
Diffusion on Demand: Selective Caching and
Modulation for Efficient Generation

Hee Min Choi 1∗

chm.choi@samsung.com
Hyoa Kang 1 2∗

hyoa.kang@samsung.com

Dokwan Oh 1

dokwan.oh@samsung.com
Nam Ik Cho 2†

nicho@snu.ac.kr

1 Samsung Electronics Co., Ltd. 2 Seoul National University

Abstract

Diffusion transformers demonstrate significant potential for various generation
tasks but are challenged by high computational cost. Recently, feature caching
methods have been introduced to improve inference efficiency by storing features
at certain timesteps and reusing them at subsequent timesteps. However, their
effectiveness is limited as they rely only on choosing between cached features and
performing model inference. Motivated by high cosine similarity between features
across consecutive timesteps, we propose a cache-based framework that reuses
features and selectively adapts them through linear modulation. In our framework,
the selection is performed via a modulation gate, and both the gate and modulation
parameters are learned. Extensive experiments show that our method achieves
similar generation performance to the original sampler while requiring significantly
less computation. For example, FLOPs and inference latency are reduced by 2.93×
and 2.15× for DiT-XL/2 and by 2.83× and 1.50× for PixArt-α, respectively. We
find that modulation is effective when applied to as little as 2% of layers, resulting
in negligible computation overhead.

1 Introduction

Diffusion models [14, 45, 46] have emerged as promising generative methods across different
modalities such as images [8, 37] in recent years. Across various backbone architectures for diffusion
models, transformers [49] are increasingly popular for generating high-quality images [35, 1, 54, 3],
videos [27, 36, 6] and 3D content [32, 2]. Although diffusion transformers leverage the scalability of
the architecture, they are challenged by high computational cost and slow inference speed.

Numerous frameworks have been developed to improve inference efficiency in diffusion models.
As the sampling cost scales proportionally with the number of sampling steps and the model size,
efficiency improvements primarily aim to reduce the number of steps and network inference cost.
Several studies reduce the number of sampling steps by optimizing the denoising trajectory [44, 25,
26] or employing distillation methods [39, 47, 28, 16, 50]. Other approaches mainly focus on model
compression by pruning [15, 20, 11] or quantization [19, 48, 12, 4]. Different works use dynamic
inference mechanisms by allocating models of varying sizes for different timesteps [53, 34].

∗Equal contributions
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

49 39 29 19 9 0

Timestep (s)

4
9

3
9

2
9

1
9

9
0

T
im

es
te

p
(s

)
n

o
is

e
im

a
g

e

noise image

0.0

0.5

1.0

(a) Similarity heatmap

0.0 0.2 0.4 0.6 0.8 1.0

Cosine Similarity

0

20

40

60

80

100

S
a

m
p

le
F

re
q

u
en

cy
(%

)

Attention

(b) Similarity at ts and ts+2 (c) 28th attention at t13 and t11

Figure 1: Visualization of attention features in DiT-XL/2 with 50 DDIM timesteps {ts}49s=0. Heatmap
(a) reveals high cosine similarity in features across consecutive timesteps. Histogram (b) shows the
cosine similarity distribution between feature pairs at a two-timestep interval {(ts, ts+2)}47s=0, with
most values near 1. Scatter plot (c) visualizes feature values of the 28th attention layer at timesteps
13 and 11, showing a strong linear relationship.

A new approach to dynamic inference in diffusion models involves a special caching mechanism.
The main idea is to cache intermediate features at certain timesteps for reusing them at subsequent
timesteps by leveraging high similarity between features at consecutive steps. Some caching-based
methods for diffusion transformers [41, 5, 57, 56] rely on handcrafted deterministic strategies to select
features for caching. In contrast, other studies [30, 42] propose to learn optimal caching schemes, yet
their improvements are limited because they only exploit adjacent step redundancy. Efficiency gains
in both training-free and learning-based methods for diffusion transformers are constrained, as they
only involve choosing between cached features and performing network inference.

In this paper, we propose a cache-based framework for diffusion transformers that improves inference
efficiency by reusing features and selectively adapting them through transformations. Our key
idea builds on the observation, which is also noted in the previous work [41], that attention and
multi-layer perceptron (MLP) features in diffusion transformer blocks exhibit high cosine similarity
across consecutive timesteps (Figure 1). Instead of choosing between reusing features or performing
inference, we propose leveraging lightweight linear modulation to approximate the original inference
given the high cosine similarity.

In our framework, we learn modulation gate scores in a differentiable manner to decide whether
to apply the modulation, while simultaneously training scale and translation parameters of the
modulator. At inference time, we use a threshold to enable hard selection. Both the modulation
gate and modulator are time-dependent but input invariant, enabling the construction of a static
computation graph for inference similar to the prior work [30, 42]. Also, the optimization does not
require model parameter updates, ensuring cost-efficiency and ease of implementation.

We perform experiments using popular diffusion transformers. Our framework obtains comparable
generation performance to the original sampler with significantly less computational cost. For
instance, FLOPs are reduced by 2.93× and 2.83× for DiT-XL/2 [35] and PixArt-α [3], respectively.
The inference speed-up is 2.15× and 1.50× for DiT-XL/2 and PixArt-α. Also, the proposed method
achieves superior generation quality compared to existing cache-based approaches and fewer-step
samplers, while maintaining similar FLOPs. We find that the modulation is effective when applied to
a small percentage of layers as low as 2%, resulting in negligible computational overhead.

In summary, we made the following contributions:

• We propose a cache-based framework for diffusion transformers that improves inference
efficiency by reusing features and selectively adapting them through linear modulation. To
our knowledge, this is the first method to approximate diffusion transformer inference using
lightweight cache transformations.

• We show that applying the modulation to as little as 2% of layers is effective, leading to
negligible computational overhead.

• Experiments demonstrate our method generally achieves similar generation performance
with significantly less computation compared to the original sampler, while outperforming
cache-based approaches and fewer-step samplers in generation quality under similar FLOPs.

2

MLP 𝑖

SA 𝑖

MLP 𝑖

SA 𝑖

timestep 𝑡𝑠 timestep 𝑡𝑠−1

MLP 𝑖

SA 𝑖

timestep 𝑡𝑠−2

ℎ𝑖
𝑀𝐿𝑃

ℎ𝑖
𝑆𝐴

𝛼: −2.12
𝛾:−0.08

𝛼: 1.10
𝛾: 0.35

𝑛𝑜𝑖𝑠𝑒 𝑖𝑚𝑎𝑔𝑒

𝑀𝐿𝑃

𝑆𝐴

𝑖

0.92

0.10

𝛽𝑠−1

0.27

0.91

𝛽𝑠−2

Modulation Gate Scores 𝛽 (𝑐: 0.9)

Modulation Parameters 𝛼, 𝛾

Inference and cache features

Use cached features

Use Modulated features

Modulation Gate

Modulated features

Cached features

-2.87

𝛼𝑠−1

8.73

𝛾𝑠−1

3.30

𝛼𝑠−2

2.71

𝛾𝑠−2

𝑀𝐿𝑃

𝑆𝐴

𝑖

1.10 0.35

-2.12 -0.08

Figure 2: Example of the sampling process in the proposed framework with activation cycle N=3 at
i-th basic block. Given N consecutive timesteps {ts, ts−1, ts−2}, network inference is performed at
timestep ts and cache features of attention hSA

i and MLP hMLP
i in the i-th basic block. Then, for

each step m ∈ {s− 1, s− 2} and layer, if the modulation gate score βm is greater than a predefined
threshold c, the linear modulation with scale αm and translation γm is applied, and the modulated
feature replaces the layer computation at timestep tm. Otherwise, the cached feature itself does this.

2 Related Work

Transformers in diffusion. Transformers [49] have been adopted as an alternative to UNet [38] in
diffusion models. Recently, DiT [35] demonstrates the scalability of diffusion transformers, enabling
various applications such as text-to-image and video generation [3, 36, 27] and 3D generation [32, 2].

Efficiency improvement for diffusion. Diffusion sampling involves multiple network inferences,
making it computationally inefficient. DDIM [44] improves the original DDPM [14] to non-
Markovian cases, whereas DPM [25, 26] proposes advanced approximations of diffusion ODE
solutions. Some methods [39, 47, 28, 16, 50] use distillation techniques to efficiently reduce the
number of sampling steps. Model compression strategies have also been explored, such as network
pruning [15, 11, 20] and quantization [19, 48, 12, 4]. Other studies use dynamic inference, allocating
models of varying sizes to different steps [53, 34].

Cache in diffusion for image generation. Feature caching methods have been introduced to improve
inference efficiency by storing features from previous timesteps and reusing them in subsequent
timesteps, leveraging feature similarity. Early works focus on UNet architecture [31, 51]. One such
work [51] applies a parameter-heavy channel-wise linear transformation as a post-processing to
all cached features selected by a deterministic criterion, whereas our method jointly learns both
whether to apply modulation and the corresponding lightweight, layer-wise modulation parameters.
More recently, caching strategies have been extended to diffusion transformers [18, 43]. Training-
free strategies utilize different features for caching such as attention features [23], attention and
MLP features [41], feature residuals [5], and token-wise selected features [57, 56], yet they rely
on handcrafted deterministic criteria for caching decisions. In contrast, other works [30, 42] learn
optimal caching strategies but achieve limited improvement by only exploiting redundancy between
adjacent steps. Although no prior work explored transformation of cached features in the image
domain, a concurrent study [29] applies modulation in the video generation, where two cached
features are combined using a timestep-dependent deterministic weighting function.

3 Method

We propose a cache-based framework for diffusion transformers that improves inference efficiency by
reusing features and selectively modulating them through learned linear transformations. We begin
with a preliminary overview of diffusion, then present caching and modulation mechanism, followed
by the training objective that unifies these components.

