
In-distribution adversarial attacks on object
recognition models using gradient-free search.

Spandan Madan
Harvard University

Tomotake Sasaki
Fujitsu Limited⇤

Hanspeter Pfister
Harvard University

Tzu-Mao Li
UCSD

Xavier Boix
Fujitsu Research

Abstract

Neural networks are susceptible to small perturbations in the form of 2D rotations
and shifts, image crops, and even changes in object colors. Past works attribute
these errors to dataset bias, claiming that models fail on these perturbed samples as
they do not belong to the training data distribution. Here, we challenge this claim
and present evidence of the widespread existence of perturbed images within the
training data distribution which networks fail to classify. We train models on data
sampled from parametric distributions, and then search inside this data distribution
to find such in-distribution adversarial examples. This is done using our gradient-
free evolution strategies (ES) based approach which we call CMA-Search. Despite
training with a large-scale (⇠ 0.5 million images), unbiased dataset of camera
and light variations, CMA-Search can find a failure inside the data distribution in
over 71% cases by perturbing the camera position. With lighting changes, CMA-
Search finds misclassifications in 42% cases. These findings also extend to natural
images from ImageNet and Co3D datasets. This phenomenon of in-distribution
images presents a highly worrisome problem for artificial intelligence—they bypass
the need for a malicious agent to add engineered noise to induce an adversarial
attack. All code, datasets, and demos are available at https://github.com/
in-dist-adversarials/in_distribution_adversarial_examples.

1 Introduction

Neural networks are highly susceptible to small perturbations—2D rotations and translations [1],
image crops [2, 3], and even changes in the color space [4, 5, 6]. Building on works in the closely
associated field of adversarial attacks, past works have claimed that these failures lie out of the
training data distribution, attributing them to the dataset bias [7, 8, 9, 10, 11]. Here, we present
evidence for the opposite—widespread presence of adversarial attacks that verifiably lie within the
training data distribution. For this, we train and test classification models on data with parametrically
controlled data distributions, and present a methodology to find in-distribution adversarial attacks.
These experiments are enabled by our gradient-free, evolutionary strategies (ES) based approach for
finding in-distribution adversarial examples, which we call CMA-Search.

We present results with CMA-Search across three levels of data complexity—(i) parametric data sam-
pled from disjoint per-category uniform distributions, (ii) parametric and controlled data of rendered
images, and (iii) natural image data from ImageNet and Co3D datasets. Across all datasets, models
are highly susceptible to in-distribution adversarial attacks. CMA-Search can find in-distribution
attacks for simplistic parametric data with a 100% attack rate—there existed a failure in the vicinity

⇤Tomotake Sasaki is currently affiliated with Tokyo Metropolitan, Chuo-Johoku Vocational Skills Develop-
ment Center / Japan Electronics College.

AdvML-Frontiers’24: The 3nd Workshop on New Frontiers in Adversarial Machine Learning@NeurIPS’24,
Vancouver, CA.

https://github.com/in-dist-adversarials/in_distribution_adversarial_examples
https://github.com/in-dist-adversarials/in_distribution_adversarial_examples

Out-of-Distribution
failure

(color change)

In-Distribution failure
Searched within

training distribution.

Out-of-Distribution
failure

(noise in pixel space)

Training image

Correctly
classi!ed test Image

Training Data
Distribution

Training image
Correctly classi!ed test image
OOD failure
In-Distribution failure

(a)

X

Z

Y

CAMERAPOSITION(x,y,z)

UP (x’, y’, z’)

FOV (f)

Look At(x’’, y’’, z’’)

GuitarChair Bike Pistol

(b)

(c)

Figure 1: In-distribution adversarial attacks. (a) The data distribution (depicted in black) refers to the
space of all camera and light variations. Typical adversarial examples are created by adding noise to
the image, which may result in images out of the data distribution. CMA-Search finds failures inside
the data distribution. (b) 3D scene setup for our rendered images with camera parameters illustrated.
(c) Example images with camera and light variations.

of every single correctly classified test point. For rendered data, CMA-Search found failures in the
vicinity of 71% correctly classified images by perturbing the camera position, and for 42% images
by perturbing lighting parameters. With natural images from the Common Objects in 3D (Co3D)
dataset [12], CMA-Search found in-distribution adversarial examples for over 51% images. Finally,
we also employed CMA-Search in conjunction with a novel view synthesis pipeline [13] to find
in-distribution adversarial examples in the vicinity of ImageNet [14].

