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ABSTRACT

Deep neural networks trained with standard empirical risk minimization (ERM)
tend to exploit the spurious correlations between non-essential features and classes
for predictions. For example, models might identify an object using its frequently
co-occurring background, leading to poor performance on data lacking the corre-
lation. Last-layer retraining approaches the problem of over-reliance on spurious
correlations by adjusting the weights of the final classification layer. The success
of this technique provides an appealing alternative to the problem by focusing on
the improper weighting on neuron activations developed during training. However,
annotations on spurious correlations are needed to guide the weight adjustment. In
this paper, for the first time, we demonstrate theoretically that neuron activations,
coupled with their final prediction outcomes, provide self-identifying information
on whether the neurons are affected by spurious bias. Using this information,
we propose last-layer selective activation retraining (LaSAR), which retrains the
last classification layer while selectively blocking neurons that are identified as
spurious. In this way, we promote the model to discover robust decision rules
beyond spurious correlations. Our method works in a classic ERM training set-
ting where no additional annotations beyond class labels are available, making
it a practical and efficient post-hoc tool for improving a model’s robustness to
spurious correlations. We theoretically show that LaSAR brings a model closer to
the unbiased one and empirically demonstrate that our method is effective with
different model architectures and can effectively mitigate spurious bias on different
data modalities without requiring annotations of spurious correlations in data.

1 INTRODUCTION

Deep neural networks trained with empirical risk minimization (ERM) tend to develop spurious bias
— a tendency to use spurious correlations for predictions. A spurious correlation is a non-causal
correlation between a class and a feature non-essential to the class, called a spurious feature. For
example, waterbird and water background may form a spurious correlation (Sagawa et al.,|2019) in
waterbird predictions: a water background feature is non-essential to the waterbird class, even though
there are 95% images of waterbird (Fig. [1)) with water backgrounds. In contrast, a core feature such
as bird feathers causally determines a class. A model with spurious bias may still achieve a high
prediction accuracy (Beery et al.,[2018;|Geirhos et al.,[2019; 2020; [Xiao et al.,[2021) even without
core features, such as identifying an object only by its frequently co-occurring background (Geirhos
et al., [2020). However, the model may perform poorly on the data where spurious features do not
exist, posing a great challenge to robust model generalization.

Mitigating spurious bias typically depends on accurate annotations of spurious correlations between
spurious features and classes, termed group labels. A group label (class, spurious feature) annotates a
sample with a spurious feature in addition to its class label, providing a more granular categorization of
data. For example, the Waterbirds dataset shown in Fig. |I|can be divided into four groups: (landbird,
land), (landbird, water), (waterbird, land), and (waterbird, water). Models with spurious bias typically
perform well on the majority groups which contain the majority of data, i.e., (landbird, land) and
(waterbird, water), and perform poorly on the other groups, e.g., (landbird, water) and (waterbird,
land), where the spurious correlations are different from those in the majority groups. Group labels
play an important role in spurious bias mitigation, enabling direct performance optimization (Sagawa
et al.,[2019; [Deng et al., [2024)) and model selection (Liu et al., 2021} |Kirichenko et al., [2023)) under



Under review as a conference paper at ICLR 2025

known spurious correlations. However, group labels often require costly human-guided annotations,
which are hard to acquire.

Removing the dependency on group labels allows us to

tackle spurious bias in practically any scenarios where (andbird, land) andoidapaten)
ERM training is adopted. However, this also opens up

new challenges for unsupervised spurious bias miti- | Class:
gation where robustness to spurious correlations is not | landbird
specified a priori by group labels. Recently, last-layer AAY vl ¢ _
retraining (Kirichenko et al.,[2023}; [Tzmailov et al.} 2022} 3,498 (95%) 184 (5%)
|[LaBonte et al.| [2024), which adjusts the weights of the ‘ _
last classification layer of an ERM model, has been suc- (G “d) Kigaterbird \water)
cessful in spurious bias mitigation guided by a held-out [ 3 a

retraining set with group labels. The success demon- | Class:  NEEESE 4

strates that neurons in the penultimate layer (before the | waterbird
last layer) provide sufficient information to tackle the i
prediction task at hand, as long as their contributions to 56 (5%) 1,057 (95%)
final predictions are properly adjusted. This motivates

us to detect neurons that are affected by spurious bias in  Figure 1: The Waterbirds dataset
order to mitigate it in the model. Although some existing |et al., 2019). Training samples are parti-
methods (Singla & Feizil 2021} [Neuhaus et al.} 2022) ex- tioned into four groups: (landbird, land),
ploit neuron activations to detect spurious features, they ~(landbird, water), (waterbird, land), and
require a certain amount of human supervision. The chal- (waterbird, water).

lenge that we aim to tackle is: can we identify neurons

affected by spurious bias without external supervision, e.g., group labels, and mitigate spurious bias
accordingly?

In this paper, for the first time, we theoretically demonstrate that neuron activations before the last
classification layer, coupled with their final prediction outcomes, provide self-identifying information
on whether the neurons are affected by spurious bias. Central to our theory is a term in a neuron
activation that contributes to a model’s spurious prediction behavior, which algins with the empirical
observation that if representative samples with high activations on a neuron (Bykov et al.} 2023} [Singlal
are misclassified, then the neuron tends to be affected by spurious bias. Leveraging
this insight, we propose a novel self-guided neuron detection method that works right before the
last prediction layer to identify what neurons are affected by spurious bias for the given prediction
task. With the incorporation of this method, we propose a last-layer selective activation retraining
(LaSAR) framework that aims to retrain the last layer for improved robustness to spurious bias.
During retraining, LaSAR is aware of the spuriousness of input neurons to the last prediction layer
and selectively blocks the signals from the affected neurons. In this way, we promote the model to
discover robust decision rules beyond spurious correlations.

We theoretically prove that LaSAR can effectively identify neurons affected by spurious bias and
bring a model closer to the unbiased one. Our method LaSAR works in a classic ERM training setting
where no additional annotations beyond class labels are available, which makes it a practical and
efficient post-hoc tool for mitigating the spurious bias in a model. LaSAR is fully unsupervised in
the sense that it does not requires external supervision, such as group labels, to mitigate a model’s
spurious bias. The ability to detect neurons affected by spurious bias in the latent space allows our
method to be applicable to various data modalities, including vision and text data. Experiments show
that our method outperforms baseline approaches in mitigating spurious bias across four benchmark
datasets.

2 RELATED WORK

Exploiting spurious correlations for predictions has been demonstrated to be harmful to a model’s
generalization (Nushi et al.| 2018}, [Zhang et al., [2018bj Geirhos et al.| 2019; [Clark et al., 2019; [Nauta]
let al.l 2021}, [Geirhos et al., 2020; [Xiao et al.,2021). Thus, it is critical to mitigate the reliance on
spurious correlations, or spurious bias, in models. In the following, we summarize existing methods
into supervised, semi-supervised, and unsupervised spurious bias mitigation, based on the degrees of
availability of external supervision.
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Supervised spurious bias mitigation. In this setting, certain spurious correlations in data are given
in the form of group labels. Spurious bias in a model is often demonstrated when there is a large
gap between the model’s average performance and its worst-group performance, indicating a strong
reliance on certain spurious correlations that are not shared across groups of data. With group labels in
the training data, balancing the size of the groups (Cui et al.,|2019; He & Garcial 2009), upweighting
groups that do not have specified spurious correlations (Byrd & Lipton, |2019), or optimizing the
worst-group performance (Sagawa et al.| [2019) can be effective. Regularization strategies, such
as using information bottleneck (Tartaglione et al., |2021) or the distributional distance between
bias-aligned samples (Barbano et al.,|2023)), are also proved to be effective in spurious bias mitigation.
A recent work (Wang et al.| [2024)) exploits the concept of neural collapse for spurious bias mitigation.
However, this setting requires to know what spurious bias needs to be mitigated a priori and only
focuses on mitigating the specified spurious bias.

Semi-supervised spurious bias mitigation. This setting relaxes the requirement of group labels in
the training data but does require a small portion in a held-out set for achieving optimal performance.
In other words, the goal is to mitigate targeted spurious bias without extensive spurious correlation
annotations. One line of works is to use data augmentation, such as mixup (Zhang et al.| [2018a;
Han et al.} 2022; Wu et al.| 2023) or selective augmentation (Yao et al., 2022), to mitigate spurious
bias in model training. Additionally, some methods propose to infer group labels in the training data
using misclassified samples (Liu et al.,[2021)), clustering hidden embeddings (Zhang et al.|[2022), or
training a group label estimator (Nam et al., 2022) with a part of group-annotated validation data.
Creager et al.[(2021) infers group labels and adopts invariant learning. Moreover, Bahng et al.| (2020)
uses biased models to represent certain spurious biases, |Zhang et al.|(2024)) improves bias learning
and mitigation via poisoning attack, and |Zhang et al.|(2023) exploits the training dynamics to mine
intermediate attribute samples for spurious bias mitigation. Last layer retraining (Kirichenko et al.|
2023)) uses a half of group-balanced validation data to retrain the last layer of a model. Recently,
LaBonte et al.| (2024) relaxes the requirement of group labels in one-half of the validation data
using the early-stop disagreement criterion for selecting retraining samples. We also adopt last layer
retraining but focus on a completely different setting where no group labels are available for training.

