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ABSTRACT

Deep neural networks trained with standard empirical risk minimization (ERM)
tend to exploit the spurious correlations between non-essential features and classes
for predictions. For example, models might identify an object using its frequently
co-occurring background, leading to poor performance on data lacking the corre-
lation. Last-layer retraining approaches the problem of over-reliance on spurious
correlations by adjusting the weights of the final classification layer. The success
of this technique provides an appealing alternative to the problem by focusing on
the improper weighting on neuron activations developed during training. However,
annotations on spurious correlations are needed to guide the weight adjustment. In
this paper, for the first time, we demonstrate theoretically that neuron activations,
coupled with their final prediction outcomes, provide self-identifying information
on whether the neurons are affected by spurious bias. Using this information,
we propose last-layer selective activation retraining (LaSAR), which retrains the
last classification layer while selectively blocking neurons that are identified as
spurious. In this way, we promote the model to discover robust decision rules
beyond spurious correlations. Our method works in a classic ERM training set-
ting where no additional annotations beyond class labels are available, making
it a practical and efficient post-hoc tool for improving a model’s robustness to
spurious correlations. We theoretically show that LaSAR brings a model closer to
the unbiased one and empirically demonstrate that our method is effective with
different model architectures and can effectively mitigate spurious bias on different
data modalities without requiring annotations of spurious correlations in data.

1 INTRODUCTION

Deep neural networks trained with empirical risk minimization (ERM) tend to develop spurious bias
— a tendency to use spurious correlations for predictions. A spurious correlation is a non-causal
correlation between a class and a feature non-essential to the class, called a spurious feature. For
example, waterbird and water background may form a spurious correlation (Sagawa et al., 2019) in
waterbird predictions: a water background feature is non-essential to the waterbird class, even though
there are 95% images of waterbird (Fig. 1) with water backgrounds. In contrast, a core feature such
as bird feathers causally determines a class. A model with spurious bias may still achieve a high
prediction accuracy (Beery et al., 2018; Geirhos et al., 2019; 2020; Xiao et al., 2021) even without
core features, such as identifying an object only by its frequently co-occurring background (Geirhos
et al., 2020). However, the model may perform poorly on the data where spurious features do not
exist, posing a great challenge to robust model generalization.

Mitigating spurious bias typically depends on accurate annotations of spurious correlations between
spurious features and classes, termed group labels. A group label (class, spurious feature) annotates a
sample with a spurious feature in addition to its class label, providing a more granular categorization of
data. For example, the Waterbirds dataset shown in Fig. 1 can be divided into four groups: (landbird,
land), (landbird, water), (waterbird, land), and (waterbird, water). Models with spurious bias typically
perform well on the majority groups which contain the majority of data, i.e., (landbird, land) and
(waterbird, water), and perform poorly on the other groups, e.g., (landbird, water) and (waterbird,
land), where the spurious correlations are different from those in the majority groups. Group labels
play an important role in spurious bias mitigation, enabling direct performance optimization (Sagawa
et al., 2019; Deng et al., 2024) and model selection (Liu et al., 2021; Kirichenko et al., 2023) under

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

known spurious correlations. However, group labels often require costly human-guided annotations,
which are hard to acquire.

(landbird, land) (landbird, water)

(waterbird, water)(waterbird, land)

3,498 (95%)  184 (5%)

56 (5%)  1,057 (95%)

waterbird

Class:

landbird

Class:

Figure 1: The Waterbirds dataset (Sagawa
et al., 2019). Training samples are parti-
tioned into four groups: (landbird, land),
(landbird, water), (waterbird, land), and
(waterbird, water).

Removing the dependency on group labels allows us to
tackle spurious bias in practically any scenarios where
ERM training is adopted. However, this also opens up
new challenges for unsupervised spurious bias miti-
gation where robustness to spurious correlations is not
specified a priori by group labels. Recently, last-layer
retraining (Kirichenko et al., 2023; Izmailov et al., 2022;
LaBonte et al., 2024), which adjusts the weights of the
last classification layer of an ERM model, has been suc-
cessful in spurious bias mitigation guided by a held-out
retraining set with group labels. The success demon-
strates that neurons in the penultimate layer (before the
last layer) provide sufficient information to tackle the
prediction task at hand, as long as their contributions to
final predictions are properly adjusted. This motivates
us to detect neurons that are affected by spurious bias in
order to mitigate it in the model. Although some existing
methods (Singla & Feizi, 2021; Neuhaus et al., 2022) ex-
ploit neuron activations to detect spurious features, they
require a certain amount of human supervision. The chal-
lenge that we aim to tackle is: can we identify neurons
affected by spurious bias without external supervision, e.g., group labels, and mitigate spurious bias
accordingly?

In this paper, for the first time, we theoretically demonstrate that neuron activations before the last
classification layer, coupled with their final prediction outcomes, provide self-identifying information
on whether the neurons are affected by spurious bias. Central to our theory is a term in a neuron
activation that contributes to a model’s spurious prediction behavior, which algins with the empirical
observation that if representative samples with high activations on a neuron (Bykov et al., 2023; Singla
& Feizi, 2021) are misclassified, then the neuron tends to be affected by spurious bias. Leveraging
this insight, we propose a novel self-guided neuron detection method that works right before the
last prediction layer to identify what neurons are affected by spurious bias for the given prediction
task. With the incorporation of this method, we propose a last-layer selective activation retraining
(LaSAR) framework that aims to retrain the last layer for improved robustness to spurious bias.
During retraining, LaSAR is aware of the spuriousness of input neurons to the last prediction layer
and selectively blocks the signals from the affected neurons. In this way, we promote the model to
discover robust decision rules beyond spurious correlations.

We theoretically prove that LaSAR can effectively identify neurons affected by spurious bias and
bring a model closer to the unbiased one. Our method LaSAR works in a classic ERM training setting
where no additional annotations beyond class labels are available, which makes it a practical and
efficient post-hoc tool for mitigating the spurious bias in a model. LaSAR is fully unsupervised in
the sense that it does not requires external supervision, such as group labels, to mitigate a model’s
spurious bias. The ability to detect neurons affected by spurious bias in the latent space allows our
method to be applicable to various data modalities, including vision and text data. Experiments show
that our method outperforms baseline approaches in mitigating spurious bias across four benchmark
datasets.

2 RELATED WORK

Exploiting spurious correlations for predictions has been demonstrated to be harmful to a model’s
generalization (Nushi et al., 2018; Zhang et al., 2018b; Geirhos et al., 2019; Clark et al., 2019; Nauta
et al., 2021; Geirhos et al., 2020; Xiao et al., 2021). Thus, it is critical to mitigate the reliance on
spurious correlations, or spurious bias, in models. In the following, we summarize existing methods
into supervised, semi-supervised, and unsupervised spurious bias mitigation, based on the degrees of
availability of external supervision.
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Supervised spurious bias mitigation. In this setting, certain spurious correlations in data are given
in the form of group labels. Spurious bias in a model is often demonstrated when there is a large
gap between the model’s average performance and its worst-group performance, indicating a strong
reliance on certain spurious correlations that are not shared across groups of data. With group labels in
the training data, balancing the size of the groups (Cui et al., 2019; He & Garcia, 2009), upweighting
groups that do not have specified spurious correlations (Byrd & Lipton, 2019), or optimizing the
worst-group performance (Sagawa et al., 2019) can be effective. Regularization strategies, such
as using information bottleneck (Tartaglione et al., 2021) or the distributional distance between
bias-aligned samples (Barbano et al., 2023), are also proved to be effective in spurious bias mitigation.
A recent work (Wang et al., 2024) exploits the concept of neural collapse for spurious bias mitigation.
However, this setting requires to know what spurious bias needs to be mitigated a priori and only
focuses on mitigating the specified spurious bias.

Semi-supervised spurious bias mitigation. This setting relaxes the requirement of group labels in
the training data but does require a small portion in a held-out set for achieving optimal performance.
In other words, the goal is to mitigate targeted spurious bias without extensive spurious correlation
annotations. One line of works is to use data augmentation, such as mixup (Zhang et al., 2018a;
Han et al., 2022; Wu et al., 2023) or selective augmentation (Yao et al., 2022), to mitigate spurious
bias in model training. Additionally, some methods propose to infer group labels in the training data
using misclassified samples (Liu et al., 2021), clustering hidden embeddings (Zhang et al., 2022), or
training a group label estimator (Nam et al., 2022) with a part of group-annotated validation data.
Creager et al. (2021) infers group labels and adopts invariant learning. Moreover, Bahng et al. (2020)
uses biased models to represent certain spurious biases, Zhang et al. (2024) improves bias learning
and mitigation via poisoning attack, and Zhang et al. (2023) exploits the training dynamics to mine
intermediate attribute samples for spurious bias mitigation. Last layer retraining (Kirichenko et al.,
2023) uses a half of group-balanced validation data to retrain the last layer of a model. Recently,
LaBonte et al. (2024) relaxes the requirement of group labels in one-half of the validation data
using the early-stop disagreement criterion for selecting retraining samples. We also adopt last layer
retraining but focus on a completely different setting where no group labels are available for training.