3.1 Preliminary

Diffusion. The forward process of diffusion transforms a sample x0 from the data distribution q(x0)
by gradually adding Gaussian noise: xt = κtx0 + σtϵ where ϵ ∼ N(0, I) and κt and σt are noise

3

coefficients. In the reverse (denoising) process, given xs at timestep s > 0 and t < s, xt is computed
as [25]:

xt =
κt

κs
xs − κt

∫ λt

λs

e−λϵθ
(
xtλ(λ), tλ(λ)

)
dλ (1)

where λt = log(κt/σt) and tλ(·) is the inverse function of λt that satisfies tλ(λt) = t. Here, ϵθ(·)
represents the learned model, which in our case, is the diffusion transformer. The integral term in (1)
can be approximated by adopting Taylor expansion at λs in the first-order [44] or higher-orders [25].

Diffusion transformer. Diffusion transformers consist of a sequence of basic blocks with self-
attention fSA, multi-layer perceptron fMLP, and cross-attention fCA (for conditional generation)
blocks: fL ◦ · · · ◦ f2 ◦ f1 where fi = {fSA

i , fCA
i , fMLP

i } and L denotes the depth of the model. Each
block can be represented as

f l
i (z

l,i
t , t) = zl,it + gi(t) ∗ hl

i(z
l,i
t , t), l ∈ {SA,CA,MLP}, (2)

consisting of a residual connection. Here, gi(t) is a timestep t-conditioned scalar, hl
i is the self-

attention, cross-attention, or MLP layer in the i-th basic block, and zl,it denotes the input to the i-th l
block at timestep t. For simplicity, we suppress the condition y in conditional generation.

3.2 Caching for Diffusion Transformers

The main idea of feature caching methods is to approximate ϵθ(·) by reusing intermediate features.
We first describe the naive feature caching scheme [41]. For the first set of N consecutive timesteps
{tT−1, tT−2, . . . , tT−N } in the T -step diffusion model, the naive caching performs network inference
at the first timestep tT−1 and stores all intermediate features of self-attention, cross-attention and
MLP layers, hl

i(z
l,i
tT−1

, tT−1) in (2). Then in the next N − 1 timesteps, the corresponding operations

Algorithm 1 Training

1: Input: Data distribution q(·), diffusion model
ϵθ(·), optimizer, ODE solver Ψ(·), total steps T ,
the step schedule {ts}T−1

s=0 in Ψ(·) and activation
cycleN

2: Randomly initialize β, α, and γ
3: Compute r = (T − 1)%N
4: repeat
5: x0 ∼ q(x0) and n ∼ U [0, (T − 1)//N − 1]
6: s←− N ∗ n+ r

Step ts for calculating states for caching
7: xs ∼ N(xs; κsx0, σ

2
sI)

8: ϵs ←− ϵθ(xs, ts) and cache hl
i(·, ts)’s in Eq (2)

9: d ∼ U [1,N − 1]
10: m←− s− d

Step tm for using cached states
11: x̃m ←− Ψ(ϵs, ts, tm)
12: xm+1 ∼ N(xm+1; κm+1x0, σ

2
m+1I)

13: ϵm+1 ←− ϵθ(xm+1, tm+1)
14: xm ←− Ψ(ϵm+1, tm+1, tm)
15: β ←− Sigmoid(β)

Optimize
16: Calculate ϵ̃θ(x̃m, tm;β, α, γ) by Eq (4) with

Eq (5)
17: L ←− ∥ϵ̃θ(x̃m, tm)− ϵθ(xm, tm)∥22 +λ

∑
β

18: Compute gradients for β, α, γ with respect to
loss L and update them with optimizer

19: until converged

Algorithm 2 Sampling

1: Input: Diffusion model ϵθ(·), modulation gate
score β, modulation parameters α, γ, ODE solver
Ψ(·), total steps T , the step schedule {ts}T−1

s=0 in
Ψ(·), activation cycleN and threshold c

2: Compute r = (T − 1)%N
3: xT−1 ∼ N(0, I)
4: for s = T − 1 to 0 do
5: for l in {SA,CA,MLP} and i = 1 to L do
6: if s%N = r then
7: Calculate f l

i (·, ts) and cache hl
i(·, ts)’s

in Eq (2)
Inference and cache features

8: else
9: βl,i

s ←− Sigmoid(βl,i
s)

10: βl,i
s ←− 1{βl,i

s >c}

11: Calculate f̃ l
i (·, ts) by Eq (5)

12: end if
13: end for
14: if s%N = r then
15: ϵs ←− ϵθ(xs, ts)

Original inference
16: else
17: ϵs ←− ϵ̃θ(x̃s, ts;β, α, γ)

Use cached features
18: end if
19: xs−1 ←− Ψ(ϵs, ts, ts−1)
20: end for
21: return x0

4

are substituted with the cached features. That is, for l ∈ {SA,CA,MLP}, i = 1, . . . , L, and
tm ∈ {tT−2, . . . , tT−N },

hl
i(z

l,i
tm , tm) := hl

i(z
l,i
tT−1

, tT−1) (3)

where := indicates the assignment operation. After completing the N timesteps, the feature cache
resets and begins a new cycle by re-initializing the cache as described above. Here, N is called
activation cycle.

The effectiveness of feature caching is attributed to high similarity between features at the same
depths across adjacent timesteps. However, the features are not identical, resulting in degradation of
the generation quality, for which fine-grained caching methods are proposed [30, 57]. Although the
advanced approaches improve the quality issue, they offer limited gains in computational efficiency
as they rely only on choosing between caching and network inference.

3.3 Cache Modulation

A key question now is how similarity between features can be effectively leveraged to emulate full
T -step network evaluation {ϵθ(xs, ts)}T−1

s=0 . Our core idea is that we approximate some parts of
network inference using transformations of the cached features, while the approximation would not
increase computational cost too much. Specifically, for consecutive timesteps {ts, ts−1, . . . , ts−N+1}
with N activation cycle and cached feature hl

i(z
l,i
ts , ts), we find a lightweight transformation Ll,i

tm that
approximates the original inference f l

i (z
l,i
tm , tm) in the basic block (2) by:

f̃ l
i (z

l,i
tm , tm) := zl,itm + gi(tm) ∗ Ll,i

tm(hl
i(z

l,i
ts , ts)), (4)

where l ∈ {SA,CA,MLP}, i = 1, . . . , L and tm ∈ {ts−1, . . . , ts−N+1}. Based on observations
from previous methods [30, 41] that feature differences vary across timesteps and layers, we use
timestep-wise (tm) and layer-wise (l, i) transformations.

We now specifically define the lightweight transformation. Motivated by high cosine similarity and a
strong linear relationship between features among consecutive timesteps illustrated in Figure 1, we
propose using a linear modulation scheme. Meanwhile, experimental results in the previous study
[41] indicate that the naive caching mechanism (3) alone ensures decent generative performance, so
we add a modulation gate to allow selective incorporation of the modulation. In summary, we define
the lightweight transformation Ll,i

tm in (4) by:

Ll,i
tm

(
hl
i(z

l,i
ts , ts); β

l,i
m , αl,i

m , γl,i
m

)
=

(
1− βl,i

m

)
hl
i(z

l,i
ts , ts) + βl,i

m

(
αl,i
m hl

i(z
l,i
ts , ts) + γl,i

m

)
(5)

where αl,i
m ∈ R and γl,i

m ∈ R are scale and translation parameters of the modulation, and βl,i
m ∈ {0, 1}

is the modulation gate score. We denote the approximation of the original network evaluation
ϵθ(xm, tm) using (4) with (5) by ϵ̃θ(xm, tm;β, α, γ) where α = {αl,i

m}, β = {βl,i
m } and γ = {γl,i

m }.

One simple way to find αl,i
m and γl,i

m in (5) is taking the least square solution for each timestep and
layer in a data-driven way. Specifically, set βl,i

m = 1, and for many input z’s to i-th l layer at timestep
tm, find αl,i

m and γl,i
m such that

minimize
∑
z

∥f l
i (z, tm)− f̃ l

i (z, tm)∥2 . (6)

Then, given αl,i
m and γl,i

m , the modulation gate βl,i
m can be determined by comparing mean square

errors between the full network inference output ϵθ(xm, tm) and all possible approximations
ϵ̃θ(xm, tm;β, α, γ)’s obtained from selection combinations β = {βl,i

m } where each βl,i
m ∈ {0, 1}.

However, evaluating all possible configurations is computationally too expensive, as the number
of combinations grows exponentially with the model’s depth L. Furthermore, this method cannot
effectively handle the sequential nature of diffusion, where an error in a particular layer or timestep
can propagate and affect subsequent layers as well as future timestep inferences.

5

3.4 Training Objective

To address this, we propose to learn the modulation gate score β = {βl,i
m } and modulator parameters

α = {αl,i
m} and γ = {γl,i

m }. Recall that our goal is to find ϵ̃θ(xm, tm;β, α, γ) that approximates
the original inference ϵθ(xm, tm) with minimal computational cost. We can write this as a regu-
larized optimization problem. To be specific, given T timesteps {ti}T−1

i=0 and N activation cycle
{ts, ts−1, . . . , ts−N+1} with caching step ts, for tm ∈ {ts−1, . . . , ts−N+1},

arg min
β,α,γ

∥ϵ̃θ(xm, tm;β, α, γ)− ϵθ(xm, tm)∥2 + λ
∑
i,l

βl,i
m , (7)

where λ is the regularization hyperparameter, l ∈ {SA,CA,MLP} and i = 1, . . . , L. Although β’s
need to be discrete at inference time, we design β to be continuous and normalized between [0, 1]
using the sigmoid operation to make the computation differentiable when training. After training,
we use a threshold c to discretize β be either 0 or 1, where β turned to become a modulation gate.
We note that the model parameters in the diffusion transformer are frozen and only modulation gate
score β and modulator parameters α and γ are updated in our algorithm. We provide a pseudo code
for training and sampling in Algorithms 1 and 2 and illustrate an example of the sampling process
with activation cycle N = 3 in Figure 2.