2 Related Work

In efforts to combat susceptibility to small transformations [1, 15], crops [2, 3], and 2D rotations and
translations [16], alternative architectures have been proposed which are shift invariant. This includes
anti-aliasing networks using the seminal signal processing trick of anti-aliasing [17], and recently
proposed truly shift invariant networks which use a new sampling methodology to guarantee a 100%
consistency in classification under 2D shifts [18]. Unlike our work, these works have focused only
on 2D transformations. Recent work has also sought to generate adversarial perturbations which are
human interpretable i.e. semantic adversarial examples. These works often rely on synthetic data,
using differentiable rendering or other optimization methods to find adversarial images by modifying
scene parameters [19, 20, 21, 22, 23, 24, 25]. These include a custom differentiable renderer to
perturb the camera, lighting, or object mesh vertices, and using a neural renderer where light is
represented by network activations. They key differences between these works and ours is that our
adversarial attacks are guaranteed to lie within the training distribution. While in-distribution attacks
have been shown in theoretical works and for toy data [26, 27, 28, 29], this work provides the first
evidence of such failures with real-world data to the best of our knowledge.

3 Datasets with explicitly controlled data distributions

3.1 Generating simplistic parametrically controlled data

We created a binary classification task by sampling data from two N -dimensional uniform distribu-
tions confined to disjoint ranges (a, b) and (c, d), as described in the following:

xi ⇠
⇢

Unif(a, b,N); yi = 0
Unif(c, d,N); yi = 1

�
. (1)

We set a = �10, b = 10, c = 20, d = 40 for experiments presented. However, we observed that the
exact choice of these parameters does not impact our findings.

2

Algorithm 1 CMA-Search over camera parameters to find in-distribution adversarial examples.

Let x 2 R10 denote the camera parameters.
Let Render and Network denote the rendering pipeline and classification network respectively.
function FITNESS(x, Render, Network)

image = Render(x)
predicted_category, probability = Network(image)
return predicted_category, probability

end function

xinit: initial camera parameters, �: number of offspring per generation, and y: image category.
procedure CMA-SEARCH(xinit,�, y)

initialize µ = xinit, C = I . I denotes identity matrix.
while True do

for j = 1, ...,� do
xj = sample_multivariate_normal(µ,C) . Generate mutated offspring
yj , pj = FITNESS(xj , Render, Network) . Calculate fitness of offspring
if yj 6= y then

return xj . Classification fails for image with camera parameters xj

end if
end for
x1...� xs(1)...s(�), with s(j) = argsort(pj) . Pick best offspring
µ,C update_parameters(x1...�, µ, C)

end while
end procedure

3.2 Generating an unbiased training dataset of camera and light variations

Large-scale datasets for computer vision have mostly been created by scraping pictures from the
internet [14, 30, 31, 32, 33]. However, investigating in-distribution robustness requires sampling new
points from regions of interest within the data distribution, which is not possible with these datasets.
To address this issue, we use a computer graphics pipeline for generating and modifying images
which ensures complete parametric control over the data distribution. We simply sample camera
and lighting parameters from a fixed, uniform distribution, and render a subset of 3D models from
ShapeNet [34] objects with the sampled camera and lighting parameters. Sample images are shown
in Fig. 1(c) and Fig. S1. All models were trained on 0.5 million rendered images across 11 categories,
with 1000 images for every 3D model. Additional details are provided in Sec. S1.

3.3 Natural image datasets—ImageNet and Common Objects in 3D

As a real litmus test, we also ensure that our findings hold true for natural images. We present results
on two popular natural image datasets—ImageNet [35] and the Common Objects in 3D (Co3D) [12]
dataset. Co3D was created by capturing short videos of fixed objects placed on a surface by a user
moving a mobile phone around the object. Thus, nearby frames in the video represent views in the
vicinity of an image (See Sec. S2.2 for details). CMA-Search checks within 1 � 5 frames of the
correctly classified image to find a failure. For ImageNet, we used Novel View Synthesis (NVS) [13]
to generate views in the vicinity of ImageNet images (See Sec. S2.1 for details). Thus, CMA-Search
optimizes the camera parameters of the NVS model to find a perturbed image which is misclassified.

4 CMA-Search: Finding in-distribution failures by searching the vicinity
Most adversarial attack methods predominantly rely on on gradient-based approaches, such as
Fast Gradient Sign Method (FGSM)[36] and Projected Gradient Descent (PGD)[37]. However,
we observed that classification models were significantly robust against gradient based attacks in
the camera and light parameter space. In particular, these gradient-based adversarial attacks only
became effective at exceptionally large step sizes, at which point the approximate gradient no
longer accurately represented the true gradient. Such irregularities made it challenging to construct
adversarial examples through standard gradient-based methods, motivating a shift towards gradient-
free optimization techniques.