Unsupervised spurious bias mitigation. This setting does not assume any knowledge about spurious
correlations in data, and the goal is to train a robust model that works well on certain data with known
spurious correlations. Typically, we would expect relatively lower performance for methods working
in this setting than in the other two settings as no information regarding the spurious correlations
in test data is provided. A recent method (Li et al., 2024) upweights the training samples that are
misclassified by a bias-amplified model and selects models using minimum class difference. Our
method also works in this challenging setting. We take inspiration from spurious feature detection
using neuron activations (Singla & Feizi, 2022; Neuhaus et al., 2022) but fully automate this process
and integrate into our spurious bias mitigation framework. We propose a novel spuriousness fitness
score to select robust models.

3 METHODOLOGY

3.1 PROBLEM SETTING

We consider a standard classification problem in which we assume that the dataset Dtrain =
{(x, y)|x ∈ X , y ∈ Y} can be partitioned into groups Dtr

g with Dtrain = ∪g∈GDtr
g , where x denotes

a sample in the input space X , y is the corresponding label in the finite label space Y , g := (y, a)
denotes the group label defined by the combination of a class label y and a spurious feature a ∈ A,
where A denotes all spurious features in Dtrain, and G denotes all possible group labels. A group of
sample-label pairs in Dtr

g have the same class label y and the same spurious feature a.

Our scenario: unsupervised spurious bias mitigation. In this setting, no group labels are available,
resembling the traditional ERM training. In this setting, it is challenging to train a model fθ that is
robust to unknown spurious correlations in the given dataset Dtrain. A commonly used performance
measure is the worst-group accuracy (WGA), which is the accuracy on the worst performing data
group in the test set Dtest, i.e., WGA = ming∈G Acc(fθ,Dte

g ), where Dte
g denotes a group of data in

Dtest with Dtest = ∪g∈GDte
g . Typically, data in Dtrain is unbalanced across groups, and the trained
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Figure 2: Method overview. (a) Extract latent embeddings (neuron activations) and prediction
outcomes from an ERM-trained model using the identification data DIde. (b) Identify dimensions
(neurons) affected by spurious bias utilizing prediction outcomes (red for correct and blue for incorrect
predictions). (c) Retrain the last prediction layer using selective activations on DRet.

model fθ tends to favor certain data groups and to have a low WGA. Improving WGA without the
guidance of group labels is challenging.

To tackle this, we first propose a practical and efficient retraining framework (Section 3.2) for spurious
bias mitigation, which utilizes the self-identifying information of spurious bias contained in neuron
activations along with their final prediction outcomes. Next, we provide a theoretical analysis (Section
3.3) to justify our design choices.

3.2 LAST LAYER SELECTIVE ACTIVATION RETRAINING

3.2.1 IDENTIFYING AFFECTED NEURONS

We first focus on identifying dimensions (neurons) from latent embeddings (neuron activations) of a
targeted model that are affected by spurious bias. Identifying affected neurons allows us to design a
general detection method independent of the data modality adopted in training.

Consider that we are given a well-trained ERM model fθ with parameters θ as follows

θ = argmin
θ′

E(x,y)∈Dtrainℓ(fθ′(x), y), (1)

where ℓ denotes the cross-entropy loss function. The model fθ = eθ1
◦ hθ2

consists of a feature
extractor eθ1

: X → RM followed by a classifier hθ2
: RM → R|Y|, where M is the number of

dimensions of latent embeddings obtained after eθ1
, ◦ denotes the function composition operator, and

θ = θ1 ∪ θ2. Here, hθ2 is the last linear layer of the model with parameters θ2, and eθ1 represents
the remaining layers. As shown in Fig. 2(a), we extract a set of latent embeddings and prediction
outcomes from the identification data DIde for the class y, i.e.,

Vy = {(vn, on)|vn = eθ1(xn), on = 1{argmax fθ(xn) == yn}, (xn, yn) ∈ DIde}, (2)

where vn ∈ RM is an M -dimensional latent embedding for xn, and on is the corresponding
prediction outcome with 1 being an indicator function. We use the held-out validation data Dval as
the identification data.

With the set of latent embeddings and prediction outcomes Vy , we first propose a novel score termed
spuriousness score δyi , which measures the spuriousness of the i’th dimension for predicting the
class y. A larger spuriousness score indicates that the corresponding dimension is more likely to be
affected by the spurious bias in the model. To calculate δyi , we first group Vy at the i’th dimension
into correctly and incorrectly predicted sets V̂y

i and V̄y
i , respectively:

V̂y
i = {vn[i]|(vn, on) ∈ Vy, on = 1}, ∀i = 1, . . . ,M, y ∈ Y, (3)

and
V̄y
i = {vn[i]|(vn, on) ∈ Vy, on = 0}, ∀i = 1, . . . ,M, y ∈ Y, (4)
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where vn[i] denotes the i’th element in vn. As illustrated in Fig. 2(b), we define δyi as follows:

δyi = µmis − µcor = Med(V̄y
i )− Med(V̂y

i ), (5)
where Med(·) gets the median from a set of values. A high µmis indicates that high activations at
the i’th dimension has adverse effects on predicting the class y, while a low µcor implies that low
activations at the i’th dimension has little effect on the predictions. Thus, a large difference between
µmis and µcor, i.e., a large δyi , indicates a high likelihood of the i’th dimension being affected by
the spurious bias in the model, i.e., the model incorrectly amplifies a spurious feature in the neuron
activation when it should not. In contrast, a negative δyi shows the importance of the i’th dimension for
predictions as most correctly predicted samples tend to have high activation values on this dimension,
while most incorrectly predicted samples have low activation values. Therefore, we set a cutoff value
of 0 to select dimensions affected by spurious bias as follows:

S = {i|δyi > 0,∀i = 1, . . . ,M, y ∈ Y}. (6)
While our approach may resemble traditional variable selection, it goes further by specifically
addressing spurious bias—a factor often ignored in traditional methods. Additionally, it operates in
an unsupervised setting without requiring group annotations. Further details on its advantages are
provided in Appendix.

Note that an identified dimension for one class cannot serve as a key contributor to predicting some
other class. For example, when the goal is to classify between a “rectangle” and the “blue color”,
the dimension with a strong reliance on the “blue color” for the “rectangle” class cannot be used to
predict the “blue color” class given a blue rectangle, as the prediction will be ambiguous. Therefore,
S includes the identified dimensions for all the classes.

In the following, we refer to a dimension as a spurious dimension when δyi > 0 and a core
dimension when δyi < 0. However, these terms do not imply that a dimension exclusively represents
either spurious or core features. In practice, a core dimension exhibits high activation values for
the target class, whereas a spurious dimension shows high activation values for an undesired class.
Visualizations of several identified spurious and core dimensions on real-world datasets are provided
in Figs. 5 through 8 in Appendix.

3.2.2 MITIGATE SPURIOUS BIAS

Learning objective. With the identified spurious dimensions, we propose to selectively retrain the
last prediction layer to mitigate the reliance on spurious correlations. As illustrated in Fig. 2(c), during
retraining, we selectively activate dimensions (neurons) that are not identified as spurious while
masking out the signals from spurious dimensions. In this way, we explicitly break the correlations
between spurious features and prediction targets and promote the model to discover robust decision
rules beyond spurious correlations. Concretely, given a retraining dataset DRet, we optimize the last
classification layer as follows,

θ∗
2 = argmin

θ2

EB∼DRetℓ(hθ2
(ṽn), y), (7)

where B is a batch containing class-balanced sample-label pairs from DRet, avoiding the classifier
favoring certain classes during retraining, and ṽn is the latent embedding after zeroing-out activations
on the identified spurious dimensions S. Unless otherwise stated, we use Dtrain as DRet.

Model selection. Without group labels, we have no knowledge about what spurious correlations a
model might capture during training, which is challenging to select robust models (Liu et al., 2021;
Yang et al., 2023). We address this by designing a novel model selection metric, termed spuriousness
fitness score (SFit), based on our proposed spuriousness score. We calculate SFit as follows:

SFit =
M∑

m=1

∑
y∈Y

Abs(δym), (8)

where Abs(·) returns the absolute value of a given input. In practice, a high SFit can select a robust
model that has easily self-distinguishable spurious and core dimensions.

We use Equation (6) and Equation (7) to perform spurious dimension detection and spurious bias
mitigation iteratively and use SFit for model selection. Our method, termed last layer selective
activation retraining (LaSAR), works in the unsupervised spurious bias mitigation setting and is very
efficient in retraining as only the last layer is involved.
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3.3 THEORETICAL ANALYSIS

3.3.1 PRELIMINARY

We consider the following setting which is feasible for a theoretical analysis while capturing the
essence of our proposed method, LaSAR. We first model a sample-label pair (x, y) following the
standard setting in Arjovsky et al. (2019); Ye et al. (2023):

x = (xcore,xspu)
T ∈ RD×1, y = βTxcore + εcore, (9)

where the core component xcore ∈ RD1×1 follows some distribution P, and the spurious component
xspu ∈ RD2×1 with D1 +D2 = D is associated with the label y with the following relation:

xspu = (2a− 1)γy + εspu, a ∼ Bern(p), (10)

where (2a − 1) ∈ {−1,+1}, a ∼ Bern(p) is a Bernoulli random variable, and p is close to 1,
indicating that xspu is mostly indicative of y but not always. In Equation (9) and Equation (10),
β ∈ RD1×1 and γ ∈ RD2×1 are coefficients with unit ℓ2 norm, and εcore and εspu model the variations
in the core and spurious components, respectively. We set εcore and each element in εspu as a zero-
mean Gaussian random variable with the variance η2core and η2spu, respectively. We set η2core ≫ η2spu to
facilitate the learning of spurious features (Sagawa et al., 2019).

