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ABSTRACT

Inspired by the fuzzy topological representation of a dataset employed in UMAP
(McInnes et al., 2018), we propose a regularization principle for supervised learn-
ing based on the preservation of the simplicial complex structure of the data. We
analyze the behavior of our proposal in contrast with the mixup (Zhang et al.,
2018) framework on dimensionality reduction and classification tasks. Our ex-
periments show how simplicial regularization induces more appropriate learning
biases and alleviates some of the shortcomings of state-of-the art methods for reg-
ularization based on data augmentation.

Simplicial Regularization mixup Parzen estimate
Figure 1: Comparison of artificial samples generated from several vicinal distributions on MNIST.

The richness of the class of neural networks as function approximators is well documented (Hornik,
1991; Cybenko, 1989; Telgarsky, 2015) and comes at the expense of having to regularize such
functional families. Recent works by Zhang et al. (2018) and Verma et al. (2019) have studied the
properties of regularization induced by considering convex combinations of (latent representations
of) data samples. The authors argue that these techniques lead to learning “flatter” representations.

The idea of using data augmentation as a form of regularization is not new. Chapelle et al. (2000)
introduced the unifying framework of Vicinal Risk Minimization (VRM) in which the empirical
risk objective RERM(f) is modified via the introduction of an improved density estimate or vicinal
distribution, Pest(x, y). The vicinal distribution acts as a probabilistic model from which artificial
samples are generated towards regularizing the model f .

RERM(f) =
1

n

n∑
i=1

`(f(xi), yi) ⇒ RVRM(f) = E(x,y)∼Pest [`(f(x), y)] (1)

The properties of the vicinal distribution Pest induce different learning biases. For example, a Parzen
windows estimate, corresponding to the addition of independent Gaussian noise to the covariates, is
equivalent to ridge regularization in linear regression (Chapelle et al., 2000).

In mixup, Zhang et al. (2018) propose a vicinal distribution via a data-agnostic augmentation proce-
dure based on random convex combinations of arbitrary datapoints. For example, for a multi-class
classification problem with inputs xi and one-hot targets yi, mixup generates virtual training exam-
ples (x̃, ỹ) by sampling indices i and j independently and setting:

(x̃, ỹ) = λ(xi, yi) + (1− λ)(xj , yj), (2)
where λ follows a distribution with support on [0, 1], such as λ ∼ Beta(α, α), for α > 0.

In spite of their successful empirical results, the use of the mixup as a regularization scheme is
mainly justified heuristically. In this work, we study regularization based on the preservation of
topological structures present in the dataset. Our main contribution1 is the introduction of sim-
plicial regularization: we show how the preservation of the simplicial complex structure of the
data naturally gives rise to a regularization framework that generalizes mixup. Figure 1 illustrates
the differences between sets of samples produced by the Parzen windows estimate, mixup, and our
proposed simplicial regularization scheme.

∗Part of this research was done as a MSc student at the University of Amsterdam.
1Our code is available at: https://github.com/jgalle29/simplicial_regularization
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SIMPLICIAL REGULARIZATION

The core ingredient of mixup’s vicinal distribution is the generation of random convex combinations
of uniformly and independently selected datapoints form the dataset. Although this independent
sampling contributes to the simplicity of the method, it is a naı̈ve assumption. There is a priori no
reason that the addition of two arbitrary datapoints should carry semantic meaning, see the middle
panel of Figure 1. Furthermore, even when the semantics of the input resulting from said addition
can be determined, they may not coincide with any of the two original labels.

Simplicial regularization addresses both of these difficulties by giving up on the independence as-
sumption. Instead, we 1) infer a simplicial complex on the dataset following UMAP (McInnes et al.,
2018), and 2) use the localized, correlated structure of this simplicial complex to design a vicinal
distribution which better reflects the manifold-like properties of real data distributions.

From now on, we concentrate on a a supervised learning task for which we have access to a dataset
of input-target pairs D = {(xi, yi)}Ni=1 and a model class {f : X → Y | f ∈ F}, where X and
Y are affine spaces, and ` : Y × Y → R is a loss function. In the following we present the main
ingredients of our proposed simplicial regularization framework. We refer the readers to Appendix
A.1 for definitions of the concepts from algebraic geometry and fuzzy set theory employed below.