3

In-distribution,
correctly classi!ed

In-distribution
adversarial

Out-of-distribution
sample

(c)

Figure 2: In-distribution adversarial attacks on parametric data sampled from high-dimensional,
disjoint uniform distributions. (a) Attack rate measured using CMA-Search is 100% for all models—
there exists an in-distribution failure in the vicinity of every correctly classified sample. Models
become robust beyond a critical dataset size, but the data needed scales poorly with dimensionality.
(b) Average Euclidean distance between the starting point and the identified in-distribution adversarial
sample increases as dataset size increases. (c) Church window plots depicting adversarial examples
(red) located contiguously and in between the learned and ground-truth boundaries.

To address this concern, We propose a gradient-free search method using Covariance Matrix
Adaptation-Evolution Strategy (CMA-ES) to find in-distribution adversarial examples. We ex-
plain our methodology with an example of finding in-distribution adversarial attacks by searching
within the distribution of camera parameters. The algorithm for searching adversarial attacks in light
space, and for all other datasets is analogous. Algorithm 1 provides an outline for the method which
was implemented using pycma [38, 39].

Starting from the initial camera parameters of the scene, CMA-ES generates offspring by sampling
from a multivariate normal (MVN) distribution i.e. mutating the original parameters. These offspring
are sorted based on the fitness function (1� p, where p denotes classification probability). The best
offspring are used to modify the mean and covariance matrix of the MVN for the next generation.
The mean represents the current best estimate of the solution i.e. the maximum likelihood solution,
while the covariance matrix dictates the direction in which the population should be directed in the
next generation. The search is stopped either when a misclassification occurs, or after 15 iterations.

5 Results

5.1 In-distribution adversarial attacks on uniformly distributed data

Fig. 2(a) reports the attack rate for models—the percentage of correctly classified points for which we
successfully found an in-distribution failure using CMA-Search. Despite a near perfect accuracy on a
held-out test set, in-distribution adversarial examples can be identified in the vicinity of all correctly
classified test points—the attack rate is 100% for models trained with 20, 100 and 500 dimensional
data. Note that this simplistic dataset is easily separable by the simplest of models including a
decision tree. However, DNNs trained on this dataset are plagued by in-distribution failures.

Impact of dataset size: The attack rate start dips once a critical dataset size is reached (Fig. 2(a)).
However, data complexity scales poorly with number of dimensions. As dimensionality grows from
20 to 100, the number of points required for robustness scales almost 100-fold. For 500 dimensions
even 10 million training points were not sufficient.

Impact of robust training: We fine-tuned models on 20, 000 in-distribution adversarial examples
found using CMA-Search for 100 dimensional data. The attack rate stayed at 100%, with no
improvement in model robustness against CMA-Search. This is expected, as our identified adversarial
examples lie within the training distribution. Thus, robust training in this case essentially amounts to
a marginal increase in the training dataset size which is already discussed above.

Fig. 2(b) reports the average distance between the (correctly classified) start point and the closest
in-distribution adversarial example identified using CMA-Search. This distance increased with

4

(b)

(a)

Figure 3: In-distribution adversarial attacks in the camera parameter space. a) Sample in-distribution
adversarial examples. Percentage of change in Camera Position and Camera Look At parameters
needed to induce the misclassification are also reported. Attack rates are reported in Table 1. (b)
Distribution of camera parameters for in-distribution adversarial images. Unlike human vision, there
were no clear patterns characterizing the camera and light conditions of misclassified images.

Model Architecture
CMA Cam CMA Light

Attack
Rate (%)

Distance
(mean ± std)

Attack
Rate (%)

Distance
(mean ± std)

ResNet18 [41] 71 1.83 ± 1.33 42 6.52 ± 5.68
Anti-Aliased Networks [17] 45 2.32 ± 2.09 40 7.03 ± 5.10

Truly Shift Invariant Network [18] 53 2.22 ± 2.16 25 6.72 ± 5.41
ViT [42] 85 1.34 ± 1.16 65 4.63 ± 3.49

DeIT [43] 85 1.27 ± 0.81 51 4.54 ± 2.75
DeIT Distilled [43] 86 1.22 ± 0.87 55 4.49 ± 2.27

Table 1: Attack Rates for models attacked with CMA-Search over camera and light parameters.
CMA-Search starts with correctly classified images, and searches the space of camera and light
parameters to find an in-distribution misclassification. The attack rate reports percentage of correctly
classified images for which CMA-Search found a failure. The change in parameter space (mean
distance) required to induce an error is extremely small, highlighting the brittleness of these models.

dataset size. At critical dataset sizes, adversarial examples are far enough from starting points that
they are now not in-distribution. This results in the dip in the attack rate shown in Fig. 2(a).

Visualizing failures: Fig. 2(c) shows the learned decision boundary using church window plots [40]
(see S3.3 for details). Intriguingly, there is a clean transition from correctly classified points (white)
to in-distribution adversarial examples near the decision boundary (red), beyond which points become
out of the distribution (black). Thus, in-distribution adversarial examples are isolated to a region close
to the category boundary, and in a contiguous fashion. This finding has been theorized [27, 28, 26, 29],
but to the best of our knowledge this is the first empirical evidence for this phenomenon.

