely tedious. Therefore, we only present empirical evidence in Table 2.
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Table 3: ICL on dual-disjoint-relationship tasks, averaged over 10 repetitions, achieves perfect accu-
racy when (p0, p1, p2) ∈ {(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} regardless of architectures
and embedding dimensions (dE). When (p0, p1, p2) = (1/2, 1/2, 0), ICL already performs well
under the balanced scenario.

Balanced Imbalanced Extreme

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0, 1) (0, 0) (0, 0) (0.16, 0.14) (0, 0) (0.21, 0.29) (0, 0)

(1/2, 1/2, 0) (1, 1) (0.82, 0.83) (0.28, 0.27) (0.95, 0.95) (0.83, 0.85) (0.91, 0.91)
(1/2, 0, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1/2, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

(1/3, 1/3, 1/3) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

2.3 In-context learning on dual-disjoint-relationship tasks
We next replicate the experiments in Section 2.2, but with disjoint word pair relationships of two
distinct types with no overlapping tokens, i.e., (ci, di) and (ei, fi). For example, (ci, di) represents a
country and its capital city, and (ei, fi) represents a company and its CEO. Our vocabulary consists
of c1:K , d1:K , e1:K , f1:K , r1:L, where ri’s represent other words; see Appendix K for details.

Results. Table 3 summarizes the accuracies of the ICL tasks ci1di1 · · · ciℓdiℓciℓ+1
and

ei1fi1 · · · eiℓfiℓeiℓ+1
for each scenario, averaged over 10 repetitions. Similar to the

connected setting in Section 2.2, we observe a perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across all embedding dimensions and scenario types.
However, when (p0, p1, p2) = (1/2, 1/2, 0), ICL already works well in the balanced scenario.
Intuitively, this is because the two relationships are disjoint, thus making task selection easier.

In addition, we consider a contaminated version of the training data where cd (ef ) sentences can
contain some ei’s and fi’s (ci’s and di’s). We also obtain a perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across all embedding dimensions and scenario types.

2.4 Experiments on a synthetic corpus
We conduct experiments on a synthetic corpus consisting of (country)-(capital) and (country)-(IOC
code) relationships. Each sentence in the corpus is categorized into exactly one of six possible
categories: (1) exactly one country-capital pair; (2) exactly two country-capital pairs; (3) exactly one
country-IOC pair; (4) exactly two country-IOC pairs; (5) exactly one country without any pair; and
(6) no country. In sentences with country-capital pairs, each capital city can appear in any position
relative to the country. Conversely, in sentences with country-IOC pairs, each IOC code must directly
follow the country. The data source and corpus generation process are detailed in Appendix K.

Two models are trained on this corpus: a CBOW and a five-layer two-head autoregressive transformer.
Both models have an embedding dimension of 100. We then compare the ICL accuracies for both rela-
tionships given one to five in-context examples. For the CBOW model, the country-capital accuracies
are (0.81, 0.82, 0.78, 0.73, 0.65) and the country-IOC accuracies are (0.15, 0.38, 0.59, 0.71, 0.79).
Here, the i-th number corresponds to the accuracy given i in-context examples. For the transformer,
the accuracies are (0.00, 0.15, 0.34, 0.22, 0.07) and (1.00, 0.77, 0.78, 0.97, 0.99), respectively.

When using the transformer, we find that the accuracies for the country-IOC task are significantly
higher compared to those for the country-capital task. This is likely because each IOC code
consistently follows the corresponding country in the corpus, similar to ICL prompts. On the other
hand, ICL fails to work on the country-capital task, where there is no consistent pattern in how each
pair occurs in the corpus. Meanwhile, ICL works decently well on both tasks under the CBOW model.

3 The essential role of positional information in enabling in-context learning

We examine another common example of in-context learning (ICL), where the task involves predicting
the first (or second) token in a sequence. This task resembles general logic reasoning tasks that require
recognizing patterns that do not typically co-occur in a sentence, such as (word)-(first letter) [13, 62].
While Section 2 shows that positional encoding is irrelevant for ICL in word analogy tasks, positional
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information proves essential for such logic reasoning tasks. Specifically, we consider a simpler task of
modeling xi1xi2xi3xi1 . Theorem 3 underscores the importance of positional information to correctly
predict xi1 from xi1xi2xi3 in a single-layer model, and provides a construction of an attention-based
model achieving zero loss and perfect accuracy on this task. Its proof is in Appendix E.

Theorem 3 (Necessity of modeling positions). Let the vocabulary be V = {1, 2, · · · , |V |} and the
training sequences take the form xi1xi2xi3xi1 , where xi1 ̸= xi2 ̸= xi3 ̸= xi1 are chosen uniformly
at random from V . Consider a one-layer model that predicts the last xi1 via a learned function
f({xi1 , xi2}, xi3) using the cross-entropy loss. In this case, it is not possible to achieve pefect
accuracy or zero loss. On the other hand, we can achieve zero loss (and thus perfect accuracy) by
incorporating positional information, i.e., via a learned function f̃({(xi1 , 1), (xi2 , 2)}, (xi3 , 3)).

Here, f({xi1 , xi2}, xi3) represents a scenario where the model lacks positional information (e.g., f
is a one-layer autoregressive transformer without positional embeddings). Note that the output of this
function is identical for inputs xi1xi2xi3 and xi2xi1xi3 , which leads to the impossibility of attaining
zero loss. In contrast, f̃({(xi1 , 1), (xi2 , 2)}, (xi3 , 3)) refers to a scenario where the model has access
to positional information. We provide a construction of f̃ that achieves zero loss in Appendix E.

Experiments. We validate Theorem 3 by training transformers with causal masking to autore-
gressively learn sequences of the form xi1xi2xi3xi1 , and assessing their accuracy in predicting
the last token on a separate test data of the same pattern. We use |V | = 20 and an embedding
dimension of 10. We consider these settings: (i) number of layers: 1, 5; (ii) positional embed-
dings: learned, sinusoidal, no positional embeddings; and (iii) train-test split: each token in the
vocabulary is the first token in both the training and test sets (Both), each token in the vocabulary
is the first token in either set, but not both (Either). More details are provided in Appendix K.

Table 4: Prediction accuracy with single/multi-layer mod-
els. For ICL to occur, the first tokens of training sentences
should cover the entire vocabulary (Both). Also, positional
embeddings are essential, especially in one-layer models.

Both Either

Pos. emb. 1-layer 5-layer 1-layer 5-layer

Learned 1 1 0 0
Sinusoidal 1 1 0 0

No pos. emb. 0.30 0.89 0 0

Results. Table 4 summarizes the results.
Two main findings emerge: (1) for the
model to generalize to unseen sentences,
each token in V should be present as the
first token in both the training and test
sets; (2) positional embeddings are cru-
cial when using only one attention layer.
Note that in practice, the condition in
(1) is likely met due to the vast size of
LLMs’ pre-training data.

Multiple layers. Proposition 1 shows
that multi-layer models can encode positional information without explicit positional embeddings.

Proposition 1 (Multi-layer models can encode positions). Consider the sentence xi1xi2xi3xi1 . Using
a two-layer autoregressive model, the model’s final output for predicting the last xi1 is given by
t(xi1xi2xi3) := g3 ({f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3)) for some f1, f2, f3, and g3.

The proof is in Appendix F. Proposition 1 shows that we generally have t(xi1xi2xi3) ̸= t(xi2xi1xi3),
unlike in the one-layer case. Consequently, high accuracy is achievable without positional embeddings,
as shown in Table 4. This result parallels findings in Haviv et al. [26] that autoregressive transformers
implicitly encode positions, even without positional embeddings.

Roadmap of Section 3. In the rest of this section, we consider settings where each sentence contains
repeating patterns. Section 3.1 focuses on a simple scenario where training sentences follow the
form abacdc, where a ̸= b and c ̸= d, or a noisy variation of it. The ICL prompts maintain the same
pattern but use different combinations of ab and cd from those in the training data. Our goal is to
understand what types of training data facilitate ICL in clean or noisy scenarios. Section 3.2 explores
a more realistic case where two possible patterns are present: repeating the first letter (abca) and
repeating the second letter (abcb).