INFERRING THE SIMPLICIAL COMPLEX

UMAP is a dimensionality reduction technique, scalable to real world data and competitive with
t-SNE (van der Maaten & Hinton, 2008). Given a dataset Φ = {φi}Mi=1 embedded in a metric
space, UMAP constructs a sparse, fuzzy simplicial complex KΦ = FuzzTop(Φ). Informally, the
information inKΦ reflects the ñ-nearest neighbors structure of Φ. Then UMAP proceeds to optimize
the low-dimensional representations Ψ = {ψi}Mi=1 such that the corresponding fuzzy simplicial
complex KΨ = FuzzTop(Ψ) matches KΦ as closely as possible. In other words, we want the local
neighborhood structure on the high and low-dimensional spaces to agree. Appendix A.2 provides
an overview of the inner workings of the FuzzyTop algorithm used to construct fuzzy topological
representations of metric spaces.

The first step for applying simplicial regularization on the learning of the model f : X → Y is
to construct the fuzzy simplicial complex representation of our training set KD = FuzzTop(D)2.
Each of the simplices σ ∈ K corresponds to a subset of the training datapoints and is endowed with
a value µKD

(σ) ∈ [0, 1] denoting the membership of the simplex σ as an element of the set KD.
Furthermore, the membership of a simplex is upper bounded by the lowest membership of all its
constituent lower-order simplices: for all σ′ ⊂ σ ∈ KD we have that µKD

(σ) ≤ µKD
(σ′).

The simplicial complex formalism provides a natural generalization of mixup to higher-dimensional
simplices. In fact, mixup can be interpreted as a complete graph which contains simplices of order 0
and 1 (the datapoints and all edges between them), with a constant membership function. In contrast,
KD is carefully constructed so that the local neighborhood structure, and thus the generated linear
interpolations, respect the manifold structure of the dataset. The sparsity level and the maximum
simplex order of KD are determined by the neighborhood size ñ. This allows the method to scale to
large datasets by avoiding the storage of a quadratic number of interactions among the datapoints.

DESIGNING THE VICINAL DISTRIBUTION

A morphism is a map between mathematical objects, which preserves the internal structure of the
domain when transforming in to the codomain. In set theory, morphisms are functions; in linear
algebra, the vector space structure is preserved by linear transformations; while in topology, contin-
uous functions preserve the neighborhood structure. In this work, we advocate for a regularization
paradigm that aims to preserve the inferred simplicial complex structure of the dataset, KD.

Consider two arbitrary simplicial complexesK ⊂ X and L ⊂ Y . The structure-preserving functions
between simplicial complexes are called simplicial maps. A simplicial map f : K → L is a function
which acts linearly on convex combinations over the simplices of K. Note that we do not require

2We may decide to only use the inputs xi and not the targets yi when constructing KD, so that KD can be
reused for different learning tasks in which the target information might change.
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f to be a globally linear transformation, but only to commute with convex combinations of vertices
forming a simplex in K. In other words, if σ is a k-simplex of K with (ordered) vertex set σ0, we
require that for every convex coefficient k-vector λ:

f
(
λ>σ0

)
:= f

 k∑
j=1

λjσ
0
j

 =

k∑
j=1

λjf(σ0
j ) =: λ>f

(
σ0
)

(3)

The symbol f
(
σ0
)

denotes the collection of evaluations of the predictor f on the vertices of the
simplex σ. For example, for an M -class classification problem, f

(
σ0
)

consists of a matrix of size
dim(σ)×M , where row i represents the predicted label distribution for the i-th vertex of σ. Equation
(3) highlights the fact that a simplicial map is uniquely determined by a base function f0 : K0 → L
operating over the vertices of K, and its extension by convex interpolation on each simplex in K.

When applying simplicial regularization to a supervised learning problem, the vertices of
K0

D correspond to the training datapoints {xi}Ni=1. Thus we take the base function as the
training set labelling, i.e., f0(xi) = yi for xi ∈ K0

D. The learning problem amounts to fit
the model f to the extension of f0 by convex interpolation over the simplices of KD.