Unsupervised spurious bias mitigation. This setting does not assume any knowledge about spurious
correlations in data, and the goal is to train a robust model that works well on certain data with known
spurious correlations. Typically, we would expect relatively lower performance for methods working
in this setting than in the other two settings as no information regarding the spurious correlations
in test data is provided. A recent method (Li et al., [2024)) upweights the training samples that are
misclassified by a bias-amplified model and selects models using minimum class difference. Our
method also works in this challenging setting. We take inspiration from spurious feature detection
using neuron activations (Singla & Feizi, [2022; [Neuhaus et al.| 2022) but fully automate this process
and integrate into our spurious bias mitigation framework. We propose a novel spuriousness fitness
score to select robust models.

3 METHODOLOGY

3.1 PROBLEM SETTING

We consider a standard classification problem in which we assume that the dataset Dy,n =
{(x,y)|x € X,y € Y} can be partitioned into groups Dy with Dyin = UyegDy, where x denotes
a sample in the input space X, y is the corresponding label in the finite label space ), g := (y, a)
denotes the group label defined by the combination of a class label y and a spurious feature a € A,
where A denotes all spurious features in Diin, and G denotes all possible group labels. A group of
sample-label pairs in Dy have the same class label y and the same spurious feature a.

Our scenario: unsupervised spurious bias mitigation. In this setting, no group labels are available,
resembling the traditional ERM training. In this setting, it is challenging to train a model fg that is
robust to unknown spurious correlations in the given dataset Dy,;,. A commonly used performance
measure is the worst-group accuracy (WGA), which is the accuracy on the worst performing data
group in the test set Dieg, i.€., WGA = mingeg Acc(fo, Dy ), where Dy denotes a group of data in
Drest With Dy = UgEgD_Ef. Typically, data in Dy, is unbalanced across groups, and the trained
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Figure 2: Method overview. (a) Extract latent embeddings (neuron activations) and prediction
outcomes from an ERM-trained model using the identification data Dyq4.. (b) Identify dimensions
(neurons) affected by spurious bias utilizing prediction outcomes (red for correct and blue for incorrect
predictions). (c) Retrain the last prediction layer using selective activations on Dgey.

model fg tends to favor certain data groups and to have a low WGA. Improving WGA without the
guidance of group labels is challenging.

To tackle this, we first propose a practical and efficient retraining framework (Section[3.2) for spurious
bias mitigation, which utilizes the self-identifying information of spurious bias contained in neuron
activations along with their final prediction outcomes. Next, we provide a theoretical analysis (Section
to justify our design choices.

3.2 LAST LAYER SELECTIVE ACTIVATION RETRAINING

3.2.1 IDENTIFYING AFFECTED NEURONS

We first focus on identifying dimensions (neurons) from latent embeddings (neuron activations) of a
targeted model that are affected by spurious bias. Identifying affected neurons allows us to design a
general detection method independent of the data modality adopted in training.

Consider that we are given a well-trained ERM model fg with parameters 6 as follows
0= argr%i/nE(x,y)GDmin‘g(fe’ (X>7y)7 (1)

where ¢ denotes the cross-entropy loss function. The model fg = eg, o hg, consists of a feature
extractor eg, : X — RM followed by a classifier hg, : RM — RIY|, where M is the number of
dimensions of latent embeddings obtained after eg,, o denotes the function composition operator, and
6 = 6, U 6,. Here, hg, is the last linear layer of the model with parameters 62, and eg, represents
the remaining layers. As shown in Fig. [2[a), we extract a set of latent embeddings and prediction
outcomes from the identification data D4 for the class y, i.e.,

Vo= {(Vna 0n)|vn = €9, (Xn)a On = ]]-{arg max fB(Xn) == yn}a (men) € Dlde}7 )

where v,, € RM is an M-dimensional latent embedding for x,,, and o, is the corresponding
prediction outcome with 1 being an indicator function. We use the held-out validation data Dy, as
the identification data.

With the set of latent embeddings and prediction outcomes V¥, we first propose a novel score termed
spuriousness score 0, which measures the spuriousness of the ’th dimension for predicting the
class y. A larger spuriousness score indicates that the corresponding dimension is more likely to be
affected by the spurious bias in the model. To calculate J;, we first group V¥ at the ¢’th dimension

into correctly and incorrectly predicted sets f)ly and T/f’ , respectively:

f)ly = {v,[i)|(Vn,0n) EVY 0, =1}, Vi=1,...,M, y€, 3)

and

sz = {Vn[i]‘(vnvon) €V o, 20}7 Vi=1,...,M,y€), “)
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where v, [i] denotes the i’th element in v,,. As illustrated in Fig. b), we define (5%’ as follows:

55’ = Mmis — Hcor = Med(VZy) - Med(Vf’), 5)
where Med(-) gets the median from a set of values. A high ;s indicates that high activations at
the 7’th dimension has adverse effects on predicting the class y, while a low o implies that low
activations at the i’th dimension has little effect on the predictions. Thus, a large difference between
mis and ficor, 1.€., a large 67, indicates a high likelihood of the i’th dimension being affected by
the spurious bias in the model, i.e., the model incorrectly amplifies a spurious feature in the neuron
activation when it should not. In contrast, a negative §; shows the importance of the i’th dimension for
predictions as most correctly predicted samples tend to have high activation values on this dimension,
while most incorrectly predicted samples have low activation values. Therefore, we set a cutoff value
of 0 to select dimensions affected by spurious bias as follows:

S={ié! >0,Vi=1,..., M,y € V}. 6)
While our approach may resemble traditional variable selection, it goes further by specifically
addressing spurious bias—a factor often ignored in traditional methods. Additionally, it operates in
an unsupervised setting without requiring group annotations. Further details on its advantages are
provided in Appendix.

Note that an identified dimension for one class cannot serve as a key contributor to predicting some
other class. For example, when the goal is to classify between a “rectangle” and the “blue color”,
the dimension with a strong reliance on the “blue color” for the “rectangle” class cannot be used to
predict the “blue color” class given a blue rectangle, as the prediction will be ambiguous. Therefore,
S includes the identified dimensions for all the classes.

In the following, we refer to a dimension as a spurious dimension when 5}/’ > 0 and a core
dimension when ¢! < 0. However, these terms do not imply that a dimension exclusively represents
either spurious or core features. In practice, a core dimension exhibits high activation values for
the target class, whereas a spurious dimension shows high activation values for an undesired class.
Visualizations of several identified spurious and core dimensions on real-world datasets are provided
in Figs. [5| through [8]in Appendix.

3.2.2 MITIGATE SPURIOUS BIAS

Learning objective. With the identified spurious dimensions, we propose to selectively retrain the
last prediction layer to mitigate the reliance on spurious correlations. As illustrated in Fig. [J[c), during
retraining, we selectively activate dimensions (neurons) that are not identified as spurious while
masking out the signals from spurious dimensions. In this way, we explicitly break the correlations
between spurious features and prediction targets and promote the model to discover robust decision
rules beyond spurious correlations. Concretely, given a retraining dataset Dy, We optimize the last
classification layer as follows,

0; = arg Héin Eg~ppil(ho,(Vn),y), @)
2

where B is a batch containing class-balanced sample-label pairs from Dge, avoiding the classifier
favoring certain classes during retraining, and v, is the latent embedding after zeroing-out activations
on the identified spurious dimensions S. Unless otherwise stated, we use Dyin as Drey.

Model selection. Without group labels, we have no knowledge about what spurious correlations a
model might capture during training, which is challenging to select robust models (Liu et al., 2021}
Yang et al.,|2023). We address this by designing a novel model selection metric, termed spuriousness
fitness score (SFit), based on our proposed spuriousness score. We calculate SFit as follows:

M
SFit =" " Abs(d¥,), 8)
m=1yey

where Abs(+) returns the absolute value of a given input. In practice, a high SFit can select a robust
model that has easily self-distinguishable spurious and core dimensions.