4 Experiments

4.1 Implementation Details

Model settings. We perform experiments using popular diffusion transformers across different
generation tasks, including DiT-XL/2 [35] for class-conditional image generation and PixArt-α [3],
Sana-0.6B [52] and SD3-medium [10] for text-to-image generation. We utilize diverse sampling
methods with different number of sampling steps. DDIM [44] and DPM++ [26] are used for DiT-XL/2
and PixArt-α, respectively, and Flow-Euler [22] is adopted for Sana-0.6B and SD3-medium.

Training. We test multiple activation cycles N ∈ {2, 3, . . . , 10}. The optimization is performed only
on the modulation gate score and modulator, leading to a very small number of trainable parameters.
For example, the number of parameters is 3,276 for PixArt-α with 20 sampling steps and N = 3. We
use the training set of ImageNet [7] for DiT-XL/2 and COCO2014 [21] for text-to-image generation
models. We train the modulation gate scores and modulator parameters on 4 H100 GPUs with
AdamW optimizer [24] and learning rate 10−3 for 200K iterations.

Evaluation. For class-conditional image generation, we generate 50K images with a resolution
of 256 × 256 by randomly sampling 1K classes on ImageNet. For text-to-image generation, we
randomly select 5K/30K captions from the COCO2014 validation set and generate one image per
caption, testing at different resolutions: 256× 256, 512× 512 and 1024× 1024. We use the default
classifier-free guidance for each model (e.g., 1.5 for DiT-XL/2). Unless specified, the threshold c for
the modulation gate is set to 0.9. To evaluate generation quality, we use Frechet Inception Distance
(FID), sFID [33], Inception Score (IS) [40], precision and recall [17], and we also report CLIPScore
[13] for text-to-image generation. FLOPs are calculated using pytorch-OpCounter [55], and inference
latency is measured on a single H100 GPU. More implementation details are in the appendix.

Table 1: Qualitative results for class-conditional 50K image generation with DiT-XL/2 and DDIM 50
steps on ImageNet 1K classes. Our method requires significantly less computation than the baseline
to achieve comparable image generation quality and outperforms other approaches with similar
FLOPs in terms of generation performance.

Method FLOPs ↓ Speed ↑ FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑
DiT-XL/2 (50 steps, baseline) 11.44 T 1.00× 2.29 4.32 239.54 0.81 0.60
50% steps 5.72 T 1.99× 2.92 4.51 228.15 0.80 0.58
36% steps 4.12 T 2.76× 3.94 5.16 216.29 0.78 0.58
FORA (N=3) [41] 3.91 T 2.16× 3.28 5.72 228.47 0.80 0.56
ToCa (N=3, R=93%) [57] 5.12 T 1.40× 3.04 4.74 - 0.80 0.57
ToCa (N=4, R=93%) [57] 4.37 T 1.49× 3.60 5.11 - 0.79 0.56
Ours (N=3) 3.91 T 2.15× 2.90 4.60 231.54 0.80 0.58

6

Table 2: Qualitative results for text-to-image
generation with PixArt-α and DPM++ (20
steps, 256×256) on COCO2014 30K valida-
tion prompts. Our method significantly reduces
FLOPs compared to the baseline while slightly
improving image quality and outperforms other
approaches with similar FLOPs in terms of FID.

Method FLOPs ↓ FID ↓ CLIP ↑
PixArt-α (20 steps, baseline) 11.43 T 27.76 15.90
40% steps 4.57 T 28.50 16.18
FORA (N=2) [41] 5.75 T 26.17 16.03
FORA (N=3) [41] 4.04 T 27.03 16.07
ToCa (N=3, R=60%) [57] 6.33 T 24.17 16.18
ToCa (N=3, R=90%) [57] 4.26 T 26.12 16.13
Ours (N=3) 4.04 T 24.20 16.13

Table 3: Text-to-image generation performance
of SD3-medium and Sana-0.6B with Flow-Euler
sampler (20 steps, 256×256) on COCO2014 30K
validation prompts. Our method outperforms the
naive caching method in image quality, while in-
curring only a marginal increase in FLOPs. The
second column (Mod) indicates the percentage of
layers with modulation applied.

Method Mod FLOPs ↓ FID ↓
SD3 (baseline) [10] - 11.08 T 23.58
FORA (N=3) [41] 0.00% 3.92 T 47.27
Ours (N=3) 1.50% 3.92 T + 11.01 M 33.60
Sana (baseline) [52] - 4.45 T 20.40
FORA (N=3) [41] 0.00% 1.62 T 23.19
Ours (N=3) 1.83% 1.62 T + 11.80 M 22.25

Table 4: Modulation across varying steps. Modu-
lation improves generation quality, especially at
fewer sampling steps, with a minimal increase
in FLOPs. The second column (Mod) shows the
percentage of layers with modulation applied.

Steps Mod FLOPs ↓ FID ↓
20 0.00% 3.22 T 14.16

0.55% 3.22 T + 9.44 M 11.33 (-2.83)

50 0.00% 7.81 T 3.28
0.38% 7.81 T + 16.52 M 2.90 (-0.38)

100 0.00% 15.63 T 2.44
0.35% 15.63 T + 30.67 M 2.38 (-0.06)

Table 5: Large activation cycles. The proposed
method achieves significantly better image gener-
ation performance than DDIM with 12% steps un-
der comparable FLOPs. Furthermore, our frame-
work requires substantially less computation than
DDIM with 18% steps in order to attain similar
image quality.

Method FLOPs ↓ FID ↓
DiT-XL/2 (50 steps) 22.89 T 2.29
18% steps 4.12 T 16.48
12% steps 2.74 T 52.17
Ours (N=10) 2.33 T 16.62

4.2 Main Results

Class-conditional image generation. Quantitative results of our framework for class-conditional
image generation using DiT-XL/2 [35] are in Table 1. In comparison to the baseline DDIM [44] 50
steps, our method requires 2.93× fewer FLOPs and 2.15× less inference latency to obtain similar
generation quality. Against DDIM 36% steps, which operates with similar FLOPs, our method
demonstrates substantially higher generation quality. For example, our approach achieves a superior
IS of +15.25. Our framework also outperforms existing caching-based methods, FORA (N=3) [41]
and ToCa (N=3, R=93%3) [57], which have similar FLOPs, across all image quality metrics.

Text-to-image generation. We show the performance of our method using PixArt-α [3] with
DPM++ [26] 20 steps in Table 2. To achieve comparable generation performance to our method,
DPM++ 20 steps, ToCa (N=3, R=60%) and FORA (N=2) require 2.83×, 1.57× and 1.42× more
computation, respectively. Our inference speed-up over the baseline is 1.50×. Also, the proposed
method outperforms DPM++ 40% steps and existing caching-based approaches, FORA (N=3) and
ToCa (N=3, R=90%) in terms of FID, while maintaining similar FLOPs.

We also evaluate our method using SD3-medium [10] and Sana-0.6B [52] with Flow-Euler [22] 20-
step sampler. Table 3 shows that the proposed method with N=3 consistently yields better generation
quality than the naive caching method (FORA), with negligible additional FLOPs.

4.3 Ablation Studies

We conduct ablation studies on class-conditional 50K image generation using DiT-XL/2 [35] with
DDIM [44] sampler on ImageNet-1K classes [7].

3For ToCa, "N=3, R=93%" means that the activation cycle is 3, performing full inference once every 3
timesteps, and for the other timesteps, on average, R=93% of tokens reuse cached values, while (1-R)=7% of
tokens require network inference.

7

2 3 4 5 6 7 8 9 10

5

10

15

20

25

30 FLOPs
1.17 T

FLOPs 1.17 T + 35.39 M

N

FI
D

DiT-XL/2
FORA
Ours

Figure 3: Modulation across activation cycles
(N). Modulation consistently enhances image
generation quality, with larger N leading to
greater improvements.

0.2 0.4 0.6 0.8 1.0

Gate Score Threshold

0
1
0
0

2
0
0

3
0
0

F
ID
↓

2.903.59

20 steps

50 steps

Figure 4: Relationship between thresholds and
FID. A 0.9 threshold, where the majority of
cached features are used without modification and
a small portion is modulated, is optimal.

Effectiveness of modulation. A key component of our framework lies in the use of modulation. To
test its effectiveness, we compare configurations with (Ours) and without the modulation (FORA [41]).
We first evaluated different number of activation cycles N ∈ {2, 3, . . . , 10} with 50 DDIM steps.
Figure 3 demonstrates that modulation enhances generation quality, with larger activation cycles N
leading to more noticeable gains. Furthermore, we investigate the effect of varying the number of
sampling steps with activation cycle N=3. Table 4 shows that the use of modulation consistently
improves the generation performance, with a greater improvement observed when fewer steps are
used. These results highlight the effectiveness of modulation, as models with larger activation cycles
and fewer steps tend to have lower feature similarity, making modulation-based adjustments more
significant. Moreover, since the modulator is applied under 1% of the layers, it results in negligible
computational overhead.

