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ABSTRACT

The continuous-depth models pioneered by Neural ODEs have sparked a resur-
gence in exploring dynamic systems based on deep learning prototypes. The stud-
ies employed to investigate their theoretical properties mainly rely on Euclidean
space, however, the geometric principle of general neural networks has been de-
veloped on the Riemannian manifold. Motivated by this open problem, we con-
struct a formalized geometric theory of continuous-depth networks through the
lens of homogeneous Ricci flows. From this perspective, the Riemannian metric
tensor with coordinate representations learned by the continuous-depth network
itself is the closed-form solution of homogeneous Ricci flows. With the pres-
ence of Ricci solitons, the Ricci curvature tensor on the underlying data manifold
emerges for the first time. This implies that the continuous-depth network gov-
erns the Ricci curvature to drive the different kinds of data apart from each other,
which is a novel observation between the Ricci curvature and data separation. Toy
experiments confirm parts of the proposed theory, as well as provide intuitions and
visualizations as to how the Ricci curvature tensor governed by continuous-depth
networks evolves on the manifold to operate on data.

1 INTRODUCTION

In machine learning, neural networks have played a crucial role, including theoretical research and
practical applications. The previous theoretical works about neural networks are built in Euclidean
geometry, i.e., the input data is required to be immersed in Rn (Kidger & Lyons, 2020). However,
from a geometric perspective, the Euclidean measurement may not always provide meaningful in-
sights when the data points live on a lower-dimensional manifold (Kratsios & Bilokopytov, 2020),
which is known as the manifold hypothesis. Indeed, the underlying structure of data is a non-
Euclidean space in many cases of practical applications (Nickel & Kiela, 2017; Ganea et al., 2018).
The main goal of manifold learning is to detect a low-dimensional representation that preserves
meaningful information (Lin & Zha, 2008).

Recently, a new geometric framework has been proposed to view a neural network as a sequence of
maps between smooth manifolds (Hauser & Ray, 2017; Shen, 2018). Specifically, while the input
data is sampled from a data manifold, the neural network-driven coordinate transformation aims to
measure the underlying data manifold by Euclidean distance (Hauser & Ray, 2017). This implies
that the coordinate transformations learned by a neural network can represent the Riemannian metric
tensor on the data manifold, thereby a neural network can be analyzed using Riemannian geometry.
Based on this principle, Benfenati & Marta (2022) proposed that the pullbacks of the Riemannian
metric through maps of a neural network are degenerate metrics such that establishing a singular
Riemannian geometric framework. These degenerate metrics are able to endow each manifold of
the sequence with the structure of pseudo-metric spaces, from which one can obtain a full-fledged
metric space by means of metric identification. In practice, the geometric perspective also in turn
guides the improvement of the network structure (Rousseau et al., 2020).

With the proposal of neural ordinary differential equations (Neural ODEs) (Chen et al., 2018),
continuous deep learning (Zhang et al., 2014) ushered in a brand new beginning. Neural ODEs
have been introduced as the limit of taking the number of layers of residual networks hi+1 =

hi + f(hi,Wi) to infinity, resulting in continuous-depth networks dh(t)
dt = f(h(t), t,W ). Note that

h is the hidden state of Neural ODEs, f defines a first-order ODE, and t ∈ [0, T ]. In addition, Neu-
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ral ODEs also give new mathematical perspectives for neural network structure design (Greydanus
et al., 2019; Bai et al., 2019; Cranmer et al., 2020). Furthermore, Neural ODEs have been demon-
strated superior performance compared to traditional ODE inference techniques for non-linear dy-
namics f (Dupont et al., 2019). Subsequently, SONODE extends Neural ODEs to second-order
systems (Norcliffe et al., 2020). Some other continuous-depth networks have also been proposed,
including Augmented NODE (Dupont et al., 2019), latent NODEs (Rubanova et al., 2019), and
neural stochastic DEs (Volokhova et al., 2020; Li et al., 2020).

Although latent Neural ODEs are a powerful tool for processing and analyzing time series (Chen
et al., 2018), the fundamental process of how successive layers continuously warp the coordinate
representation of the data manifold to form the purpose that the classes in the data manifold are
linearly separable is often overlooked. In this paper, we provide insight into continuous-depth net-
works from the perspective of time-evolving Riemannian geometry. Exploration in this uncharted
field can help understand the geometric structure evolution of the data manifold, thereby optimizing
the network structure and over-fitting problems. Our contributions are summarized as follows:

1. We propose a novel principle for continuous-depth networks through the lens of homoge-
neous Ricci flows, which will degenerate into the case of general neural networks (Hauser
& Ray, 2017) after discretization. To the best of our knowledge, this is a first connec-
tion between continuous-depth models and Ricci flows, which mathematically provides a
time-evolving geometric perspective for the interpretability of neural networks.

2. By introducing the self-similar solution (Ricci soliton) of the homogeneous Ricci flow,
the Ricci curvature tensor, as a fundamental concept in the Riemannian geometry, can be
learned by continuous-depth networks. In essence, the Ricci curvature may be the root in
terms of geometry to drive the different kinds of data apart from each other.

3. It follows from Hauser & Ray (2017) that we provide a way of visualization and intuition to
understand how the Ricci curvature tensor governed by continuous-depth models evolves
on the underlying data manifold to untangle the input data.