To capture the property of latent features, we consider a regression task using a commonly adopted
two-layer linear network (Ye et al., 2023) defined as f(x) = bTWx, where W ∈ RM×D denotes
the embedding function, and b ∈ RM×1 denotes the last layer. The model f(x) can be further
expressed as follows,

f(x) =

M∑
i=1

bi(x
T
corewcore,i + xT

spuwspu,i) = xT
coreucore + xT

spuuspu, (11)

where wT
i ∈ R1×D is the i’th row of W, wT

i = [wT
core,i,w

T
spu,i] with wcore,i ∈ RD1×1 and wspu,i ∈

RD2×1, ucore =
∑M

i=1 biwcore,i, and uspu =
∑M

i=1 biwspu,i. During the training stage, we minimize
ℓtr(W,b) = 1

2E(x,y)∈Dtrain∥f(x)− y∥22.

3.3.2 MAIN RESULTS

Proposition 1 (Principal for selective activation). Given the model f(x) = bTWx trained
with data specified in Equation (9) and Equation (10), it captures spurious correlations when
γTwspu,i < 0, i ∈ {1, . . . ,M}. The principal of selective activation is to mask out neurons
containing negative γTwspu,i. The proof is in Appendix.

Remark. If γTwspu,i ≥ 0, the model handles the spurious component correctly. Specifically,
when a = 1, the spurious component xspu positively correlates with the core component xcore and
contributes to the output, whereas when a = 0, its correlation with xcore breaks with a negative one
and has a negative contribution to the output. The relations reverse when γTwspu,i < 0, i.e., the
model still utilizes xspu even when the correlation breaks, demonstrating a strong reliance on the
spurious component instead of the core component.
Lemma 1. Given a training dataset Dtrain with p defined in Equation (10) satisfying 1 ≥ p≫ 0.5,
the optimized weights in the form of u∗

core and u∗
spu are

u∗
core =

(2− 2p)η2core + η2spu

η2core + η2spu
β, u∗

spu =
(2p− 1)η2core

η2core + η2spu
γ. (12)

Remark. When p = 0.5, the training data is unbiased and we obtain an unbiased classifier with
weights u∗

core = β and u∗
spu = 0. The proof is in Appendix.

Theorem 1 (Metric for neuron selection). Given the model f(x) = bTWx, we cast it to a
classification model by training it to regress y ∈ {−µ, µ} (µ > 0) on x based on the data model
specified in Equation (9) and Equation (10), where µ = E[βTxcore]. The metric δyi defined in the
following can identify neurons with spurious correlations when δyi > 0:

δyi = Med(V̄y
i )− Med(V̂y

i ),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where V̄y
i and V̂y

i are the sets of activation values for misclassified and correctly predicted samples
with the label y from the i’th neuron, respectively; Med(·) denotes the Median operator; and an
activation value is defined as xT

corewcore,i + xT
spuwspu,i. The proof is in Appendix.

Remark. The theorem establishes that δyi ≈ −2µγTwspu,i, which proves that our neuron selec-
tion metric defined in Equation (6) follows the principal in Proposition 1 and can select spurious
dimensions.

Theorem 2 (LaSAR mitigates spurious bias). Consider the model f∗(x) = xTu∗ trained on the
biased training data with p ≫ 0.5, with u∗

core and u∗
spu defined in Equation (12). Under the mild

assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M , then applying LaSAR to f∗(x) produces a
model that is closer to the unbiased one. The proof is in Appendix.

Remark. The assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M generally holds for a biased
model as the model has learned to associate spurious features with the core features. Denote the
LaSAR solutions as ucore = u†

core and uspu = u†
spu. An interesting finding is that retraining the last

layer does not alter the weight on the spurious component, i.e., u†
spu = u∗

spu, which is the optimal
solution achievable by last-layer retraining methods (see Lemma 3 in Appendix). However, it does
adjust u†

core to be closer to the optimal weight on the core component, β. Overall, LaSAR brings
model parameters closer to the optimal, unbiased solution compared to the parameters of the original
biased model. Moreover, unlike sample-level last-layer retraining methods, such as AFR (Qiu et al.,
2023), LaSAR is guaranteed to outperform the ERM-trained model. Additional discussions on this
topic can be found in Appendix.

4 EXPERIMENT

4.1 DATASETS

We tested LaSAR on four image datasets and two text datasets with various types of spurious
features: (1) Waterbirds (Sagawa et al., 2019) is an image dataset for recognizing waterbirds and
landbirds. It is generated synthetically by combining images of the two kinds of birds from the CUB
dataset (Welinder et al., 2010) and the backgrounds, water and land, from the Places dataset (Zhou
et al., 2017). (2) CelebA (Liu et al., 2015) is a large-scale image dataset of celebrity faces. The
task is to identify hair color, non-blond or blond, with male and female as the spurious features.
(3) ImageNet-9 Xiao et al. (2021) is a subset of ImageNet Deng et al. (2009) containing nine
super-classes. It comprises images with different background and foreground signals and can be
used to assess how much models rely on image backgrounds. (4) ImageNet-A Hendrycks et al.
(2021) is a dataset of real-world images, adversarially curated to test the limits of classifiers such as
ResNet-50. We use this dataset to test the robustness of a classifier after training it on ImageNet-9. (5)
MultiNLI (Williams et al., 2017) is a text classification dataset with 3 classes: neutral, contradiction,
and entailment, representing the natural language inference relationship between a premise and a
hypothesis. The spurious feature is the presence of negation, which is highly correlated with the
contradiction label. Standard train/validation/test splits are used as provided by prior work. (6)
CivilComments (Borkan et al., 2019) is a binary classification text dataset aimed at predicting
whether an internet comment contains toxic language. The spurious feature involves references to
eight demographic identities: male, female, LGBTQ, Christian, Muslim, other religions, Black, and
White. The dataset uses standard splits provided by the WILDS benchmark (Koh et al., 2021).

4.2 EXPERIMENTAL SETUP

Training details. We first train ERM models on each of the four datasets. For image datasets, we use
ResNet-50 and ResNet-18 models (He et al., 2016) pretrained on ImageNet, while for text datasets, we
use a BERT model (Kenton & Toutanova, 2019) pretrained on Book Corpus and English Wikipedia
data. We follow the settings in (Izmailov et al., 2022) for ERM training. The best ERM models
are selected based on the average validation accuracy. For our LaSAR training, we first identify
spurious dimensions using DIde and retrain a given ERM model using DRet. For nonnegative neuron
activations, we take their absolution values before the identification process. We run the training

7
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(a) (c)(b) Identify spurious dimensionOriginal model Retrained model

Training data

Test data

Core 
dimension

Spurious 

dimension

Noise 
dimension

Training data

Test data

Retraining

(+1, [1,0])

(-1, [0,1])
(-1, [1,0])

(+1, [0,1])

(+1, [1,0])

(-1, [0,1])
(-1, [1,0])

(+1, [0,1])

(Class, Spurious feature)

(Class, Spurious feature)

95%
5%

95%
5%

95%

95%
5%

5%

WGA: 58.6%

WGA: 50.0%

Acc: 97.4%

Acc: 68.5%

For class = -1

WGA: 89.9%

WGA: 90.7%

	
Blocking input 

dimensions	
2, 3, and 4 

Acc: 92.2%

Acc: 92.1%

Figure 3: Illustration of our motivating example. (a) Visualization of training and test data using
t-SNE (van der Maaten & Hinton, 2008) along with the decision boundaries of the trained model.
(b) Identify spurious dimensions for y = −1 based on the discrepancy of value distributions for the
correctly (blue) and incorrectly (red) predicted samples. (c) Retraining the model while blocking
identified input dimensions improves WGA. The figure is best viewed in color.

under three different random seeds and report average accuracies along with standard deviations. We
ran all experiments on NVIDIA RTX 8000 GPUs. We report full training details in Appendix.

Evaluation metrics. To evaluate the robustness to spurious bias, we adopt the widely accepted
robustness metric, worst-group accuracy (WGA), that gives the lower-bound performance of a
classifier on the test set with various dataset biases. We also focus on the accuracy gap between the
standard average accuracy and the worst-group accuracy as a measure of a classifier’s reliance on
spurious correlations. A high worst-group accuracy and a low accuracy gap indicate that the classifier
is robust to spurious correlations and can fairly predict samples from different groups.