Choice of threshold. Recall that if the modulation gate score (β) exceeds a predefined threshold
(c), the modulation is applied to the cached feature; otherwise, the cached feature itself is used. In
Figure 4, we examine the relationship between thresholds and generation quality using DiT-XL/2 with
20 and 50 DDIM steps and the activation cycle N=3. A 0.9 threshold, where most cached features are
utilized without modification and only a few features are modulated (0.55% for the DDIM 20 steps
and 0.38% for the DDIM 50 steps in Table 4), marks the sweet spot for optimal performance. We see
that when the threshold is larger (utilizing more cache without modulation), FID tends to be better
compared to smaller thresholds (applying modulation more). We conjecture that the modulation is
only needed for a few features, since the similarity between features at the same depth across steps is
very high (Figure 1). Also, the modulation involves simple scale and translation operations, so its
limited representation power may hinder generative performance if applied too extensively.

0.90 0.92 0.94 0.96 0.98 1.00

Gate Score Threshold

2

3

4

5

6

7

F
ID
↓

N = 2

N = 3

N = 5

Figure 5: Various activation cycles (N) and mod-
ulation thresholds (c). The optimal threshold ap-
pears around 0.9 for all activation cycles. Mod-
ulation becomes more effective with larger N
compared to the caching-only case (c=1.00).

0 4 8 12 16 20 24
Block Depth

48
42

36
30

24
18

12
6

0
Ti

m
es

te
p

(s
)

0.0

0.5

1.0

Figure 6: Learned pattern of modulation gate
scores for attention. The modulation gate scores
are higher in later denoising steps and deeper lay-
ers, which tend to need more modulation.

8

Table 6: High-resolution generation performance
of Sana-0.6B with Flow-Euler sampler (20 steps,
512×512 and 1024×1024) on COCO2014 5K
validation. Our method shows better quality than
the naive caching method with negligible addi-
tional FLOPs. The second column (Mod) is the
percentage of layers with modulation applied.

Method Mod FLOPs ↓ FID ↓
Sana-512 [52] - 12.19 T 31.21
FORA (N=3) [41] 0.00% 4.33 T 29.66
Ours (N=3) 1.10% 4.33 T + 28.31 M 29.16
Sana-1024 [52] - 43.11 T 29.91
FORA (N=3) [41] 0.00% 15.16 T 29.45
Ours (N=3) 0.55% 15.16 T + 66.06 M 29.17

Table 7: Low-step generation performance of
Sana-0.6B with Flow-Euler sampler (8 steps,
512×512) on COCO2014 5K validation prompts.
Under similar FLOPs settings, our framework out-
performs both fewer-step and caching-based ap-
proaches in terms of image quality.

Method FLOPs ↓ FID ↓
Sana-512 [52] 4.88 T 31.08
62.5% steps 3.07 T 34.45
50% steps 2.44 T 48.87
L2C (N=2) [30] 2.49 T 32.37
FORA (N=2) [41] 2.46 T 32.46
Ours (N=2) 2.46 T 31.89

Different number of activation cycles. We investigate the relationship between different activation
cycles (N) and gate thresholds (c) using DiT-XL/2 with DDIM 50-step sampler. When examining
performance across thresholds in coarse increments of 0.1, the best performance is observed at 0.9
(Figure 4). Therefore, we now explore the range between 0.9 and 1.0 in a more fine-grained way.
Figure 5 shows that the optimal threshold appears around 0.9 for all N ∈ {2, 3, 5}. Similarly, as
shown in Table 4, the modulation becomes more effective as the feature gap between timesteps
increases (i.e., N ↑). For example, with N=5, FID decreases by more than 2 compared to the
caching-only case (c=1.00), whereas with N=2, the improvement is less than 1.

4.4 More Analysis

Large activation cycles. We verify the effectiveness of our framework under a large activation cycle
N setting. We use DiT-XL/2 [35] with DDIM [44] 50-step sampler and set the modulation gate
threshold (c) to 0.93. Table 5 shows that DDIM with 18% steps achieves comparable image quality
to our method with N=10, but requires 1.76× more FLOPs. DDIM at 12% steps matches the FLOPs
of our method with N=10, but yields significantly worse FID scores (+35.55). High-resolution
performance. To evaluate whether the proposed modulation remains effective for high-resolution
text-to-image generation, we apply it to Sana-0.6B [52] models generating 512×512 and 1024×1024
images on the COCO2014 5K validation set [21]. Table 6 shows that applying the modulation less
than 2% of the layers effectively improves generation quality with negligible computational overhead.
This agrees with the results in Table 3.

Low-step performance. We now investigate the effectiveness of our method in a low-step setting
using Sana-0.6B (512× 512) with 8-step Flow-Euler sampler [22]. Table 7 shows that our framework

DiT-XL/2 256×256 SANA-0.6B 512×512

B
as

el
in

e
O

ur
s

Figure 7: Qualitative results. The first three images in the top row are generated by DiT-XL/2
(ImageNet, 256× 256, 50-step DDIM) and the others by Sana-0.6B (COCO2014, 512× 512, 20-step
Flow-Euler), while the bottom shows results from our method (N = 3). Generation quality is almost
identical, despite our method reduces FLOPs by 2.83× for DiT-XL/2 and 2.82× for Sana-0.6B.

9

outperforms fewer-step and other caching-based methods under comparable FLOPs. Learned
pattern of the modulation gate. We plot learned modulation gate scores β for attention features
using DiT-XL/2 (DDIM 50-step, 256× 256) under N=3. Figure 6 indicates that later denoising stage
features and deeper layer features tend to need more modulation (i.e., larger scores).

Qualitative analysis. We qualitatively compare the generation performance of our method and
baseline methods in Figure 7. The first three images are generated with DiT-XL/2 for ImageNet [7]
classes at 256×256 resolution, and the other three with Sana-0.6B for COCO2014 validation prompts
at 512 × 512 resolution. The top row shows baseline outputs: 50-step DDIM for DiT-XL/2 and
20-step Flow-Euler for Sana-0.6B. The bottom row shows our results with activation cycle N = 3.
The qualitative generation performance is nearly identical, while our method reduces FLOPs by
2.83× for DiT-XL/2 (Table 1) and 2.82× for Sana (Table 6). Additional results are in the appendix.

5 Limitations and Conclusion

Limitations. The core idea of the proposed method is to selectively adapt cached features through
learned linear modulation for efficient diffusion transformer inference. We find applying modulation
to all features leads to image quality degradation. We conjecture that the modulation is intentionally
lightweight —using real-valued scalars—which limits its representational capacity.

Conclusion. We have introduced a cache-based framework for diffusion transformers that enhances
inference efficiency by reusing features and selectively adapting them through lightweight linear
modulation. Experimental results demonstrate our method generally achieves similar generation
quality to that of the original sampler with significantly less computation and outperforms existing
approaches under similar FLOPs settings. To our knowledge, this is the first method to improve
inference efficiency by approximating diffusion transformer inference through lightweight cache
transformations. We hope that our work inspires further exploration of advanced caching methods.

References
[1] Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth

words: A ViT backbone for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[2] Ziang Cao, Fangzhou Hong, Tong Wu, Liang Pan, and Ziwei Liu. Large-vocabulary 3D
diffusion model with transformer. In International Conference on Learning Representations
(ICLR), 2024.

[3] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. PixArt-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In International Conference on Learning Representations
(ICLR), 2024.

[4] Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jingyan Jiang, Xin Wang, Zhi Wang, and Wenwu
Zhu. Q-DiT: Accurate post-training quantization for diffusion transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

[5] Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. ∆-Dit: A training-free acceleration method tailored for diffusion
transformers. arXiv, abs/2406.01125, 2024. URL https://arxiv.org/abs/2406.01125.

[6] Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha,
Ping Luo, Tao Xiang, and Juan-Manuel Perez-Rua. GenTron: Diffusion transformers for image
and video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2009.

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

10

https://arxiv.org/abs/2406.01125

[9] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

[10] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
English, and Robin Rombach. Scaling rectified flow transformers for high-resolution image
synthesis. In International Conference on Machine Learning (ICML), 2024.

[11] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In
Advances in Neural Information Processing Systems (NeurIPS), 2023.

[12] Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. EfficientDM: Efficient
quantization-aware fine-tuning of low-bit diffusion models. In International Conference on
Learning Representations (ICLR), 2024.

[13] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7514–7528, 2021.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[15] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. BK-SDM: Archi-
tecturally compressed stable diffusion for efficient text-to-image generation. In ICML Workshop
on Efficient Systems for Foundation Models, 2023.

[16] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ODE trajectory of diffusion. In International Conference on Learning
Representations (ICLR), 2024.

[17] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[18] Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Khan, Tao Liu, Linxuan Li, Shiqi Yang,
Yaxing Wang, Ming-Ming Cheng, and Jian Yang. Faster diffusion: Rethinking the role of the
encoder for diffusion model inference. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

[19] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-Diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

[20] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey
Tulyakov, and Jian Ren. SnapFusion: Text-to-image diffusion model on mobile devices within
two seconds. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In European
Conference on Computer Vision (ECCV), 2014.

[22] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023.

[23] Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Faccio, Mengmeng Xu, Tao Xiang,
Mike Zheng Shou, Juan-Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffusion through
temporal attention decomposition. Transactions on Machine Learning Research (TMLR), 2025.
URL https://openreview.net/forum?id=xXs2GKXPnH.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2019.

11

https://openreview.net/forum?id=xXs2GKXPnH

[25] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

[26] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++:
Fast solver for guided sampling of diffusion probabilistic models. arXiv, abs/2211.01095, 2023.
URL https://arxiv.org/abs/2211.01095.

[27] Haoyu Lu, Guoxing Yang, Nanyi Fei, Yuqi Huo, Zhiwu Lu, Ping Luo, and Mingyu Ding. VDT:
General-purpose video diffusion transformers via mask modeling. In International Conference
on Learning Representations (ICLR), 2024.

[28] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv, abs/2310.04378, 2023.
URL https://arxiv.org/abs/2310.04378.