3.1 In-context learning on single-pattern tasks

In this section, we examine the case where the training sentences follow the pattern abacdc. To
replicate real-world training scenarios, we also analyze how incorporating nuisance tokens into the
training sentences affects the ICL capability of autoregressive models. To formalize the discussion,
let our vocabulary be V ∪N , where N represents the nuisance tokens. We define S = {(a, b) | a, b ∈
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Table 5: ICL on single-pattern tasks, averaged over 10 repetitions, achieves near-perfect accuracy in
the clean data scenario regardless of architectures and embedding dimension (dE). The one-noisy
scenario is the most challenging, with sinusoidal embeddings giving a higher accuracy. In the block-
noisy scenario, learned positional embeddings result in significantly better ICL performance.

dE = 10 dE = 100

Pos. emb. Clean One-noisy Block-noisy Clean One-noisy Block-noisy

Learned 0.97 0.00 0.95 1.00 0.00 1.00
Sinusoidal 0.66 0.10 0.01 0.96 0.00 0.55
RoPE [48] 0.31 0.00 0.03 0.48 0.00 0.00

V, a ̸= b} and partition S into S1 (for training sentences) and S2 (for ICL prompts). This is to ensure
that training sentences are distinct from ICL prompts. Furthermore, we assume {c[1] | c ∈ S1} =
{c[1] | c ∈ S2} = V , where c[i] is the i-th element of c. In other words, each token in V can be the
first token in both the training sentences and ICL prompts. We consider three scenarios:

1. Clean: Training data follow the form abacdc where ab, cd ∈ S1. ICL prompts follow the form
abacd where ab, cd ∈ S2.

2. One-noisy: Training data follow the form abacdc where ab, cd ∈ S1, with one nuisance token
n ∈ N randomly inserted anywhere except the last position (to ensure ICL prompts do not
resemble the training data). ICL prompts follow the form abacd where ab, cd ∈ S2.

3. Block-noisy: Training data follow the form abacdc where ab, cd ∈ S1, with three consecutive
nuisance tokens n1, n2, n3 ∈ N randomly inserted while preserving the aba and cdc blocks. ICL
prompts follow the form abacdcef where ab, cd, ef ∈ S2.

We set the vocabulary size |V | = 20, the number of nuisance tokens N = 20, and use only one
attention layer as additional layers do not improve performance. See Appendix K for more details.

Results. Table 5 reveals interesting phenomena. First, under the clean data scenario, ICL performs
exceptionally well, with an observed performance increase with learned positional embeddings and a
larger embedding dimension. However, ICL is notably challenging under the one-noisy scenario. In
the block-noisy scenario, learned positional embeddings are crucial for satisfactory ICL performance.
Theorem 4 formalizes these findings.
Theorem 4 (Blocked nuisance token structure facilitates ICL). Consider a sufficiently large autore-
gressive position-aware model that can achieve the minimum possible theoretical loss. Training this
model in the one-noisy (block-noisy) scenario results in zero (perfect) ICL accuracy.
The proof is in Appendix G. Theorem 4 says that ICL works perfectly under the block-noisy scenario,
yet fails to work under the one-noisy scenario. However, as shown in Table 5, the use of sinusoidal
positional embeddings significantly enhances prediction accuracy in the one-noisy scenario. This
may be due to the fact that sinusoidal embeddings can encode relative positional information [53].
For example, training sentences of the form nabacdc, where n ∈ N , may help in predicting the most
likely token following the ICL prompt abacd.

3.2 In-context learning on dual-pattern tasks

We next examine the case where training data and ICL prompts contain two different patterns
occurring equally likely: abcadefd and abcbdefe, where a, b, c and d, e, f are distinct. We consider
the clean and block-noisy scenarios as in Section 3.1, and set |V | = N = 20 (details in Appendix K).

Results. Table 6 outlines the ICL performance for both scenario types across different model
configurations. Unlike the single-pattern scenario, there is an improvement in performance with five
layers compared to one layer, particularly with learned positional embeddings.

This phenomenon is related to the notion of induction heads, where at least two layers may be
necessary to distinguish the two patterns [38]. This is reflected in Figure 2, which compares the
accuracy trajectories of one-layer and five-layer models. While the five-layer setup effectively
differentiates the two patterns, the one-layer configuration fails to do so. Meanwhile, in both clean
and block-noisy scenarios, learned positional embeddings lead to notably higher accuracies as
compared to sinusoidal ones, similar to the single-pattern case.

8



Figure 2: One-layer models fail to differentiate the two patterns in Section 3.2, as evidenced by the
accuracy trajectory graph on the left. On the other hand, five-layer models are capable of doing so.

Table 6: ICL on dual-pattern tasks, averaged over 10 repetitions, achieves notably better accuracy
using learned than sinusoidal embeddings. Near-perfect accuracy is attained in the clean scenario by
a 5-layer transformer with an embedding dimension (dE) of 100 and learned positional embeddings.
The block-noisy scenario is challenging; the same model attains the best performance.

dE = 10 dE = 100

Pos. emb. Clean Block-noisy Clean Block-noisy

1-layer Learned (0.33, 0.33) (0.15, 0.16) (0.51, 0.49) (0.49, 0.50)
Sinusoidal (0.12, 0.66) (0.03, 0.03) (0.51, 0.48) (0.06, 0.10)

5-layer Learned (0.39, 0.39) (0.23, 0.22) (0.97, 0.98) (0.87, 0.70)
Sinusoidal (0.32, 0.34) (0.04, 0.04) (0.83, 0.82) (0.04, 0.07)

4 Scenarios where in-context learning fails
In this section, we consider two scenarios where in-context learning (ICL) fails, irrespective of
architectures. In Section 4.1, we consider a logic reasoning task requiring identification and general-
ization of a repetition meta-pattern within sequences. In Section 4.2, we explore a word analogy task
where relevant word pairs appear in unstructured training sentences but are limited to fixed positions.
Section 4.3 concludes with a synthetic data experiment supporting the theory.

4.1 Failed scenario 1: Sentences with repeating patterns

In this meta-pattern recognition and generalization task, each training sequence follows a repeating
pattern based on its starting tokens, and the ICL task sequence requires the model to identify this
repetition and extend it to a new, unseen starting pattern. Specifically, our training data comprises
sentences in the form of abacdcefe, where a ̸= b, c ̸= d, and e ̸= f . Note that each sentence is
structured into three blocks, each consisting of three tokens with the same pattern. For the ICL task,
we consider predicting f from the prompt abbcddef , where a ̸= b, c ̸= d, and e ̸= f . Given the
repeated pattern within each training sequence, a well-trained model might be expected to output
f to continue the pattern established in the in-context examples: abb and cdd. However, as seen in
Table 7, all models fail to recognize and apply the pattern, resulting in incorrect predictions.

Formalization. We now formalize a generalization of this scenario. Let the vocabulary be V =
{1, 2, · · · , |V |}, and define S = {(a, b) | a, b ∈ V, a ̸= b}. To ensure training sentences are distinct
from the ICL prompts, we first partition S into S1 and S2, where {c[1] | c ∈ S1} = {c[1] | c ∈
S2} = V . Here, c[i] denotes the i-th element of c. Suppose we autoregressively train a sufficiently
large position-aware model so that it is possible to achieve the minimum possible theoretical loss.
The training sentences take the form x11x12x11x21x22x21 · · ·xN1xN2xN1, where xi1 ̸= xi2 and
(xi1, xi2) is independently selected from S1 for every i ∈ [N ]. Theorem 5, whose proof is in
Appendix H, states that ICL fails regardless of the number of in-context examples.