We use Equation (6) and Equation (7) to perform spurious dimension detection and spurious bias
mitigation iteratively and use SFit for model selection. Our method, termed last layer selective
activation retraining (LaSAR), works in the unsupervised spurious bias mitigation setting and is very
efficient in retraining as only the last layer is involved.
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3.3 THEORETICAL ANALYSIS

3.3.1 PRELIMINARY

We consider the following setting which is feasible for a theoretical analysis while capturing the
essence of our proposed method, LaSAR. We first model a sample-label pair (x, y) following the

standard setting in |Arjovsky et al.|(2019); |Ye et al.|(2023):
X = (XCOTC7XSPU)T S RDXla Y= ﬁTXcore + Ecore ©)

where the core component X¢ore € RP1x1 follows some distribution P, and the spurious component
Xspu € RP2*1 with D; 4+ Dy = D is associated with the label 3 with the following relation:

Xgpu = (2a — 1)vy + €gpu, a ~ Bern(p), (10)
where (2a — 1) € {—1,+1}, a ~ Bern(p) is a Bernoulli random variable, and p is close to 1,
indicating that xp, is mostly indicative of y but not always. In Equation (9) and Equation (10},
B € RP+>*1 and v € RP2x1 are coefficients with unit £5 norm, and &¢ore and €spu Model the variations
in the core and spurious components, respectively. We set ecore and each element in espu as a zero-

mean Gaussian random variable with the variance 12, and n2,,, respectively. We set n2 . > nfpu to
facilitate the learning of spurious features (Sagawa et al.|[2019).

To capture the property of latent features we consider a regression task using a commonly adopted
two-layer linear network 1 2023)) defined as f(x) = b” Wx, where W € RM*P denotes
the embedding function, and b 6 X1 denotes the last layer. The model f(x) can be further
expressed as follows,

M
T T T T
X) = E b; (XcoreWCOW»i + XsquSPUJ) = X¢ore Ucore Xspuu5PU’ 1D
=1

where w!' € R'™P is the i’th row of W, w/ = [wL . wl

: Dy x1
core,i? spu,i] with Weore,i € RZ1*% and Wpu,i €

M M . .. .

RDP2x1 g = Y icq biWeore,is and Ugpy = Y .~ 4 bjWypy ;. During the training stage, we minimize
W.b) — 1 2
étr( 7b) = §E(x,y)€Dum" f(x) - y||2

3.3.2 MAIN RESULTS

Proposition 1 (Principal for selective activation). Given the model f ( ) = bTWx trained
wzth data specified in Equatlon (9) and Equation (I0), it captures spurious correlations when
~T Wi < 0,1 € {1 ,M}. The principal of selective activation is to mask out neurons
containing negative y* Wpu,i- The proof is in Appendix.

Remark. If 77wy, ; > 0, the model handles the spurious component correctly. Specifically,
when a = 1, the spurious component Xy, positively correlates with the core component Xore and
contributes to the output, whereas when a = 0, its correlation with x.. breaks with a negative one
and has a negative contribution to the output. The relations reverse when ’yTWSpu’Z- < 0, i.e., the
model still utilizes Xy, even when the correlation breaks, demonstrating a strong reliance on the
spurious component instead of the core component.

Lemma 1. Given a training dataset Dy, with p defined in Equation (I0) satisfying 1 > p > 0.5,

the optimized weights in the form of u,,, and ug,, are

* (2 - 2p)ncare + nspu/a _ (2p - 1)77?0% (12)
o nsze + nszpu Spu T]LQ'()"K + TIstu

Remark. When p = 0.5, the training data is unbiased and we obtain an unbiased classifier with
weights ug,,. = B and ug,, = 0. The proof is in Appendix.

core

Theorem 1 (Metric for neuron selection). Given the model f(x) = bTWx, we cast it to a
classification model by training it to regress y € {—u, u} (u > 0) on x based on the data model
specified in Equation (@) and Equation (@) where 1 = E[BT Xcore]. The metric Y defined in the
following can identify neurons with spurious correlations when §; > 0:

8¢ = Med(V?) — Med(VY),
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where VY and l):" are the sets of activation values for misclassified and correctly predicted samples
with the label y from the i’th neuron, respectively; Med(-) denotes the Median operator; and an

. . . T T . . .
activation value is defined as X;,,,Wcore,; + Xgpu Wspui- The proof'is in Appendix.

Remark. The theorem establishes that 6}’ ~ *QM’YTWSPU’,L', which proves that our neuron selec-
tion metric defined in Equation (@) follows the principal in Proposition [[]and can select spurious
dimensions.

Theorem 2 (LaSAR mitigates spurious bias). Consider the model f*(x) = xTu* trained on the
biased training data with p > 0.5, with u},,, and u;, defined in Equation @ Under the mild

core spu
assumption that 6TWC,,W77; R 'yTWSpu,i, Vi=1,..., M, then applying LaSAR to f*(x) produces a
model that is closer to the unbiased one. The proof is in Appendix.

Remark. The assumption that ﬁTwcoreﬂ; = 'yTwspu,T;, Vi =1,..., M generally holds for a biased
model as the model has learned to associate spurious features with the core features. Denote the
LaSAR solutions as ug,e = uiore and ugp, = u;fpu. An interesting finding is that retraining the last
layer does not alter the weight on the spurious component, i.e., uipu = ug,,, which is the optimal
solution achievable by last-layer retraining methods (see Lemma 3]in Appendix). However, it does

adjust Ulore to be closer to the optimal weight on the core component, 3. Overall, LaSAR brings
model parameters closer to the optimal, unbiased solution compared to the parameters of the original
biased model. Moreover, unlike sample-level last-layer retraining methods, such as AFR (Qiu et al.,
2023)), LaSAR is guaranteed to outperform the ERM-trained model. Additional discussions on this
topic can be found in Appendix.

4 EXPERIMENT

4.1 DATASETS

We tested LaSAR on four image datasets and two text datasets with various types of spurious
features: (1) Waterbirds (Sagawa et al.|[2019) is an image dataset for recognizing waterbirds and
landbirds. It is generated synthetically by combining images of the two kinds of birds from the CUB
dataset (Welinder et al.,|2010) and the backgrounds, water and land, from the Places dataset (Zhou
et al., 2017). (2) CelebA (Liu et al.,|2015) is a large-scale image dataset of celebrity faces. The
task is to identify hair color, non-blond or blond, with male and female as the spurious features.
(3) ImageNet-9 Xiao et al.| (2021) is a subset of ImageNet |Deng et al.| (2009) containing nine
super-classes. It comprises images with different background and foreground signals and can be
used to assess how much models rely on image backgrounds. (4) ImageNet-A Hendrycks et al.
(2021) is a dataset of real-world images, adversarially curated to test the limits of classifiers such as
ResNet-50. We use this dataset to test the robustness of a classifier after training it on ImageNet-9. (5)
MultiNLI (Williams et al.l 2017) is a text classification dataset with 3 classes: neutral, contradiction,
and entailment, representing the natural language inference relationship between a premise and a
hypothesis. The spurious feature is the presence of negation, which is highly correlated with the
contradiction label. Standard train/validation/test splits are used as provided by prior work. (6)
CivilComments (Borkan et al., 2019) is a binary classification text dataset aimed at predicting
whether an internet comment contains toxic language. The spurious feature involves references to
eight demographic identities: male, female, LGBTQ, Christian, Muslim, other religions, Black, and
White. The dataset uses standard splits provided by the WILDS benchmark (Koh et al., 2021}

4.2 EXPERIMENTAL SETUP

Training details. We first train ERM models on each of the four datasets. For image datasets, we use
ResNet-50 and ResNet-18 models (He et al.l|2016)) pretrained on ImageNet, while for text datasets, we
use a BERT model (Kenton & Toutanoval 2019)) pretrained on Book Corpus and English Wikipedia
data. We follow the settings in (Izmailov et al., [2022) for ERM training. The best ERM models
are selected based on the average validation accuracy. For our LaSAR training, we first identify
spurious dimensions using Dy and retrain a given ERM model using Dg¢;. For nonnegative neuron
activations, we take their absolution values before the identification process. We run the training
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Figure 3: Illustration of our motivating example. (a) Visualization of training and test data using
t-SNE (van der Maaten & Hintonl 2008) along with the decision boundaries of the trained model.
(b) Identify spurious dimensions for y = —1 based on the discrepancy of value distributions for the
correctly (blue) and incorrectly (red) predicted samples. (c) Retraining the model while blocking
identified input dimensions improves WGA. The figure is best viewed in color.

under three different random seeds and report average accuracies along with standard deviations. We
ran all experiments on NVIDIA RTX 8000 GPUs. We report full training details in Appendix.