4.3 SYNTHETIC EXPERIMENT

Preliminary. Without loss of generality, we consider an input v ∈ R4 to simulate a latent embedding
before the last prediction layer. This embedding consists of three components: a core feature vc ∈ R,
a spurious feature vs ∈ R2, and a noise feature vϵ ∈ R. We generate a synthetic training dataset
with labels {−1,+1}, where the core features are perturbed version of the labels. The spurious
feature us is generated such that for 95% of the samples with yi = −1, it is a perturbed version of
[0, 1], while for the remaining 5%, it is a perturbed version of [1, 0]. The other cases are similarly
illustrated in Fig. 3(a). As v represents a latent embedding, we thus consider a logistic regression
model ϕw̃(v) = 1/(1 + exp{−(wTv + b)}), where w̃ = [w, b]. The model predicts +1 when
ϕw̃(v) > 0.5 and −1 otherwise. We trained ϕw̃ on the synthetic training data and tested it on the
corresponding test data. Further details are provided in the Appendix.

Results. The top plot in Fig. 3(b) shows the distribution of the first dimension of input embeddings
when yi = −1. In contrast, for the noise dimension (i.e., the fourth dimension of v), randomness
results in negligible differences between the two distributions, as illustrated in the bottom plot of
Fig. 3(b). Additional plots for all dimensions can be found in Fig. 4 in the Appendix. We then
retrained the model while blocking the second, third, and fourth dimensions. The retrained model has
learned to better balance its performance on both the training and test data, resulting in a substantial
improvement in WGA on the test data (Fig. 3(c)). Importantly, this process relies solely on the
intrinsic characteristics of the model and does not require external supervisions.

4.4 COMPARISON WITH EXISTING METHODS

Method Waterbirds CelebA
JTT 84.2±0.5 52.3±1.8

AFR 89.0±2.6 68.7±1.7

LaSAR 91.8±0.8 83.0±2.8

Table 1: WGA comparison.

We evaluated our method against existing approaches
designed to address spurious bias on both image and
text datasets. Our primary focus was on methods specifi-
cally developed for unsupervised spurious bias mitigation,
where no group labels are available to guide the miti-
gation process. To provide additional context, we also

8
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Algorithm Group annotations Waterbirds CelebA

Train Val WGA (↑) Acc. (↑) Acc. Gap (↓) WGA (↑) Acc. (↑) Acc. Gap (↓)
JTT (Liu et al., 2021) No Yes 86.7 93.3 6.6 81.1 88.0 6.9
SELF† (LaBonte et al., 2024) No Yes 93.0±0.3 94.0±1.7 1.0 83.9±0.9 91.7±0.4 7.8
CNC (Zhang et al., 2022) No Yes 88.5±0.3 90.9±0.1 2.4 88.8±0.9 89.9±0.5 1.1
BAM (Li et al., 2024) No Yes 89.2±0.3 91.4±0.4 2.2 83.5±0.9 88.0±0.4 4.5
AFR† (Qiu et al., 2023) No Yes 90.4±1.1 94.2±1.2 3.8 82.0±0.5 91.3±0.3 9.3
DFR† (Kirichenko et al., 2023) No Yes 92.4±0.9 94.9±0.3 2.5 87.0±1.1 92.6±0.5 5.6

ERM (Vapnik, 1999) No No 72.6 97.3 24.7 47.2 95.6 48.4
BPA (Seo et al., 2022) No No 71.4 - - 82.5 - -
GEORGE (Sohoni et al., 2020) No No 76.2 95.7 19.5 52.4 94.8 42.4
BAM (Li et al., 2024) No No 89.1±0.2 91.4±0.3 2.3 80.1±3.3 88.4±2.3 8.3
LaSAR No No 91.8±0.8 94.0±0.2 2.2 83.0±2.8 92.0±0.5 9.0
LaSAR† No No 91.7±1.2 94.4±0.4 2.7 87.4±0.4 90.3±0.7 2.9

Table 2: Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%) on
the image datasets. † denotes using a fraction of validation data for retraining.

Algorithm Group annotations MultiNLI CivilComments

Train Val WGA (↑) Acc. (↑) Acc. Gap (↓) WGA (↑) Acc. (↑) Acc. Gap (↓)
JTT (Liu et al., 2021) No Yes 72.6 78.6 6.0 69.3 91.1 21.8
SELF† (LaBonte et al., 2024) No Yes 70.7±2.5 81.2±0.7 10.5 79.1±2.1 87.7±0.6 8.6
CNC (Zhang et al., 2022) No Yes - - - 68.9±2.1 81.7±0.5 12.8
BAM (Li et al., 2024) No Yes 71.2±1.6 79.6±1.1 8.4 79.3±2.7 88.3±0.8 9.0
AFR† (Qiu et al., 2023) No Yes 73.4±0.6 81.4±0.2 8.0 68.7±0.6 89.8±0.6 21.1
DFR† (Kirichenko et al., 2023) No Yes 70.8±0.8 81.7±0.2 10.9 81.8±1.6 87.5±0.2 5.7
ERM (Vapnik, 1999) No No 67.9 82.4 14.5 57.4 92.6 35.2
BAM (Li et al., 2024) No No 70.8±1.5 80.3±1.0 9.5 79.3±2.7 88.3±0.8 9.0
LaSAR No No 70.6±0.4 81.5±0.7 10.9 82.4±0.2 89.2±0.1 6.8
LaSAR† No No 72.4±0.3 80.2±0.6 7.8 73.6±0.5 85.4±0.2 11.8

Table 3: Comparison of worst-group accuracy (%), average accuracy (%), and accuracy gap (%) on
the text datasets. † denotes using a fraction of validation data for retraining.

included methods designed for semi-supervised spurious bias mitigation to highlight the performance
gap between the two settings.

We first compared our approach against AFR (Qiu et al., 2023) and JTT (Liu et al., 2021) to
demonstrate the challenges of the unsupervised setting for semi-supervised methods. These methods
were tuned using worst-class accuracy (Yang et al., 2023) on the validation set instead of WGA. As
shown in Table 1, our method exhibits larger performance gains over AFR and JTT compared to their
results presented in the subsequent tables.

The results in the lower part of Table 2 correspond to the unsupervised spurious bias mitigation
setting, where no group labels are available. Our method, LaSAR, achieves the highest worst-group
accuracies and the smallest accuracy gaps, demonstrating its effectiveness in enhancing model
robustness to spurious bias while balancing performance across different data groups. The upper part
of Table 2 presents results from the semi-supervised spurious bias mitigation setting. Even in this
setting, LaSAR remains competitive, thanks to its strong spurious bias mitigation capabilities. On the
text datasets, LaSAR continues to perform effectively, achieving the best worst-group accuracies and
the smallest accuracy gaps in the unsupervised spurious bias mitigation setting, as shown in Table 3.

We further evaluated LaSAR on the more challenging ImageNet-9 (Kim et al., 2022; Bahng et al.,
2020) and ImageNet-A (Hendrycks et al., 2021) datasets. Our approach involved first training an
ERM model from scratch using the training data of ImageNet-9 and then fine-tuning the last layer
with LaSAR. As shown in Table 4, LaSAR demonstrates a significant advantage by achieving the
best performance on the challenging ImageNet-A dataset, which is known for its natural adversarial
examples. While this improvement comes with a slight trade-off in in-distribution performance on
ImageNet-9, it highlights LaSAR’s ability to enhance robustness to distribution shifts, making it
particularly effective in out-of-distribution scenarios.

9
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Method Group annotations ImageNet-9 ImageNet-A

Validation(↑) Unbiased(↑) Test(↑)
StylisedIN (Geirhos et al., 2018) Yes 88.4±0.5 86.6±0.6 24.6±1.4

LearnedMixin (Clark et al., 2019) Yes 64.1±4.0 62.7±3.1 15.0±1.6

RUBi (Cadene et al., 2019) Yes 90.5±0.3 88.6±0.4 27.7±2.1

ERM (Vapnik, 1999) No 90.8±0.6 88.8±0.6 24.9±1.1

ReBias (Bahng et al., 2020) No 91.9±1.7 90.5±1.7 29.6±1.6

LfF (Nam et al., 2020) No 86.0 85.0 24.6
CaaM (Wang et al., 2021) No 95.7 95.2 32.8
SSL+ERM (Kim et al., 2022) No 94.2±0.1 93.2±0.0 34.2±0.5

LWBC (Kim et al., 2022) No 94.0±0.2 93.0±0.3 36.0±0.5

LaSAR No 93.7±0.1 92.4±0.0 37.3±0.5

Table 4: Validation, Unbiased, and Test metrics (%) evaluated on the ImageNet-9 and ImageNet-A
datasets. All methods use ResNet-18 as the backbone. The best results are in boldface.