5.2 Networks struggle to generalize across camera and light variations

Table 1 reports in-distribution adversarial attacks identified by CMA-Search. For 71% images
correctly classified by a ResNet, there lies an in-distribution failure within a 1.83% change in
the camera position. For transformers, the impact is far worse with an Attack Rate of 85%. We
hypothesize that transformers are more susceptible to in-distribution adversarial attacks due to
their tendency to overfit, particularly when trained under data limited regimes—a well-documented
challenge that stems from their higher model capacity and lack of inductive biases [44, 42].

5

Table 2: Results with Co3D dataset. All models suffer from high attack rates, confirming the
widespread presence of in-distribution failures for object recognition models.

ResNet Anti-Aliased
Networks ViT DeIT

Test Accuracy 0.92 0.94 0.82 0.85
Attack Rate 0.51 0.39 0.72 0.72

Chair Car Car Chair

(b)(a)

In-distribution adversarial
examples for ImageNet

In-distribution adversarial
examples for Co3D

Figure 4: In-distribution adversarial attacks on natural images. (a) Misclassifications in ImageNet
caused by CMA-Search + novel view synthesis. Examples are presented for a ResNet model trained
on ImageNet, and OpenAI’s CLIP model. (b) Sample errors for the Co3D dataset searched within
1� 5 frames of a correctly classified image. Attack rates are reported in Table 2.

For lighting changes, CMA-Search can find a misclassification in 42% cases with just a 6.5%
change. The supplement presents additional results (See Sec. S2) and clean accuracies for these
models (Table S3). Combined, these results confirm that object recognition models are plagued by
in-distribution adversarial attacks. Fig. 3(b) shows the distribution of parameters for failures—errors
are distributed across the space with no clear, strong patterns characterizing failures.

6 Results on Natural Image Data

Results on Co3D: Table 2 reports the average accuracy and attack rate for models trained on Co3D.
Despite a high test accuracy of 92%, a ResNet model suffered from an attack rate of 51%. Thus, there
were in-distribution adversarial examples within 1-5 frames of the correctly classified frame for over
half the images. Sample failures are provided in Fig. 4(a) Transformers struggled even more, with
ViT and DeIT having an attack rate near 72%. The shift invariant architecture was more robust, but
attack rate was still high at 39% (see Table 2). These trends are consistent with the results in Table 1.

Results on ImageNet: We also confirmed that these results extend to ImageNet. We present empirical
results for a ResNet18 model trained on ImageNet, and OpenAI’s transformer-based CLIP model [45]
in Fig. 4(b). Additional ImageNet failures found using CMA-Search are provided in Fig. S3.

7 Conclusions

Susceptibilities of recognition models have often been attributed to biased training data. We put
this hypothesis to test by training and testing with a large-scale, unbiased dataset and propose a new
search method for investigating the brittleness of neural networks. Our findings show that while
data augmentation, unbiased datasets, and specialized shift-invariant architectures would certainly
be helpful, the real problem runs far deeper. Despite high test accuracies, networks are plagued by
adversarial examples that lie within the training distribution. This presents a grave challenge for AI,
as these errors are hiding in plain sight, with no malicious agent needed to induce an error.

8 Acknowledgements

This research was partially supported by Fujitsu Limited (Contract No. 40009105), NSF grant
IIS-1901030, IIS-2127544, and NIH R01HD104969 grant.

6

References
[1] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and

a translation suffice: Fooling CNNs with simple transformations. https://openreview.net/forum?
id=BJfvknCqFQ, 2018.

[2] Sanjana Srivastava, Guy Ben-Yosef, and Xavier Boix. Minimal images in deep neural networks: Frag-
ile object recognition in natural images. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

[3] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small image
transformations? Journal of Machine Learning Research, 20(184):1–25, 2019.

[4] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Towards verifying robustness of
neural networks against a family of semantic perturbations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 244–252, 2020.

[5] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 1614–1619, 2018.

[6] Ali Shahin Shamsabadi, Ricardo Sanchez-Matilla, and Andrea Cavallaro. Colorfool: Semantic adversarial
colorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1151–1160, 2020.

[7] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing
Systems, 2019.

[8] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Advances in neural information processing systems, 31,
2018.

[9] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On the
(statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

[10] Naveen Karunanayake, Ravin Gunawardena, Suranga Seneviratne, and Sanjay Chawla. Out-of-distribution
data: An acquaintance of adversarial examples–a survey. arXiv preprint arXiv:2404.05219, 2024.

[11] David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6976–6987,
2019.

[12] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David
Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10901–10911, 2021.