Evaluation metrics. To evaluate the robustness to spurious bias, we adopt the widely accepted
robustness metric, worst-group accuracy (WGA), that gives the lower-bound performance of a
classifier on the test set with various dataset biases. We also focus on the accuracy gap between the
standard average accuracy and the worst-group accuracy as a measure of a classifier’s reliance on
spurious correlations. A high worst-group accuracy and a low accuracy gap indicate that the classifier
is robust to spurious correlations and can fairly predict samples from different groups.

4.3 SYNTHETIC EXPERIMENT

Preliminary. Without loss of generality, we consider an input v € R* to simulate a latent embedding
before the last prediction layer. This embedding consists of three components: a core feature v¢ € R,
a spurious feature v* € R?, and a noise feature v¢ € R. We generate a synthetic training dataset
with labels {—1,+1}, where the core features are perturbed version of the labels. The spurious
feature u® is generated such that for 95% of the samples with y; = —1, it is a perturbed version of
[0, 1], while for the remaining 5%, it is a perturbed version of [1,0]. The other cases are similarly
illustrated in Fig. B(a). As v represents a latent embedding, we thus consider a logistic regression
model ¢ (v) = 1/(1 + exp{—(wTv + b)}), where W = [w,b]. The model predicts +1 when
¢w(v) > 0.5 and —1 otherwise. We trained ¢y on the synthetic training data and tested it on the
corresponding test data. Further details are provided in the Appendix.

Results. The top plot in Fig. [(b) shows the distribution of the first dimension of input embeddings
when y; = —1. In contrast, for the noise dimension (i.e., the fourth dimension of v), randomness
results in negligible differences between the two distributions, as illustrated in the bottom plot of
Fig. [B(b). Additional plots for all dimensions can be found in Fig. [d]in the Appendix. We then
retrained the model while blocking the second, third, and fourth dimensions. The retrained model has
learned to better balance its performance on both the training and test data, resulting in a substantial
improvement in WGA on the test data (Fig. [3[c)). Importantly, this process relies solely on the
intrinsic characteristics of the model and does not require external supervisions.

4.4 COMPARISON WITH EXISTING METHODS

We evaluated our method against existing approaches Method Waterbirds — CelebA
designed to address spurious bias on both image and JTT 842105 52311s
text datasets. Our primary focus was on methods specifi- AFR 89.040¢ 687117
cally developed for unsupervised spurious bias mitigation, LaSAR 918,55 83.0408
where no group labels are available to guide the miti- Table 1: WGA comparison.

gation process. To provide additional context, we also
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Algorithm Group annotations Waterbirds CelebA
Train Val WGA (1) Acc. (1) Acc.Gap ({) WGA (1) Acc. (1) Acc. Gap ({)

JTT (Ciu et al.] No Yes 86.7 93.3 6.6 81.1 88.0 6.9
SELF No Yes 93.0.03 94.04, 7 1.0 8394109 917104 7.8
CNC (Zhang et al. ][2022] No Yes 88.5103 90.9401 2.4 88.8.109 899405 11
BAM (Li et al.][2024] No Yes 890.2103 9ldiga 22 83.5100 88.0104 45
AFRT (Qiu et al.[[2023] No Yes 904411 942415 38 82.0105 913103 9.3
DFR' (Kirichenko et al. No Yes R4109 94.9.03 2.5 87.0011 926405 5.6
ERM ( 1999} No No 72.6 97.3 24.7 472 95.6 48.4
BPA (Seo et al.|[2022] No No 71.4 - - 82.5 - -

GEORGE (Sohoni et al.]2020)  No No 76.2 95.7 19.5 52.4 94.8 424
BAM l No No 89.1102 914403 2.3 80.1133 884493 8.3
LaSAR No No 918105 94.0102 2.2 83.0425 92.0405 9.0
LaSARf No No 91‘7i1.2 94~4i0,4 2.7 87.4i0,4 90-3i0.7 2.9

Table 2: Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%) on
the image datasets. T denotes using a fraction of validation data for retraining.

Algorithm Group annotations MultiNLI CivilComments
Train Val WGA (1)  Acc. (1) Acc.Gap () WGA (1) Acc. (1) Acc. Gap (})
JTT (Liu et al.|[2021 No Yes 72.6 78.6 6.0 69.3 91.1 21.8
SELFT (LaBonte et al.|[2024 No Yes 707405 812407 10.5 791401 877406 8.6
CNC (Zhang et al.|[2022] No Yes - - - 689401 817105 12.8
BAM ( 024 No Yes 712416 79.641.1 8.4 793497 88.310.8 9.0
AFRT ( No Yes 734,06 8l4i02 8.0 68. 7106 898106 21.1
DFR' 2023) No Yes 708105 817402 10.9 818,16 875402 5.7
ERM :Vanik 1999 No No 67.9 824 14.5 57.4 92.6 35.2
BAM (Lietal. M No No 70.8i1_5 80.3i1,0 9.5 79~3i2.7 88.3i0_g 9.0
LaSA No No 70.6i0_4 81.5:&0,7 10.9 82.410_2 89.210_1 6.8
LaSART No No 7244103 802406 7.8 73.6405 854402 11.8

Table 3: Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%) on
the text datasets. T denotes using a fraction of validation data for retraining.

included methods designed for semi-supervised spurious bias mitigation to highlight the performance
gap between the two settings.

We first compared our approach against AFR (Qiu et al., |2023) and JTT (Liu et al., [2021)) to

demonstrate the challenges of the unsupervised setting for semi-supervised methods. These methods
were tuned using worst-class accuracy on the validation set instead of WGA. As
shown in Table[T] our method exhibits larger performance gains over AFR and JTT compared to their
results presented in the subsequent tables.

The results in the lower part of Table [2| correspond to the unsupervised spurious bias mitigation
setting, where no group labels are available. Our method, LaSAR, achieves the highest worst-group
accuracies and the smallest accuracy gaps, demonstrating its effectiveness in enhancing model
robustness to spurious bias while balancing performance across different data groups. The upper part
of Table [2] presents results from the semi-supervised spurious bias mitigation setting. Even in this
setting, LaSAR remains competitive, thanks to its strong spurious bias mitigation capabilities. On the
text datasets, LaSAR continues to perform effectively, achieving the best worst-group accuracies and
the smallest accuracy gaps in the unsupervised spurious bias mitigation setting, as shown in Table 3]

We further evaluated LaSAR on the more challenging ImageNet-9 (Kim et al., 2022} [Bahng et al.}
and ImageNet-A (Hendrycks et al., 2021)) datasets. Our approach involved first training an
ERM model from scratch using the training data of ImageNet-9 and then fine-tuning the last layer
with LaSAR. As shown in Table[d LaSAR demonstrates a significant advantage by achieving the
best performance on the challenging ImageNet-A dataset, which is known for its natural adversarial
examples. While this improvement comes with a slight trade-off in in-distribution performance on
ImageNet-9, it highlights LaSAR’s ability to enhance robustness to distribution shifts, making it
particularly effective in out-of-distribution scenarios.
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Method Group annotations ImageNet -9 ImageNet—A
Validation(1)  Unbiased(1) Test(1)

StylisedIN (Geirhos et al.|[2018) Yes 88.44105 86.610.6 24.641.4
LearnedMixin (Clark et al.|[2019) Yes 64.144.0 62.743.1 15.0416
RUBI (Cadene et al.[[2019) Yes 90.540.3 88.640.4 27.T49.1
ERM (Vapnik|/1999) No 90.840.6 88.840.6 24.941 1
ReBias (Bahng et al.|[2020) No 91.941.7 90.541.7 29.641.6
LfF (Nam et al.||2020) No 86.0 85.0 24.6

CaaM (Wang et al.[[2021) No 95.7 95.2 32.8

SSL+ERM (Kim et al.|[2022} No 94.2.40 93.240.0 342105
LWBC (Kim et al.|[2022) No 94.040.2 93.040.3 36.040.5
LaSAR No 93.7+0.1 92.410.0 373405

Table 4: Validation, Unbiased, and Test metrics (%) evaluated on the ImageNet-9 and ImageNet-A
datasets. All methods use ResNet-18 as the backbone. The best results are in boldface.

Dide DRet SAR Waterbirds CelebA MultiNLI CivilComments

Disin©~ Diain Yes 78.042.3 585412 4204105 80.0+10.5
Dval Dtrain Yes 91.810'8 83~Oi2.8 65.011'5 82.4i0'2
Dya Dyain - No 82.740.4 53.9+0.0 63.410.7 81.5405
Dva]/z Dval/Z Yes 91-7i1.2 87.4:|:0_4 724;|:03 73-6:|:0.5

Table 5: Comparison of worst-group accuracy (%) between different choices of Dige and Dget as well
as the proposed selective activation retraining (SAR) on the four datasets.

