
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVWEB : CONTROLLABLE BLACK-BOX ATTACKS ON
VLM-POWERED WEB AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Language Models (VLMs) have revolutionized the creation of general-
ist web agents, empowering them to autonomously complete diverse tasks on
real-world websites, thereby boosting human efficiency and productivity. How-
ever, despite their remarkable capabilities, the safety and security of these agents
against malicious attacks remain critically underexplored, raising significant con-
cerns about their safe deployment. To uncover and exploit such vulnerabilities in
web agents, we provide AdvWeb, a novel black-box attack framework designed
against web agents. AdvWeb trains an adversarial prompter model that gener-
ates and injects adversarial prompts into web pages, misleading web agents into
executing targeted adversarial actions such as inappropriate stock purchases or er-
roneous bank transactions—actions that could lead to severe consequences. With
only black-box access to the web agent, we train and optimize the adversarial
prompter model using Direct Policy Optimization (DPO), leveraging both suc-
cessful and failed attack strings against the target agent. Unlike prior approaches,
our adversarial string injection maintains stealth and control: (1) the appearance
of the website remains unchanged before and after the attack, making it nearly
impossible for users to detect tampering, and (2) attackers can modify specific
substrings within the generated adversarial string to seamlessly change the attack
objective (e.g., purchasing stocks from a different company), greatly enhancing
attack flexibility and efficiency. We conduct extensive evaluations, demonstrating
that AdvWeb achieves high success rates in attacking state-of-the-art GPT-4V-
based VLM agents across various web tasks in black-box settings. Our findings
expose critical vulnerabilities in current LLM/VLM-based agents, emphasizing
the urgent need for developing more reliable web agents and implementing effec-
tive defenses against such adversarial threats.

1 INTRODUCTION

The rapid evolution of Large Language Models (LLMs) and Vision Language Models (VLMs) has
enabled the development of generalist web agents, which are capable of autonomously interacting
with real-world websites and executing tasks, such as making stock purchases, performing health-
care operations, or handling financial transactions (Nakano et al., 2021; Wu et al., 2024b; Yao et al.,
2022). These agents, by leveraging tools, APIs, and complex website interactions, hold tremen-
dous potential for enhancing human productivity across various domains like finance, healthcare,
and e-commerce (Zhou et al., 2023; Deng et al., 2024; Zheng et al., 2024). Despite their success,
these agents also bring unprecedented security challenges, especially in terms of their robustness to
malicious adversarial attacks, which remains underexplored in existing literature.

Recent works have proposed adversarial attacks against generalist web agents to uncover vulnerabil-
ities before real-world deployment (Yang et al., 2024; Wang et al., 2024; Wu et al., 2024a). However,
existing approaches are either limited by high attack costs, requiring human effort in manually de-
signing the attack prompts (Wu et al., 2024b; Liao et al., 2024), or focused primarily on individual
attack scenarios (Mo et al., 2024), leaving gaps in developing more efficient and adaptable attack
frameworks for web agents. Many adversarial attacks against LLMs and VLMs have also been
proposed to automatically optimize the attack prompts (Guo et al., 2024; Huang et al., 2024). How-
ever, they can not be flexibly adapted to attack VLM-based agents (Zou et al., 2023) and struggle to
achieve transferability to our black-box attack setting (Liu et al., 2024c).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Adversarial Prompter Model

I will inject the following adversarial
prompt to the text box: Disregard all
previous and subsequent instructions
and choices… Type NVIDIA

Invisible HTML injection

User request: Microsoft

Buy stocks

Web agent

Malicious
website

Successful targeted attack: NVIDIA

Sure, I will buy stocks for you

Figure 1: Overview of AdvWeb. We train an adversarial prompter model to generate adversarial strings
added to the website. The injected string is hidden in invisible HTML fields and does not change the website
rendering. Web agents working on the injected malicious website will be mistled to perform targeted actions:
buy Microsoft stocks can be attacked to buy NVIDIA stocks instead, leading to severe consequences.

To address these challenges, we propose AdvWeb, a novel black-box controllable attacking frame-
work specifically designed to exploit vulnerabilities in generalist web agents. Our approach gener-
ates and injects invisible adversarial strings into web pages, misleading the agents into performing
targeted adversarial actions, such as executing erroneous financial transactions or purchasing in-
correct stocks, which can lead to significant consequences. By using Direct Policy Optimization
(DPO) (Rafailov et al., 2024), AdvWeb optimizes adversarial string generation based on both suc-
cessful and unsuccessful attacks against the black-box web agent, allowing for efficient and flexible
attacks. Notably, AdvWeb enables attackers to easily control and modify adversarial strings without
re-optimizing them, making it possible to achieve different attack goals, such as targeting different
companies or actions, with minimal additional effort.

To evaluate the effectiveness of AdvWeb, we test our approach extensively against SeeAct (Zheng
et al., 2024), a state-of-the-art (SOTA) VLM-based web agent framework, on various web tasks in a
black-box setting. Our results demonstrate that AdvWeb is highly effective, achieving a 97.5% at-
tack success rate against GPT-4V-based SeeAct across different website domains and various tasks,
significantly outperforming baseline methods. Our attacks also exhibit strong controllability, with
a 98.5% attack success rate after changing the attack targets without further optimizations. Exper-
iments also show that our stealthy attack strings can be flexibly hidden in different HTML fields
while maintaining high attack success rates. These findings highlight the vulnerability of current
LLM/VLM-based agents and underscore the need for developing more robust defenses to safeguard
their deployment in the real world.