Theorem 5 (Failure of ICL: Different repeated patterns). Consider the generalized scenario in Section
4.1. For any 1 ≤ ℓ ≤ N , given an in-context prompt of the form x11x12x12x21x22x22 · · ·xℓ1xℓ2

where xi1 ̸= xi2 and (xi1, xi2) ∈ S2 for every i ∈ [ℓ], the model predicts xℓ1 instead of xℓ2.
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Results. Theorem 5 and Table 7 demonstrate that ICL achieves zero accuracy irrespective of the
number of in-context examples (ℓ− 1). This insight sheds light on the ICL capacity of autoregressive
models. Simply put, if the pattern in the in-context examples differs significantly from any pattern in
the training data, ICL may not occur. These results align with the findings of Raventós et al. [42] and
Yadlowsky et al. [63] on the importance of data diversity for ICL.

4.2 Failed scenario 2: Sentences with co-occurring word pairs restricted to fixed locations

Table 7: ICL in failed scenarios, averaged over 10 repetitions, achieves
zero accuracy for any architecture and embedding dimension (dE).

Failed scenario 1 Failed scenario 2

Pos. emb. dE = 10 dE = 100 dE = 10 dE = 100

1-layer Learned 0.00 0.00 0.01 0.00
Sinusoidal 0.01 0.00 0.00 0.00

5-layer Learned 0.00 0.00 0.00 0.00
Sinusoidal 0.00 0.00 0.00 0.00

We revisit the word
analogy task in Section
2. The training data now
comprises sentences of
the form of aipqrsbi,
where (ai, bi) represents
a frequently co-occurring
word pair and p, q, r, s
represent other words.
For the ICL task, we
consider predicting
bi3 from the prompt
ai1bi1ai2bi2ai3 , where
i1, i2, i3 are distinct. As each training sentence always contains an (ai, bi) pair at a fixed location, we
expect a well-trained model to output bi3 to maintain the pattern in in-context examples: ai1bi1 and
ai2bi2 . Yet Table 7 shows none of the models can identify the patterns and predict the correct token.

Formalization. We now formalize a generalization of this scenario. Let the vocabulary be
{(ai, bi)}i∈[I] ∪ V , where V = {1, 2, · · · , |V |} represent other words. As in Section 4.1, we
autoregressively train a sufficiently large position-aware model that can achieve the minimum pos-
sible theoretical loss. The training sentences take the form aiv1v2 · · · v2kbi, where i and v1:2k are
independently chosen from [I] and V , respectively, uniformly at random. Theorem 6, whose proof is
in Appendix I, states that ICL fails regardless of the number of in-context examples.
Theorem 6 (Failure of ICL: Different pattern structures). Consider the generalized scenario in
Section 4.2. For any 1 ≤ ℓ ≤ k + 1, given an in-context prompt of the form ai1bi1ai2bi2 · · · aiℓ
with distinct ij’s, the model never predicts biℓ : it predicts a uniform probability vector over V when
1 ≤ ℓ ≤ k, and bi1 when ℓ = k + 1.
Results. Theorem 6 highlights the finding that the success of ICL relies heavily on how the patterns
appear in the training data. In this scenario, the (ai, bi) pairs consistently appear at the beginning and
end of each training sentence, and we anticipate the model to recognize this relationship for ICL to
occur. However, as shown in Theorem 6 and Table 7, this is not the case.

4.3 Experiment on a synthetic corpus

We conduct an experiment on a synthetic corpus featuring (country)-(capital) relationships. Each
sentence falls into one of four categories: (1) exactly one country-capital pair, (2) exactly two
country-capital pairs, (3) a single country without a pair, and (4) no country. In sentences with one
country-capital pair, the capital appears in the first position, the country in the last, and each sentence
contains six words (as in Section 4.2). The corpus generation process is detailed in Appendix K.

We train a five-layer two-head autoregressive transformer on this corpus, with an embedding dimen-
sion of 100. Similar to Section 2.4, we evaluate the ICL accuracies using prompts involving countries
and their capitals. The results show zero ICL accuracy across varying in-context examples (one to
five), supporting our theory.

5 Discussion
This paper examines how in-context learning (ICL) arises from pre-training on unstructured language
data, with three key findings: (1) ICL for word analogy tasks can emerge from simple co-occurrence
modeling, using models like continuous bag of words (CBOW) without positional encoding or
attention; (2) positional information and structured nuisance tokens are essential for ICL in logic
reasoning tasks that require recognizing rare patterns and generalizing to new tokens; and (3) the
structure of training data significantly impacts ICL effectiveness.
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Supplementary Material

A Related work

Large language models (LLMs), such as transformers, are widely recognized for their outstanding
performance in in-context learning (ICL) [10]. ICL refers to the capability of LLMs to discern
specific tasks and generate predictions based on prompt exemplars without needing any parameter
updates. A multitude of studies have been dedicated to exploring this intriguing phenomenon from
various theoretical and empirical perspectives. In this section, we provide a brief summary of some
of these studies.

Some studies adopted a Bayesian approach to studying ICL. Xie et al. [60] posited that ICL can be
viewed as implicit Bayesian inference. They demonstrated that LLMs can infer a latent document-
level concept for next-token prediction during pre-training and a shared latent concept across input-
output pairs in an ICL prompt, under the assumption that documents are generated from hidden
Markov models (HMMs). Wang et al. [56] and Zhang et al. [67] expanded on this idea by exploring
more realistic latent variable models beyond HMMs. Wang et al. [56] argued that large language
models function as latent variable models, with latent variables containing task-related informa-
tion being implicitly inferred. Zhang et al. [67] showed that without updating the neural network
parameters, ICL can be interpreted as Bayesian model averaging parameterized by the attention
mechanism. Panwar et al. [39] provided empirical evidence that transformers behave like Bayesian
predictors when performing ICL with linear and non-linear function classes. Dalal and Misra [18]
proposed a Bayesian learning framework to understand ICL through the lens of text generation models
represented by multinomial transition probability matrices. Chiang and Yogatama [14] proposed the
pelican soup framework to explain ICL without relying on latent variable models. This framework
incorporates concepts such as a common sense knowledge base, natural language classification, and
meaning association, enabling the establishment of a loss bound for ICL that depends on the number
of in-context examples.

Garg et al. [21] formulated ICL as learning a specific function class F from prompts of the form
(x1, f(x1), . . . , xn, f(xn), xn+1) and their corresponding responses f(xn+1). Here, f ∈ F , where
F is a function class. In this context, ICL refers to the capability of a transformer to output a
number close to g(yn+1) given a prompt of the form (y1, g(y1), . . . , yn, g(xn), yn+1), where g ∈ F .
Many studies adopted this regression formulation of ICL, with some linking ICL to gradient descent.
Akyürek et al. [5], Von Oswald et al. [55], and Dai et al. [17] proved that transformers are capable
of implementing gradient descent, which results in their ICL ability. Bai et al. [7] established
generalization bounds for ICL and proved that transformers can perform algorithm selection like
statisticians. Zhang et al. [66] showed that the gradient flow dynamics of transformers converge to a
global minimum that enables ICL. Huang et al. [27] investigated the learning dynamics of single-layer
softmax transformers trained via gradient descent to perform ICL on linear functions. Ahn et al. [3]
explored the optimization landscape of transformers and proved that the optimal parameters coincide
with an iteration of preconditioned gradient descent.