4.5 ABLATION STUDY

We analyzed the effectiveness of our proposed components in Table [5] Specifically, we focused
on different choices of the identification dataset Diq4. and the retraining dataset Dy as well as the
effectiveness of using selective activation retraining (SAR) with identified spurious dimensions.
When we used the training data to identify spurious dimensions, i.e., Dige = Diain, We observed a
relatively low performance on each dataset. However, after switching to a held-out validation data
Dal, we observed significant performance improvement in comparison with the previous setting. This
demonstrates the benefit of using a new and held-out dataset for discovering spurious dimensions and
avoiding overfitting to a used dataset Dyi,. By default, our method LaSAR uses Dy, as Dyge. Next,
we sought to analyze whether SAR is effective by disabling it during retraining, which effectively
reduces LaSAR to class-balanced retraining. We observed consistent performance degradation across
the four datasets, which validates the effectiveness of SAR across multiple datasets. Finally, inspired
by the success of DFR (Kirichenko et al.|[2023), which uses a half of the validation data for retraining,
we divide D, into two halves and use one half (denoted as D,,/2) as Djg. and the other half as
Dret. Different from DFR, our method does not use group labels in the validation data. We observed
that this strategy can further boost the performance on the CelebA and MultiNLI datasets. We
also observed a performance degradation on the CivilComments dataset, possibly arising from the
imperfect splitting of D,,;. We leave this to our future work.

5 CONCLUSION

Mitigating spurious bias is critical to models’ generalization. We considered a challenging yet
realistic unsupervised spurious bias mitigation setting: mitigating spurious bias in models without
group labels. We proposed a self-guided spurious bias mitigation framework by exploiting the distinct
patterns in neuron activations (latent embeddings) right before the last prediction layer of a model.
Our framework tackles spurious bias in two stages by first identifying spurious dimensions and
then retraining the last prediction layer of the model using latent embeddings while blocking inputs
from spurious dimensions. We theoretically validated our proposed approach and demonstrated the
effectiveness of our spurious dimension identification by showing that these dimensions represent
non-essential parts of input samples. Our method does not need additional training data and can be
used on different data modalities and with different model architectures.

10
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A APPENDIX

The appendix is organized as follows:

* Section[A.T} Details for the Synthetic Experiment
* Section[A.2} Theoretical Analysis
— Section[A.2.1} Preliminary
Section[A.2.2} Proof for Lemma 1
Section[A.2.3} Proof for Corollary 1
Section [A.2.4Proof for Proposition 1
Section[A.2.3l Proof for Theorem 1
Section[A2Z.6} Proof for Theorem 2
Section[A.2.7} Proof for Lemma 2
Section Proof for Lemma 3
* Section Connection to Last-Layer Retraining Methods
* Section[A.4} Complexity Analysis
* Section[A.5} Advantages over Variable Selection Methods
¢ Section[A.6 Dataset Details
* Section[A.7} Training Details

* Section[A.8} Visualizations on Core and Spurious Dimensions

A.1 DETAILS FOR THE SYNTHETIC EXPERIMENT

Data model. Without loss of generality, we consider an input v € R* to simulate a latent embedding
before the last prediction layer, which consists of three components: a core feature v¢ € R, a spurious
feature v¢ € R2, and a noise feature v¢ € R. We generate a dataset D" = {(v;,y;)}Y, of N
sample-label pairs, where y; € {—1,+1}, v = y; + n., and v¢ and n. are zero-mean Gaussian
noises with variances o2 and o2, respectively. When y; = —1, v§ = [0, 1] +n, with the probability o
and v§ = [1, 0] + n, with the probability 1 — «; when y; = +1, v§ = [1, 0] + n, with the probability
a and v{ = [0, 1] + n, with the probability 1 — «;, where nj; is a vector of two independent zero-
mean Gaussian noises with the variance o2. We design a spurious feature as a two-dimensional
vector so that each dimension uniquely represents a spurious pattern, i.e., occurrences of 1’s and 0’s
controlled by ¢, for each class. To reveal spurious bias, i.e., using the correlation between u; and
y; for predictions, we generate a training set ng?n with easy-to-learn spurious features by setting
Jf > 03 and o = 1 (Sagawa et al., 2020). Thus, the correlations between v; and y; are predictive
of aN expected labels. To demonstrate, we set o2 = 0.5, 02 = 0.01, 02 = 0.1, o = 0.95, and
N = 5000. We generate a test set D%y with the same set of parameters except a = 0.1. Now,
spurious correlations between v and y; are only predictive of a small portion of the test samples.

Fig. [3[(a) shows four data groups along with their respective proportions in each class.

Classification model. As the input v is a latent embedding, we thus consider a logistic regression
model ¢g(v) = 1/(1 + exp{—(w’v + b)}), where w = [w,b]. The model predicts +1 when
¢w(v) > 0.5 and —1 otherwise. We trained ¢, on Dp; and tested it on Dyly;.

Spurious bias. We observe a high average accuracy of 97.4% but a WGA of 58.6% (Fig. [3[a), top)
on the training data. The results show that the model heavily relies on the correlations that exist in
the majority of samples and exhibits strong spurious bias. As expected, the performance on the test
data is significantly lower (Fig. 3(a), bottom). The decision boundary (Fig. [}[a), green lines) learned
from the training data does not generalize to the test data.

Mitigation strategy. Without group labels, it is challenging to identify and mitigate spurious bias
captured by the model. We tackle this challenge by first finding that the distributions of values of an
input dimension, together with the prediction outcomes for a certain class, provide discriminative
information regarding the spuriousness of the dimension. (1) When the values for misclassified
samples at the dimension are high, while values for the correctly predicted samples are low, this
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Figure 4: Distributions of values at all the four dimensions for the two classes -1 and +1 in the
motivating example in Section[A.T} “d=1" denotes the first dimension.

indicates that the absence of the dimension input does not significantly affect the correctness of
predictions, while the presence of the dimension input does not generalize to certain groups of data.
Therefore, the dimension tends to represent a spurious feature. For example, the center plot of Fig.
[3[(b) depicts the value distributions of the second dimension of input embeddings when y; = —1. We
obtain a similar plot for the third dimension of input embeddings when y; = +1. (2) In contrast, if
the absence of the dimension input results in misclassification, then the dimension tends to represent
a core feature. The top plot of Fig. [3(b) represents the first dimension of input embeddings when
y; = —1. (3) For the noise dimension, i.e., the fourth dimension, due to randomness, there is little
difference between the two distributions (Fig. [B(b) bottom). See Fig. [ for all the plots. Next, we
retrain the model while blocking the second, third, and fourth dimensions. As a result, the retrained
model has learned to balance its performance on both the training and test data with a significant
increase in WGA on the test data (Fig. c)).

A.2 THEORETICAL ANALYSIS
A.2.1 PRELIMINARY

Based on the data model in Equation (9) and Equation (I0), we restate the following
X = (Xcoreaxspu)T S RDXla Y= /GTXcore + Ecores (13)

and
Xopu = (2a — 1)vy + €gpu, @ ~ Bern(p), (14)

where (2a — 1) € {—1,+1}, a ~ Bern(p) is a Bernoulli random variable, p is close to 1, €core is
a zero-mean Gaussian random variable with the variance 72, and each element in &y, follows a

zero-mean Gaussian distribution with the variance nfpu. We set n2,,. > nfpu to facilitate the learning
of spurious features. The model f(x) = b’ Wx in Sectioncan be further expressed as follows,

M

~ T T T T

Y= E b; (xcoreWCOI'e,i + XspuwSPU,i) = XoreUcore + XspuUspu, 15)
=1

wZl ] with Weore,i € RP*1 and Wepu,i €

where w! € R'™P is the i’th row of W, w/ = [wZ il

core,i’

M M . )
RP2X1 ugore = Y5 biWeore,is and Ugpy = Y 5 b;Wpu ;- The loss function which we use to
optimize W and b is

1
(W, ) = SExyen | 1) — ol 16)

*

With the above definitions, the following lemma gives the optimal coefficients uf,,. and ug,, based
on the training data.
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A.2.2 PROOF FOR LEMMA 1

Lemma 1. Given a training dataset Dy, with p defined in Equation (I4) satisfying 1 > p > 0.5,

the optimized weights in the form of ug,,, and ug,, are
2 = 2p)02 + 113
ujore — ( 2p)/’7{,‘0r€2 /’7S[7M IB, (17)
ncore + nSpM

and ( 2
. 2p—1)n
s R M (18)
Neore ™ Mipu
respectively. When p = 0.5, the training data is unbiased and we obtain an unbiased classifier with
weights ), = B andu} = 0.