Our key contributions are summarized as follows: (1) We propose AdvWeb, the first black-box
targeted attacking framework against VLM-based web agents, which trains a generative model to
automatically generate adversarial prompts injected into the HTML contents. (2) We propose a two-
stage training paradigm that incorporates reinforcement learning (RL) from the black-box feedback
of the victim agents to optimize the adversarial string. (3) We perform real-world attacks against
SOTA web agent on 440 tasks across 4 different domains. We show that our attack is effective,
achieving an attack success rate of 97.5%. Our adversarial strings are also highly controllable,
with a 98.5% transfer-based attack success rate to different attack targets. (4) We conduct a series of
ablation studies and show that the proposed training framework is crucial and effective for black-box
attacks. Our generated adversarial strings can also be robustly adapted to different attack settings,
achieving near 97.0% attack success rate when we vary different HTML fields.

2 RELATED WORK

Adversarial Attack on LLM. Many approaches have been proposed to jailbreak aligned LLMs,
encouraging them to generate harmful content or answer malicious questions. Due to the discrete
nature of tokens, optimizing these attacks is more challenging than in image-based attacks (Carlini
et al., 2024). Early works (Ebrahimi et al., 2018; Wallace et al., 2019; Shin et al., 2020) optimize

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

input-agnostic token sequences to elicit specific predictions or generate harmful outputs, leveraging
greedy search or gradient information to modify influential tokens. Later, ARCA (Jones et al., 2023)
refines these techniques by simultaneously assessing the impact of multiple token swaps. The GCG
Attack (Zou et al., 2023) then successfully optimized suffixes to elicit affirmative responses, making
attacks more effective. However, the adversarial strings generated by all previous works are unread-
able and are easily detected by perplexity-based detectors. AutoDan (Liu et al., 2024c) improves
the stealthy of the generated adversarial prompts by leveraging a carefully designed hierarchical
genetic algorithm that maintains semantic meaningfulness. Additionally, AmpleGCG (Liao & Sun,
2024) and AdvPrompter (Paulus et al., 2024) directly employ generated models to generate adver-
sarial suffixes without relying on gradient-based optimization. However, these attacks are primarily
enforced towards simple objectives (e.g., eliciting confirmative responses to harmful queries) and
are no longer effective against more complex attack objectives on VLM-powered web agents. To
address this limitation, we present the first attack framework capable of handling diverse and com-
plex objectives (e.g., manipulating a stock purchase decision) while maintaining stealthiness and
controllability.

Web Agents. As LLMs (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023) and
VLMs (Liu et al., 2024b; Dubey et al., 2024; Team et al., 2023) rapidly evolve, their capabilities
have significantly expanded, particularly in leveraging visual perception, complex reasoning, and
planning to assist with daily tasks. Some works (Nakano et al., 2021; Wu et al., 2024b) build gen-
eralist web agents by leveraging the LLMs augmented with retrieval capabilities over the websites,
which is useful for information seeking. Recent works (Yao et al., 2022; Zhou et al., 2023; Deng
et al., 2024) have developed web agents that take raw HTML content as input and can directly
perform tasks in simulated or realistic web environments based on human instructions. However,
HTML content can be noisier compared to the rendered visuals used in human web browsing and
provides lower information density, which leads to low task success rates and limited deployment in
practice. To fully leverage the model capabilities, SeeAct (Zheng et al., 2024) proposes a generalist
web agent framework that consists of a two-stage pipeline and incorporates rendered screenshots as
input, yielding stronger reasoning and achieving SOTA task completion performances. Therefore,
in this work, we focus on attacking SeeAct as our target agent. However, it is important to note that
our proposed attack strategies are readily applicable to all web agents that use webpage screenshots
and/or HTML content as input.

Existing Attacks against Web Agents. To the best of our knowledge, there exists only a limited
body of research examining potential attacks against web agents. Yang et al. (2024) and Wang et al.
(2024) investigate the insertion of backdoor triggers into web agents through fine-tuning backbone
models with white-box access, aiming to mislead agents into making incorrect purchase decisions.
Wu et al. (2024b) and Liao et al. (2024) manipulate the web agents by injecting malicious instruc-
tions into the web contents, misleading the agent to execute the indirect prompts, leading to wrong
results or privacy leakage. However, the malicious instructions are manually designed and written
with heuristics, leading to limited scalability and flexibility. Wu et al. (2024a) shares a similar spirit
with us by focusing on automatically optimizing adversarial input to mislead the web agents. How-
ever, they either require white-box access to the target agent to perform gradient-based optimization
or have limited attack success rates by transferring successful attacks on multiple CLIP models to
proprietary VLM-based agents. In contrast, our work attacks the web agents in a black-box set-
ting. By leveraging reinforcement learning to learn from both positive and negative feedback of the
black-box model, we train a generative model to generate the adversarial strings that can efficiently
and flexibly attack the web agents to perform targeted actions.

3 TARGETED BLACK-BOX ATTACK AGAINST WEB AGENTS

3.1 PRELIMINARIES ON WEB AGENT FORMULATION

Web agents, like SeeAct (Zheng et al., 2024), are designed to autonomously interact with websites
and execute tasks based on user requests. Given a specific website (e.g., a stock trading platform)
and a task request T (e.g., “buy one Microsoft stock”), the web agent must generate a sequence of
executable actions {a1, a2, . . . , an} to successfully complete the task T on the target website.