[29] Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K.
Wong. FasterCache: Training-free video diffusion model acceleration with high quality. In
International Conference on Learning Representations (ICLR), 2025.

[30] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-Cache: Accelerating
diffusion transformer via layer caching. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

[31] Xinyin Ma, Gongfan Fang, and Xinchao Wang. DeepCache: Accelerating diffusion models for
free. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

[32] Shentong Mo, Enze Xie, Ruihang Chu, Lanqing Hong, Matthias Nießner, and Zhenguo Li.
DiT-3D: Exploring plain diffusion transformers for 3d shape generation. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

[33] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W. Battaglia. Generating images with
sparse representations. In International Conference on Machine Learning (ICML), 2021.

[34] Zizheng Pan, Bohan Zhuang, De-An Huang, Weili Nie, Zhiding Yu, Chaowei Xiao, Jianfei Cai,
and Anima Anandkumar. T-Stitch: Accelerating sampling in pre-trained diffusion models with
trajectory stitching. In International Conference on Learning Representations (ICLR), 2025.

[35] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

[36] Yiran Qin, Zhelun Shi, Jiwen Yu, Xijun Wang, Enshen Zhou, Lijun Li, Zhenfei Yin, Xihui
Liu, Lu Sheng, Jing Shao, Lei Bai, Wanli Ouyang, and Ruimao Zhang. WorldSimBench:
Towards video generation models as world simulators. arXiv, abs/2410.18072, 2024. URL
https://arxiv.org/abs/2410.18072.

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, 2022.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), pages 234–241, 2015.

[39] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations (ICLR), 2022.

[40] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen,
and Xi Chen. Improved techniques for training GANs. In Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[41] Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. FORA:
Fast-forward caching in diffusion transformer acceleration. arXiv, 2407.01425, 2024. URL
https://arxiv.org/abs/2407.01425.

12

https://arxiv.org/abs/2211.01095
https://arxiv.org/abs/2310.04378
https://arxiv.org/abs/2410.18072
https://arxiv.org/abs/2407.01425

[42] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan,
Jason Kuen, Henghui Ding, Zhihao Shu, Wei Niu, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu.
LazyDiT: Lazy learning for the acceleration of diffusion transformers. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2025.

[43] Junhyuk So, Jungwon Lee, and Eunhyeok Park. FRDiff: Feature reuse for universal training-free
acceleration of diffusion models. In Proceedings of the European Conference on Computer
Vision (ECCV), page 328–344, 2024.

[44] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations (ICLR), 2021.

[45] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations (ICLR), 2021.

[47] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine Learning (ICML), 2023.

[48] Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan,
Sergey Tulyakov, and Jian Ren. BitsFusion: 1.99 bits weight quantization of diffusion model.
In Advances in Neural Information Processing Systems (NeurIPS), 2024.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[50] Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao,
Michael Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, Xiaogang Wang, and
Hongsheng Li. Phased consistency models. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[51] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers,
Peter Vajda, and Jialiang Wang. Cache me if you can: Accelerating diffusion models through
block caching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[52] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang,
Muyang Li, Ligeng Zhu, Yao Lu, and Song Han. SANA: Efficient high-resolution text-to-
image synthesis with linear diffusion transformers. In International Conference on Learning
Representations (ICLR), 2025.

[53] Shuai Yang, Yukang Chen, Luozhou Wang, Shu Liu, and Ying-Cong Chen. Denoising diffusion
step-aware models. In International Conference on Learning Representations (ICLR), 2024.

[54] Xiulong Yang, Sheng-Min Shih, Yinlin Fu, Xiaoting Zhao, and Shihao Ji. Your ViT is secretly
a hybrid discriminative-generative diffusion model. arXiv, 2022. URL https://arxiv.org/
abs/2208.07791.

[55] Ligeng Zhu. thop: Pytorch-opcounter, 2018. URL https://github.com/Lyken17/
pytorch-OpCounter.git.

[56] Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng
Zhang. Accelerating diffusion transformers with dual feature caching. arXiv, abs/2412.18911,
2024. URL https://arxiv.org/abs/2412.18911.

[57] Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffu-
sion transformers with token-wise feature caching. In International Conference on Learning
Representations (ICLR), 2025.

13

https://arxiv.org/abs/2208.07791
https://arxiv.org/abs/2208.07791
https://github.com/Lyken17/pytorch-OpCounter.git
https://github.com/Lyken17/pytorch-OpCounter.git
https://arxiv.org/abs/2412.18911

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the claims are well supported by the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please refer to "Limitations" section.

14

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA, the paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, pseudocode for both training and sampling is provided to support repro-
ducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.

15

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: No, the code is not open-sourced, but the paper includes pseudocode, model
links, and implementation details in the supplementary material to support accessibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, detailed experimental settings are included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, error bars with random seeds are reported in the supplementary material
for selected experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the supplementary material provides details such as training iterations
and the type of GPU used.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the work adheres to the NeurIPS Code of Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: No, This paper presents work whose goal is to advance the field of machine
learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

18

https://neurips.cc/public/EthicsGuidelines

Answer: [No]

Justification: No, safeguards regarding potential misuse are not discussed in the paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all external assets used in the paper are properly credited, and their
licenses and terms of use are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA, the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

19

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA, the paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA, the paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA, the core method development in this research does not involve LLMs as
any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Implementation Details

A.1 Training Details

Models. In Table 8, we provide a summary that lists checkpoint URLs and license information for
each model-resolution pair used in our experiments. For simplicity, we denote image resolutions of
256× 256, 512× 512, and 1024× 1024 as 256, 512, and 1024, respectively.

Training settings. The optimization is performed only on the modulation gate and modulator.
We use the training set of ImageNet [7] for DiT-XL/2 [35] and COCO2014 [21] for text-to-image
generation models. We train the modulation gate scores and modulator parameters on 4 H100 GPUs
with AdamW optimizer [24] and learning rate 10−3 for 200K iterations. The global batch size for
256× 256 experiments is set for 64, and the corresponding value for 512× 512 and 1024× 1024
experiments is 8.

Table 8: Checkpoint URLs and license information for model-resolution pairs used in our experiments.

Model Resolution Checkpoint URL License
DiT-XL/2 [35] 256 https://dl.fbaipublicfiles.com/DiT/models/

DiT-XL-2-256x256.pt
CC-BY-NC

PixArt-α [3] 256 https://huggingface.co/PixArt-alpha/
PixArt-alpha/blob/main/PixArt-XL-2-256x256.
pth

GNU AGPLv3

1024 https://huggingface.co/PixArt-alpha/
PixArt-alpha/blob/main/PixArt-XL-2-1024-MS.
pth

GNU AGPLv3

SD3-medium
[10]

256 https://huggingface.co/stabilityai/
stable-diffusion-3-medium/blob/main/sd3_
medium_incl_clips.safetensors

CreativeML Open
RAIL++-M

Sana-0.6B
[52]

256, 512 https://huggingface.co/
Efficient-Large-Model/Sana_600M_512px/blob/
main/checkpoints/Sana_600M_512px_MultiLing.
pth

NSCL v2-custom

1024 https://huggingface.co/
Efficient-Large-Model/Sana_600M_1024px/blob/
main/checkpoints/Sana_600M_1024px_MultiLing.
pth

NSCL v2-custom

A.2 Evaluation Details

We describe the methods used for measuring FLOPs and latency, as well as the selection of the
COCO2014 validation set.

FLOPs. FLOPs were calculated by multiplying the MACs (Multiply-Accumulates) measured with
pytorch-OpCounter [55] by 2.

Latency. We evaluated the latency of generating a batch of 8 images using classifier-free guidance by
conducting 10 test runs and computing the average execution time. To ensure accurate measurement,
we performed 3 warm-up iterations before recording the execution time for the subsequent 10 runs.
The speed metric is defined as the ratio of the baseline model’s latency to the latency of each method.
The hardware setup consists of a single NVIDIA H100 GPU (80GB HBM3) and an Intel Xeon Gold
6442Y CPU. The evaluation was performed using CUDA 12.1, Python 3.10, and PyTorch 2.2.2.

COCO validation set. COCO2014 [21] dataset contains sufficient captions in both train and
validation sets (40K each), so we used COCO2014 instead of COCO2017. For validation, we
randomly select 5K/30K captions from COCO2014 validation set, following the methodology
outlined in the prior work [3]. Some methods such as ToCa [57] provide test results on a custom
30K COCO validation set, where some prompts are extracted from the COCO2014 trainset. Since
we used COCO2014 trainset for training our framework, we evaluated all methods on COCO2014
validation set for a fair comparison. We uploaded the list files containing 5K/30K validation prompts
to an anonymous Github page, and the URLs are provided in Table 9.

21

https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt
https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt
https://github.com/facebookresearch/DiT?tab=readme-ov-file#license
https://huggingface.co/PixArt-alpha/PixArt-alpha/blob/main/PixArt-XL-2-256x256.pth
https://huggingface.co/PixArt-alpha/PixArt-alpha/blob/main/PixArt-XL-2-256x256.pth
https://huggingface.co/PixArt-alpha/PixArt-alpha/blob/main/PixArt-XL-2-256x256.pth
https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main
https://huggingface.co/PixArt-alpha/PixArt-alpha/blob/main/PixArt-XL-2-1024-MS.pth
https://huggingface.co/PixArt-alpha/PixArt-alpha/blob/main/PixArt-XL-2-1024-MS.pth
https://huggingface.co/PixArt-alpha/PixArt-alpha/blob/main/PixArt-XL-2-1024-MS.pth
https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main
https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors
https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors
https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors
https://github.com/Stability-AI/stablediffusion?tab=readme-ov-file#license
https://github.com/Stability-AI/stablediffusion?tab=readme-ov-file#license
https://huggingface.co/Efficient-Large-Model/Sana_600M_512px/blob/main/checkpoints/Sana_600M_512px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_512px/blob/main/checkpoints/Sana_600M_512px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_512px/blob/main/checkpoints/Sana_600M_512px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_512px/blob/main/checkpoints/Sana_600M_512px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_512px/blob/main/LICENSE.txt
https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px/blob/main/checkpoints/Sana_600M_1024px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px/blob/main/checkpoints/Sana_600M_1024px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px/blob/main/checkpoints/Sana_600M_1024px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px/blob/main/checkpoints/Sana_600M_1024px_MultiLing.pth
https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px/blob/main/LICENSE.txt

Table 9: COCO2014 5K/30K validation sets.
Set # Prompts URL

COCO-5K 5,000 https://github.com/dod2025/evallist/blob/main/coco_captions_
val2014_5k.txt

COCO-30K 30,000 https://github.com/dod2025/evallist/blob/main/coco_captions_
val2014_30k.txt

A.3 Algorithms for Flow Models

We now provide the training and sampling algorithms of the proposed framework for flow-based
models [22].