In a related exploration, Li et al. [31] showed that softmax regression models learned through
gradient descent are similar to transformers. Ren and Liu [44] related ICL with softmax transformers
to contrastive learning, where the inference process of ICL can be viewed as a form of gradient
descent. Mahankali et al. [35] proved that minimizing the pre-training loss is equivalent to a step of
gradient descent in single-layer linear transformers. Vladymyrov et al. [54] established that linear
transformers execute a variant of preconditioned gradient descent by maintaining implicit linear
models. On the other hand, some studies argued that the ICL ability of transformers cannot be
attributed to gradient descent. Fu et al. [20] showed that ICL for linear regression tasks arises from
higher-order optimization techniques like iterative Newton’s method rather than gradient descent.
Wibisono and Wang [57] demonstrated that transformers can perform ICL on unstructured data
whose prompt exemplars lack explicit pairings, with softmax attention playing an important role
especially when using a single attention layer. Shen et al. [46] provided empirical evidence that the
equivalence between gradient descent and ICL might not be applicable in real-world scenarios. In
contrast to these studies, our work provides a connection between ICL and classical language models
like continuous bag of words (CBOW). Specifically, we show that ICL for word analogy tasks with
semantically related word pairs can arise by modeling co-occurrence patterns via CBOW.
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Numerous studies focused on the pre-training aspects (e.g., data distribution and task diversity) of ICL.
Min et al. [37] showed that the input-label mapping in the in-context examples does not significantly
affect ICL performance. Chan et al. [11] demonstrated that the ICL capabilities of transformers
depend on the training data distributions and model features. Kossen et al. [30] established that ICL
considers in-context label information and is capable of learning entirely new tasks in-context. Li
and Qiu [32] introduced an iterative algorithm designed to enhance ICL performance by selecting a
small set of informative examples that effectively characterize the ICL task. Qin et al. [41] proposed
a method based on zero-shot chain-of-thought reasoning for selecting ICL examples, emphasizing
the importance of choosing diverse examples that are strongly correlated with the test sample. Han
et al. [25] studied ICL by identifying a small subset of the pre-training data that support ICL via
gradient-based methods. They discovered that this supportive pre-training data typically consist of
more uncommon tokens and challenging examples, characterized by a small information gain from
long-range context. Peng et al. [40] proposed a selection method for ICL demonstrations that are both
data-dependent and model-dependent. Van et al. [52] introduced a demonstration selection method
that enhances ICL performance by analyzing the influences of training samples using influence
functions.

In a similar vein, Wu et al. [59] demonstrated that pre-training single-layer linear attention models for
ICL on linear regression with a Gaussian prior can be effectively accomplished with a minimal number
of independent tasks, regardless of task dimension. Raventós et al. [42] emphasized a task diversity
threshold that differentiates the conditions under which transformers can successfully address unseen
tasks. Yadlowsky et al. [63] attributed the impressive ICL capabilities of transformers to the diversity
and range of data mixtures in their pre-training, rather than their inductive biases for generalizing to
new tasks. Ding et al. [19] compared the ICL performance of transformers trained with prefixLM
(where in-context samples can attend to all tokens) versus causalLM (where in-context samples cannot
attend to subsequent tokens), finding that the latter resulted in poorer ICL performance. Chen et al.
[13] discovered that the ICL capabilities of language models rely on the presence of pairs of phrases
with similar structures within the same sentence. Zhao et al. [68] proposed a calibration scheme
that modifies model parameters by adding random noises, resulting in fairer and more confident
predictions. Abbas et al. [1] demonstrated that the ICL predictions from transformer-based models
often exhibit low confidence, as indicated by high Shannon entropy. To address this issue, they
introduced a straightforward method that linearly calibrates output probabilities, independent of
the model’s weights or architecture. Similar to these works, our work highlights the importance of
co-occurrence, positional information, and training data structure for ICL to arise.

Other studies analyzed ICL from a learning theory perspective. Hahn and Goyal [23] proposed
an information-theoretic bound that explains how ICL emerges from next-token prediction. Wies
et al. [58] derived a PAC-type framework for ICL and finite-sample complexity results. Jeon et al.
[28] introduced a novel information-theoretic view of meta-learning (including ICL), allowing for
the decomposition of errors into three components. They proved that in ICL, the errors decrease
as the number of examples or sequence length increase. Other studies focus on the mechanistic
interpretability component of ICL. Olsson et al. [38] argued that transformers can develop induction
heads that are able to complete token sequences such as [A][B] · · · [A] → [B], leading to impressive
ICL performance. Bietti et al. [9] examined a setup where tokens are generated from either global
or context-specific bigram distributions to distinguish between global and in-context learning. They
found that global learning occurs rapidly, while in-context learning is achieved gradually through the
development of an induction head. Ren et al. [43] identified semantic induction heads that increase
the output logits of tail tokens when attending to head tokens, providing evidence that these heads
could play a vital role in the emergence of ICL. Yu and Ananiadou [65] showed that the ICL ability
of transformers arises from the utilization of in-context heads, where each query and key matrix
collaborate to learn the similarity between the input text and each demonstration example.

A number of works delved into specific data generating processes to provide insight into the emergence
of ICL. Bhattamishra et al. [8] examined the ICL ability of transformers by focusing on discrete
functions. Specifically, they showed that transformers perform well on simpler tasks, struggle with
more complex tasks, and can learn more efficiently when provided with examples that uniquely
identify a task. Guo et al. [22] investigated ICL in scenarios where each label is influenced by the
input through a potentially complex yet constant representation function, coupled with a unique
linear function for each instance. Akyürek et al. [6] studied ICL of regular languages produced by
random finite automata. They compared numerous neural sequence models and demonstrated that
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transformers significantly outperform RNN-based models because of their ability to develop n-gram
heads, which are a generalization of induction heads. Sander et al. [45] analyzed simple first-order
autoregressive processes to gain insight into how transformers perform ICL to predict the next tokens.
On the other hand, our work focuses on data generating processes containing semantically related
word pairs and repeated token patterns to better understand several components that are crucial for
ICL to occur from training on unstructured data.

Some studies explored how different components of transformers affect their ICL abilities. Ahuja and
Lopez-Paz [4] compared the ICL performance of transformers and MLP-based architectures under
distribution shifts. Their findings demonstrate that while both methods perform well in in-distribution
ICL, transformers exhibit superior ICL performance when faced with mild distribution shifts. Collins
et al. [15] showed that softmax attention outperforms linear attention in ICL due to its ability to
calibrate its attention window to the Lipschitzness of the pre-training tasks. Xing et al. [61] focused
on linear regression tasks to identify transformer components that enable ICL. They found that
positional encoding is crucial, along with the use of multiple heads, multiple layers, and larger input
dimensions. Cui et al. [16] proved that multi-head attention outperforms single-head attention in
various practical scenarios, including those with noisy labels and correlated features. Chen et al. [12]
investigated the ICL dynamics of a multi-head softmax attention model applied to multi-task linear
regression. They proved the convergence of the gradient flow and observed the emergence of a task
allocation phenomenon, where each attention head specializes in a specific task.

Finally, several studies proposed various hypotheses on the emergence of ICL and provided theoretical
justifications. Swaminathan et al. [49] introduced clone-structured causal graphs (CSCGs) to explain
how ICL can generalize to unseen sentences via a mechanism called rebinding. Li et al. [33] viewed
ICL as an algorithm learning problem where a transformer implicitly constructs a hypothesis function
at inference time. Han et al. [24] argued that the ability of transformers to execute ICL is attributable
to their capacity to simulate kernel regression. Singh et al. [47] explored the interaction between
ICL and in-weights learning (IWL) using synthetic data designed to support both processes. They
observed that ICL initially emerges, followed by a transient phase where it disappears and gives rise
to IWL. Yan et al. [64] studied ICL from the perspective that token co-occurrences play a crucial
role in guiding the learning of surface patterns that facilitates ICL. Abernethy et al. [2] showed that
transformers can execute ICL by dividing a prompt into examples and labels, then employing sparse
linear regression to deduce input-output relationships and generate predictions. Lin and Lee [34]
developed a probabilistic model that can simultaneously explain both task learning and task retrieval
aspects of ICL. Here, task learning refers to the ability of language models to identify a task from
in-context examples, while task retrieval pertains to their ability to locate the relevant task within the
pre-training data.
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B Proof of Theorem 1

Proof. Let |V | = 2K + L denote the vocabulary size. Consider a sentence X represented by its
one-hot encoding (i.e., X ∈ {0, 1}|V |×S). For every position i ∈ [S], the loss for predicting the
word in the i-th position given all the other words is given by ||AX(1S − ei) − Xei||22, where
A = U⊤V

S−1 ∈ R|V |×|V | and ei ∈ RS is a zero vector with 1 on its i-th entry. Here, U (V ) is a
matrix consisting of the center (context) embeddings of all tokens, and A is a matrix summarizing
the similarity between each pair of words (one as a center word and the other as a context word). Our
objective is to find A that minimizes the sum of losses for each position in each sentence. Lemma 1
gives a closed-form expression of the minimizer.