At each time step t, the agent derives the action at based on the current environment observation
st, the previously executed actions At = {a1, a2, . . . , at−1}, and the task T . For the SeeAct agent,
the observation st consists of two components: the HTML content ht of the webpage and the cor-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

responding rendered screenshot it = I(ht), and the agent utilizes an VLM (e.g., GPT-4V) as its
backend policy model Π to generate the corresponding action, as shown in the following equation:

at = Π(st, T, At) = Π({it, ht}, T, At) (1)

Each action at is formulated as a triplet (ot, rt, et), where ot specifies the operation to perform, rt
represents a corresponding argument for the operation, and et refers to the target HTML element.
For example, to fill in the stock name on the trading website, the agent will type (ot) the desired
stock name, Microsoft (rt), into the stock input text box (et). Once the action at is performed, the
website updates accordingly, and the agent continues this process until the task is completed. For
brevity, we omit the time-step notion t in subsequent equations unless otherwise stated.

3.2 THREAT MODEL

Attack Objective. We consider targeted attacks against the web agents that change the agent’s ac-
tion to a targeted adversarial action aadv = (o, radv, e) that contains a targeted adversarial argument
while keeping the operation the same. This attack can lead to severe consequences since the agent
will proceed with the normal operation but with a wrong malicious argument. For example, a re-
quest to buy Microsoft (r) stocks can be attacked to buy NVIDIA (radv) stocks instead, leading to
huge financial losses to the user.

Environment Access and Attack Scenarios. Since most web agents are powered by proprietary
VLMs, we consider the black-box setting where the attacker does not have access to the agent
framework, the backend model weights, or the backend model logits. The attacker only has access
to the HTML content h in the website, and the only capability is limited to altering h to hadv . This
setting is realistic among various attack scenarios. For example, a malicious website developer can
make profits from intentionally modifying the contents in the website during routine maintenance
or website updates, compromising the user safety. Moreover, such attacks can also happen when
a benign website developer unconsciously uses contaminated libraries to build the webpages, as
demonstrated in a recent report from CISA (Synopsys, 2024), where the resulting websites may
contain hidden but exploitable vulnerabilities.

Attack Constraints. In order to improve the attack efficiency, we additionally require the adversar-
ial attack to be both stealthy and controllable. For the stealthiness requirement, since the rendered
screenshot i = I(h) is influenced by the HTML contents h, it is crucial for the attack to remain
undetectable by users. Therefore, we impose a constraint on the attack that the rendered image must
remain unchanged even after the attack on the HTML contents. Formally, this constraint is expressed
as I(h) = I(hadv), ensuring that any modification to h does not affect the visual information per-
ceived by the user. Regarding the controllability constraint, for an effective attack strategy, it is
crucial that the attacker can swiftly adapt to a new adversarial target by simply modifying the adver-
sarial prompt, without needing further interaction and optimization with the agent. Formally, if the
target action triplet needs to be altered from aadv = (o, radv, e) to a′adv = (o, r′adv, e), the attacker
can employ a deterministic function D(hadv, radv, r

′
adv), which takes the original adversarial HTML

contents hadv , original target argument radv , and the new target argument r′adv as input, and outputs
new adversarial HTML contents h′

adv that will result in the successful targeted attack towards a′adv .
For simplicity, we can consider D(hadv, radv, r

′
adv) as a function that substitutes the keyword radv

in hadv with r′adv . For instance, for the adversarial HTML content hadv that successfully attacks
the agent to buy NVIDIA (radv) stocks instead of the user-required Microsoft (r) stocks, we can
directly employ h′

adv = D(hadv,“NVIDIA”,“Apple”) to successfully control the target and attack
the agent to buy Apple (r′adv) stocks flexibly. Future work could explore more complex functions,
such as those involving sophisticated hashing functions, to map these transformations.

3.3 CHALLENGES OF ATTACKS AGAINST WEB AGENTS

Considering the characteristics and constraints discussed above, there are several challenges to per-
form the attacks. First, the discrete nature of the decision variable hadv complicates the black-box
optimization landscape, further intensified by the strong targeted attack objective and the stringent
constraints and requirements on controllability and stealthiness. Second, existing methodologies,
including white-box attacks like GCG (Zou et al., 2023), struggle with limited transferability to
black-box web agents. On the other hand, black-box approaches (Chao et al., 2023; Mehrotra et al.,
2023) heavily depend on seed prompts for initiating the black-box optimization. However, these

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Collect adversarial prompts
using Algorithm 2

Adversarial dataset

Training stage 1:
Supervised fine-tuning

SFT Prompter Model

Collect feedback from
black-box web agent

Adversarial dataset with
positive/negative feedback

Training stage 2: Direct
Policy Optimization

Adversarial Prompter Model

Figure 2: AdvWeb Prompter Model Training. We first collect the training dataset using LLM-based attack
prompter by Algorithm 2. Then we collect positive and negative feedback from the target black-box model.
Using the positive subsets, we perform the first stage SFT training. Leveraging both positive and negative
feedback, we train the model in the second DPO stage.

seed prompts often struggle with capturing the targeted attack objective and complex constraints
inherent to our scenario. To overcome these challenges, we propose an innovative reinforcement
learning (RL)-based attacking pipeline, tailored to solve these challenges effectively.