Enforcing Equation (3) in practice is far from trivial. However, we can use the loss function ` to
measure “how far the function f is from being a simplicial map”. This suggests the definition of a
vicinal risk which encourages f to preserve the simplicial structure of KD when mapping to L:

RSR(f | KD, f0, α) = Eσ∼KD
Eλ∼Dir(dim(σ),α)

[
`
(
f
(
λ>σ0

)
, λ>f0

(
σ0
))]

. (4)

The parameter α > 0 inversely controls the level of interpolation which takes place within each
simplex σ by imposing a symmetric Dirichlet distribution Dir(dim(σ), α) over σ. For small values
of α, the distribution has peaks at the corners of the simplex recovering the standard ERM setting,
while for α > 1, the distribution becomes more skewed towards the center of the simplex.

Equation (4) is presented in a suggestive notation to emphasize its connection to the VRM frame-
work. In this case, the corresponding vicinal distribution is given by:

Pest(x̃, ỹ | KD, f0, α) ,
∫

P(σ | KD)P(λ |σ, α) P(x̃ |λ, σ)︸ ︷︷ ︸
δλ>σ0(x̃)

P(ỹ | f0,λ, σ)︸ ︷︷ ︸
δλ>f0(σ0)(ỹ)

dσ dλ. (5)

Algorithm 1 describes the training pipeline for a supervised learning problem using simplicial reg-
ularization. Note how simplicial regularization is not embodied as an additive term alongside a
supervised loss, but rather the regularized optimization objective is the vicinal risk itself. Appendix
A.3 describes the FSC-Sample algorithm for efficient sampling from a fuzzy simplicial complex.

Algorithm 1: Training with Simplicial Regularization.

Data: Dataset D = {(xi, f0(xi) := yi)}Ni=1, maximum iterations imax, learning rate η,
optimizer O (e.g. SGD), Dirichlet interpolation schedule {ατ}imax

τ=1 .
1 Compute fuzzy simplicial complex KD = FuzzTop(D)
2 Initialize predictor fθ : X → Y
3 for τ = 1, . . . , imax do
4 Sample σ ∼ KD (using FSC-Sample(KD)), and λ ∼ Dir(dim(σ), ατ )

5 Compute Monte-Carlo estimator R̂SR = `
(
f
(
λ>σ0

)
, λ>f0

(
σ0
))

6 Perform optimizer step O on θ to minimize R̂SR with learning rate η
7 end

Remarks. 1) KD only needs to be computed once per dataset and can be stored and re-used for
multiple training tasks. Although mixup does not require this computation, usually this cost is
significantly lower than that of the subsequent training loop. 2) It is possible to set up a schedule
{ατ} for the Dirichlet interpolation coefficient, such that ατ increases with τ during training. This
schedule encourages the approximation fθ to coincide with f0 (the training labels) at the early stages
of the optimization process, and then is progressively regularized in later iterations. 3) Unlike data
augmentation methods relying on data invariances, such as translations or rotations for image data,
our proposed augmentation framework is automatically inferred from geometry of the dataset.
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EXPERIMENTS

In this section, we compare the performance of simplicial regularization and mixup on two tasks:
i) multivariate regression on a synthetic dataset which has a simplicial complex structure and ii)
multi-class digit classification.

Dimensionality Reduction. We generated a synthetic random point cloud X of size 100 in R20 and
ran UMAP on this dataset to produce a 2-dimensional embedding f0(X) = Y (see Figure 2), as
well as the high-dimensional simplicial complex KX . We then used several regularization methods
to train neural networks of 2-hidden-layer neural and 100 units per layer to approximate the UMAP-
generated embedding X → Y . That is, we want to find a network f such that f(xi) ≈ yi, where
the discrepancy is measured by l = || · ||2. We compare between (unregularized) ERM, mixup, and
simplicial regularization using the simplicial complex KX . For the latter two, we used an increasing
schedule for the regularization parameter α ∈ [10−4, 1] during training.

Figure 2: 2-dimensional UMAP projection
of a random simplicial complex originally
embedded in R20.
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Figure 3: Effect of regularization for regression on a
synthetic simplicial complex. Values by ERM mark-
ers denote evaluation interpolation strength logα′.