DIde DRet SAR Waterbirds CelebA MultiNLI CivilComments
Dtrain Dtrain Yes 78.0±2.3 58.5±1.2 42.0±10.5 80.0±10.5

Dval Dtrain Yes 91.8±0.8 83.0±2.8 65.0±1.5 82.4±0.2

Dval Dtrain No 82.7±0.4 53.9±0.0 63.4±0.7 81.5±0.5

Dval/2 Dval/2 Yes 91.7±1.2 87.4±0.4 72.4±0.3 73.6±0.5

Table 5: Comparison of worst-group accuracy (%) between different choices of DIde and DRet as well
as the proposed selective activation retraining (SAR) on the four datasets.

4.5 ABLATION STUDY

We analyzed the effectiveness of our proposed components in Table 5. Specifically, we focused
on different choices of the identification dataset DIde and the retraining dataset DRet as well as the
effectiveness of using selective activation retraining (SAR) with identified spurious dimensions.
When we used the training data to identify spurious dimensions, i.e., DIde = Dtrain, we observed a
relatively low performance on each dataset. However, after switching to a held-out validation data
Dval, we observed significant performance improvement in comparison with the previous setting. This
demonstrates the benefit of using a new and held-out dataset for discovering spurious dimensions and
avoiding overfitting to a used dataset Dtrain. By default, our method LaSAR uses Dval as DIde. Next,
we sought to analyze whether SAR is effective by disabling it during retraining, which effectively
reduces LaSAR to class-balanced retraining. We observed consistent performance degradation across
the four datasets, which validates the effectiveness of SAR across multiple datasets. Finally, inspired
by the success of DFR (Kirichenko et al., 2023), which uses a half of the validation data for retraining,
we divide Dval into two halves and use one half (denoted as Dval/2) as DIde and the other half as
DRet. Different from DFR, our method does not use group labels in the validation data. We observed
that this strategy can further boost the performance on the CelebA and MultiNLI datasets. We
also observed a performance degradation on the CivilComments dataset, possibly arising from the
imperfect splitting of Dval. We leave this to our future work.

5 CONCLUSION

Mitigating spurious bias is critical to models’ generalization. We considered a challenging yet
realistic unsupervised spurious bias mitigation setting: mitigating spurious bias in models without
group labels. We proposed a self-guided spurious bias mitigation framework by exploiting the distinct
patterns in neuron activations (latent embeddings) right before the last prediction layer of a model.
Our framework tackles spurious bias in two stages by first identifying spurious dimensions and
then retraining the last prediction layer of the model using latent embeddings while blocking inputs
from spurious dimensions. We theoretically validated our proposed approach and demonstrated the
effectiveness of our spurious dimension identification by showing that these dimensions represent
non-essential parts of input samples. Our method does not need additional training data and can be
used on different data modalities and with different model architectures.
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A APPENDIX

The appendix is organized as follows:

• Section A.1: Details for the Synthetic Experiment
• Section A.2: Theoretical Analysis

– Section A.2.1: Preliminary
– Section A.2.2: Proof for Lemma 1
– Section A.2.3: Proof for Corollary 1
– Section A.2.4:Proof for Proposition 1
– Section A.2.5: Proof for Theorem 1
– Section A.2.6: Proof for Theorem 2
– Section A.2.7: Proof for Lemma 2
– Section A.2.8: Proof for Lemma 3

• Section A.3: Connection to Last-Layer Retraining Methods
• Section A.4: Complexity Analysis
• Section A.5: Advantages over Variable Selection Methods
• Section A.6: Dataset Details
• Section A.7: Training Details
• Section A.8: Visualizations on Core and Spurious Dimensions

A.1 DETAILS FOR THE SYNTHETIC EXPERIMENT

Data model. Without loss of generality, we consider an input v ∈ R4 to simulate a latent embedding
before the last prediction layer, which consists of three components: a core feature vc ∈ R, a spurious
feature vs ∈ R2, and a noise feature vϵ ∈ R. We generate a dataset Dsyn = {(vi, yi)}Ni=1 of N
sample-label pairs, where yi ∈ {−1,+1}, vci = yi + nc, and vϵ and nc are zero-mean Gaussian
noises with variances σ2

ϵ and σ2
c , respectively. When yi = −1, vs

i = [0, 1]+ns with the probability α
and vs

i = [1, 0]+ns with the probability 1−α; when yi = +1, vs
i = [1, 0]+ns with the probability

α and vs
i = [0, 1] + ns with the probability 1 − α, where ns is a vector of two independent zero-

mean Gaussian noises with the variance σ2
s . We design a spurious feature as a two-dimensional

vector so that each dimension uniquely represents a spurious pattern, i.e., occurrences of 1’s and 0’s
controlled by α, for each class. To reveal spurious bias, i.e., using the correlation between us

i and
yi for predictions, we generate a training set Dsyn

train with easy-to-learn spurious features by setting
σ2
c > σ2

s and α ≈ 1 (Sagawa et al., 2020). Thus, the correlations between vs
i and yi are predictive

of αN expected labels. To demonstrate, we set σ2
c = 0.5, σ2

s = 0.01, σ2
ϵ = 0.1, α = 0.95, and

N = 5000. We generate a test set Dsyn
test with the same set of parameters except α = 0.1. Now,

spurious correlations between vs
i and yi are only predictive of a small portion of the test samples.

Fig. 3(a) shows four data groups along with their respective proportions in each class.

Classification model. As the input v is a latent embedding, we thus consider a logistic regression
model ϕw̃(v) = 1/(1 + exp{−(wTv + b)}), where w̃ = [w, b]. The model predicts +1 when
ϕw̃(v) > 0.5 and −1 otherwise. We trained ϕw̃ on Dsyn

train and tested it on Dsyn
test .

Spurious bias. We observe a high average accuracy of 97.4% but a WGA of 58.6% (Fig. 3(a), top)
on the training data. The results show that the model heavily relies on the correlations that exist in
the majority of samples and exhibits strong spurious bias. As expected, the performance on the test
data is significantly lower (Fig. 3(a), bottom). The decision boundary (Fig. 3(a), green lines) learned
from the training data does not generalize to the test data.

Mitigation strategy. Without group labels, it is challenging to identify and mitigate spurious bias
captured by the model. We tackle this challenge by first finding that the distributions of values of an
input dimension, together with the prediction outcomes for a certain class, provide discriminative
information regarding the spuriousness of the dimension. (1) When the values for misclassified
samples at the dimension are high, while values for the correctly predicted samples are low, this
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Figure 4: Distributions of values at all the four dimensions for the two classes -1 and +1 in the
motivating example in Section A.1. “d=1” denotes the first dimension.

indicates that the absence of the dimension input does not significantly affect the correctness of
predictions, while the presence of the dimension input does not generalize to certain groups of data.
Therefore, the dimension tends to represent a spurious feature. For example, the center plot of Fig.
3(b) depicts the value distributions of the second dimension of input embeddings when yi = −1. We
obtain a similar plot for the third dimension of input embeddings when yi = +1. (2) In contrast, if
the absence of the dimension input results in misclassification, then the dimension tends to represent
a core feature. The top plot of Fig. 3(b) represents the first dimension of input embeddings when
yi = −1. (3) For the noise dimension, i.e., the fourth dimension, due to randomness, there is little
difference between the two distributions (Fig. 3(b) bottom). See Fig. 4 for all the plots. Next, we
retrain the model while blocking the second, third, and fourth dimensions. As a result, the retrained
model has learned to balance its performance on both the training and test data with a significant
increase in WGA on the test data (Fig. 3(c)).

A.2 THEORETICAL ANALYSIS

A.2.1 PRELIMINARY

Based on the data model in Equation (9) and Equation (10), we restate the following

x = (xcore,xspu)
T ∈ RD×1, y = βTxcore + εcore, (13)

and
xspu = (2a− 1)γy + εspu, a ∼ Bern(p), (14)

where (2a − 1) ∈ {−1,+1}, a ∼ Bern(p) is a Bernoulli random variable, p is close to 1, εcore is
a zero-mean Gaussian random variable with the variance η2core, and each element in εspu follows a
zero-mean Gaussian distribution with the variance η2spu. We set η2core ≫ η2spu to facilitate the learning
of spurious features. The model f(x) = bTWx in Section 3.3 can be further expressed as follows,

ŷ =

M∑
i=1

bi(x
T
corewcore,i + xT

spuwspu,i) = xT
coreucore + xT

spuuspu, (15)

where wT
i ∈ R1×D is the i’th row of W, wT

i = [wT
core,i,w

T
spu,i] with wcore,i ∈ RD1×1 and wspu,i ∈

RD2×1, ucore =
∑M

i=1 biwcore,i, and uspu =
∑M

i=1 biwspu,i. The loss function which we use to
optimize W and b is

ℓtr(W,b) =
1

2
E(x,y)∈Dtrain∥f(x)− y∥22. (16)

With the above definitions, the following lemma gives the optimal coefficients u∗
core and u∗

spu based
on the training data.
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A.2.2 PROOF FOR LEMMA 1

Lemma 1. Given a training dataset Dtrain with p defined in Equation (14) satisfying 1 ≥ p≫ 0.5,
the optimized weights in the form of u∗

core and u∗
spu are

u∗
core =

(2− 2p)η2core + η2spu

η2core + η2spu
β, (17)

and

u∗
spu =

(2p− 1)η2core

η2core + η2spu
γ, (18)

respectively. When p = 0.5, the training data is unbiased and we obtain an unbiased classifier with
weights u∗

core = β and u∗
spu = 0.