core spu

Proof. Note that f(x) = b"Wx = xTv = xL_ o + xz};uuspu, then we have

1
EIF(W’ b) = §E‘|X£)reucore + Xz;)uuspu - y”% (19)
1 T
= iEHXg;)reucore + [(2@ - 1)73/ + espu} Uspu — y”% (20)
1 1
= iEHXZ)reucore - [1 —(2a - 1)’7Tuspu]y”§ + §ns2puHuSpU||g (21)
1 1
= §(pE1 + (1 - p)Eg) + 57752puHuspu||g7 (22)
where By = ||xL  ucore — (1 — ¥Tugpu)y||3 when @ = 1 and By = ||x ucore — (1 + v  ugpu)yl|3
when a = 0. We first calculate the lower bound for F/; as follows
E = ]E”Xg;reucore - (1 - ’YTuspu)(/BTXcore + Ecore)Hg (23)
= Xcore Ucore — — 7 Uspu Xcore — 7Y WUspu)Ecore)||2
E||x¢, (1= ) B Xeore + (1 =77 pu)core) 13 (24)
= E”Xg;reucore —(1- 'YTuspu)ﬁTXcoreH% + ngore(l - 'YTuspu)z (25)
> Nore (1 — 7" ugpu)?. (26)
Similarly, we have
Ey = E”Xz;reucore - (1 + 'YTuspu)(/BTXcore + <C:core)”% 27)
= ]E”Xz;reucore —(1+ 'YTuspu)/BTXcoreH% + 77c20re(1 + 'YTuspU)z (28)
> Noore (1 + 7" ugpu)?. (29)
Then, plug in (26) and (29) into (22)), we obtain the following
1
gtr(VVa b) 2 5 (pngore(l - ’yTuSPU)Q + (1 - p)ngore(l + 'YTuSPU)Q + 7752;)u||]'lsl)u||§) (30)
1
= 5 (P = YT u)? + (1= P01+ 7 ) + VB lugul3) 31
1
Z 5 (pn?ore(l - 7Tuspu>2 + (1 - p)ngore(l + ’YTuSPu)z + ns2pu||’yTuSPu||§)7 (32)

where Equation (3T) uses the fact that  has a unit norm, and the inequality (32) exploits the
Cauchy—Schwarz inequality. Let z = yTug,, we have £(2) = pn2,.(1 — 2)? + (1 — p)n2 (1 +
2)? 4 ngy2”. Let %(ZZ) = 0, we obtain
* T % (2p7 1)nzore
2 =yug, = .
ncore + nspu
Given ug,,
similarly, we can obtain the optimal u,
!

we can obtain the optimal ug,, for minimizing £ in Equation (25) as ug,,. = (1—2%)8;

e for minimizing Fs in Equation (28) as u,,,. = (1 + 2*)83.
Via proof by contradiction, only ug,,. or ug’m is the solution for u*core. Since p > 0.5, E;
contributes to the majority error. Thus, u},,. = (1 — 2*)3, i.e.,

core
* * (2 - 2p)7720re + 7752];)u
ucore:(l_z)ﬂ: 2 )
Neore T Mipu

core

8.
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A.2.3 PROOF FOR COROLLARY 1

Lemma [T] gives the optimal model weights under a given training dataset Dy,in With the parameter p
controlling the strength of spurious correlations. Lemma[I] generalizes the result in|Ye et al (2023)
where p = 1. Importantly, we obtain the following corollary for unbiased models:

Corollary 1. The unbiased model f(x) = u’

* T —
vore and v ugp, = 0.

X = xg;,eucm + xz;Muspu is achieved when Uy, =
u

Proof. Plug YT eore = 0 into Equation and Equation , then we observe that u.y,e minimizes
errors from both the majority (¢ = 1) and minority (a = 0) groups of data. O

If we could obtain a set of unbiased training data with p = 0.5, then we obtain an unbiased model
with ug,, = 0 and uf,,, = 8. However, in practice, it is challenging to obtain a set of unbiased

training data, i.e., it is challenging to control the value of p.

A.2.4 PROOF FOR PROPOSITION 1

Proposition 1 (Principal for selective activation). Given the model f(x) = b” Wx trained with
data generated under the data model specified in Equation and Equation (I4), it captures
spurious correlations when 'yTwSpu,i < 0,i € {1,..., M}. The principal of selective activation is to
mask out neurons containing negative VTWSP,“».

Proof. Consider the i’th neuron e; (¢ = 1, ..., M) before the last layer. We first expand it based on
our data model specified by Equation and Equation as follows:
€; = Xg;rewcore,i + xz;mwspu,i (33)
_ T ] T
- Xc()reWCOI'C,'L + [(204 - 1)'7y + E*‘spu] Wspu,i (34)
= Xz;rewcore,i + (Za - 1)[6Txcore + gcore]’yTWspu,i + €z;)uwspu,i (3%
= Xz:)rewcore,i + (2a - 1)6Txcore'YTWspu,i + Erems (36)

where €rem = Ecore”y” Wipu,i + EapuWspu,i- In Equation ll if vTWgpu,i > 0, the model handles the
spurious component correctly. Specifically, when a = 1, the spurious component positively correlates
with the core component and contributes to the output, whereas when a = 0, its correlation with the
core component breaks with a negative one and has a negative contribution to the output. In contrast,
if ’yTWSpu,i < 0 and a = 1, then the model still utilizes the spurious component even the correlation
breaks, demonstrating a strong reliance on the spurious component instead of the core component.
Therefore, the principal of selective activation is to find neurons containing negative 77 wyp, ; so that
masking them out improves the model’s generalization. O

A.2.5 PROOF FOR THEOREM 1

The following theorem validates our neuron selection method.

Theorem 1 (Metric for neuron selection). Given the model f(x) = bTWx, we cast it to a
classification model by training it to regress y € {—u, u} (u > 0) on x based on the data model
specified in Equation and Equation , where j1 = E[BT X o). The metric 8¢ defined in the
following can identify neurons with spurious correlations when 6! > 0:

8V = Med(VY) — Med(VY),

where f/zy and ]A/Zy are the sets of activation values for misclassified and correctly predicted samples
with the label y from the i’th neuron, respectively; Med(-) denotes the Median operator; and an
activation value is defined as Xz;,ewwmi + xz;,uwspm.

Proof. We start by obtaining the set of correctly predicted samples ﬁy and the set of incorrectly
predicted samples D,, as D, = {x|f(x) > 0, (x,y) € D} and D, = {x|f(x) < 0, (x,y) € Dige}»

where Dy, is the set of identification data. Then, we have V¥ = {e;|x € D,}, and V¥ = {e;|x €
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D,}, where e; is the i’th neuron activation defined in Equation . Expanding e; following
Equation (36)), we obtain

T T T
€i = Xgore Weore,i 1 (2(1 - 1)/6 Xcore Y Wspu,i + Erem-

Note that xCTorewcore,i and e, exist for all the samples, regardless of the ultimate prediction results,
and all e; follows a Gaussian distribution given a. Then, among all the correctly predicted samples

with the label y, according the Lemma we have Med(VY) ~ E[x% . Weore.i] + py T Wpy ;. Similarly,
among all the incorrectly predicted samples with the label y, we have Med(VY) ~ E[xL . Weorei] —
,uvaspu,i. Then, the difference between the two is

¢~ —2py" Wi

When 67 > 0, we have 77 wypy,; < 0. According Proposition using 67 > 0 indeed selects neurons
that have strong reliance on spurious components. O

A.2.6 PROOF FOR THEOREM 2

Theorem 2 (LaSAR mitigates spurious bias). Consider the model f*(x) = xTu* trained on the
biased training data with p > 0.5, with u}, ., and u},, defined in Equation ([7_7]) and Equation @)

core spu

respectively. Under the mild assumption that ,BTWCO,N- R 'yTWSp,,,i, Vi=1,..., M, then applying
LaSAR to f*(x) produces a model that is closer to the unbiased one.

Proof. Consider f*(x) as the base model. We aim to prove that the retrained model obtained with
LaSAR produces model parameters that is closer to the unbiased model defined in Corollary [I] than
the base model.

First, the assumption that ﬁTwcore,i R 'yTwspM-, Vi =1,..., M generally holds for a biased model
as the model has learned to associate spurious features with the core features.

Then, we denote the retrained parameters obtained with LaSAR as uly. and quu. We start with
calculating uipu. Focusing on Equation || and following the derivation in Lemma we obtain
u;rpu =3 iz, biWspu,; = u;‘pu, where 7 denotes the set of neuron indexes satisfying ’yTwspu,i > 0.
Note that LaSAR is a last-layer retraining method; thus we only optimize b; here and wgp, ; is the
same as in f*(x). Left multiplying uzpu with T, we have

Yl = Y by W (37)
i€,
= 2% = (2p - 1)77020re > 0.