As a sanity test, we are interested in comparing the performance of these methods when applied
to data with structure satisfying the simplicial complex assumption. We evaluate the generalization
performance of these method according to the distributions Pest(x̃, ỹ | KX , f0, α

′), using different
interpolation strengths α′. Note that α′ measures the hardness of the task since preserving the
simplicial complex structure becomes more important as α′ gets bigger and most of the evaluation
points are sampled around the center of the simplices of KX . Moreover, α′ is independent of the
schedule for α used during training. The values of logα′ accompany the markers of ERM and
matching color across different methods represent the same value of α′ in evaluation

Figure 3 presents the mean and standard deviation of 30 rounds of evaluation of the generalization
error of ERM, mixup and simplicial regularization. As expected, the performance of unregularized
ERM degrades quickly as the interpolation strength increases. Moreover, we observe that the models
trained using simplicial regularization outpeform those trained using mixup when the evaluation task
is highly dependent on the simplicial complex structure of the data. In other words, when the unseen
test data lies in the vicinity of local interpolations of the training data points, regularization methods
agnostic to the topological structure of the data, like mixup, can lead to sub-optimal performance.

Digit Classification. In Figure 1 we illustrated the qualitative differences between the inputs pro-
duced by simplicial regularization, mixup and the Parzen windows estimate. In this section, we
consider a digit classification task and expand our analysis of the perturbations on the data distribu-
tion induced by these techniques and the consequences at the input and prediction levels.

Figure 4 displays samples generated by interpolation of observed data points under the frameworks
of simplicial regularization and mixup on the MNIST dataset (LeCun et al., 1998). We argue that the
inputs produced by simplicial regularization correspond to plausible, local variations of the data at
the observed samples, in line with the tangent space approximation of the underlying data manifold.

This is in stark contrast with the samples produced by mixup. The un-relatedness of the samples
being combined leads to inputs which do not correspond to likely variations of the data distribution,
and thus lack semantic meaning. Although it is possible to alleviate this issue by considering the use
of mixup with low values of α, this approach leads to a vicinal distribution with low interpolation
and thus, extremely close to the original data distribution, thus yielding un-regularized training. The
low α regime does not address the main issue of mixup: its use of structure-agnostic interpolations.

4



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Figure 4: Inputs generated from the vicinal distributions of simplicial regularization and mixup with
α = 1. The variations in each column are due to sampling different convex combinations of the
datapoints. In the last column of the left group a 0-simplex was sampled, leading to no interpolation.
The mixup scheme is also problematic regarding its proposed labels for the generated interpolations.
The selection of random, unrelated, potentially very separated, data-points opens the possibility that
some sections of the interpolation segment belong to regions of the input space which could be
classified under a label which does not coincide with those of the endpoints. The target proposed by
mixup is oblivious to this observation and induces the classifier to only produce predictions matching
the classes of the sampled endpoints.

We trained two neural networks to classify MNIST digits using mixup and simplicial regularization
with (weighted) cross-entropy loss. We then sampled uniform, independent triplets of points (as
in the mixup setting) and plotted the model predictions over the simplex comprising all convex
interpolations on each triplet. These results are presented in Figure 5. Although both networks
reached high predictive accuracy and their predictions coincide on the corners of the simplices, they
exhibit vastly dissimilar behavior when evaluated at convex combinations of these corner points.

Figure 5: Behavior of classifiers on interpolation over randomly selected triplets. The image on the
right corresponds to the convex combination represented by the black dot. ∆ denotes simplicial reg.

Note how the mixup framework leads to classifiers which (frequently) only produce predictions
which agree with the endpoint classes, even though a human observer could assign a different label.
On the other hand, the local nature of the sampling in simplicial regularization allows for greater
flexibility in the predictions of the model, as the training objective never aims to prescribe behavior
on distant regions based solely on local information.
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A APPENDIX

A.1 DEFINITIONS AND NOTATION

For completeness, we provide definitions of several topological notions used in this manuscript.
While many of these definitions can be formulated in category-theoretical terms, we favour the
purely geometric language for the sake of accessibility to the general machine learning community.
The definitions below follow closely the work of Munkres (1995).