Proof. Note that f(x) = bTWx = xTv = xT
coreucore + xT

spuuspu, then we have

ℓtr(W, b) =
1

2
E∥xT

coreucore + xT
spuuspu − y∥22 (19)

=
1

2
E∥xT

coreucore +
[
(2a− 1)γy + εspu

]T
uspu − y∥22 (20)

=
1

2
E∥xT

coreucore −
[
1− (2a− 1)γTuspu

]
y∥22 +

1

2
η2spu∥uspu∥22 (21)

=
1

2
(pE1 + (1− p)E2) +

1

2
η2spu∥uspu∥22, (22)

where E1 = ∥xT
coreucore − (1− γTuspu)y∥22 when a = 1 and E2 = ∥xT

coreucore − (1 + γTuspu)y∥22
when a = 0. We first calculate the lower bound for E1 as follows

E1 = E∥xT
coreucore − (1− γTuspu)(β

Txcore + εcore)∥22 (23)

= E∥xT
coreucore − (1− γTuspu)β

Txcore + (1− γTuspu)εcore)∥22 (24)

= E∥xT
coreucore − (1− γTuspu)β

Txcore∥22 + η2core(1− γTuspu)
2 (25)

≥ η2core(1− γTuspu)
2. (26)

Similarly, we have
E2 = E∥xT

coreucore − (1 + γTuspu)(β
Txcore + εcore)∥22 (27)

= E∥xT
coreucore − (1 + γTuspu)β

Txcore∥22 + η2core(1 + γTuspu)
2 (28)

≥ η2core(1 + γTuspu)
2. (29)

Then, plug in (26) and (29) into (22), we obtain the following

ℓtr(W, b) ≥
1

2

(
pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥uspu∥22

)
(30)

=
1

2

(
pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥γ∥22∥uspu∥22

)
(31)

≥ 1

2

(
pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥γTuspu∥22

)
, (32)

where Equation (31) uses the fact that γ has a unit norm, and the inequality (32) exploits the
Cauchy–Schwarz inequality. Let z = γTuspu, we have ℓ(z) = pη2core(1 − z)2 + (1 − p)η2core(1 +

z)2 + η2spuz
2. Let ∂ℓ(z)

∂z = 0, we obtain

z∗ = γTu∗
spu =

(2p− 1)η2core

η2core + η2spu
.

Given u∗
spu, we can obtain the optimal u′

core for minimizing E1 in Equation (25) as u′
core = (1− z∗)β;

similarly, we can obtain the optimal u
′′

core for minimizing E2 in Equation (28) as u
′′

core = (1 + z∗)β.
Via proof by contradiction, only u′

core or u
′′

core is the solution for u∗core. Since p ≫ 0.5, E1

contributes to the majority error. Thus, u∗
core = (1− z∗)β, i.e.,

u∗
core = (1− z∗)β =

(2− 2p)η2core + η2spu

η2core + η2spu
β.
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A.2.3 PROOF FOR COROLLARY 1

Lemma 1 gives the optimal model weights under a given training dataset Dtrain with the parameter p
controlling the strength of spurious correlations. Lemma 1 generalizes the result in Ye et al. (2023)
where p = 1. Importantly, we obtain the following corollary for unbiased models:
Corollary 1. The unbiased model f(x) = uTx = xT

coreucore + xT
spuuspu is achieved when ucore =

u∗
core and γTuspu = 0.

Proof. Plug γTucore = 0 into Equation (25) and Equation (28), then we observe that ucore minimizes
errors from both the majority (a = 1) and minority (a = 0) groups of data.

If we could obtain a set of unbiased training data with p = 0.5, then we obtain an unbiased model
with u∗

spu = 0 and u∗
core = β. However, in practice, it is challenging to obtain a set of unbiased

training data, i.e., it is challenging to control the value of p.

A.2.4 PROOF FOR PROPOSITION 1

Proposition 1 (Principal for selective activation). Given the model f(x) = bTWx trained with
data generated under the data model specified in Equation (13) and Equation (14), it captures
spurious correlations when γTwspu,i < 0, i ∈ {1, . . . ,M}. The principal of selective activation is to
mask out neurons containing negative γTwspu,i.

Proof. Consider the i’th neuron ei (i = 1, . . . ,M ) before the last layer. We first expand it based on
our data model specified by Equation (13) and Equation (14) as follows:

ei = xT
corewcore,i + xT

spuwspu,i (33)

= xT
corewcore,i + [(2a− 1)γy + εspu]

Twspu,i (34)

= xT
corewcore,i + (2a− 1)[βTxcore + εcore]γ

Twspu,i + εTspuwspu,i (35)

= xT
corewcore,i + (2a− 1)βTxcoreγ

Twspu,i + εrem, (36)

where εrem = εcoreγ
Twspu,i + εTspuwspu,i. In Equation (36), if γTwspu,i ≥ 0, the model handles the

spurious component correctly. Specifically, when a = 1, the spurious component positively correlates
with the core component and contributes to the output, whereas when a = 0, its correlation with the
core component breaks with a negative one and has a negative contribution to the output. In contrast,
if γTwspu,i < 0 and a = 1, then the model still utilizes the spurious component even the correlation
breaks, demonstrating a strong reliance on the spurious component instead of the core component.
Therefore, the principal of selective activation is to find neurons containing negative γTwspu,i so that
masking them out improves the model’s generalization.

A.2.5 PROOF FOR THEOREM 1

The following theorem validates our neuron selection method.
Theorem 1 (Metric for neuron selection). Given the model f(x) = bTWx, we cast it to a
classification model by training it to regress y ∈ {−µ, µ} (µ > 0) on x based on the data model
specified in Equation (13) and Equation (14), where µ = E[βTxcore]. The metric δyi defined in the
following can identify neurons with spurious correlations when δyi > 0:

δyi = Med(V̄y
i )− Med(V̂y

i ),

where V̄y
i and V̂y

i are the sets of activation values for misclassified and correctly predicted samples
with the label y from the i’th neuron, respectively; Med(·) denotes the Median operator; and an
activation value is defined as xT

corewcore,i + xT
spuwspu,i.

Proof. We start by obtaining the set of correctly predicted samples D̂y and the set of incorrectly
predicted samples D̄y as D̂y = {x|f(x) ≥ 0, (x, y) ∈ DIde} and D̄y = {x|f(x) < 0, (x, y) ∈ DIde},
where DIde is the set of identification data. Then, we have V̂y

i = {ei|x ∈ D̂y}, and V̄y
i = {ei|x ∈

18
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D̄y}, where ei is the i’th neuron activation defined in Equation (36). Expanding ei following
Equation (36), we obtain

ei = xT
corewcore,i + (2a− 1)βTxcoreγ

Twspu,i + εrem.

Note that xT
corewcore,i and εrem exist for all the samples, regardless of the ultimate prediction results,

and all ei follows a Gaussian distribution given a. Then, among all the correctly predicted samples
with the label y, according the Lemma 2, we have Med(V̂y

i ) ≈ E[xT
corewcore,i]+µγ

Twspu,i. Similarly,
among all the incorrectly predicted samples with the label y, we have Med(V̄y

i ) ≈ E[xT
corewcore,i]−

µγTwspu,i. Then, the difference between the two is

δyi ≈ −2µγTwspu,i.

When δyi > 0, we have γTwspu,i < 0. According Proposition 1, using δyi > 0 indeed selects neurons
that have strong reliance on spurious components.

A.2.6 PROOF FOR THEOREM 2

Theorem 2 (LaSAR mitigates spurious bias). Consider the model f∗(x) = xTu∗ trained on the
biased training data with p≫ 0.5, with u∗

core and u∗
spu defined in Equation (17) and Equation (18),

respectively. Under the mild assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M , then applying
LaSAR to f∗(x) produces a model that is closer to the unbiased one.

Proof. Consider f∗(x) as the base model. We aim to prove that the retrained model obtained with
LaSAR produces model parameters that is closer to the unbiased model defined in Corollary 1 than
the base model.

First, the assumption that βTwcore,i ≈ γTwspu,i,∀i = 1, . . . ,M generally holds for a biased model
as the model has learned to associate spurious features with the core features.

Then, we denote the retrained parameters obtained with LaSAR as u†
core and u†

spu. We start with
calculating u†

spu. Focusing on Equation (32) and following the derivation in Lemma 1, we obtain
u†

spu =
∑

i∈I+
biwspu,i = u∗

spu, where I+ denotes the set of neuron indexes satisfying γTwspu,i > 0.
Note that LaSAR is a last-layer retraining method; thus we only optimize bi here and wspu,i is the
same as in f∗(x). Left multiplying u†

spu with γT , we have

γTu†
spu =

∑
i∈I+

b†iγ
Twspu,i (37)

= z∗ =
(2p− 1)η2core

η2core + η2spu
> 0.