Flow models. We define xt as a linear interpolation between a data point from the data distribution
x0 ∼ q(x0) and a noise point x1 ∼ N(0, I). The velocity vt is the direction from the noise to the
data point:

xt = (1− t)x1 + tx0 and vt = x0 − x1 . (8)

Flow models learn a neural network to predict the conditional expectation v̄t = E[vt |xt]. To sample
from a flow model, a random noise x1 is iteratively updated to x0 using a denoising ODE with the
learned flow model v̄θ(xt, t). This iterative step is often approximated using Euler sampling over
small discrete time intervals.

Training and sampling. Algorithms 1 and 2 apply the proposed method to diffusion models with
DDIM [44] and DPM++ [26] samplers. The corresponding versions adapted for flow-based models
are presented in Algorithms 3 and 4. While the samplers differ, the core idea, caching and selective
modulation, is the same. In the algorithms, we denote by ṽθ the approximation of the original flow
model (v̄θ) obtained from our method.

Algorithm 3 Training

1: Input: Data distribution q(·), flow model v̄θ(·),
optimizer, ODE solver Ψ(·), total steps T , the
step schedule {ts}T−1

s=0 in Ψ(·) and activation cy-
cleN

2: Randomly initialize β, α, and γ
3: Compute r = (T − 1)%N
4: repeat
5: x0 ∼ q(x0) and xT−1 ∼ N(0, I).
6: s←− N ∗ n+ r, n ∼ U [0, (T − 1)//N − 1]

Step ts for calculating states for caching
7: xs = (1− ts)xT−1 + tsx0

8: vs ←− v̄θ(xs, ts) and cache hl
i(·, ts)’s in Eq (2)

9: d ∼ U [1,N − 1]
10: m←− s− d

Step tm for using cached states
11: x̃m ←− Ψ(vs, ts, tm)
12: xm+1 = (1− tm+1)xT−1 + tm+1x0

13: vm+1 ←− v̄θ(xm+1, tm+1)
14: xm ←− Ψ(vm+1, tm+1, tm)
15: β ←− Sigmoid(β)

Optimize
16: Calculate ṽθ(x̃m, tm;β, α, γ) by Eq (4) with

Eq (5)
17: L ←− ∥ṽθ(x̃m, tm)− v̄θ(xm, tm)∥22 + λ

∑
β

18: Compute gradients for β, α, γ with respect to
loss L and update them with optimizer

19: until converged

Algorithm 4 Sampling

1: Input: Flow model v̄θ(·), modulation gate score
β, modulation parameters α, γ, ODE solver Ψ(·),
total steps T , the step schedule {ts}T−1

s=0 in Ψ(·),
activation cycleN and threshold c

2: Compute r = (T − 1)%N
3: xT−1 ∼ N(0, I)
4: for s = T − 1 to 0 do
5: for l in {SA,CA,MLP} and i = 1 to L do
6: if s%N = r then
7: Calculate f l

i (·, ts) and cache hl
i(·, ts)’s

in Eq (2)
Inference and cache features

8: else
9: βl,i

s ←− Sigmoid(βl,i
s)

10: βl,i
s ←− 1{βl,i

s >c}

11: Calculate f̃ l
i (·, ts) by Eq (5)

12: end if
13: end for
14: if s%N = r then
15: vs ←− v̄θ(xs, ts)

Original inference
16: else
17: vs ←− ṽθ(x̃s, ts;β, α, γ)

Use cached features
18: end if
19: xs−1 ←− Ψ(vs, ts, ts−1)

20: end for
21: return x0

22

https://github.com/dod2025/evallist/blob/main/coco_captions_val2014_5k.txt
https://github.com/dod2025/evallist/blob/main/coco_captions_val2014_5k.txt
https://github.com/dod2025/evallist/blob/main/coco_captions_val2014_30k.txt
https://github.com/dod2025/evallist/blob/main/coco_captions_val2014_30k.txt

B Additional Analysis

B.1 Effect of Random Seed

Table 1 presents quantitative results for class-conditional 50K image generation on ImageNet-1K [7]
using DiT-XL/2 [35] with DDIM [44] (50 steps). To assess statistical significance, we report mean
± standard deviation over multiple runs with different random seeds {2, 55, 777} for our method,
and the results are compared with those of the naive caching baseline (FORA). Table 10 shows that
the proposed framework consistently achieves higher generation performance than the naive caching
baseline across most metrics.

Table 10: Qualitative performance for class-conditional 50K image generation with DiT-XL/2 and
DDIM 50 steps on ImageNet 1K classes. Our results, reported as mean ± standard deviation over
multiple random seeds, show that the proposed framework consistently achieves higher generation
performance than the naive caching baseline across most metrics.

Method FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑
FORA (N=3) [41] 3.28 5.72 228.47 0.80 0.56
Ours (N=3) 2.90±0.0677 4.60±0.093 231.54±1.4466 0.80±0.0039 0.58±0.0045

B.2 Effectiveness of Modulation

We now compare the performance of the proposed modulator (threshold 0.9) against the cache-only
baseline, using PixArt-α [3] and 20-step DPM++ [26] sampler with activation cycles N ∈ {2, 3, 4}.
This comparison extends the experiment shown in Figure 3 to a different architecture. Table 11
shows that the use of modulation consistently improves the generation performance, with a more
pronounced effect observed in the case of larger N . This highlights the effectiveness of modulation,
since the model with larger N has a greater time spacing between features for the same sampling
steps. Consequently, feature similarity decreases, making adjustments through the modulation more
important. Moreover, since the modulator is applied to fewer layers (≤2.02%), this results in a
minimal increase in computation.

Table 11: Effectiveness of modulation. Modulation improves generation quality, especially at larger
activation cycles N , with a minimal increase in FLOPs. The second column (Mod) shows the
percentage of layers with modulation applied.

N Mod FLOPs ↓ FID ↓

2
0.00% 5.75T 26.17
2.02% 5.75T+40.11M 24.03

3
0.00% 4.04T 27.03
1.28% 4.04T+33.03M 24.20

4
0.00% 2.90T 31.72
0.79% 2.90T+23.59M 25.63

23

B.3 Various Activation Cycles

We explore the relationship between different activation cycles (N) and the modulation gate threshold
(c) with DPM++ [26] 20-step PixArt-α [3]. This comparison extends the experiment shown in
Figure 5 to a different architecture. Figure 8 shows that the optimal threshold appears around 0.9
across all combinations similar to the results observed in Figure 5. Also, the modulation is more
effective as the feature gap between timesteps increases (i.e., with larger N). For instance, with
N=4, FID decreases by more than 6 compared to caching-only baseline, whereas with N=2, the
improvement is around 2.

0.90 0.92 0.94 0.96 0.98 1.00
Gate Score Threshold

20

25

30

35

FI
D

= 2
= 3
= 4

Figure 8: Various activation cycles (N) and gate score thresholds. The optimal threshold appears
around 0.9 for all activation cycles. The proposed modulation becomes more effective with larger N
compared to naive caching (threshold=1.00).

B.4 Robustness Across Different Sampling Methods

We assess the robustness of the default threshold under various sampling methods using PixArt-α [3].
Recall that we utilize the default sampling method DPM++ [26] for PixArt-α (256× 256) and the
threshold for modulation gate is set to 0.9. To demonstrate the robustness, we also apply DDIM [44]
sampler to PixArt-α. We use the 20-step model with three activation cycles (N) and report results
on COCO2014 [21] 30K validation set. Table 12 shows that with the threshold fixed, modulation
consistently improves FID performance, and the improvement becomes more pronounced as N
increases. This trend is observed in both DPM++ and DDIM.

Table 12: Robustness of the default threshold across different sampling methods. With the threshold
fixed, modulation consistently improves FID performance across different samplers, with larger gains
observed for larger activation cycles (N).

N Mod FLOPs ↓ FID (DPM++) ↓ FID (DDIM) ↓
2 0.00% 5.75T 26.17 28.30

2.02% 5.75T+40.11M 24.03 27.13
3 0.00% 4.04T 27.03 29.37

1.28% 4.04T+33.03M 24.20 27.37
4 0.00% 2.90T 31.72 34.65

0.79% 2.90T+23.59M 25.63 25.48

24

B.5 Nonlinear Modulation Functions

We further explore lightweight nonlinear modulators based on common activation functions such as
SiLU [9], sigmoid, hyperbolic tangent (tanh) and softplus. Details of the modulator formulations are
found in Table 13, where x denotes the cached feature and a and b are trainable scalar parameters. We
trained a and b under similar setups to the proposed linear modulator (Appendix A). For evaluation,
we used the configuration from Table 1: DiT-XL/2 [35] with a 50-step DDIM sampler [44] and an
activation cycle N = 3, comparing performance of linear and nonlinear modulators. Table 13 reports
50K image generation performance on ImageNet-1K [7] classes. All linear and nonlinear modulators
outperformed the naive caching baseline FORA [41], which applies no modulation. However, we
observed some variation across different nonlinear function types. Among them, the SiLU-based
modulator achieved performance comparable to the proposed linear variant. These results indicate
that the effectiveness of nonlinear modulation depends on the choice of function, supporting our use
of a simple yet effective linear design with lower computational overhead. Although we experimented
with diverse combinations (e.g., initialization, learning rate, threshold, and training iteration) for each
nonlinear modulator and reported the best result, further hyperparameter tuning could potentially
yield better performance.