AK-simplex σ in Rn is the convex set spanned by k+1 linearly independent points {x0, . . . , xk} ⊂
Rn. The points xi are called vertices, and the convex set spanned by any non-empty subset of these
vertices is called a face of the K-simplex. The set of l-simplices contained in σ is denoted σl. For
example, the set of vertices of σ is denoted σ0 and σk only contains σ itself. For k < l, σl is empty.

The standard geometric K-simplex, denoted ∆k, is the convex hull of the canonical basis of Rk+1.

A simplicial complex K ⊂ Rn is a collection of simplices in Rn, possibly of varying dimensions,
such that: (i) every face of a simplex of K is also in K, and (ii) the intersection of any two simplices
of K is a face of each of them.

Intuitively, we can think of a simplicial complex K as made up of copies of standard simplices
of several dimensions, glued together among some common faces. We can organize the relevant
information about a simplicial complex into the different skeleta Kk, for k = 0, 1, . . ., so that Kk is
the set of all K-simplices of K.

The structure-preserving functions between simplicial complexes are called simplicial maps. Let
K and L be geometric simplicial complexes. A simplicial map f : K → L is a function which acts
linearly on convex combinations over the simplices of K.

Algebraically, consider an arbitrary m-simplex σ ⊂ K and a point x ∈ σ. It is possible to represent
x via its barycentric coordinates over σ as a weighted sum of the vertices σ0: there exists a

6



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

probability m-vector tσ , such that x =
∑m
j=1 t

σ
j σ

0
j . We say that f is a simplicial map if all x and

for all σ containing x, we have that:

f(x) = f

 m∑
j=1

tσj σ
0
j

 =

m∑
j=1

tσj f(σ0
j ). (6)

Note that a simplicial map f is uniquely determined by a function f0 : K0 → L0 operating over the
vertices, and its extension by convex interpolation on each simplex in K.

Let α > 0. We denote by Dir(k, α) the symmetric Dirichlet distribution with density over the
standard k − 1 simplex given by Γ(αk)

Γ(α)k

∏k
i=1 x

α−1
i .

A fuzzy set is set S enriched with a membership function µ : S → [0, 1]. Given fuzzy sets (S, µ) and
(T, ν) a morphism of between them is a function f : S → T such that for all s ∈ S, µ(s) ≤ ν(f(s)).

Recalling the notion of a simplicial complex as a collection of simplices, we define a fuzzy sim-
plicial complex as a simplicial complex K endowed with a membership function µK : K → [0, 1],
such that for all σ ⊂ σ′, µK(σ) ≥ µK(σ′). In other words, the membership of a simplex is upper
bounded by the lowest membership of all its constituent lower-order simplices.

A strong negator is a monotonous decreasing, involutive function ¬ : [0, 1] → [0, 1] such that
¬0 = 1 and ¬1 = 0. For the remainder, we restrict our attention to the negator ¬(a) = 1− a.

A t-norm is a symmetric function > : [0, 1]2 → [0, 1] satisfying for all a, b ∈ [0, 1]:

• >(a, b) ≤ >(c, d) whenever a ≤ c and b ≤ d,
• >(a,>(b, c)) = >(>(a, b), c), and
• >(1, a) = a.

Given a t-norm >, its complementary t-conorm under a negator ¬ is defined by ⊥(a, b) =
¬>(¬a,¬b). A triplet (>,⊥,¬) where > is a t-norm, ⊥ is a t-conorm, and ¬ is a strong nega-
tor is called a De Morgan triplet if for all a, b ∈ [0, 1] one has that ¬⊥(a, b) = >(¬a,¬b).

The most common example of a De Morgan triplet is the one formed by >prod(a, b) = ab,
⊥sum = a + b − ab and ¬(a) = 1 − a. Note how the t-norm and t-conorm express the proba-
bility of intersection and union of independent events. Another important example arises by taking
>min(a, b) = min(a, b), ⊥max = max(a, b).

A De Morgan triplet (>,⊥,¬) structure allows us to define operations between sets, or rather,
between membership functions µ and ν on a common universal set U . The complement of µ
given by the composite function ¬ ◦ µ. We define their union and intersection as the functions
τµ∪ν = ⊥ ◦ (µ, ν) and τµ∩ν = > ◦ (µ, ν), respectively.