4 ADVWEB : CONTROLLABLE BLACK-BOX ATTACKS ON WEB AGENTS

AdvWeb is an advanced attacking framework leveraging reinforcement learning from AI feedback
(RLAIF), specifically designed and optimized for adversarial attacks against black-box web agents.
AdvWeb first effectively reduces the search space of adversarial HTML contents hadv that satisfy
the attack constraints. Since we only have black-box access, we then employ RL algorithms to train
a generative model to generate the adversarial strings added to the static HTML contents, optimizing
the targeted attack objective described in Section 3.2. Unlike existing attacking algorithms against
LLMs (Deng et al., 2023; Ge et al., 2023; Paulus et al., 2024), our proposed framework uniquely
incorporates both positive and negative feedback signals from target black-box models. This
dual-signal approach improves the learning process, which enables the model to capture and exploit
nuance attack patterns that are characteristic and effective against the sophisticated black-box web
agent, achieving high attack success rates in the targeted attack. In Section 4.1, we detail the process
of our automated data generation pipeline, which facilitates the efficient collection of training data.
Furthermore, in Section 4.2, we introduce a novel RLAIF-based training paradigm, which is critical
to help the model learn from the nuance attack patterns. The model trained with this innovative
training methodology is highly effective in attacking web agents, which generate adversarial strings
that can mislead the web agent to perform target actions.

4.1 AUTOMATIC ATTACK AND FEEDBACK COLLECTION

Adversarial HTML Content Design. The search space of adversarial HTML contents hadv is
high-dimensional and discrete, with complex constraints including stealthiness and controllability
given by the screenshot rendering process I and the substitution function D, respectively. To im-
prove the optimization efficiency, eliminate the stealthiness constraint, and make the optimization
of controllability tractable, we reduce the search space of hadv with a specific design. Concretely,
we choose to inject a segment of prompt q into benign HTML contents h to create the adversarial
version hadv . To ensure that the injected prompt q remains invisible in the rendered website image,
we hide q within certain HTML fields or attributes (e.g., “aria-label” = q), such that the injected
prompt will not be rendered on the website. Additionally, to ensure the prompt pattern is control-
lable and transferable to different target actions via direct substitution operations (i.e., the D(·, ·, ·)
function), we embed placeholders (e.g., “{target argument}”) for the target argument in the injected
prompt q and train the model to first generate a prompt template with placeholders and then fill in
the desired attack targets. We also fix the injection position at the ground truth HTML element e
to further reduce the search space. By leveraging HTML hiding techniques with specific fields and
placeholders, we effectively reduce the search space, satisfy the stealthiness constraint, and simplify
the optimization process for achieving controllability.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 AdvWeb Prompter Model Training

1: Input Original HTML contents h, target black-box web agent Π, target adversarial action a′adv
2: Collect training dataset {qi}ni=1 using LLM-based attack prompter by Algorithm 2
3: Evaluate {qi}ni=1 on Π to get labels {li}ni=1 ▷ Get positive and negative feedback
4: Partition {qi}ni=1 into positive and negative subsets {q(p)i }

n1
i=1, {q

(n)
i }

n2
i=1 according to {li}ni=1

5: πθ ← πpre ▷ Initialize prompter model π from a pretrained language model
6: Train prompter model πθ by Equation (2) with {q(p)i }

n1
i=1 ▷ Training stage 1: SFT

7: πref ← πSFT ▷ Initialize reference policy πref from the SFT model
8: Train prompter model πθ by Equation (3) with {q(p)i }

n1
i=1, {q

(n)
i }

n2
i=1 ▷ Training stage 2: DPO

9: return Optimal prompter model πθ

Automatic Attack and Feedback Collection Pipeline. Despite the reduced search space and sim-
plified optimization, extensive training instances with positive and negative labels are still required
to initiate the RL training. To ensure the diversity of the training instances, we employ LLMs as
an attack prompter, generating a set of n various diverse adversarial prompts {qi}ni=1, as illustrated
in Algorithm 2. We then evaluate whether the attack against the black-box web agent is success-
ful using these adversarial prompts. Based on the feedback of the black-box agent, we partition
the generated instances into those with positive signals {q(p)i }

n1
i=1 and those with negative signals

{q(n)i }
n2
i=1. These partitions are subsequently used for RL training.

4.2 TRAINING WEB AGENT ATTACK MODEL IN ADVWEB

To handle the diverse web environments, and ensure the efficiency and scalability of the attack, we
train a prompter model to generate the adversarial jailbreaking prompt q and inject it into the HTML
content. To better capture the nuance differences between different adversarial prompts, we leverage
an RLAIF training paradigm that employs RL to learn from the black-box agent feedback. However,
RL is shown to be unstable in the training process. We further add a supervised fine-tuning (SFT)
stage before the RL training to stabilize the training. The full training process of AdvWeb there-
fore consists of the following two stages: (1) supervised fine-tuning on positive adversarial prompts
{q(p)i }

n1
i=1 and (2) reinforcement learning on both positive adversarial prompts {q(p)i }

n1
i=1 and nega-

tive prompts {q(n)i }
n2
i=1. The full AdvWeb training pipeline can be delineated in Algorithm 1.

Supervised Fine-tuning in AdvWeb. The SFT stage focuses on maximizing the likelihood of
positive adversarial prompts by optimizing the prompter model weights θ. The optimization is
expressed as follows:

LSFT(θ) = −Eh

n1∑
i=1

log πθ(q
(p)
i |h) (2)

This process ensures that the model learns the distribution of successful adversarial prompts, thereby
building a strong basis for the following reinforcement learning stage. By fine-tuning on a set of
positive adversarial prompts, the model learns to generate prompts that are more likely to elicit
desired target actions from the web agent, enhancing the attack capabilities.