[13] Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 551–560, 2020.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255, 2009.

[15] Leander Kurscheidt and Matthias Hein. Lost in translation: Modern image classifiers still degrade even
under simple translations. ICML Shift Happens Workshop, 2022.

[16] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh Nguyen.
Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4845–4854,
2019.

[17] Richard Zhang. Making convolutional networks shift-invariant again. In Proceedings of the International
Conference on Machine Learning (ICML), pages 7324–7334, 2019.

[18] Anadi Chaman and Ivan Dokmanić. Truly shift-invariant convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3773–3783, 2021.

[19] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec Jacobson. Beyond
pixel norm-balls: Parametric adversaries using an analytically differentiable renderer. In Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

7

https://openreview.net/forum?id=BJfvknCqFQ
https://openreview.net/forum?id=BJfvknCqFQ

[20] Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi-Keung Tang, and
Alan L Yuille. Adversarial attacks beyond the image space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4302–4311, 2019.

[21] Rakshith Shetty, Mario Fritz, and Bernt Schiele. Towards automated testing and robustification by semantic
adversarial data generation. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 489–506, 2020.

[22] Lakshya Jain, Steven Chen, Wilson Wu, Uyeong Jang, Varun Chandrasekaran, Sanjit Seshia, and Somesh
Jha. Generating semantic adversarial examples with differentiable rendering. https://openreview.
net/forum?id=SJlRF04YwB, 2019.

[23] Chaowei Xiao, Dawei Yang, Bo Li, Jia Deng, and Mingyan Liu. Meshadv: Adversarial meshes for visual
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6898–6907, 2019.

[24] Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde. Semantic adversarial attacks:
Parametric transformations that fool deep classifiers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4773–4783, 2019.

[25] Philip Yao, Andrew So, Tingting Chen, and Hao Ji. On multiview robustness of 3D adversarial attacks. In
Practice and Experience in Advanced Research Computing, pages 372–378. 2020.

[26] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Wattenberg, and
Ian Goodfellow. The relationship between high-dimensional geometry and adversarial examples. arXiv
preprint, arXiv:1801.02774, 2018.

[27] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers: from
adversarial to random noise. In Advances in Neural Information Processing Systems, volume 29, 2016.

[28] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for any classifier. In Advances
in Neural Information Processing Systems, volume 31, 2018.

[29] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness to adversarial
perturbations. Machine learning, 107(3):481–508, 2018.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 740–755, 2014.

[31] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[32] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13),
2013.

[33] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million
image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[34] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An
information-rich 3D model repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University —
Princeton University — Toyota Technological Institute at Chicago, 2015.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[36] Ian J Goodfellow. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

[38] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of IEEE International Conference on
Evolutionary Computation, pages 312–317, 1996.

8

https://openreview.net/forum?id=SJlRF04YwB
https://openreview.net/forum?id=SJlRF04YwB

[39] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, February 2019.

[40] David Warde-Farley and Ian Goodfellow. Adversarial perturbations of deep neural networks. In Tamir
Hazan, George Papandreou, and Daniel Tarlow, editors, Perturbations, Optimization, and Statistics, pages
311–342. MIT Press, Cambridge, MA, USA, 2016.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[42] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In Proceedings of the
38th International Conference on Machine Learning (ICML), pages 10347–10357, 2021.

[44] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.
How to train your vit? data, augmentation, and regularization in vision transformers. arXiv preprint
arXiv:2106.10270, 2021.

[45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Proceedings of the 38th International
Conference on Machine Learning (ICML), pages 8748–8763, 2021.

[46] Radoslav Harman and Vladimír Lacko. On decompositional algorithms for uniform sampling from
n-spheres and n-balls. Journal of Multivariate Analysis, 101(10):2297–2304, 2010.

[47] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

[48] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan Kautz. Novel view synthesis of
dynamic scenes with globally coherent depths from a monocular camera. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5336–5345, 2020.

[49] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. View synthesis by
appearance flow. In Proceedings of the European Conference on Computer Vision (ECCV), pages 286–301,
2016.

[50] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view synthesis
from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7467–7477, 2020.

9

S1 Graphics pipeline to generate dataset of camera and lighting variations

S1.1 3D Scene Setup

Each scene contains one camera, one 3D model and 1-4 lights. To ensure no spuri- ous correlations
with object texture [17], texture for all ShapeNet objects was replaced with a simple diffuse material
and the background was kept constant to ensure no spurious correlations between foreground and
background. Thus, every scene is completely parametrized by the camera and the light parameters.
As shown in Fig. 1, camera parameters are 10 Dimensional: one dimension for the FOV (field of
view of camera lens), and three dimensions each for the Camera Position (coordi- nates of camera
center), Look At (point on the canvas where the camera looks), and the UP vector (rotation of camera).
Analogously, lights are represented by 11 dimensions - two dimensions for the Light Size, and three
each for Light Position, light Look At and RGB color intensity. Multiple lights ensure that scenes
contain complex mixed lighting, including self-shadows. Thus, our scenes are (11n + 10) dimensional,
where n is the number of lights. There is a one-to-one mapping between the pixel space (rendered
images) and this low dimensional scene representation.