Lemma 1. The minimizer of the overall loss is given by A = B ((S − 2)B + C)
−1. Here, B is a

matrix whose (i, j)-th entry is p(i, j), the probability that for a given (center, context) pair, the center
is i ∈ |V | and the context is j ∈ |V |. Moreover, C is a diagonal matrix whose i-th diagonal entry is
p(i) =

∑
j∈|V | p(i, j).

Proof. Let L(X) =
∑S

i=1 ||AX(1S − ei)−Xei||22 denote the sum of the losses corresponding to
all tokens in sentence X . By direct calculation,

∂L(X)

∂A
= 2AX

(
S∑

i=1

(1S − ei)(1S − ei)
⊤

)
X⊤ − 2X

(
S∑

i=1

ei(1S − ei)
⊤

)
X⊤

.

Note that
∑S

i=1(1S−ei)(1S−ei)
⊤ = (S−2)1S×S+IS×S and

∑S
i=1 ei(1S−ei)

⊤ = 1S×S−IS×S .
Now, let our sentences be X1, X2, · · · , XN . The minimizer of the overall loss thus satisfies

A
1

N

N∑
k=1

Xk ((S − 2)1S×S + IS×S)X
⊤
k =

1

N

N∑
k=1

Xk (1S×S − IS×S)X
⊤
k . (1)

We denote the number of (center, context) pairs across all sentences in which the center is i and the
context is j by #(i, j). Moreover, we define #(i) =

∑
j∈|V | #(i, j). It is easy to see that Equation

(1) can be rewritten as

A
(
(S − 2)B̃ + C̃

)
= B̃,

where B̃ is a matrix such that its (i, j)-th entry is #(i,j)
N and C̃ is a diagonal matrix such that its

i-th diagonal element is #(i)
N . As N → ∞, an application of the law of large numbers yields

#(i,j)
N → S(S − 1)p(i, j) almost surely and #(i)

N → S(S − 1)p(i) almost surely, where p(i, j)
is the probability that for a given (center, context) pair, the center is i and the context is j, and
p(i) =

∑
j∈|V | p(i, j).

Thus, as N → ∞, we have

A = B ((S − 2)B + C)
−1

,

where B and C are defined in the statement of Lemma 1.

We now define

• p1 = p(ci, cj) = p(di, dj) = p(ci, dj) = p(di, cj) for any i ̸= j;

• p2 = p(ri, rj) for any i ̸= j;

• p3 = p(ci, di) = p(di, ci) for any i;

• p4 = p(ci, rj) = p(di, rj) = p(rj , ci) = p(rj , di) for any i, j,
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where the equalities in the probabilities are a consequence of the data distribution.

For ease of presentation, we denote a square matrix with α on the diagonal and β off the diagonal as
Xα,β , and a matrix with all entries γ as Yγ . We then have

B =

[
X0,p1

Xp3,p1
Yp4

Xp3,p1
X0,p1

Yp4

Yp4 Yp4 X0,p2

]
.

Now, define a = (S−2)p1, b = (S−2)p2, c = (S−2)p3, d = (S−2)p4, e = 2(K−1)p1+p3+Lp4,
and f = (L− 1)p2 + 2Kp4. It is easy to see that

(S − 2)B + C =

[
Xe,a Xc,a Yd

Xc,a Xe,a Yd

Yd Yd Xf,b

]
.

Moreover, its inverse can be written as

((S − 2)B + C)−1 =

[
Xq5,q1 Xq3,q1 Yq4
Xq3,q1 Xq5,q1 Yq4
Yq4 Yq4 Xq6,q2

]
,

where

∆ = 2a(K − 1)(b(L− 1) + f) + b(L− 1)(c+ e) + cf − 2d2KL+ ef ,

q1 = −
(

−abL+ab−af+d2L
(2a−c−e)∆

)
,

q2 = 2ab(K−1)+b(c+e)−2d2K
(b−f)∆ ,

q3 = −


−2a2b(K − 1)(L− 1)− 2a2f(K − 1) + 2abc(K − 2)(L− 1) + 2acf(K − 2)

+ 2(a− c)d2KL+ bc(c+ e)(L− 1) + cf(c+ e) + d2L(c− e)

(c− e)(2a− c− e)∆

,

q4 = −
(
d
∆

)
,

q5 = −


−2a2b(K − 1)(L− 1)− 2a2f(K − 1) + 2abe(K − 2)(L− 1) + 2aef(K − 2)

+ 2(a− e)d2KL+ be(c+ e)(L− 1) + ef(c+ e) + d2L(e− c)

(e− c)(2a− c− e)∆

,

and q6 = −
(

2a(K−1)(b(L−2)+f)+b(L−2)(c+e)+cf−2d2KL+2d2K+ef
(b−f)∆

)
.

By computing A = B((S − 2)B + C)−1, given the following center words, the similarities between
them and all possible context words are as follows:

• Center word = ci for any i

– ci : 2(K − 1)p1q1 + p3q3 + Lp4q4;
– cj : 2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4 (j ̸= i);
– di : 2(K − 1)p1q1 + p3q5 + Lp4q4;
– dj : 2(K − 2)p1q1 + p1q3 + p3q1 + p1q5 + Lp4q4 (j ̸= i);
– rj : 2(K − 1)p1q4 + p3q4 + p4q6 + (L− 1)p4q2 (for any j).

• Center word = di for any i

– di : 2(K − 1)p1q1 + p3q3 + Lp4q4;
– dj : 2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4 (j ̸= i);
– ci : 2(K − 1)p1q1 + p3q5 + Lp4q4;
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– cj : 2(K − 2)p1q1 + p1q3 + p3q1 + p1q5 + Lp4q4 (j ̸= i);
– rj : 2(K − 1)p1q4 + p3q4 + p4q6 + (L− 1)p4q2 (for any j).

• Center word = ri

– cj : 2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4 (for any j);
– dj : 2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4 (for any j);
– ri : 2Kp4q4 + (L− 1)p2q2;
– rj : 2Kp4q4 + (L− 2)p2q2 + p2q6 (j ̸= i).

Recall that the ICL problem of interest is the following: given context words ci1di1 · · · ciℓdiℓciℓ+1
,

we aim to predict diℓ+1
. Without loss of generality, we can rewrite the problem to predict dℓ+1 given

context words c1d1 · · · cℓdℓcℓ+1. We now compute the total similarity for each possible center word,
where ϵ⊤δ indicates the similarity between the word ϵ in the center and the word δ in the context.

• c1 (or any of c2, · · · , cℓ) : c⊤1 c1 + ℓc⊤1 c2 + c⊤1 d1 + (ℓ− 1)c⊤1 d2;

• d1 (or any of d2, · · · , dℓ) : c⊤1 d1 + ℓc⊤1 d2 + c⊤1 c1 + (ℓ− 1)c⊤1 c2;

• r1 (or any other rk’s) : (ℓ+ 1)r⊤1 c1 + ℓr⊤1 d1 = (2ℓ+ 1)r⊤1 c1;

• cℓ+1 : ℓc⊤1 c2 + ℓc⊤1 d2 + c⊤1 c1;

• dℓ+1 : ℓc⊤1 d2 + ℓc⊤1 c2 + c⊤1 d1;

• cℓ+2 (or any ck’s not in the context prompt) : (ℓ+ 1)c⊤1 c2 + ℓc⊤1 d2;

• dℓ+2 (or any dk’s not in the context prompt) : (ℓ+ 1)c⊤1 d2 + ℓc⊤1 c2.