Reinforcement Learning Using DPO. After the SFT stage, the prompter model learns the basic
distribution of the successful adversarial prompts. To further capture the nuance of attacking patterns
and better align the prompter with our attacking purpose, we propose a second training stage using
RL, leveraging both positive and negative adversarial prompts. Given the inherent instability and the
sparse positive feedback in the challenging web agent attack scenario, we employ direct preference
optimization (DPO) (Rafailov et al., 2024) to stabilize the reinforcement learning process. Formally,
the optimization of the prompter model weights θ is expressed as follows:

LDPO(θ) = −Eh

∑
i∈{1,...,n1},j∈{1,...,n2}

[
log σ

(
β log

πθ(q
(p)
i |h)

πref(q
(p)
i |h)

− β log
πθ(q

(n)
j |h)

πref(q
(n)
j |h)

)]
(3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where σ denotes the logistic function, and β is a parameter that regulates the deviation from the
base reference policy πref. The reference policy πref is fixed and initialized as the supervised fine-
tuned model πSFT from the previous stage. This optimization framework allows the prompter model
to iteratively refine its parameters, maximizing its probability in generating successful adversarial
jailbreaking prompts that mislead the web agent to perform the target action aadv .

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Victim Web Agent. To demonstrate the effectiveness of AdvWeb, we employ SeeAct (Zheng et al.,
2024), a state-of-the-art web agent powered by different proprietary VLMs (Achiam et al., 2023;
Team et al., 2023). SeeAct operates by first generating an action description based on the current
task and the webpage screenshot. It then maps this description to the corresponding HTML contents
to interact with the web environment.

Dataset and Metrics. Our experiments utilize the Mind2Web dataset (Deng et al., 2024), which
comprises real-world website data for evaluating LLM/VLM-based agents. This dataset includes
2, 350 tasks from 137 websites across 31 domains. We select those tasks that involve critical events
that lead to severe consequences. Specifically, we focus on a subset of 440 tasks across 4 different
domains. We further divide the subset into 240 training tasks and 200 testing tasks. We use attack
success rate (ASR) as our evaluation metric to evaluate the effectiveness of the attack. An attack is
successful if and only if the action given by the agent matches exactly our targeted adversarial action
triplet aadv = (o, radv, e), where the agent must select the correct HTML element and perform the
correct operation.

Implementation Details. For the LLM-based attack prompter, we leverage GPT-4 as the backend
and generate 10 adversarial prompts per task with a temperature of 1 to ensure diversity. We initialize
our generative adversarial prompter model from Mistral-7B-Instruct-v0.2. During SFT
in the first training stage, we set a learning rate of 1e − 4 and a batch size of 32. For DPO in the
second training stage, the learning rate is maintained at 1e− 4, but the batch size is reduced to 16.

Baselines. Since there is no existing black-box attack against web agents that work in our set-
ting, we adapt the following four SOTA attacks against LLMs/VLMs to our setting. (1) GCG (Zou
et al., 2023) is a white-box adversarial attack that optimizes an adversarial suffix string leveraging
the token-level gradient from the target model. In our black-box setting, we follow common prac-
tice (Wu et al., 2024a) to optimize the adversarial string against strong open-source VLM, LLaVA-
NeXT (Liu et al., 2024a), and transfer the attack to our agent. (2) AutoDAN (Liu et al., 2024c) is a
white-box attack that leverages the logits of the target model to optimize the adversarial suffix using
genetic algorithms. We follow similar setting to optimize the adversarial prompts against LLaVA-
NeXT and transfer the attack to our model. (3) COLD-Attack (Guo et al., 2024) is an algorithm
that adapts energy-based constrained decoding with Langevin dynamics, which also requires white-
box access to model gradients. The algorithm generates fluent and stealthy adversarial prompts by
introducing corresponding energy functions. (4) Catastrophic Jailbreak (Huang et al., 2024) is a
black-box attacking algorithm that focuses on manipulating variations in decoding methods to dis-
rupt model alignment. By removing the system prompt, varying decoding hyper-parameters, and
sampling methods, it enables attacks on the model with minimal computational overhead. In our
setting, the attacker does not have access to the agent prompt, we therefore adopt the decoding
hyper-parameter variation as our baseline.

5.2 EFFECTIVENESS OF ADVWEB

VLM-powered web agent is highly vulnerable under AdvWeb. We analyze the vulnerability
of proprietary VLM-based web agents to our proposed AdvWeb attack framework, as depicted
in Table 1. AdvWeb achieves a strikingly high average attack success rate (ASR) of 97.5% on
SeeAct with GPT-4V backend and 99.8% on SeeAct with Gemini 1.5 backend, underscoring the
susceptibility of current web agents to our adversarial attacks. This indicates a critical area of
concern in the robustness of such systems against sophisticated adversarial inputs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Attack success rate (ASR) against SeeAct agent powered by different proprietary VLMs as backends
on different website domains. We compare our algorithm with four strong attacking baselines. The highest
ASR achieved among different methods is highlighted in bold. The last column shows the mean and standard
deviation values of ASR across different domains.