S1.2 Unbiased, uniform sampling of scene parameters

To ensure an unbiased distribution over different viewpoints, locations on the frame, perspective
projections and colors, we ensured that scene parameters follow a uniform distribution. Concretely,
camera and light positions were sampled from a uniform distribution on a spherical shell with a fixed
minimum and maximum radius. The Up Vector was uniformly distributed across range of all possible
camera rotations, and RGB light intensities were uniformly distributed across all possible colors.
Camera and light Look At positions were uniformly distributed while ensuring the object stays in
frame and is well-lit (frame size depends on Camera Position and FOV). Finally, Light Size and
camera FOV were uniformly sampled 2D and 1D vectors. Hyper-parameters for rendering, along
with the exact distribution for each scene parameter and the corresponding sampling technique used
to sample from these distributions are reported in the supplement.

Below we specify the hyper-parameters for rendering, along with the exact distribution for each scene
parameter and the corresponding sampling technique used to sample from these distributions.

Camera Position: For scene camera, first a random radius rc is sampled while ensuring rc ⇠
Unif(0.5, 8). Then, the camera is placed on a random point denoted (xc, yc, zc) on the spherical shell
of radius rc. To generate a random point on the sphere while ensuring an equal probability of all
points, we rely on the method which sums three randomly sampled normal distributions [46]:

X,Y, Z ⇠ N (0, 1), (2)
v = (X,Y, Z), (3)

(xc, yc, zc) = rc ⇤
v

kvk . (4)

Camera Look At: To ensure the object is shown at different locations within the camera frame, the
camera Look At needs to be varied. However, range of values such that the object is visible can be
present across the entire range of the frame depends on the camera position. So, we sample camera
Look At as lc as follows:

lc ⇠ Unif(K ⇤ xc,K ⇤ yc,K ⇤ zc),where K = 0.3. (5)

The value K = 0.3 was found empirically. We found it helped ensure that objects show up across the
whole frame while still being completely visible within the frame.

Camera Up Vector: Note that the camera Up Vector is implemented as the vector joining the camera
center (0,0,0) to a specified position. We sample this position and therefore the Up Vector uc as
follows:

x, y, z ⇠ Unif(�1, 1), (6)
uc = (x, y, z). (7)

Camera Field of View (FOV): We sample the field of view fc while ensuring:
fc ⇠ Unif(K1,K2). (8)

10

Again, the values K1 = 35,K2 = 100 were found empirically to ensure objects are completely
visible within the frame while not being too small.

Light Position: For every scene we first sample the number of lights n between 1-4 with equal
probability. For each light i, a random radius ri is sampled ensuring ri ⇠ Unif(R1, R2), then the
light is placed on a random point (xi, yi, zi) on the sphere of radius ri. R1 = 1 and R2 = 8 were
found empirically to ensure that the light is able to illuminate the 3D model appropriately.

Light Look At: To ensure that the light is visible on the canvas, light Look At is sampled as a
function of the camera position:

li ⇠ Unif(K ⇤ xc,K ⇤ yc,K ⇤ zc),where K = 0.3. (9)

As in the case of the Camera Look At parameter mentioned above, the value K = 0.3 was found
empirically.

Light Size: Every light in our setup is implemented as an area light, and therefore requires a height
and width to specify the size. We generate the size si for light i as:

h,w ⇠ Unif(L1, L2), (10)
si = (h,w). (11)

L1 = 0.1, L2 = 5 were found empirically to ensure the light illuminates the objects appropriately.

Light Intensity: This parameter specifies the RGB intensity of the light. For light i, RGB color
intensity ci was sampled as:

r, g, b ⇠ Unif(0, 1), (12)
ci = (r, g, b). (13)

Object Material: To ensure no spurious correlations between object texture and category, all
object textures were set to a single diffuse material. Specifically, the material is a linear blend
between a Lambertian model and a microfacet model with Phong distribution, with Schilick’s Fresnel
approximation. Diffuse reflectance was set to 1.0, and the material was set to reflect on both sides.

S1.3 3D models used for generating two different test sets

Our dataset contains 11 categories, with 40 3D models for every category chosen from ShapeNet [34].
Neural networks were evaluated on two test sets - one with the 3D models seen during training, and
the second with new, unseen 3D models. The first test set was generated by simply repeating the
same procedure as described above. Thus, the (Geometry ⇥ Camera ⇥ Lighting) joint distribution
matches exactly for the train set and this test set. The second test set was created by the exact same
generation procedure, but with 10 new 3D models for every category chosen from ShapeNet. The
motivation for this second test set was to ensure our models are not over-fitting to the 3D models
used for training. Thus, the (Camera ⇥ Lighting) joint distribution matches exactly for this test set
and the train set, but the Geometry is different in these two sets.