Note that γTwspu,i > 0, ∀i ∈ I+ because of LaSAR. Hence, we have b†i > 0, ∀i ∈ I+. Moreover,
we observe that u†

spu is the same as u∗
spu as long as I+ is non-empty. This shows that LaSAR is not

able to optimize parameters related to the spurious components in the input data.

According to the Corollary 1, the unbiased model is achieved when p = 0.5 and ucore = β. The
Euclidean distance between β and the biased solution ucore = (1− z∗)β is ∥u∗

core −β∥ = z∗. Based
on Equation (37), we estimate the distance between our LaSAR solution u†

core and β as follows

∥u†
core − β∥2 = ∥βT (u†

core − β)∥2 (38)

= ∥βTu†
core − 1∥2 (39)

= ∥
∑
i∈I+

b†iβ
Twcore,i − 1∥2 (40)

≈ ∥
∑
i∈I+

b†iγ
Twspu,i − 1∥2 (41)

= ∥z∗ − 1∥, (42)
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where Equation (39) uses the fact that βTβ = 1, and Equation (40) uses the condition βTwcore,i ≈
γTwspu,i,∀i = 1, . . . ,M . Note that z∗ is achieved on the training data with p≫ 0.5 and η2core ≫ η2spu,
hence we have z∗ ≈ 1 and ∥u†

core − β∥2 ≈ 0. In other words, LaSAR can bring model parameters
closer to the optimal and unbiased solution than the parameters of the biased model.

A.2.7 PROOF FOR LEMMA 2

Lemma 2 (Majority of samples among different predictions). Given the model f(x) = bTWx
trained on y ∈ {−µ, µ} (µ > 0) with µ = E[βTxcore], and the conditions that p > 3/4 and
η2core ≫ η2spu, we have the following claims:

• Among the set of all correctly predicted samples with the label y, more than half of them are
generated with a = 1;

• Among the set of all incorrectly predicted samples with the label y, more than half of them
are generated with a = 0.

Proof. With the two regression targets, −µ and µ, the optimal decision boundary is 0. Without loss
of generality, we consider y = µ. Then, the set of correctly predicted samples D̂y is

D̂y = {x|f(x) ≥ 0, (x, y) ∈ DIde},

and the set of incorrectly predicted samples D̂y is

D̄y = {x|f(x) < 0, (x, y) ∈ DIde}.
The probability of a sample with the label y that is correctly predicted is

P (x ∈ D̂y|y) = P (a = 1)P (f(x) ≥ 0|a = 1, y) + P (a = 0)P (f(x) ≥ 0|a = 0, y)

= pP (f(x) ≥ 0|a = 1, y) + (1− p)P (f(x) ≥ 0|a = 0, y).

Similarly, the probability of a sample with the label y that is incorrectly predicted is
P (x ∈ D̄y|y) = pP (f(x) < 0|a = 1, y) + (1− p)P (f(x) < 0|a = 0, y).

To calculate P (f(x) ≥ 0|a = 1, y), we expand f(x) as follows:

f(x) = xT
coreu

∗
core + xT

spuu
∗
spu

= xT
coreβ(1− z∗) + (γ(βTxcore + εcore) + εspu)

Tu∗
spu

= xT
coreβ(1− z∗) + xT

coreβγ
Tu∗

spu + γTu∗
spuεcore + εTspuu

∗
spu

= xT
coreβ + z∗εcore + εTspuu

∗
spu

The output of f(x) follows a Gaussian distribution, with the mean µ1 = E[f(x)] = µ, and the
variance σ2

1 = V ar(xT
coreβ) + η2core(z

∗)2 + η2spu(z
∗)2. Therefore, we have

P (f(x) ≥ 0|a = 1, y) = P (x ∈ D̂y|a = 1, y) = 1− Φ(
0− µ

σ1
) = Φ(

µ

σ1
), (43)

P (f(x) < 0|a = 1, y) = P (x ∈ D̄y|a = 1, y) = 1− Φ(
µ

σ1
) = Φ(

−µ
σ1

). (44)

Similarly, to calculate P (f(x) ≥ 0|a = 0, y), we expand f(x) as follows:

f(x) = xT
coreβ(1− z∗)− xT

coreβγ
Tu∗

spu − γTu∗
spuεcore + εTspuu

∗
spu

= xT
coreβ(1− 2z∗)− z∗εcore + εTspuu

∗
spu.

The output of f(x) follows a Gaussian distribution, with the mean µ0 = E[f(x)] = µ(1− 2z∗), and
the variance σ2

0 = (1− 2z∗)2V ar(xT
coreβ) + η2core(z

∗)2 + η2spu(z
∗)2. Therefore, we have

P (f(x) ≥ 0|a = 0, y) = P (x ∈ D̂y|a = 0, y) = 1− Φ(
0− µ0

σ0
) = Φ(

(1− 2z∗)µ

σ0
), (45)

P (f(x) < 0|a = 0, y) = P (x ∈ D̄y|a = 0, y) = 1− Φ(
µ0

σ0
) = Φ(

−(1− 2z∗)µ

σ0
). (46)
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Therefore, we have the probabilities for correctly and incorrectly predicted samples with the label y,
i.e.,

P (x ∈ D̂y|y) = pΦ(
µ

σ1
) + (1− p)Φ(

(1− 2z∗)µ

σ0
), (47)

and

P (x ∈ D̄y|y) = pΦ(
−µ
σ1

) + (1− p)Φ(
−(1− 2z∗)µ

σ0
) (48)

Next, we seek to determine whether the majority of samples in the correctly (incorrectly) predicted
set D̂y (D̄y) is generated with a = 0 or a = 1. To achieve this, in the set of correctly predicted
samples, we use the Bayesian theorem based on Equation (47), i.e.,

P (a = 1|x ∈ D̂y, y) =
P (x ∈ D̂y|a = 1, y)P (a = 1)

P (x ∈ D̂y|y)

=
pΦ(µ/σ1)

pΦ(µ/σ1) + (1− p)Φ((1− 2z∗)µ/σ0)
, (49)

and

P (a = 0|x ∈ D̂y, y) = 1− P (a = 1|x ∈ D̂y, y)

=
(1− p)Φ((1− 2z∗)µ/σ0)

pΦ(µ/σ1) + (1− p)Φ((1− 2z∗)µ/σ0)
. (50)

Similarly, in the set of incorrectly predicted samples, we have

P (a = 1|x ∈ D̄y, y) =
P (x ∈ D̄y|a = 1, y)P (a = 1)

P (x ∈ D̄y|y)

=
pΦ(−µ/σ1)

pΦ(−µ/σ1) + (1− p)Φ(−(1− 2z∗)µ/σ0)
, (51)

and

P (a = 0|x ∈ D̄y, y) = 1− P (a = 1|x ∈ D̄y, y)

=
(1− p)Φ(−(1− 2z∗)µ/σ0)

pΦ(−µ/σ1) + (1− p)Φ(−(1− 2z∗)µ/σ0)
. (52)

Under the assumption that p > 3/4 and η2core ≫ η2spu, we have 1−2z∗ =
(
(3−4p)η2core+η

2
spu

)
/(η2core+

η2spu) < 0. Hence, Φ(−(1 − 2z∗)µ/σ0) < 1/2 and P (a = 1|x ∈ D̂y, y) > 1/2; in other words,
among the set of all correctly predicted samples with the label y, more than half of them are
generated with a = 1.

Moreover, under the assumption that Φ(−µ/σ1) ≈ 0, i.e., predictions of the model have a high
signal-to-noise ratio, then P (a = 0|x ∈ D̄y, y) > 1/2, i.e., among the set of all incorrectly
predicted samples with the label y, more than half of them are generated with a = 0. This
assumption is generally true, as σ2

1 = V ar(xT
coreβ) + η2core(z

∗)2 + η2spu(z
∗)2 is typically very small

when z∗ approaches zero given p > 3/4 and η2core ≫ η2spu.

A.2.8 PROOF FOR LEMMA 3

Lemma 3. Consider the model f(x) = xTu with u = [ucore,uspu], the optimal solution for uspu that
can be achieved by last-layer retraining on the retraining data with pre is ur

spu, which is defined as

ur
spu =

(2pre − 1)η2core

η2core + η2spu
γ. (53)

Proof. First, we have f(x) = xTu = bTWx. For last-layer retraining, b is optimized. Following
the derivation in Lemma 1, we similarly obtain the inequality in (32) with p = pre, i.e.,

ℓ(b) ≥ 1

2

(
preη

2
core(1− γTuspu)

2 + (1− pre)η
2
core(1 + γTuspu)

2 + η2spu∥γTuspu∥22
)
, (54)
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Note that the terms on the right side of the inequality are independent of any manipulation of the
retraining data, such as reweighting. Then, taking the derivative to the sum of these terms with respect
to b, we obtain the following equation

γTWspub =
(2pre − 1)η2core

η2core + η2spu
, (55)

where uspu = Wspub. Since γTγ = 1, then we have uspu = ur
spu. We finally verify that ur

spu indeed
minimizes the sum of the terms on the right hand side of (54). If pre equals to p for the training data,
then ur

spu = u∗
spu defined in Equation (18).