Note that correctly predicting dℓ+1 is equivalent to the following conditions being simultaneously
satisfied:

• c⊤1 d1 > c⊤1 c1, equivalent to p3q5 > p3q3;

• c⊤1 d2 > c⊤1 c1 and c⊤1 c2 > c⊤1 c1, equivalent to p1q3 + p3q1 + p1q5 > 2p1q1 + p3q3;

• c⊤1 d1 > c⊤1 c2 and c⊤1 d1 > c⊤1 d2, equivalent to 2p1q1 + p3q5 ≥ p1q5 + p1q3 + p3q1;

• 2ℓc⊤1 c2 + c⊤1 d1 > (2ℓ+ 1)r⊤1 c1, equivalent to 2ℓ(2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 +
Lp4q4)+ 2(K − 1)p1q1 + p3q5 +Lp4q4 > (2ℓ+1)(2(K − 1)p4q1 + p4q5 + p4q3 +(L−
1)p2q4);

In our data generating process, it is easy to see that p1 = 0, p2 = (S−2)(S−3)
L(L−1) , p3 = 1

K , and
p4 = S−2

KL , where each pi is multiplied by a constant S(S − 1) > 0 (without loss of generalization)

to make calculations easier. From here, we have a = 0, b = (S−2)2(S−3)
L(L−1) , c = S−2

K , d = (S−2)2

KL ,

e = S−1
K , and f = (S−1)(S−2)

L . Substituting to the above, we have

• q1 = (S−2)4

∆KL(2S−3) ;

• q3 = −K(S−2)2(S−1)2−(S−2)4

∆KL(2S−3) ;

• q4 = −(2S−3)(S−2)2

∆KL(2S−3) ;

• q5 = K(S−2)(S−1)3+(S−2)4

∆KL(2S−3) ,

where ∆ = (S−1)2(S−2)
KL > 0.
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We now check when these conditions are simultaneously satisfied. The first condition is equivalent
to p3 > 0 and K > 2(S−2)3

(S−1)2(2S−3) , which always hold. The second condition reduces to p3 > 0 and
2(S − 2)4 + K(S − 2)2(S − 1)2 > 0, which is also true. The third condition can be written as
p3 > 0 and K(S − 2)(S − 1)3 > 0, which always hold. The last condition becomes

(2ℓ+ 1)((K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4) < KL(S − 1)3,

which is equivalent to

2ℓ+ 1 <
KL(S − 1)3

(K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4
,

completing the proof.

Note that this condition ensures that the model predicts dℓ+1 instead of one of the ri’s.
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C Comparison of ICL performance using squared and cross-entropy loss
across different numbers of examples

Table 8: ICL performance in the clean scenario, evaluated with both squared and cross-entropy loss
functions across different numbers of examples (0 to 8) with dE = 100, averaged over 10 repetitions.

Squared Cross-entropy

(p0, p1, p2) 0 2 4 6 8 0 2 4 6 8

(0, 1, 0) 1 1 0 0 0 0.87 0 0 0 0
(0, 0, 1) 1 1 1 0 0 1 0 0 0 0

(1/2, 1/2, 0) 1 1 1 1 1 1 1 0.34 0 0
(1/2, 0, 1/2) 1 1 1 1 1 1 1 1 1 1
(0, 1/2, 1/2) 1 1 1 1 1 1 1 1 0 0
(1/3, 1/3, 1/3) 1 1 1 1 1 1 1 1 1 0

Table 9: ICL performance in the corrupted scenario, evaluated with both squared and cross-entropy
loss functions across different numbers of examples (0 to 8) with dE = 100, averaged over 10
repetitions.

Squared Cross-entropy

(p0, p1, p2) 0 2 4 6 8 0 2 4 6 8

(0, 1, 0) 1 0 0 0 0 0 0 0 0 0
(0, 0, 1) 1 0.97 0 0 0 1 0 0 0 0

(1/2, 1/2, 0) 1 1 1 0.53 0 1 0 0 0 0
(1/2, 0, 1/2) 1 1 1 1 1 1 1 1 1 1
(0, 1/2, 1/2) 1 1 0.76 0 0 1 1 0 0 0
(1/3, 1/3, 1/3) 1 1 1 1 1 1 1 1 0.18 0

From Tables 8 and 9, we observe that ICL with CBOW on single-relationship tasks performs better
with squared loss compared to cross-entropy loss and with fewer demonstration examples. Also, ICL
tends to deteriorate after a certain number of in-context demonstrations. As detailed in Appendix B, a
smaller number of examples (e.g., zero) allows the model to produce the correct output instead of one
of the ri’s. This is in contrast with transformer-based LLMs, which achieve better ICL performance
as the number of demonstrations increases. On the other hand, ICL on dual-relationship tasks as
described in Section 2.2 requires at least one demonstration example to distinguish between the two
tasks.

23



D Proof of Theorem 2

Proof. We show that given a prompt of the form ci1di1 · · · ciℓdiℓciℓ+1
with distinct ik’s, a trained

CBOW model is more likely to predict diℓ+1
than eiℓ+1

. If this is established, the other part of the
theorem follows analogously. We now define

• p1 = p(ci, dj) = p(di, cj) = p(di, dj) = p(ci, ej) = p(ei, cj) = p(ei, ej) for any i ̸= j;

• p2 = p(ri, rj) for any i ̸= j;

• p3 = p(ci, di) = p(di, ci) = p(ci, ei) = p(ei, ci);

• p4 = p(di, rj) = p(ri, dj) = p(ei, rj) = p(ri, ej) for any i, j;

where the equalities in the probabilities are a consequence of the data distribution. By direct
calculation, we have p1 = 1

K(K−1) , p2 = (S−4)(S−5)
L(L−1) , p3 = 1

K , and p4 = S−4
KL , where each pi is

multiplied by S(S − 1) > 0 (without loss of generalization) to make calculations easier. Moreover, it
is easy to see that p(ci, rj) = p(ri, cj) = 2p4 for any i, j and p(ci, cj) = 2p1 for any i ̸= j. Lastly,
we define a = (S−2)p1, b = (S−2)p2, c = (S−2)p3, d = (S−2)p4, e = 2(K−1)p1+p3+Lp4,
and f = 4Kp4 + (L− 1)p2.

The next step the proof is to use Lemma 1 in Appendix B to obtain the similarity matrix A. As
previously, we denote a square matrix with α on the diagonal and β off the diagonal as Xα,β , and a
matrix with all entries γ as Yγ . We then have

B =

X0,2p1
Xp3,p1

Xp3,p1
Y2p4

Xp3,p1 X0,p1 Y0 Yp4

Xp3,p1 Y0 X0,p1 Yp4

Y2p4 Yp4 Yp4 X0,p2


and

(S − 2)B + C =

X2e,2a Xc,a Xc,a Y2d

Xc,a Xe,a Y0 Yd

Xc,a Y0 Xe,a Yd

Y2d Yd Yd Xf,b

 . (2)

Moreover, its inverse can be written as

((S − 2)B + C)−1 =

Xq2,q1 Xq3,q1 Xq3,q1 Yq4
Xq3,q1 Xq5,q6 Xq7,q8 Yq4
Xq3,q1 Xq7,q8 Xq5,q6 Yq4
Yq4 Yq4 Yq4 Xq9,q10

 , (3)

for some q1, q2, · · · , q10. Recall that our task is show that given context words
ci1 , di1 , · · · , ciℓ , diℓciℓ+1

with distinct ik’s, the center word is more likely to be diℓ+1
than eiℓ+1

.
In other words, we need to establish that

d⊤iℓ+1
ci1 + d⊤iℓ+1

di1 + · · ·+ d⊤iℓ+1
ciℓ + d⊤iℓ+1

diℓ + d⊤iℓ+1
ciℓ+1

> e⊤iℓ+1
ci1 + e⊤iℓ+1

di1 + · · ·+ e⊤iℓ+1
ciℓ + e⊤iℓ+1

diℓ + e⊤iℓ+1
ciℓ+1,

where ϵ⊤δ indicates the similarity between the word ϵ in the center and the word δ in the context. This
similarity can be obtained from the matrix A = B((S − 2)B + C)−1. By symmetry, the inequality
reduces to d⊤i dj > e⊤i dj for any i ̸= j.

By computing the matrix A, we have

d⊤i dj = p3q1 + p1q3 + (K − 2)p1q1 + (K − 2)p1q6 + Lp4q4 + p1q5

and

e⊤i dj = p3q1 + p1q3 + (K − 2)p1q1 + (K − 2)p1q8 + p1q7 + Lp4q4.
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Thus, our problem again reduces to showing (K−2)q6+q5 > (K−2)q8+q7 as p1 = 1
K(K−1) > 0.