2 2
Tcore + nspu

Note that ’yTwspu,i > 0, Vi € Z, because of LaSAR. Hence, we have b;r > 0, Vi € Z,. Moreover,
we observe that ulpu is the same as ug,, as long as 7, is non-empty. This shows that LaSAR is not
able to optimize parameters related to the spurious components in the input data.

According to the Corollary |1} the unbiased model is achieved when p = 0.5 and ucore = 3. The
Euclidean distance between 3 and the biased solution ucoe = (1 — 2*)3is |Ju,. — 8] = z*. Based
on Equation , we estimate the distance between our LaSAR solution uiore and 3 as follows

Huzore_/@H? = ||ﬂT(u::rore_/3)||2 (38)
= I8 ule — 12 (39)
= > b8 Weoresi — 112 (40)
iEI+
~ D by Wi — 12 41)
i€l
= [|2* — 1], (42)
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where Equation uses the fact that 373 = 1, and Equation uses the condition ﬁTwcm,i ~
¥ Wipu,i, Vi = 1,..., M. Note that z* is achieved on the training data with p > 0.5 and 12, > 72,

hence we have z* ~ 1 and Hui(,re — B2 = 0. In other words, LaSAR can bring model parameters
closer to the optimal and unbiased solution than the parameters of the biased model.

O

A.2.7 PROOF FOR LEMMA 2

Lemma 2 (Majority of samples among different predictions). Given the model f(x) = b” Wx
trained on y € {—p,pu} (u > 0) with p = E[BTX,0re), and the conditions that p > 3/4 and
N2, > nfpu, we have the following claims:

* Among the set of all correctly predicted samples with the label y, more than half of them are
generated with a = 1;

e Among the set of all incorrectly predicted samples with the label vy, more than half of them
are generated with a = 0.

Proof. With the two regression targets, —u and p, the optimal decision boundary is 0. Without loss
of generality, we consider y = p. Then, the set of correctly predicted samples D, is

Dy = {x|f(x) > 0, (x,9) € Dige},
and the set of incorrectly predicted samples @y is
D, = {x[f(x) < 0,(x,y) € Dige}-
The probability of a sample with the label y that is correctly predicted is
P(x € Dyly) = P(a=1)P(f(x) > Ola = 1,y) + P(a = 0)P(f(x) > 0la = 0,y)
=pP(f(x) 2 0la = 1,y) + (1 = p) P(f(x) = Ola = 0,y).
Similarly, the probability of a sample with the label y that is incorrectly predicted is
P(x € Dyly) = pP(f(x) <0la = Ly) + (1 - p)P(f(x) < 0la = 0,y).
To calculate P(f(x) > 0la = 1,y), we expand f(x) as follows:
F (%) = Xore Wore + X pu Uy
= x(oreB(1 = 2%) + (VB  Xeore + Ecore) + Expu) UG
= XooreB(1 = 27) + Xeore By UGy + 77 U core + €y Wi
= xCTore,B + 2% €core + EZ;uus*pu

The output of f(x) follows a Gaussian distribution, with the mean p; = E[f(x)] = p, and the
variance 05 = Var(xoe8) + 03 (2%)? 4 02, (2*)?. Therefore, we have

P(f() 2 Ol = 1y) = Plx € Dyla=1.y) =1 - B("_) (L), @)
P(f(x) <0la=1,y) = P(x € Dyla=1,y) =1 - @(%) = @(j,—j‘y (44)

Similarly, to calculate P(f(x) > Ola = 0,y), we expand f(x) as follows:

f(X) = Xg;)rel@(l - Z*) - Xz;re/BPyTu:pu - PyTu:pUECOI'e + Ez;)uu:pu
=xL Bl —22%) — 2*ccore + ez;uu;kpu.
The output of f(x) follows a Gaussian distribution, with the mean pg = E[f(x)] = (1 — 22*), and
the variance 0§ = (1 — 22%)*Var (x5, 8) + 12 (2%)? + 1, (2%)?. Therefore, we have

P(f(x)>0la=0,y) = P(x € Dyla=0,y) =1— @(M) — @(w), (45)
ago (os)
P(f(x) < 0la=0,y) = Pz € Dyla=0,y) = 1 - 5("2) = p(—L=220) (45
go go
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Therefore, we have the probabilities for correctly and incorrectly predicted samples with the label v,

ie.,

Plxe Dyly) = pa(L) + (1 - pa( 20, @
and

P(x € Dyly) = po(—2) 1 (1 - ppo( "L =2k, 48)

01 go

Next, we seek to determine whether the majority of samples in the correctly (incorrectly) predicted
set D, (D,) is generated with a = 0 or @ = 1. To achieve this, in the set of correctly predicted
samples, we use the Bayesian theorem based on Equation (7)), i.e.,

P(x € Dyla=1,y)P(a=1)

Pla=1]x € D,,y) =

P(x € Dyly)
_ p®(p/01) (49)
p®(p/o1) + (1= p)@((1 — 22%)u/00)’
and
Pla=0lx€D,,y) =1—Pla=1|x € D,,y)
_ -pd( -2 50
p®(p/o1) + (1= p)@((1 - 22*)p/o0)
Similarly, in the set of incorrectly predicted samples, we have
B - _ P(xeDyla=1,y)P(a=1)
Pla=1x€Dy,y) = P(x €D,y
_ p®(—p/o1) (51)
p®(—p/o1) + (1 = p)®(=(1 — 22*)p/00)’
and
P(a=0lx € Dy,y) =1— Pla=1|x € Dy,y)
_ (1 —p)®(=(1 —2z")u/00) (52)

p2(—p/o1) + (1 = p)@(—(1 — 2z*)p/00)
Under the assumption that p > 3/4 and n2,,, > Noys We have 1—22% = ((374p)n20re+nfpu) /(02 +

nfpu) < 0. Hence, (—(1 — 22*)u/0p) < 1/2 and P(a = 1]x € ﬁy,y) > 1/2; in other words,
among the set of all correctly predicted samples with the label y, more than half of them are
generated with a = 1.

Moreover, under the assumption that ®(— I /o1) = 0, i.e., predictions of the model have a high
signal-to-noise ratio, then P(a = 0|x € Dy,y) > 1/2, i.e., among the set of all incorrectly
predicted samples with the label y, more than half of them are generated with ¢« = 0. This
assumption is generally true, as 07 = Var(x%.8) + Ny (2%)? + 15, (2*)? is typically very small
when z* approaches zero given p > 3/4 and 12, > 12, O

A.2.8 PROOF FOR LEMMA 3

Lemma 3. Consider the model f(x) = xTa with u = [Ucore, Uypu), the optimal solution for uyy, that

can be achieved by last-layer retraining on the retraining data with py. is ug,,, which is defined as

r 2pre —1 TCzore
= B Dl (53)
ncure + nspu

Proof. First, we have f(x) = x”u = b” Wx. For last-layer retraining, b is optimized. Following
the derivation in Lemmal[I] we similarly obtain the inequality in (32)) with p = p, i.e.,
1

{(b) > ) (pre77c20re(1 - 'YTllspu)2 +(1- pre)nczore(l + 7Tu8pu)2 + ns2pu||7Tu5pu||§)7 (54)
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Note that the terms on the right side of the inequality are independent of any manipulation of the
retraining data, such as reweighting. Then, taking the derivative to the sum of these terms with respect
to b, we obtain the following equation

(2pr€ -1 ) nc20re

T
v Wb =
P ncgore + 77S2pu

(55)

where ugp, = Wb, Since 7 = 1, then we have ugy, = ug,,. We finally verify that ug,, indeed
minimizes the sum of the terms on the right hand side of (54). If p equals to p for the training data,
then u’, = u}, defined in Equation . O

spu spu
A.3 CONNECTION TO LAST-LAYER RETRAINING METHODS

Although at the surface level, our method shares a similar setting to last-layer retraining methods,
such as AFR (Qiu et al., 2023) and DFR (Kirichenko et al., 2023)), our method is fundamentally
different from these methods in how spurious bias is mitigated. Take AFR for an example. It, in
essence, is a sample-level method and adjusts the weights of the last layer indirectly via retraining on
samples with loss-related weights. Our method directly forces the weights identified as affected by
spurious bias to zero, while adjusting the remaining weights with retraining.