A.3 CONNECTION TO LAST-LAYER RETRAINING METHODS

Although at the surface level, our method shares a similar setting to last-layer retraining methods,
such as AFR (Qiu et al., 2023) and DFR (Kirichenko et al., 2023), our method is fundamentally
different from these methods in how spurious bias is mitigated. Take AFR for an example. It, in
essence, is a sample-level method and adjusts the weights of the last layer indirectly via retraining on
samples with loss-related weights. Our method directly forces the weights identified as affected by
spurious bias to zero, while adjusting the remaining weights with retraining.

The advantage of LaSAR can be explained more formally in our theoretical analysis framework.
First, consider the training loss in Equation (22), we can express it as the sum of following terms for
brevity,

ℓtr(W,b) =
1

2
pE[ψ1(ucore,uspu) =] +

1

2
(1− p)E[ψ2(ucore,uspu)] +

1

2
ψ3(uspu), (56)

where p is the data generation parameter and is fixed, and ψ1, ψ2, and ψ3 are defined as

ψ1(ucore,uspu) = E∥xT
coreucore − (1− γTuspu)β

Txcore∥22,

ψ2(ucore,uspu) = E∥xT
coreucore − (1 + γTuspu)β

Txcore∥22,

and
ψ3(uspu) = pη2core(1− γTuspu)

2 + (1− p)η2core(1 + γTuspu)
2 + η2spu∥γTuspu∥22,

respectively. Based on Lemma 3, for last-layer retraining methods in general, the optimal solution for
uspu is u∗

spu, given that the retraining data follows the same distribution as the training data.

AFR changes the distribution within the first two expectation terms ψ1(ucore,uspu) and ψ2(ucore,uspu)
and jointly updates ucore and uspu, while there is no optimality guarantee for uspu (ψ3(uspu) is not
considered in AFR). By contrast, according to Theorem 2, LaSAR first ensures that uspu is optimal,
then it moves ucore close the the unbiased solution.

A.4 COMPLEXITY ANALYSIS

We analyze the computational complexity of our method, LaSAR, alongside representative
reweighting-based methods, including AFR (Qiu et al., 2023), DFR (Kirichenko et al., 2023),
and JTT (Liu et al., 2021). Let the number of identification samples be NIde, the number of retraining
samples be Nret, the total number of training samples be N , the number of latent dimensions be D,
and the number of training epochs be E. Additionally, denote the time required for inference as
τfw, for last-layer retraining as τll, and for optimizing the entire model as τopt. The computational
complexities of these methods are summarized in Table 6.

Among the methods, JTT has the highest computational complexity since τopt ≫ τll, requiring full
model optimization. DFR is much faster due to its reliance on last-layer retraining, though it requires
group annotations. AFR extends DFR by additionally precomputing sample losses, increasing its
computational cost slightly. LaSAR, while requiring more time than AFR to identify spurious
dimensions across all D embedding dimensions, remains computationally efficient. This is because
τfw, the time required for forward inference, is typically very small. As a result, LaSAR offers an
effective balance between computational efficiency and robust spurious bias mitigation.
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A.5 ADVANTAGES OVER VARIABLE SELECTION METHODS

Although the identification of spurious dimensions in Equation (6) may resemble traditional variable
selection methods (Heinze et al., 2018), our approach extends beyond simply selecting a subset of
variables that optimally explain the target variable. Instead, it specifically addresses spurious bias—an
issue often neglected in traditional variable selection.

Traditional variable selection methods, such as L1 regularization, do not distinguish whether variables
represent spurious or core features. Since spurious features are often predictive of target labels in
the training data and are easier for models to learn (Tiwari & Shenoy, 2023; Ye et al., 2023), these
methods may mistakenly prioritize spurious features, thereby amplifying spurious bias. In contrast,
our method explicitly targets dimensions influenced by spurious bias and re-balances the model’s
reliance on features, reducing the model’s dependency on spurious information.

Furthermore, unlike many variable selection methods that require explicit supervision (e.g., labels or
statistical relationships) to mitigate spurious bias, LaSAR operates in an unsupervised setting where
group labels indicative of spurious features are unavailable. By leveraging misclassification signals
to estimate spuriousness scores, our method is better suited for scenarios where group annotations
are costly or infeasible, offering a practical and scalable solution to the challenge of spurious bias
mitigation.

Method Time complexity
JTT (Liu et al., 2021) O(NEτopt)
AFR (Qiu et al., 2023) O(NIdeτfw + ENretEτll)

DFR (Kirichenko et al., 2023) O(ENretEτll)
LaSAR O(E(NIdeDτfw +NretEτll))

Table 6: Computation complexity comparison with different reweighting methods.

A.6 DATASET DETAILS

Table 7 gives the details of the two image and two text datasets used in the experiments. Additionally,
the ImageNet-9 dataset (Xiao et al., 2021) has 54600 and 2100 training and validation images,
respectively. The ImageNet-A (Hendrycks et al., 2021) dataset has 1087 images for evaluation.

A.7 TRAINING DETAILS

Table 8 and Table 9 give the hyperparameter settings for ERM and LaSAR training, respectively.

A.8 VISUALIZATIONS ON CORE AND SPURIOUS DIMENSIONS

We provide visualizations on the value distributions of neuron activations for the identified core
and spurious dimensions from Fig. 5 to Fig. 8. The spurious and core dimensions selected for
visualizations are obtained by first sorting the dimensions based on their spuriousness scores and then
selecting three spurious dimensions that have the largest scores and three core dimensions that have
the smallest scores. Note that a dimension does not exclusively represent a core or a spurious feature;
it represents a mixture of them with both kinds of feature being relevant or irrelevant to the target
class based on the training data.

On the CelebA dataset, as shown in Fig. 5, samples that highly activate the core dimensions have
both males and females; thus, the core dimensions do not have gender bias. For samples that highly
activate the identified spurious dimensions, all of them are females, demonstrating a strong reliance
on the gender information. In Fig. 6, samples that highly activate the identified spurious dimensions
(right side of Fig. 6) tend to have slightly darker hair colors or backgrounds, as compared with
samples that highly activate the identified core dimensions (left side of Fig. 6). With the aid of the
heatmaps, we observe that these spurious dimensions mostly represent a person’s face, which is
irrelevant to the target class.

On the Waterbirds dataset, as shown in Fig. 7, for the landbird class, the identified core dimensions
mainly represent certain features of a bird and land backgrounds. For the identified spurious dimen-
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Class Spurious feature Train Val Test
Waterbirds

landbird land 3498 467 2225
landbird water 184 466 2225
waterbird land 56 133 642
waterbird water 1057 133 642

CelebA
non-blond female 71629 8535 9767
non-blond male 66874 8276 7535

blond female 22880 2874 2480
blond male 1387 182 180

MultiNLI
contradiction no negation 57498 22814 34597
contradiction negation 11158 4634 6655

entailment no negation 67376 26949 40496
entailment negation 1521 613 886

neither no negation 66630 26655 39930
neither negation 1992 797 1148

CivilComments
neutral no identity 148186 25159 74780
neutral identity 90337 14966 43778
toxic no identity 12731 2111 6455
toxic identity 17784 2944 8769

Table 7: Numbers of samples in different groups and different splits of the four datasets.

Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI CivilComments

Initial learning rate 3e-3 3e-3 1e-3 1e-5 1e-3
Number of epochs 100 20 120 10 10
Learning rate scheduler CosineAnnealing CosineAnnealing MultiStep[40,60,80] Linear Linear
Optimizer SGD SGD SGD AdamW AdamW
Backbone ResNet50 ResNet50 ResNet18 BERT BERT
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4
Batch size 32 128 128 16 16

Table 8: Hyperparameters for ERM training.

sions, they mainly represent water backgrounds, which are irrelevant to the landbird class based on
the training data. For the waterbird class, as shown in Fig. 8, the identified core dimensions mostly
represent certain features of a bird and water backgrounds, while the identified spurious dimensions
mainly represent land backgrounds.
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Hyperparameters Waterbirds CelebA ImageNet-9 MultiNLI CivilComments

Learning rate 1e-3 1e-3 1e-3 1e-5 1e-3
Number of batches per epoch 200 200 200 200 200
Number of epochs 40 40 1 60 60
Optimizer SGD SGD SGD AdamW AdamW
Batch size 128 128 128 128 128

Table 9: Hyperparameters for LaSAR.

(a) Identified core dimensions for non-blond hair (b) Identified spurious dimensions for non-blond hair

Figure 5: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the non-blond hair samples in the CelebA dataset.

(a) Identified core dimensions for blond hair (b) Identified spurious dimensions for blond hair

Figure 6: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the non-blond hair samples in the CelebA dataset.
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(a) Identified core dimensions for landbird (b) Identified spurious dimensions for landbird

Figure 7: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the landbird samples in the Waterbirds dataset.

(a) Identified core dimensions for waterbird (b) Identified spurious dimensions for waterbird

Figure 8: Value distributions along with representative samples for spurious and core dimensions,
respectively, based on the waterbird samples in the Waterbirds dataset.
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