Table 13: Results of class-conditional 50K image generation on ImageNet-1K classes using DiT-XL/2
with 50 steps using different nonlinear modulation functions. Table (a) shows the pseudo code of
modulation functions. Table (b) demonstrates that all modulators outperformed the naive caching
baseline, with SiLU performing on par with the linear variant, supporting the use of our linear design
with lower computational overhead.

(a) Formulations of modulation functions.
Method Pseudo Code

Linear a * x + b
SiLU [9] a * silu(x) + b
SoftGate sigmoid(a * x + b) * x
Tanh a * tanh(x) + b
Softplus & Log log(clamp((softplus(a) + 1e-6) * x, min=1e-6, max=1e4)) + b

(b) Results of class-conditional generation.
Method FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

DiT-XL/2 (50 steps, baseline) 2.29 4.32 239.54 0.81 0.60
FORA (no modulators) [41] 3.28 5.72 228.47 0.80 0.56
Ours (linear) 2.90 4.60 231.54 0.80 0.58
SiLU [9] 2.99 4.74 230.22 0.79 0.58
SoftGate 3.00 4.78 231.93 0.80 0.57
Tanh 3.13 4.66 226.21 0.79 0.58
Softplus & Log 3.25 5.73 229.53 0.80 0.56

25

B.6 Validation under Low-Precision Settings

We validate the effectiveness of our framework under a low-precision setting (8-bit weights and 16-bit
activations), using DiT-XL/2 [35] with 50-step DDIM sampler [44], activation cycle N = 3 and
modulation gate threshold of 0.90. To obtain FP8 weights, we apply basic channel-wise symmetric
quantization. Following the setup in Table 1, we evaluate performance on the 50K ImageNet [7] 1K-
class generation task. As shown in Table 14, compared to DDIM 50%-steps with similar generation
quality, our method requires 1.46× fewer FLOPs. Moreover, compared to FORA [41] and DDIM
with 36% of the steps (which incur similar FLOPs), our method achieves better image quality. These
results demonstrate that our method remains effective even under low-precision settings, not just in
full-precision (32-bit) scenarios.

Table 14: Validation under low-precision settings (FP8 weights and FP16 activations) for class-
conditional 50K image generation with DiT-XL/2 and 50-step DDIM sampler on ImageNet-1K
classes. Our method reduces FLOPs compared to fewer-step sampler at similar quality, achieves
better image quality than naive caching and fewer-step samplers under similar FLOPs.

Method FLOPs ↓ FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑
DiT-XL/2 (50 steps, baseline) 11.44 T 2.46 4.70 237.76 0.80 0.60
50% steps 5.72 T 3.18 5.30 231.12 0.79 0.58
36% steps 4.12 T 4.37 6.43 214.37 0.77 0.56
FORA (N=3) [41] 3.91 T 3.66 7.09 224.34 0.79 0.55
Ours (N=3) 3.91 T 3.22 5.13 224.87 0.79 0.57

26

B.7 Feature Similarity Analysis under Consistency Models

To explore the potential of combining our method with consistency models, we analyze feature
similarity in PixArt-α [3] with LCM sampler [28]. Specifically, we compute cosine similarity
between feature pairs sampled at a timestep interval of N = 2 for 4-step generation, and at intervals
of N = 2 and N = 3 for 8-step generation. The analysis is conducted on self-attention, cross-
attention, and MLP layers, where our method is applied, and we focus on low-step settings (4 and
8 steps), as LCM is a step distillation method that reduces the number of inference steps through
full-network finetuning. The resulting distributions, shown as histograms in Figure 9, reveal low
similarity across timesteps. This observation suggests that when using LCM sampler, features vary
significantly between steps, which may limit the effectiveness of our caching-based method. In line
with our observation and conjecture, applying a caching-based method, ∆-DiT [5], to PixArt-α with
LCM resulted in minimal effectiveness (Table 3 in [5]).

Self-Attention Cross-Attention MLP

st
ep

4,
N

=
2

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

st
ep

8,
N

=
2

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

st
ep

8,
N

=
3

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

0 0.25 0.5 0.75 1

0

10

20

30

40

50

Cosine Similarity

Pe
rc

en
ta

ge
(%

)

Figure 9: Visualization of self-attention, cross-attention, and MLP features in PixArt-α with LCM
sampler. The top three histograms show the cosine similarity distribution between feature pairs
sampled at a two-timestep interval in the 4-step model. The middle three histograms depict the
distributions for the 8-step model with a two-timestep interval. The bottom three plots present the
distributions for the 8-step model with a three-timestep interval. Across all cases, the distributions
indicate low cosine similarity between features across timesteps.

27

C Further Comparison with Prior Methods

We report additional evaluations of prior caching-based methods under their primary experimental
settings, which could not be included in Section 4 due to differences in configurations.

C.1 Comparison with Various Methods under N = 2

We compared the proposed framework with existing efficiency improvement methods when the
activation cycle is N=2, meaning the network performs full network inference and save intermediate
features every two steps. Table 15 shows results for class-conditional 50K image generation using DiT-
XL/2 [35] with DDIM [44] 50-step sampler on ImageNet 1K classes [7]. Our method demonstrates
superior generation performance compared to other techniques with similar FLOPs, such as 52%
steps, 50% steps, L2C (35 steps) [30], LazyDiT [42] and FORA [41]. Additionally, our framework
achieves similar image quality with approximately 50% of the FLOPs and 1.68× inference speed
required for the original DDIM 50-step inference. Latency for all methods are measured on an H100
GPU to evaluate the speed-up. However, since LazyDiT’s pretrained model is not publicly available,
its latency is omitted in the table. LazyDiT is expected to have similar inference latency to L2C, as it
similarly alternates between full inference and caching.

Table 15: Results for activation cycle N=2. Our method outperforms other efficiency improvement
techniques in generation performance at comparable FLOPs. The proposed framework requires
almost 50% computation to achieve similar image quality compared to the baseline DiT-XL/2 50-step
sampling.

Method FLOPs ↓ Speed ↑ FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑
DiT-XL/2 (50 steps, baseline) 11.44 T 1.00× 2.26 4.29 238.60 0.80 0.60
52% steps 5.95 T 1.92× 2.82 4.49 232.22 0.80 0.59
50% steps 5.72 T 1.99× 2.85 4.54 231.20 0.80 0.58
L2C (50 steps) [30] 8.72 T 1.24× 2.27 4.23 244.10 0.81 0.59
L2C (35 steps) [30] 5.92 T 1.81× 2.92 4.60 229.52 0.79 0.59
LazyDiT [42] 5.74 T - 2.70 4.47 237.03 0.80 0.59
FORA [41] 5.74 T 1.68× 2.61 4.69 236.14 0.81 0.58
ToCa (R=93%) [57] 6.77 T 1.25× 2.92 4.51 225.77 0.79 0.58
Ours 5.74 T 1.68× 2.43 4.57 236.63 0.80 0.59

28

C.2 Comparison with DuCa

In Table 1, we compared our method with various existing caching strategies under the class-
conditional 50K image generation setting using DiT-XL/2 [35] with DDIM [44] (50 steps) on
ImageNet-1K [7]. Additionally, we include a comparison with DuCa [56], a recently proposed token-
wise caching method in Table 16. DuCa reports results under multiple configurations. DuCa(a) and
DuCa(b) differ in the placement of caching steps: DuCa(a) inserts aggressive caching immediately
after the fresh step, while DuCa(b) places conservative caching at the earliest position. S-A score
denotes token selection based on self-attention scores, and V-norm uses vector norms for caching.
Among the DuCa variants, DuCa(b) (S-A) and DuCa(b) (V-Caching) achieve FID scores comparable
to ours, but both require 1.23× more FLOPs than our method. While results for several configurations
are reported in DuCa, the current implementation4 lacks sufficient documentation or clarification
of specific experimental settings, making it difficult to measure certain metrics such as runtime
or Inception Score (IS) at the time of submission. Accordingly, we omit these entries from our
comparison table.

Table 16: Qualitative results for class-conditional 50K image generation with DiT-XL/2 and DDIM
50 steps on ImageNet 1K classes. Our method requires significantly less computation than the
baseline to achieve comparable image generation quality and outperforms other approaches with
similar FLOPs in terms of generation performance.

Method FLOPs ↓ Speed ↑ FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑
DiT-XL/2 (50 steps, baseline) 11.44 T 1.00× 2.29 4.32 239.54 0.81 0.60
50% steps 5.72 T 1.99× 2.92 4.51 228.15 0.80 0.58
36% steps 4.12 T 2.76× 3.94 5.16 216.29 0.78 0.58
FORA (N=3) [41] 3.91 T 2.16× 3.28 5.72 228.47 0.80 0.56
ToCa (N=3, R=93%) [57] 5.12 T 1.40× 3.04 4.74 - 0.80 0.57
ToCa (N=4, R=93%) [57] 4.37 T 1.49× 3.60 5.11 - 0.79 0.56
DuCa(a) (S-A score) [56] 4.38 T - 3.19 4.66 - 0.79 0.57
DuCa(b) (S-A score) [56] 4.79 T - 3.05 4.66 - 0.80 0.57
DuCa(a) (V-Caching) [56] 4.38 T - 3.19 4.68 - 0.80 0.57
DuCa(b) (V-Caching) [56] 4.79 T - 3.06 4.69 - 0.80 0.57
Ours (N=3) 3.91 T 2.15× 2.90 4.60 231.54 0.80 0.58

C.3 Comparison with T-GATE

To ensure a fair comparison with T-GATE [23], we evaluated our model using a similar number of
MACs to those reported for their PixArt-α 25-step model [3] in Table 4 of [23]. This comparison is
performed on COCO-10K validation prompts5. Table 17 shows that our model achieves significantly
better generation performance and faster inference speed.