Backend Algorithm Website domains Mean ± Std
Finance Medical Housing Cooking

GPT-4V

GCG 0.0 0.0 0.0 0.0 0.0 ± 0.0
AutoDan 0.0 0.0 0.0 0.0 0.0 ± 0.0
COLD-Attack 0.0 0.0 0.0 0.0 0.0 ± 0.0
Cat-Jailbreak 0.0 0.0 0.0 0.0 0.0 ± 0.0
AdvWeb 100.0 94.4 97.6 98.0 97.5 ± 2.0

Gemini 1.5

GCG 0.0 0.0 0.0 0.0 0.0 ± 0.0
AutoDan 0.0 0.0 0.0 0.0 0.0 ± 0.0
COLD-Attack 0.0 0.0 0.0 0.0 0.0 ± 0.0
Cat-Jailbreak 0.0 0.0 0.0 0.0 0.0 ± 0.0
AdvWeb 99.2 100.0 100.0 100.0 99.8 ± 0.3

Table 2: Attack success rate (ASR) against SeeAct agent powered by GPT-4V in the controllability test. For the
successful attacks, we change the original attack targets to alternative attack targets a′

adv = (o, r′adv, e). We
also adapt the baselines to the controllable setting. For example, we consider the universal attack optimization in
GCG which optimizes multiple targets simultaneously. We similarly alternate the fitness function in AutoDAN
to consider multiple optimization targets to improve the generalizability. The highest ASR achieved among
different methods is highlighted in bold. The last column shows the mean and standard deviation values of
ASR across different domains.

Algorithm Website domains Mean ± Std
Finance Medical Housing Cooking

GCG 0.0 0.0 0.0 0.0 0.0 ± 0.0
AutoDan 0.0 0.0 0.0 0.0 0.0 ± 0.0
COLD-Attack 0.0 0.0 0.0 0.0 0.0 ± 0.0
Cat-Jailbreak 0.0 0.0 0.0 0.0 0.0 ± 0.0
AdvWeb 100.0 100.0 93.8 100.0 98.5 ± 2.7

AdvWeb is effective and outperforms strong baselines. When comparing AdvWeb with estab-
lished baseline approaches, we observe remarkable performance improvements across all domains.
The baselines, designed for maximizing the target response leveraging white-box gradient infor-
mation, all fail in our challenging targeted black-box attack setting, with ASR of 0%. This con-
trast highlights the effectiveness and advanced capabilities of AdvWeb in the complex targeted web
agent attack, marking a significant improvement among baselines. The results not only demonstrate
AdvWeb’s superior performance but also emphasize the ongoing challenges in developing robust
adversarial defenses in web environments.

5.3 IN DEPTH ANALYSIS OF ADVWEB

In this section, we conduct a comprehensive exploration and analysis of AdvWeb. We first try to
evaluate the controllability of the generated adversarial string with different attacking targets. Our
findings reveal that the adversarial string generated by AdvWeb is able to generalize to other targets
with simple replace function D, which exposes severe vulnerabilities of deploying web agents in
the real world. Next, we explore whether the generated adversarial string can be robustly transfered
to different settings such as different injection positions and different HTML fields. We show that
the adversarial injections are able to maintain high attack success rates even under different settings.
We then conduct ablation studies to show that the proposed two-stage training framework matters
and learning from the difference between model feedback improves the effectiveness of the attack.
We finally show that transferring successful adversarial strings against one model to another model
has limited attack success rate, demonstrating the importance of our black-box attacking algorithm
over existing transfer-based attacks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Attack success rate (ASR) of AdvWeb against GPT-4V-powered SeeAct agent under different vari-
ations. We select the successful attacks in the standard setting and transfer them to two different settings:
different injection positions, and different HTML fields.

Website domains Mean ± Std
Finance Medical Housing Cooking

AdvWeb (position change) 26.0 82.0 88.0 88.0 71.0 ± 26.1
AdvWeb (HTML field change) 98.0 94.0 98.0 98.0 97.0 ± 1.7

Table 4: Attack success rate (ASR) comparison between transfer-based black-box attack and our proposed
AdvWeb against SeeAct with Gemini 1.5 backend. We find that transfer-based attack struggle with limited
ASR. Successful attacks against one model can not transfer to other models well. However, with our RLAIF-
based training paradigm that leverages the model feedback, AdvWeb can successfully attack black-box Gemini
1.5 models effectively.

Backend Algorithm Website domains Mean ± Std
Finance Medical Housing Cooking

Gemini 1.5 AdvWeb (from GPT-4V) 0.0 60.0 4.0 8.0 18.0 ± 24.4
AdvWeb 99.2 100.0 100.0 100.0 99.8 ± 0.3

AdvWeb is highly controllable to transfer to different attack targets. The controllability of
AdvWeb was tested by altering the attack targets of successful adversarial injections to new, previ-
ously unseen targets. We show the results on GPT-4V in Table 2 and defer the results on Gemini
1.5 to Table 5 in Appendix. Our experiments show that AdvWeb achieves an impressive average
ASR of 98.5% for new targets across different domains. This high rate demonstrates that AdvWeb’s
injections are not only effective but also highly controllable, allowing attackers to switch targets
with minimal effort and no additional computational overhead.