S2 Generating nearby views for Natural Image Datasets

S2.1 Views in the vicinity of ImageNet images

ImageNet contains only one viewpoint per object. While several variations of ImageNet have
been proposed by adding noise in the form of corruptions and perturbations [47], these variations
are designed to study the impact of out-of-distribution shifts on object recognition models. Like
these variations, our camera manipulations correspond to transforming input images to study its
impact on object recognition models. However, the key difference is that our work focuses on
in-distribution adversarial examples, due to which these datasets designed for out-of-distribution
shifts cannot be repurposed for our experiments. Thus, a major challenge in extending our results
to ImageNet is generating natural images in the vicinity of a correctly classified image by slightly
modifying the camera parameters. To do so for ImageNet is equivalent to novel view synthesis
(NVS) from single images, which has been a long-standing challenging task in computer vision.

11

Table S3: Performance of object recognition models on seen and new 3D models.

Accuracy ResNet Anti-
Aliased

Truly Shift
Invariant ViT DeIT DeIT

Distilled
Seen models 0.75 0.82 0.80 0.58 0.63 0.64
New models 0.70 0.74 0.72 0.59 0.64 0.65

However, recent advances in NVS enable us to extend our method to natural image datasets like
ImageNet [48, 49, 50, 13].

To generate new views in the vicinity of ImageNet images, we rely on a single-view synthesis model
based on multi-plane images (MPI) [13]. The MPI model takes as input an image and the (x, y, z)
offsets which describe camera movement along the X, Y and Z axes. Note that unlike our renderer, it
cannot introduce changes to the camera Look At, Up Vector, Field of View or lighting changes. An
important limitation of this approach is that any noise added by the MPI model in image generation
is a confounding variable which we cannot account for. This further highlights the importance of our
rendered and Co3D experiments as these experiments do not suffer from such noise.

S2.2 Views in the vicinity of Co3D images

As an additional control for any potential noise introduced by the novel view synthesis pipeline
in generating nearby views for ImageNet images, we present additional results on the large-scale,
multi-viewpoint Co3D [12] dataset. Co3D was created by capturing short videos of fixed objects
placed on a surface by a user moving a mobile phone around the object. Thus, nearby frames in the
video represent views in the vicinity of an image. We utilize this to test in-distribution robustness
in the vicinity of correctly classified images. The classification dataset is created by picking 5
categories—car, chair, handbag, laptop, and teddy bear. We created the training data by uniformly
sampling frames across the whole video for all videos for these categories amounting to 187, 200
training images. Note that this amounts to roughly 38, 000 images per category, which is 32 times
the ImageNet training set on a per category basis. An in-distribution test set of 68, 854 images is
generated by sampling the remaining frames to measure overall accuracy of the trained models. We
then search for in-distribution failures in the vicinity (i.e., nearby frames) from the remaining frames
from these videos in the Co3D dataset. Thus, no novel view synthesis pipeline was used. Instead,
pre-captured frames from the videos were used to search for in-distribution adversarial examples in
the vicinity of viewpoints.

S3 Experimental Details

Below we provide the training details including model architectures, optimization strategies
and other hyper-parameters used for the binary classification models trained on simplistic para-
metrically controlled data, and the object recognition models trained on our rendered images
of camera and light variations. All code to run these experiments can be found at https:
//github.com/in-dist-adversarials/in_distribution_adversarial_examples.

S3.1 Training details for MLPs for classifying parametrically controlled uniform data

Let D denote the dimensionality of the input data, and N denote the total number of data points. We
used a 5 layer multi-layer perceptron (MLP) with ReLU activations, with the output dimensionality
of layers set to 5D, D, D/5, D/5, and 2 respectively. However, we found that the number of MLP
hidden layers and the number of neurons in these layers had no impact on trends of in-distribution
robustness. For experiments with N < 64, 000 all data was passed in a single batch. For experiments
with more data points, each batch contained 64, 000 points. All models were trained for 100
epochs with stochastic gradient descent (SGD) with a learning rate of 0.0001. All experiments were
conducted on a compute cluster consisting of 8 NVIDIA TeslaK80 GPUs, and all models were trained
on a single GPU at a time. Only models achieving a near perfect accuracy (> 0.99)2 on a held-out
test set were attacked using CMA-Search.

2Except when dataset size=1000 and dimensions=100 or 500. In these two case the training data was too
small for a high test accuracy. These cases are still included for completion.