Table 17: Qualitative results for text-to-image generation using PixArt-α with DPM++ (25 steps,
1024× 1024) on COCO-10K validation prompts. Our method outperforms T-GATE in image quality
and latency under comparable MAC settings.

Method Latency (s) ↓ FPS ↑ MACs ↓ FID ↓
PixArt-α (25 steps, baseline) [3] 1.43 0.70 107.03 T 38.67
T-GATE [23] 0.62 1.63 64.14 T 38.42
Ours (N=4) 0.53 1.91 60.03 T 32.77

4https://github.com/Shenyi-Z/DuCa
5https://github.com/HaozheLiu-ST/T-GATE/files/15369063/idx_caption.txt

29

https://github.com/Shenyi-Z/DuCa
https://github.com/HaozheLiu-ST/T-GATE/files/15369063/idx_caption.txt

D Comparison with Additional Metrics

This section presents the complete results of several experiments for which performance on various
metrics could not be reported in Section 4 due to space constraints.

D.1 Results on SD3 and Sana

In Table 3, we evaluated our method using SD3-medium [10] and Sana-0.6B [52] with Flow-Euler
[22] 20-step sampler. We additionally report CLIP score [13] and inference speed in Table 18. We
see that the proposed method with activation cycle N = 3 generally yields better generation quality
than the naive caching method (FORA), with negligible additional FLOPs and inference latency.

Table 18: Text-to-image generation performance of SD3-medium and Sana-0.6B with Flow-Euler
sampler (20 steps, 256 × 256) on COCO2014 30K validation prompts. Our method generally
outperforms the naive caching method in image quality, while incurring only a marginal increase
in FLOPs and inference latency. The second column (Mod) indicates the percentage of layers with
modulation applied.

Model Mod FLOPs ↓ Speed ↑ FID ↓ CLIP ↑
SD3 (baseline) [10] - 11.08 T 1.00× 23.58 15.81
FORA (N=3) [41] 0.00% 3.92 T 1.56× 47.27 15.60
Ours (N=3) 1.50% 3.92 T + 11.01 M 1.54× 33.60 15.55
Sana (baseline) [52] - 4.45 T 1.00× 20.40 16.19
FORA (N=3) [41] 0.00% 1.62 T 1.74× 23.19 16.15
Ours (N=3) 1.83% 1.62 T + 11.80 M 1.73× 22.25 16.18

D.2 Results on High-resolution

Table 6 reports results on high-resolution text-to-image generation, where we apply our framework to
Sana-0.6B [52] for generating 512× 512 and 1024× 1024 images on the COCO2014 5K validation
set [21]. We also provide sFID, IS [40], Precision, Recall [17] and CLIP score [13] in Table 19. Our
results show that applying the proposed modulation to fewer than 2% of the layers generally improves
generation quality across most evaluation metrics, while incurring negligible computational overhead.

Table 19: High-resolution performance of Sana-0.6B with Flow-Euler sampler (20 steps, 512× 512
and 1024× 1024) on COCO2014 5K validation prompts. Our method generally shows better image
quality than the naive caching method with negligible additional FLOPs. The second column (Mod)
indicates the percentage of layers with modulation applied.

Model Mod FLOPs ↓ FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑ CLIP ↑
Sana-512 (baseline) [52] - 12.19 T 31.21 72.28 39.62 0.64 0.34 16.11
FORA (N=3) [41] 0.00% 4.33 T 29.66 80.73 39.52 0.59 0.35 16.20
Ours (N=3) 1.10% 4.33 T + 28.31 M 29.16 79.48 40.19 0.60 0.36 16.22
Sana-1024 (baseline) [52] - 43.11 T 29.91 70.00 42.38 0.61 0.39 16.14
FORA (N=3) [41] 0.00% 15.16 T 29.45 81.89 41.05 0.55 0.39 16.28
Ours (N=3) 0.55% 15.16 T + 66.06 M 29.17 81.54 41.33 0.55 0.40 16.28

30

E Additional Figures

E.1 Scatter Plots

In addition to Figure 1, we show more scatter plots to visualize feature values of attention layers at
two-timestep intervals in Figure 10. In the early denoising stage (larger timestep and smaller block
index), features tend to exhibit high linearity between two-timestep intervals, whereas the linearity
decreases as the process progresses to the later stage (smaller timestep and larger block index).

1st block 9th block 18th block 27th block

st
ep

2
vs

.0
st

ep
13

vs
.1

1
st

ep
31

vs
.2

9
st

ep
49

vs
.4

7

Figure 10: Scatter plots for visualizing feature values of attention layers at two-timestep intervals.

31

E.2 Learning Pattern of Modulation Gate

Due to space constraints, only the final heatmap of modulation gate scores for attention is included in
Figure 6. We plot how the modulation gate scores β change as the training progresses in Figure 11.
As gate scores are randomly initialized, they exhibit no distinct structure in the early phase of training.
However, as the training progresses, the scores are separated. In both attention and MLP, modulation
gate scores are higher in later denoising steps and deeper layers, which tend to need more modulation.
Additionally, for MLP features, gate scores are large in the shallow layers.

1 5 9 13 17 21 25

Block Depth

4
8

4
2

3
6

3
0

2
4

1
8

1
2

6
0

T
im

es
te

p
(s

)

Train Iterations = 50,000

1 5 9 13 17 21 25

Block Depth

4
8

4
2

3
6

3
0

2
4

1
8

1
2

6
0

Train Iterations = 100,000

1 5 9 13 17 21 25

Block Depth

4
8

4
2

3
6

3
0

2
4

1
8

1
2

6
0

Train Iterations = 150,000

0.0

0.5

1.0

1 5 9 13 17 21 25

Block Depth

4
8

4
2

3
6

3
0

2
4

1
8

1
2

6
0

T
im

es
te

p
(s

)

Train Iterations = 50,000

1 5 9 13 17 21 25

Block Depth

4
8

4
2

3
6

3
0

2
4

1
8

1
2

6
0

Train Iterations = 100,000

1 5 9 13 17 21 25

Block Depth

4
8

4
2

3
6

3
0

2
4

1
8

1
2

6
0

Train Iterations = 150,000

0.0

0.5

1.0

Figure 11: Learning pattern of modulation gate scores for attention (top) and MLP (bottom). There
is no clear pattern during the initial phase of training. As training progresses, gate scores for both
attention and MLP show an increase in values for later denoising steps and deeper layers, indicating a
need for modulation in those parts. Additionally, for MLP features, gate scores tend to be larger in
the shallow layers.

32

E.3 Generated Images

To demonstrate qualitative results of our method, we apply both our approach and a caching-only
method (FORA [41]) to DiT-XL/2 [35] with DDIM [44] (50 steps, baseline) and an activation cycle
of N = 3. Figure 12 show 256× 256 resolution generations for five ImageNet [7] classes. Overall,
FORA tends to produce blurrier regions, while our method preserves higher sharpness. In the
keeshond example, FORA distorts the appearance of the eyes. In the car wheel image, the orange
paint appears faded. For bullfrog, the fine texture details of the rock are lost. In the case of nail, part
of the head is missing, and in green mamba, the entire image appears noticeably more blurry.

class DiT-XL/2 (50steps, baseline) Ours (N = 3, with modulation) FORA (N = 3, cache only)

keeshond

car
wheel

bullfrog,
Rana catesbeiana

nail

green mamba

Figure 12: Qualitative comparison of baseline DiT-XL/2, FORA, and our method on ImageNet.

33

We further qualitatively compare the generation performance of our method and baseline method in
Figure 13. The images in the top row are generated by Sana-0.6B [52] (COCO2014 [21], 512×512,
20-step Flow-Euler [22]), while the bottom shows results from our method (N = 3). Generation
quality is almost identical, despite our method reduces FLOPs by 2.82×.

Prompt
A person standing with

a broken umbrella.
A man sitting on his surfboard

looking out into the ocean.
A man wearing glasses and

a blue sweater.

Baseline

Ours

Figure 13: Qualitative comparison of baseline Sana-0.6B and our method on COCO2014.

34

	Introduction
	Related Work
	Method
	Preliminary
	Caching for Diffusion Transformers
	Cache Modulation
	Training Objective

	Experiments
	Implementation Details
	Main Results
	Ablation Studies
	More Analysis

	Limitations and Conclusion
	Implementation Details
	Training Details
	Evaluation Details
	Algorithms for Flow Models

	Additional Analysis
	Effect of Random Seed
	Effectiveness of Modulation
	Various Activation Cycles
	Robustness Across Different Sampling Methods
	Nonlinear Modulation Functions
	Validation under Low-Precision Settings
	Feature Similarity Analysis under Consistency Models

	Further Comparison with Prior Methods
	Comparison with Various Methods under N=2
	Comparison with DuCa
	Comparison with T-GATE

	Comparison with Additional Metrics
	Results on SD3 and Sana
	Results on High-resolution

	Additional Figures
	Scatter Plots
	Learning Pattern of Modulation Gate
	Generated Images