Upon multiplying (3) and (2) and equating the result with the identity matrix, we have the following
equations:

a(K − 1)q1 + cq3 + dLq4 + eq5 + a(K − 1)q6 = 1 (4)
(c+ a(K − 2))q1 + aq3 + dLq4 + aq5 + (e+ a(K − 2))q6 = 0 (5)

a(K − 1)q1 + cq3 + dLq4 + eq7 + a(K − 1)q8 = 0 (6)
(c+ a(K − 2))q1 + aq3 + dLq4 + aq7 + (e+ a(K − 2))q8 = 0. (7)

Comparing (5) and (7) yields

a(((K − 2)q6 + q5)− ((K − 2)q8 + q7)) = e(q8 − q6).

As a = (S−2)p1 > 0 and e = 2p1(K−1)+p3+p4L > 0, we now only need to show that q8 > q6.
Comparing (4) and (6) as well as (5) and (7), we have

a(q5 − q7) = (e+ a(K − 2))(q8 − q6)

e(q5 − q7) = a(K − 1)(q8 − q6) + 1,

which reduces to (q8 − q6)(e
2 + ae(K − 2)− a2(K − 1)) = a. The conclusion follows since a > 0

and

e2+ae(K−2)−a2(K−1) = (e−a)(e+a(K−1)) =

(
S − 1

K
− S − 2

K(K − 1)

)
(e+a(K−1)) > 0.

25



E Proof of Theorem 3

Proof. Consider the instance of predicting a from abc, i.e., f({a, b}, c). By the assumption on
the data distribution, it is equally likely that the task is predicting b from bac. In this case, the
corresponding function is also f({a, b}, c). Thus, the sum of the cross-entropy losses corresponding
to these two tasks is lower bounded by 2 log 2 > 0. Also, it is easy to see that we cannot achieve
perfect accuracy since the predictions for abc and bac must be the same.

We now show that it is possible to attain zero loss and perfect accuracy when the model includes
positional embeddings, so that f̃({(a, 1), (b, 2)}, (c, 3)) ̸= f̃({(b, 1), (a, 2)}, (c, 3)). As a special
case, we consider a simplified version of the transformer architecture, where

f̃({(a, 1), (b, 2)}, (c, 3)) =
∑

k∈{a,b,c}(xk + p1) exp((xk + p1)
⊤(xc + p3))∑

k∈{a,b,c} exp((xk + p1)⊤(xc + p3))
.

and

p(d | abc) ∝ exp
(
x⊤
d f̃({(a, 1), (b, 2)}, (c, 3))

)
.

for any token d. Here, xi and pj represent the embedding of token i and position j, respectively.

Let p⊤1 p3 = p, p⊤2 p3 = q, p⊤3 p3 = r, x⊤
i xi = s, x⊤

i xj = t for any i ̸= j, p⊤1 xi = u for any i,
p⊤2 xi = v for any i, and p⊤3 xi = w for any i. Note that this holds due to the assumed data generating
process. We consider the following construction: p1 = b1|V |, p2 = p3 = 1|V |, and xi = aei, where
ei is a zero vector with 1 on the i-th entry. This implies p = b|V |, q = r = |V |, s = a2, t = 0,
u = ab, and v = w = a.

By direct calculation, the cross-entropy loss of predicting a from abc is given by

− log

(
exp(α1a

2)

exp(α1a2) + exp(α2a2) + exp(α3a2) + |V | − 3

)
,

where

α1 =
exp(ab+ b|V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
,

α2 =
exp(a+ |V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
,

α3 =
exp(a2 + a+ |V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
.

Letting b = a2 and a → ∞, it is easy to see that we can bring the cross-entropy loss arbitrarily close
to zero. Consequently, we also have a perfect prediction accuracy.

F Proof of Proposition 1

Proof. The intermediate representation of the first layer is given by f1({xi1}), f2({xi1}, xi2)},
f3({xi1 , xi2}, xi3), and f4({xi1 , xi2 , xi3}, xi1), for some functions f1, f2, f3, and f4. To predict
the last xi1 , we use the third coordinate of the second layer representation, which is given by
t(xi1xi2xi3) := g3 ({f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3)), for some function g3. It is
easy to see that in general, t(xi1xi2xi3) ̸= t(xi2xi1xi3).
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G Proof of Theorem 4

Proof. In the one-noisy scenario, each sentence takes one of the following forms: nabacdc, anbacdc,
abnacdc, abancdc, abacndc, and abacdnc, where n ∈ N . In order to achieve the minimum possible
theoretical loss, we minimize each loss term separately. Concretely, the minimum loss of predicting
the sixth token given the first five tokens is attained by the following rule:

• When the first five tokens do not contain any nuisance token, output a uniform probability
vector over N .

• Otherwise, output the conditional probability of c[2] given x, where (x, c[2]) ∈ S1. Here, x
represents the last non-nuisance token.

Under this rule, the predicted output for any in-context example abacd is never c, since c /∈ N . In the
block-noisy scenario, each sentence takes one of the following forms: n1n2n3abacdc, aban1n2n3cdc,
and abacdcn1n2n3, where n1, n2, n3 ∈ N . The minimum loss of predicting the ninth token given
the first eight tokens is attained by the following rule:

• When the seventh token is not a nuisance token, output the seventh token with probability
one.

• When the seventh token is a nuisance token, output a uniform probability vector over N .

Under this rule, the predicted output for any in-context example abacdcef is e, resulting in perfect
ICL accuracy.

H Proof of Theorem 5

Proof. Recall that each training sentence is of the form x11x12x11x21x22x21 · · ·xN1xN2xN1. Note
that we can decompose the total loss L into L1 + L2 + · · · + L3N , where Lg denotes the loss of
predicting the g-th token given all the other previous tokens. As the xi1xi2xi1 blocks are generated
independently, the optimal loss should satisfy L1 = L4 = · · · = L[3N−2] = L[1], L2 = L5 =
· · · = L[3N−1] = L[2], and L3 = L6 = · · · = L[3N ] = L[3]. Therefore, it is sufficient to minimize
L[1] + L[2] + L[3].

In order to achieve the minimum possible theoretical loss, we need to minimize L[1], L[2], and L[3]

separately. It is easy to see that L[1] is minimized by outputting the marginal probability of c[1],
where c ∈ S1. Similarly, L[2] is minimized by outputting the conditional probability of c[2] given xi1 ,
where (xi1 , c[2]) ∈ S1. On the other hand, it is possible to achieve an L[3] value of zero by outputting
xi1 with probability one.

Now, given an ICL prompt x11x12x12x21x22x22 · · ·xℓ1xℓ2 where ℓ ≤ N , the trained model should
predict xℓ1 with probability one since {c[1] | c ∈ S2} = V and our ICL prompt corresponds to L[3].
This completes the proof.

I Proof of Theorem 6

Proof. We proceed similarly as the proof of Theorem 5. Concretely, we separately minimize Lg for
g ∈ [2k + 2], where Lg denotes the loss of predicting the g-th token given all the other previous
tokens. It is easy to see that L1 is minimized by outputting a uniform probability vector over a1:[I],
whereas Lh (for any 2 ≤ h ≤ 2k + 1) is minimized by outputting a uniform probability vector over
V . Moreover, it is possible to achieve an L2k+2 value of zero by outputting bi with probability one.

From here, given an ICL prompt of the form ai1bi1ai2bi2 · · · aiℓ , the trained model should predict a
uniform probability vector over V if ℓ ≤ k, and bi1 if ℓ = k + 1. In all cases, the model does not
predict biℓ , completing the proof.
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J Limitations and future work

This study has several limitations. Firstly, the experiments are conducted on a relatively small scale.
However, they still provide sufficient evidence to support the theoretical findings. Secondly, the
focus of this study is on specific types of in-context learning (ICL) tasks, as described in Section 1.
Thirdly, the pre-training data considered in this work may not match the valid grammatical sentences
that language models are usually trained on. Nonetheless, our co-occurrence results still apply to
grammatical sentences, as the co-occurring pairs can appear naturally within them (e.g., "Beijing
is the capital of China," or "the city of Beijing is located in China"). Lastly, real data sets are not
utilized due to the lack of alignment with the study objectives.