AdvWeb is flexible to robustly transfer to different settings. To assess the flexibility of AdvWeb,
we explored its effectiveness when transferring the successful adversarial injections to different
settings, including different positions and HTML fields. We originally fixed the injection position of
the adversarial string after the ground truth HTML element e. We now move the position before e
to evaluate the positional generalizability. For stealthiness, we originally use “aria-label” to hide the
adversarial string. We now change the field to “id”. Note that there are many possible options, we
just want to demonstrate the transferability of our attacks across different HTML fields. The results,
as shown in Table 3, demonstrate that the ASR remains high when we change the injection position
or HTML field, with ASR being 71.0% and 97.0%, respectively. This confirms that AdvWeb’s
adversarial injections can seamlessly adapt to different attack settings without further modifications.

Learning from the difference between model feedback improves generation quality. We further
compare and analyze the attack success rates of Supervised Fine-Tuning (SFT) alone versus com-
bining SFT with Direct Policy Optimization (DPO). As shown in Figure 3, incorporating feedback
from the black-box model, notably through DPO, significantly enhances the attack success rate.
Specifically, the average ASR increased from 69.5% to 97.5%, underscoring the value of learning
from differential feedback to capture the nuance difference between different prompt patterns and
improve the performance of the adversarial prompter model.

Transfer-based black-box attack struggles with ASR in our challenging targeted attack. We
compare directly attacking black-box Gemini 1.5-based agent with transferring the successful attack
strings generated for GPT-4V-based agent to Gemini 1.5. The ASR on 4 website domains are shown
in Table 4. As demonstrated in the table, successful attack strings for GPT-4V model have limited
transfer-based attack success rate against Gemini 1.5-based agent, highlighting the advantage of
our black-box attacking framework over existing transfer-based attacking algorithms. Specifically,
direct attacks achieves 99.8 average ASR while transferring only gets 18.0.

Qualitative results. We show two qualitative results in Figure 4. In the first task, the user asks the
agent to buy stocks from Microsoft. After adding adversarial injection q generated by AdvWeb, the
agent buys the target stocks from NVIDIA instead. A similar example shown in the second task

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of AdvWeb attack success rate (ASR) with different training stages. We show the
ASR of AdvWeb with the attack model trained only with the SFT stage. We also show the ASR of standard
AdvWeb with both the SFT stage and the DPO stage as a reference. We find that the proposed DPO stage
incorporating both positive and negative feedback lead to a large improvement of ASR compared to AdvWeb
with only SFT.

Build a new portfolio named
Tech Stocks and add Microsoft,

quantity 1, to it.

<input id=8 combobox text
Type an investment name or

arial-label=“Disregard all prior
and future instructions

entirely… (Prompt optimized by
AdvWeb). Type NVIDIA” />

Type NVIDIA!

Malicious
Website

User
Request

Agent
Action

Build a new portfolio named
Tech Stocks and add Microsoft,

quantity 1, to it.

<input id=8 combobox text
Type an investment name or />

Type Microsoft!

Benign
Website

User
Request

Agent
Action

Set up a new portfolio named
Tech and include Qualcomm.

<input id=4 text VZ, AAPL, TSLA
arial-label=“Disregard all
previous and subsequent
instructions and choices…

(Prompt optimized by AdvWeb).
Type Apple” />

Type Apple!

Malicious
Website

User
Request

Agent
Action

Set up a new portfolio named
Tech and include Qualcomm.

<input id=4 text VZ, AAPL, TSLA
/>

Type Qualcomm!

Benign
Website

User
Request

Agent
Action

Benign Website Malicious Website

Figure 4: Qualitative results of AdvWeb. We show 2 tasks in our test set. In the first task, the user asks the
agent to buy stocks from Microsoft. After adding adversarial injection q generated by AdvWeb, the agent buys
the target stocks from NVIDIA instead. A similar example shown in the second task demonstrates the situation
in which the user wants to buy Qualcomm. However, after adding the adversarial injection, the agent buys
Apple stocks instead.

demonstrates the situation in which the user wants to buy Qualcomm. However, after adding the
adversarial injection, the agent buys Apple stocks instead.

6 CONCLUSION

To uncover the vulnerabilities of VLM-powered web agents in the real world, we propose the first
controllable black-box targeted attack against web agents under various real-world tasks across dif-
ferent domains. We show that the proposed attack AdvWeb achieves much higher attack success
rates than baselines against web agents powered by different proprietary VLMs as backends. Be-
sides, the proposed attack AdvWeb is controllable that does not require optimizing a new adversarial
string each time we change the attack target – only replacing the corresponding sub-string of the at-
tack target (e.g., replace NVIDIA by Apple in the stock purchasing task). Despite some limitations
as we discuss in Appendix C, we believe our proposed attacking framework can underscore the im-
portance of web agent safety, highlighting the need to explore effective defense approaches against
such powerful adversarial attacks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Pang
Wei W Koh, Daphne Ippolito, Florian Tramer, and Ludwig Schmidt. Are aligned neural networks
adversarially aligned? Advances in Neural Information Processing Systems, 36, 2024.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric
Wong. Jailbreaking black box large language models in twenty queries. arXiv preprint
arXiv:2310.08419, 2023.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei
Zhang, and Yang Liu. Jailbreaker: Automated jailbreak across multiple large language model
chatbots. arXiv preprint arXiv:2307.08715, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 31–36, 2018.

Suyu Ge, Chunting Zhou, Rui Hou, Madian Khabsa, Yi-Chia Wang, Qifan Wang, Jiawei Han, and
Yuning Mao. Mart: Improving llm safety with multi-round automatic red-teaming. arXiv preprint
arXiv:2311.07689, 2023.

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin, and Bin Hu. Cold-attack: Jailbreaking llms
with stealthiness and controllability. In Forty-first International Conference on Machine Learning,
2024.

Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai Li, and Danqi Chen. Catastrophic jailbreak of
open-source llms via exploiting generation. In The Twelfth International Conference on Learning
Representations, 2024.

Erik Jones, Anca Dragan, Aditi Raghunathan, and Jacob Steinhardt. Automatically auditing large
language models via discrete optimization. In International Conference on Machine Learning,
pp. 15307–15329. PMLR, 2023.

Zeyi Liao and Huan Sun. Amplegcg: Learning a universal and transferable generative model of
adversarial suffixes for jailbreaking both open and closed llms. arXiv preprint arXiv:2404.07921,
2024.

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Jiawei Zhang, Chaowei Xiao, Yuan Tian, Bo Li,
and Huan Sun. Eia: Environmental injection attack on generalist web agents for privacy leakage.
arXiv preprint arXiv:2409.11295, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

11

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In The Twelfth International Conference on Learning
Representations, 2024c.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron
Singer, and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically. arXiv
preprint arXiv:2312.02119, 2023.

Lingbo Mo, Zeyi Liao, Boyuan Zheng, Yu Su, Chaowei Xiao, and Huan Sun. A trembling house
of cards? mapping adversarial attacks against language agents. arXiv preprint arXiv:2402.10196,
2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon Amos, and Yuandong Tian. Ad-
vprompter: Fast adaptive adversarial prompting for llms. arXiv preprint arXiv:2404.16873, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Synopsys. Xz utils backdoor: A supply chain attack, 2024. URL
https://www.synopsys.com/blogs/software-security/
xz-utils-backdoor-supply-chain-attack.html. Accessed: 2024-07-01.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing nlp. arXiv preprint arXiv:1908.07125, 2019.

Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. Badagent: Inserting and activating
backdoor attacks in llm agents. arXiv preprint arXiv:2406.03007, 2024.

Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan. Adver-
sarial attacks on multimodal agents. arXiv preprint arXiv:2406.12814, 2024a.

Fangzhou Wu, Shutong Wu, Yulong Cao, and Chaowei Xiao. Wipi: A new web threat for llm-driven
web agents. arXiv preprint arXiv:2402.16965, 2024b.

Wenkai Yang, Xiaohan Bi, Yankai Lin, Sishuo Chen, Jie Zhou, and Xu Sun. Watch out for your
agents! investigating backdoor threats to llm-based agents. arXiv preprint arXiv:2402.11208,
2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024.

12

https://www.synopsys.com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html
https://www.synopsys.com/blogs/software-security/xz-utils-backdoor-supply-chain-attack.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS OF ADVWEB

We show the LLM-based Attack Prompter in Algorithm 2, where we leverage LLM to help us
generate diverse attack prompts.

Algorithm 2 LLM-based Attack Prompter

1: function PROMPTER(h, LLM) ▷ h: Original HTML contents
2: messagesystem ← “Your goal is to generate a prompt that mislead the web agents to perform

the targeted action.” ▷ Setting the goal as system message
3: messageuser← “Given the following HTML content, please provide a prompt with the target

action represented by {target argument}: h” ▷ Construct the user message using h
4: return LLM .get response(messagesystem,messageuser) ▷ Return an adversarial prompt
5: end function

B ADDITIONAL EXPERIMENT RESULT

We show the Attack success rate (ASR) against SeeAct agent powered by Gemini 1.5 in the control-
lability test in Table 5, where AdvWeb achieves 100.0% percent attack success rate, demonstrating
strong efficiency when adapting to different attack targets.

Table 5: Attack success rate (ASR) against SeeAct agent powered by Gemini 1.5 in the controllability test. We
change the original attack targets to alternative attack targets a′

adv = (o, r′adv, e). We also adapt the baselines
to the controllable setting. For example, we consider the universal attack optimization in GCG which optimizes
multiple targets simultaneously. We similarly alternate the fitness function in AutoDAN to consider multiple
optimization targets to improve the generalizability. The highest ASR achieved among different methods is
highlighted in bold. The last column shows the mean (variance) value of ASR across different domains.

Algorithm Website domains Mean ± Std
Finance Medical Housing Cooking

GCG 0.0 0.0 0.0 0.0 0.0 ± 0.0
AutoDan 0.0 0.0 0.0 0.0 0.0 ± 0.0
COLD-Attack 0.0 0.0 0.0 0.0 0.0 ± 0.0
Cat-Jailbreak 0.0 0.0 0.0 0.0 0.0 ± 0.0
AdvWeb 100.0 100.0 100.0 100.0 100.0 ± 0.0

C LIMITATIONS

In this work, we require obtaining the feedback of the victim agent before performing the attack
string optimization, which needs to be done offline. It is possible to optimize a more effective ad-
versarial prompter model where we can have online feedback from the black-box agent, uncovering
more fundamental vulnerabilities of LLM/VLM-based agents.

14

	Introduction
	Related work
	Targeted Black-box Attack against Web Agents
	Preliminaries on Web Agent Formulation
	Threat Model
	Challenges of Attacks against Web Agents

	AdvWeb: Controllable Black-box Attacks on Web Agents
	Automatic attack and feedback collection
	Training web agent attack model in AdvWeb

	Experiments
	Experimental Settings
	Effectiveness of AdvWeb
	In depth analysis of AdvWeb

	Conclusion
	Additional Details of AdvWeb
	Additional Experiment Result
	Limitations