12

https://github.com/in-dist-adversarials/in_distribution_adversarial_examples
https://github.com/in-dist-adversarials/in_distribution_adversarial_examples

S3.2 Training details for Object recognition models for classifying images of real-world
objects

All CNN models were trained with a batch size of 75 images, while transformers were trained with a
batch size of 25. Models were trained for 50 epochs with an Adam optimizer with a fixed learning rate
of 0.0003. Other learning rates including 0.0001, 0.001, 0.01 and 0.1 were tried but they performed
either similarly well or worse. To get good generalization to unseen 3D models and stable learning,
each image was normalized to zero mean and unit standard deviation. As before, all experiments
were conducted on our cluster with TeslaK80 GPUs, and each model was trained using a single GPU
at a time.

S3.3 Visualizing in-distribution adversarial examples using Church-window plots

CMA-Search starts from a correctly classified point and provides an in-distribution adversarial
example. We used these two points to define a unit vector in the adversarial direction, and fixed
this as one of basis vectors for the space the data occupies. As data dimensionality was D, we
calculated the remaining D � 1 orthonormal bases. Following the same protocol as past work [40],
we randomly picked one of these orthonormal vectors as the orthogonal direction and defined a grid
of perturbations with fixed increments along the adversarial and the orthogonal directions. These
perturbations were then added to the original sample and the model was evaluated at these perturbed
samples. We plotted correct classifications in white, in-distribution adversarial examples in red, and
out-of-distribution samples in black.

S4 Computational efficiency of CMA-Search

CMA-Search operates iteratively, generating multiple offsprings in every iteration, and retaining the
best in every iteration to calculate parameters for the next iteration. For simplistic parametrically
controlled, CMA-Search was set to generate 20 offsprings in every iteration, and the search algorithm
was set to stop when an in-distribution adversarial example is found, or if a maximum threshold of
1500 iterations were hit. On average, 51 iterations were needed to find an in-distribution adversarial
example for 10 dimensional data. The average number of iterations needed dropped to 20 for 100
dimensional data. Note that as dimensionality increases, all steps become more computationally
intensive, this includes training models, generating new offsprings using CMA-Search, and model
inference to test offspring fitness. Thus, overall time required to attack increases with dimensionality.
However, computational efficiency of CMA-Search improves with dimensionality, as lesser iterations
are needed.

For rendered data, which is significantly higher dimensional, we found that CMA-Search is very
efficient as extremely low number of iterations are needed to find an in-distribution failure. For both
camera and light variation based attacks, CMA-Search was set to generate 10 offsprings in every
iteration, and maximum iteration threshold was set to 15. On average, only 2 iterations were needed
to find an in-distribution failure with camera variations. For light variations, 3.5 iterations were
required on average. This suggests that CMA-Search is more efficient at higher dimensions, despite
working well at low dimensions.

13

Figure S1: Sample Images from our rendered dataset.

14

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

Category: Piano, Network: Anti-Aliased

Category: Guitar, Network: Anit-Aliased

Category: Pistol, Network: Truly Shift Invariant

Category: Airplane, Network: Truly Shift Invariant

Figure S2: Camera Parameters that lead to misclassifications for multiple categories and architec-
tures. (a) Camera Position, (b) Camera Look At, (c) Up Vector, (d) Histogram of Lens Field of View.

15

Tank Pickup Truck Train Street Car

LizardSnake Train Pickup Truck

Bear ChimpanzeeCup Tennis Ball

Hamster Sweet Pepper Turtle Beetle

Porcupine Raccoon PorcupineFish

Figure S3: More examples of misclassified ImageNet-like images discovered by CMA-Search com-
bined with the single view MPI model.

16

	Introduction
	-3ptRelated Work
	-3ptDatasets with explicitly controlled data distributions
	Generating simplistic parametrically controlled data
	Generating an unbiased training dataset of camera and light variations
	Natural image datasets—ImageNet and Common Objects in 3D

	-3ptCMA-Search: Finding in-distribution failures by searching the vicinity
	-3ptResults
	In-distribution adversarial attacks on uniformly distributed data
	Networks struggle to generalize across camera and light variations

	-3ptResults on Natural Image Data
	-3ptConclusions
	Acknowledgements
	Graphics pipeline to generate dataset of camera and lighting variations
	3D Scene Setup
	Unbiased, uniform sampling of scene parameters
	3D models used for generating two different test sets

	Generating nearby views for Natural Image Datasets
	Views in the vicinity of ImageNet images
	Views in the vicinity of Co3D images

	Experimental Details
	Training details for MLPs for classifying parametrically controlled uniform data
	Training details for Object recognition models for classifying images of real-world objects
	Visualizing in-distribution adversarial examples using Church-window plots

	Computational efficiency of CMA-Search