Despite these limitations, we believe this work provides valuable understanding of the key factors
enabling ICL to occur from training on unstructured natural language data, supported by both
theoretical and empirical evidence from experiments involving prompting and synthetic data. Further
analyses on other ICL tasks and their reliance on model architecture can be fruitful avenues for future
work.

K Details of experiments and data sets

K.1 Architecture and implementation

All experiments utilize the Keras package in Python, employing the Adam optimizer [29] with a
learning rate of 0.01. Early stopping is applied based on validation loss with a patience threshold of
5, utilizing a randomly selected subset representing 50% of the original data set. Each transformer
layer uses two heads, as we empirically demonstrated that increasing the number of heads does not
impact performance in our experiments. Each layer consists of the following components (in order):
(1) Keras’ multi-head causal self-attention block, with key_dim = value_dim = embed_dim/2; (2)
Skip connection and layer normalization; (3) One hidden layer feed-forward network using the ReLU
activation with dimension = 2× embed_dim; and (4) Skip connection and layer normalization.

K.2 Source and details of data sets

The world_population.csv data set, used for the experiments in Section 2, is obtained from Kaggle.
According to the author, this data set is created from World Population Review.

The us-state-capitals.csv data set, used for the experiments in the beginning of Section 2, is obtained
from this Github repository. Its source is unclear.

The uscities.csv data set, used for the experiments in the beginning of Section 2, is obtained from
Simple Maps, with a CC 4.0 license.

K.3 Details of synthetic data used in experiments

Below we provide additional details regarding the synthetic data used in our experiments.

1. For experiments in Table 1, the training data consists of 50,000 sentences. In the clean
version, sentences are generated uniformly as described in Section 2.1. In the corrupted
version, sentences are generated in a similar manner, but each (ci, di) pair is replaced by
(ci, rj) or (di, rj) with a probability of 1/4 each. Test sentences are generated according to
the setup in Theorem 1. Some examples are as follows:

• Clean
– Training: c1d1r1r2r3r4r5r6 or r1r2r3r4r5r6r7r8
– Prompt: c1d1c2d2c3d3c4?

• Corrupted
– Training: c1r1r2r3r4r5r6r7 or c1d1c2r1r2r3r4r5
– Prompt: c1d1c2d2c3d3c4?

2. For experiments in Table 2, the training data consists of 50,000 sentences. In the clean
version, sentences are generated uniformly as described in Section 2.2. In the imbalanced
and extreme versions, the 60 other words are divided into three categories: 20 for cd
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sentences (rcd·), 20 for ce sentences (rce·), and 20 for both types (r·). In the imbalanced
version, cd (ce) sentences are 4 times more likely to sample a cd (ce) word than a ce (cd)
word. In the extreme version, cd (ce) sentences cannot contain any ce (cd) words. Test
sentences are generated according to the setup in Theorem 2. Some examples are as follows:

• Clean examples
– Training: c1d1r1r2r3r4r5r6 or c1e1r1r2r3r4r5r6
– Prompt: c1d1c2d2c3d3c4? or c1e1c2e2c3e3c4?

• Imbalance examples
– Training: c1d1rcd1rcd2rcd3rce4r5r6 or c1e1rcd1r2rce3rce4rce5r6
– Prompt: c1d1c2d2c3d3c4? or c1e1c2e2c3e3c4?

• Extreme examples
– Training: c1d1rcd1rcd2rcd3r4r5r6 or c1e1r1r2r3rce4rce5r6
– Prompt: c1d1c2d2c3d3c4? or c1e1c2e2c3e3c4?

3. Experiments in Table 3 follow the setup of experiments in Table 2, except that the pairs are
now of the form (ci, di) and (ei, fi) instead of (ci, di) and (ci, ei).

4. For experiments in Section 2.4, the corpus generation process is as follows:
• Randomly select 10 countries and obtain their capital cities and IOC codes.
• Generate 30 sentences containing exactly one country-capital pair (3 for each country).

Example: Paramaribo is the vibrant heart of Suriname.
• Generate 30 sentences containing exactly one country-IOC pair (3 for each country).

Example: Gabon (GAB) protects its diverse rainforests and wildlife.
• Generate 30 sentences containing exactly one country without any pair.

Example: The banking sector is central to Liechtenstein’s prosperity.
• Generate 60 sentences without any country, capital city, or IOC code.

Example: Every country has its unique cultural identity and heritage.
• Generate 810 sentences containing exactly two different country-capital pairs by con-

catenating sentences generated in Step 2.
Example: The city of Dushanbe reflects Tajikistan’s vibrant spirit. Roseau is the
cultural tapestry of Dominica.

• Generate 810 sentences containing exactly two different country-IOC pairs by concate-
nating sentences generated in Step 3.
Example: Mayotte (MAY) features lush landscapes and peaks. Turkmenistan (TKM)
features the fiery Darvaza Crater.

The ICL prompts follow the form used in the country-capital city and US state-capital city
experiments in the beginning of Section 2, with 1 to 5 in-context examples.

5. For experiments in Table 4, the training and test data consist of all sentences in the form abca,
where a, b, and c are distinct. Each test sentence is different from any training sentence. In
the first scenario (both), the first tokens of the training sentences cover the entire vocabulary.
In the second scenario (either), each token can be the first token in either the training or test
data, but not both.

6. For experiments in Table 5, the training data consists of 50,000 sentences generated uni-
formly as detailed in Section 3.1. The ICL prompt formats are also described in Section
3.1.

7. For experiments in Table 6, the training data consists of 50,000 sentences. In the clean
scenario, the training data are of the form abcadefd and abcbdefe, with ICL prompts as
abcadef? and abcbdef?. In the block-noisy scenario, the training data include sequences
like n1n2n3n4abcadefd and abcbn1n2n3n4defe, with ICL prompts as abcadefdghi? and
abcbdefeghi?.

8. For experiments in Table 7, the training data consists of 50,000 sentences generated uni-
formly according to the processes in Sections 4.1 and 4.2. The ICL prompt formats are also
described in the same subsections.

9. For experiments in Section 4.3, the corpus generation process is as follows:
• Randomly select 10 countries and obtain their capital cities and IOC codes.
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• Generate 130 sentences containing exactly one country-capital pair (13 for each coun-
try).
Example: Paramaribo stands as capital of Suriname.

• Generate 30 sentences containing exactly one country without any pair.
Example: The banking sector is central to Liechtenstein’s prosperity.

• Generate 60 sentences without any country, capital city, or IOC code.
Example: Every country has its unique cultural identity and heritage.

• Generate 1,000 sentences containing exactly two different country-capital pairs by
concatenating sentences generated in Step 2.
Example: Brazil functions as heart of Brasilia. Turkmenistan operates as center for
Ashgabat.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: Abstract and introduction (Section 1) clearly summarize the paper’s motivation
(relevance), scope, and contributions. A summary of contributions at the bottom of Section
1 is provided to re-iterate the contributions of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Limitations of this work are included in Appendix J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .
Justification: Assumptions of each theorem and lemma are clearly mentioned in the theo-
rem/lemma statement. Correct and complete proofs of all theoretical results are provided in
the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: Codes for each experiment are provided as a .zip file in the submission.
Experimental details are also provided throughout the paper and in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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should state which ones are omitted from the script and why.
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paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: Enough details are provided throughout the paper and in Appendix K. See
code for more details.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
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Answer: [No] .
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However, most experimental results are backed up by theoretical analyses.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No] .
Justification: We do not include details on the type amd amount of compute required to run
each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We have reviewed the NeurIPS Code of Ethics and concluded that this research
conforms with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: There is no societal impact as this work is foundational.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: We believe this paper poses no such risks as we do not train large-scale
language models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: The existing models used in this paper (e.g., LLaMA) are properly credited.
The sources of the data sets used in our experiments are mentioned in Appendix K.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: This paper does not include any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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