The advantage of LaSAR can be explained more formally in our theoretical analysis framework.
First, consider the training loss in Equation (22), we can express it as the sum of following terms for
brevity,

1

1 1
étr(wa b) = ipE['wl (ucore7 uspu) :] + 5(1 - p)EWJz (ucorea uspu)] + 51;[}3 (uspu)7 (56)

where p is the data generation parameter and is fixed, and 11, 12, and 13 are defined as
wl (ucorea uspu) = EHXz;reucore - (]- - 7Tuspu)ﬁTXcore||ga

7/)2 (uCOI‘GH uspu) = E‘ng:)reucore - (]- + 'YTuspu)ﬁTXcore”ga
and
1/}3(115[)11) = pngore(]' - 7Tuspu)2 + (1 - p)ngore(l + PyTuSPU)2 + 773pu||’YTuspu||§a

respectively. Based on Lemma|[3] for last-layer retraining methods in general, the optimal solution for
Ugpy 18 Ug,,, given that the retraining data follows the same distribution as the training data.

AFR changes the distribution within the first two expectation terms 1 (Ucore, Uspu) and ¢ (Ucore; Uspu)
and jointly updates ucore and ugp,, while there is no optimality guarantee for ug (13 (uspu) is not
considered in AFR). By contrast, according to TheoremE], LaSAR first ensures that uyp, is optimal,
then it moves ugq. close the the unbiased solution.

A.4 COMPLEXITY ANALYSIS

We analyze the computational complexity of our method, LaSAR, alongside representative
reweighting-based methods, including AFR (Q1u et al., 2023), DFR (Kirichenko et al., 2023),
and JTT (Liu et al., 2021). Let the number of identification samples be Ny, the number of retraining
samples be N, the total number of training samples be N, the number of latent dimensions be D,
and the number of training epochs be E. Additionally, denote the time required for inference as
Ttw, for last-layer retraining as 7y, and for optimizing the entire model as 7,,.. The computational
complexities of these methods are summarized in Table 6]

Among the methods, JTT has the highest computational complexity since 7op >> Ty, Tequiring full
model optimization. DFR is much faster due to its reliance on last-layer retraining, though it requires
group annotations. AFR extends DFR by additionally precomputing sample losses, increasing its
computational cost slightly. LaSAR, while requiring more time than AFR to identify spurious
dimensions across all D embedding dimensions, remains computationally efficient. This is because
Tiw, the time required for forward inference, is typically very small. As a result, LaSAR offers an
effective balance between computational efficiency and robust spurious bias mitigation.
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A.5 ADVANTAGES OVER VARIABLE SELECTION METHODS

Although the identification of spurious dimensions in Equation (6) may resemble traditional variable
selection methods (Heinze et al.,|2018)), our approach extends beyond simply selecting a subset of
variables that optimally explain the target variable. Instead, it specifically addresses spurious bias—an
issue often neglected in traditional variable selection.

Traditional variable selection methods, such as L1 regularization, do not distinguish whether variables
represent spurious or core features. Since spurious features are often predictive of target labels in
the training data and are easier for models to learn (Tiwari & Shenoyl 2023; |Ye et al., [2023)), these
methods may mistakenly prioritize spurious features, thereby amplifying spurious bias. In contrast,
our method explicitly targets dimensions influenced by spurious bias and re-balances the model’s
reliance on features, reducing the model’s dependency on spurious information.

Furthermore, unlike many variable selection methods that require explicit supervision (e.g., labels or
statistical relationships) to mitigate spurious bias, LaSAR operates in an unsupervised setting where
group labels indicative of spurious features are unavailable. By leveraging misclassification signals
to estimate spuriousness scores, our method is better suited for scenarios where group annotations
are costly or infeasible, offering a practical and scalable solution to the challenge of spurious bias
mitigation.

Method Time complexity
JTT (Liu et al.,[2021) O(N ETop)
AFR (Qiu et al.,[2023) O(N]dewa + ENrelE’T]])
DFR (Kirichenko et al.; 2023 O(E N ETy)
LaSAR O(E(NIdeDTfW + NretET]]))

Table 6: Computation complexity comparison with different reweighting methods.

A.6 DATASET DETAILS

Table[/| gives the details of the two image and two text datasets used in the experiments. Additionally,
the ImageNet-9 dataset (Xiao et al., 2021) has 54600 and 2100 training and validation images,
respectively. The ImageNet-A (Hendrycks et al.| [2021]) dataset has 1087 images for evaluation.

A.7 TRAINING DETAILS

Table []and Table 0] give the hyperparameter settings for ERM and LaSAR training, respectively.

A.8 VISUALIZATIONS ON CORE AND SPURIOUS DIMENSIONS

We provide visualizations on the value distributions of neuron activations for the identified core
and spurious dimensions from Fig. [5]to Fig. The spurious and core dimensions selected for
visualizations are obtained by first sorting the dimensions based on their spuriousness scores and then
selecting three spurious dimensions that have the largest scores and three core dimensions that have
the smallest scores. Note that a dimension does not exclusively represent a core or a spurious feature;
it represents a mixture of them with both kinds of feature being relevant or irrelevant to the target
class based on the training data.

On the CelebA dataset, as shown in Fig. [5] samples that highly activate the core dimensions have
both males and females; thus, the core dimensions do not have gender bias. For samples that highly
activate the identified spurious dimensions, all of them are females, demonstrating a strong reliance
on the gender information. In Fig. [6] samples that highly activate the identified spurious dimensions
(right side of Fig. [0) tend to have slightly darker hair colors or backgrounds, as compared with
samples that highly activate the identified core dimensions (left side of Fig. [6). With the aid of the
heatmaps, we observe that these spurious dimensions mostly represent a person’s face, which is
irrelevant to the target class.

On the Waterbirds dataset, as shown in Fig. [/} for the landbird class, the identified core dimensions
mainly represent certain features of a bird and land backgrounds. For the identified spurious dimen-
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Class Spurious feature  Train Val Test
Waterbirds
landbird land 3498 467 2225
landbird water 184 466 2225
waterbird land 56 133 642
waterbird water 1057 133 642
CelebA
non-blond female 71629 8535 9767
non-blond male 66874 8276 7535
blond female 22880 2874 2480
blond male 1387 182 180
MultiNLTI
contradiction no negation 57498 22814 34597
contradiction negation 11158 4634 6655
entailment no negation 67376 26949 40496
entailment negation 1521 613 886
neither no negation 66630 26655 39930
neither negation 1992 797 1148
CivilComments
neutral no identity 148186 25159 74780
neutral identity 90337 14966 43778
toxic no identity 12731 2111 6455
toxic identity 17784 2944 8769

Table 7: Numbers of samples in different groups and different splits of the four datasets.

Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI  CivilComments
Initial learning rate 3e-3 3e-3 le-3 le-5

Number of epochs 100 20 120 10

Learning rate scheduler CosineAnnealing CosineAnnealing MultiStep[40,60,80] Linear

Optimizer SGD SGD SGD AdamW

Backbone ResNet50 ResNet50 ResNet18 BERT

Weight decay le-4 le-4 le-4 le-4

Batch size 32 128 128 16

Table 8: Hyperparameters for ERM training.

sions, they mainly represent water backgrounds, which are irrelevant to the landbird class based on
the training data. For the waterbird class, as shown in Fig. 8| the identified core dimensions mostly
represent certain features of a bird and water backgrounds, while the identified spurious dimensions
mainly represent land backgrounds.
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Hyperparameters Waterbirds CelebA  ImageNet-9 MultiNLI  CivilComments
Learning rate le-3 le-3 le-3 le-5 le-3
Number of batches per epoch 200 200 200 200 200
Number of epochs 40 40 1 60 60
Optimizer SGD SGD SGD AdamW AdamW
Batch size 128 128 128 128 128

Table 9: Hyperparameters for LaSAR.
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(a) Identified core dimensions for non-blond hair (b) Identified spurious dimensions for non-blond hair
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Figure 5: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the non-blond hair samples in the CelebA dataset.
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Figure 6: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the non-blond hair samples in the CelebA dataset.
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Figure 7: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the landbird samples in the Waterbirds dataset.
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Figure 8: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the waterbird samples in the Waterbirds dataset.

26



	Introduction
	Related work
	Methodology
	Problem setting
	Last Layer Selective Activation Retraining
	Identifying affected neurons
	Mitigate spurious bias

	Theoretical analysis
	Preliminary
	Main results


	Experiment
	Datasets
	Experimental setup
	Synthetic experiment
	Comparison with existing methods
	Ablation study

	Conclusion
	Appendix
	Details for the synthetic experiment
	Theoretical analysis
	Preliminary
	Proof for Lemma 1
	Proof for Corollary 1
	Proof for Proposition 1
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Lemma 2
	Proof for Lemma 3

	Connection to Last-Layer Retraining Methods
	Complexity Analysis
	Advantages over Variable Selection Methods
	Dataset details
	Training details
	Visualizations on Core and Spurious Dimensions