A.2 FUZZY REPRESENTATION OF A DATASET

The main building block of the UMAP dimensionality reduction technique is the construction of
a carefully designed fuzzy topological representation of a given dataset X ⊂ Rn. In practice, this
representation is stored as a weighted graph with restricted neighborhood size. Next, we present a
brief description of Algorithm 2. The steps involved in this construction are illustrated in Fig. 6. For
more details, please consult sections 2.2 and 3.1 of McInnes et al. (2018).

Algorithm 2: FuzzyTop
Data: Dataset X = {xi}Ni=1 ⊂ Rn, number of nearest neighbors ñ.
Result: Fuzzy topological representation of X given by KX.

1 for i = 1, . . . , N do
2 Ni = indices of ñ-nearest neighbors of xi;
3 Compute (X, di) ∈ FinEPMet ; // Build FinEPMet di around i
4 Ki = FinSing(X, di) ∈ sFuz ; // Convert di into FSC
5 end
6 KX = ⊥Ni=1Ki ; // Combine all FSCs

7
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We begin with a dataset X of N points embedded in Rn and an arbitrary metric d. For each data
point i, we construct its set of ñ nearest neighborsNi and record the distance to its closest neighbor
in ρi = minj∈Ni

d(xi, xj). We define a finite, extended, pseudo-metric space di around xi as:

di(xi, xj) =

{
d(xi, xj)− ρi, for j ∈ Ni
∞ else. (7)

We define µi,j = exp

(
−di(xi, xj)

σi

)
for j ∈ Ni, and select σi > 0 in such a way that∑

j∈Ni
µi,j = log ñ. These ingredients allow us to define a fuzzy simplicial complex Ki whose

fuzzy 1-skeleton is given by the membership function µi,(·). Note how all points in X outside of the
neighborhood Ni have membership zero.

Finally, this process is repeated for all data points in X and the individual simplicial complexes are
joined via a pre-determined t-conorm ⊥.

Figure 6: Visual representation of the fuzzy simplicial set construction around data point i within
the UMAP framework. In this example ñ = 3.

A.3 SIMPLICIAL COMPLEX EXTENSION AND SAMPLING

Algorithm 2 and its output are manageable for large-scale datasets due to the restricted neighborhood
size and the use of a 1-skeleton representation. Explicitly storing all simplices of higher dimensions
quickly becomes a computational bottleneck due to the combinatorial number of possibilities. In this
section we present a construction that extends a fuzzy 1-skeleton into a fuzzy simplicial complex,
and an efficient algorithm to sample from it, while avoiding the explicit storage of memberships for
high-dimensional simplices.

Algorithm 3: FSC-Sample
Data: 1-skeleton µ, neighborhoods Ni, t-norm > (e.g. >min)
Result: A random simplex sampled from the fuzzy simplicial complex extended from µ.

1 Sample u ∈ [1, . . . , N ] uniformly
2 N = Nu ∪�
3 σ = [u]
4 while N 6= {�} do
5 foreach t ∈ N do νt = >s∈σµs,t;
6 ν� = 1
7 Sample u′ without replacement from N with probabilities proportional to ν
8 if u′ = � then
9 Return σ

10 else
11 Append u′ to σ
12 end
13 N = (N ∩Nu′) ∪�
14 end

8
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Consider a (sparse) symmetric N × N matrix µ representing a fuzzy 1-skeleton and denote by Ni
the non-zero entries in row i. It is easy to see that under a t-norm >, the recursive membership:

µK(σ) = >ψ∈σµK(ψ) for σ ∈ Kk, k > 2 (8)

is a valid extension of µ onto a fuzzy simplicial complex. The base cases for these recursions are
the 2-simplex memberships µK([i, j]) = µi,j . Trivially, this construction implies that a simplex σ
has non-zero membership if all its constituent sub-simplices have non-zero membership.

Note that Algorithm 3 builds the required high-dimensional simplices on the fly, and is guaranteed
to terminate in at most ñ iterations of the outermost cycle. The sampling of multiple simplices for
the mini-batch setting can be easily parallelized.
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