2 PRELIMINARIES

2.1 RIEMANNIAN GEOMETRY

We will introduce the basic notions of manifolds and tangent spaces used in this paper. For more
in-depth propositions, see Guggenheimer (2012); Petersen (2006). We then present some classic
definitions and results from Riemannian geometry. We define a topological space as follows:

Definition 1 A topological space T is a Hausdorff space if there exists two neighborhoods Up, Uq

on any two distinct points p, q ∈ T such that Up ∩ Uq = ∅. A topological space T is second
countable if any open subset of T can be written as a union of elements of a countable collection
U = {Ui}∞i=1.

Then a smooth manifold can be defined on the basis of a topological space.

Definition 2 The n-dimensional smooth manifold M is a topological space, which satisfies second
countable and Hausdorff. Then every point p ∈ M has a neighborhood Up that is homeomorphic
to a subset of Rn through a map ϕp : Up → Rn. In particular, for p, q ∈ M if Up ∩ Uq ̸= ∅,
then ϕp ◦ ϕ−1

q is a smooth diffeomorphism. And the pair (Up, ϕp) is called a local chart and the
collection of all the possible local charts at all points is called atlas.

When a chart covers the whole manifold M, one has a global chart (coordinate system) for the
manifold. Given a manifold M, a subset N ⊂ M that is a manifold is called a submanifold of
M. Let us consider an n-dimensional manifold M with a coordinate system. Then the definition of
tangent space is given as follows:

Definition 3 The tangent space of M at p denoted with TpM is the set of all tangent vectors at p,
which is a vector space spanned by n tangent vectors along the coordinate curves.

Note that tangent vectors are not dependent on the choice of a chart. Intuitively, the tangent space can
be regarded as a linearization of M in a neighborhood of p. Consequently, a fundamental concept:
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Riemannian metric, can be defined on the basis of the tangent space so that Riemannian manifold is
naturally well-defined.

Definition 4 A Riemannian metric g over a smooth manifold M is a smooth family of inner
products on the tangent spaces of M, i.e., g associates to every p ∈ M with an inner product
gp : TpM× TpM → R.

Definition 5 A Riemannian manifold (M, g) is a smooth manifold M with an inner product, de-
fined by the symmetric and positive definite Riemannian metric g = (gab), varying smoothly on the
tangent space TpM of M where each point p is on M.

In particular, all inner product spaces with the same dimension are isometric, therefore, all tangent
spaces TpM on a Riemannian manifold (M, g) are isometric to the n-dimensional Euclidean space
Rn endowed with its canonical inner product.

We will use the Einstein summation notation in this paper, which is commonly used in differential
manifolds. For example, yaza :=

∑
a y

aza where the summation is over dummy index a. Then,
some other basic concepts: curvatures, in a Riemannian manifold are yielded. The Christoffel sym-
bol in terms of an ordinary derivative operator ∂ is defined as

Γk
ij =

1

2
gkl(∂igjl + ∂jgil − ∂lgij)

Furthermore, the coordinate form of the Riemann curvature tensor (Rm) as a (1, 3)-tensor is given
by

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γp

jkΓ
l
ip − Γp

ikΓ
l
jp

The Ricci curvature tensor (Rc), which is a (0, 2)-tensor, with coordinate expression is defined as a
contraction of Rm on first and third indices

Rij = Rp
pij

Sequentially, the scalar curvature (R) is defined as the trace of the Ricci curvature tensor with the
Riemannian metric

R = gijRij

2.2 GEOMETRY IN DISCRETE-DEPTH NETWORKS

In this subsection, we introduce the Riemannian geometry of discrete-depth networks. A discrete-
depth network composed of a sequence of transformations to a hidden state can be seen as the Euler
discretization of a continuous transformation (Chen et al., 2018; Haber & Ruthotto, 2017).

A neural network can be regarded as a nonlinear function to transform the input x(0) into the output
x(n) through n layers. The corresponding transformation consists of two units: the first unit outputs
the affine transformation via the parameter (weights and biases) Wi, and the second unit outputs the
nonlinear transformation via an activation function, e.g., ReLU, tanh, etc. On the basis of Benfenati
& Marta (2022), a geometric definition of discrete-depth networks is viewed as a sequence of smooth
maps ϕj , where j ∈ {1, 2, · · · , n}, between smooth manifolds Mi of the form:

M0
ϕ1−→ M1

ϕ2−→ · · · ϕn−1−→ Mn−1
ϕn−→ Mn, (1)

where M0 is the input manifold and Mn is the output manifold. As per the findings presented
in (Hauser & Ray, 2017), the data points supplied to a neural network have the potential to be de-
picted in Cartesian coordinates, which are sampled from the underlying input manifold. And the
parameter Wi serves as a coordinate chart on the parameter manifold (Amari & Nagaoka, 2000).
The coordinate representation of the data manifold is learned by neural networks to linearly sep-
arate the data such that the output coordinates are required to be a flattened representation of the
data manifold (Bengio et al., 2013), which implies the output coordinate is measured by Euclidean
distance when the output as a classifier has been well-trained by the neural network. Therefore, the
Euclidean metric gE is implicit in the output coordinates:

g(x(n))an,bn = gEan,bn . (2)
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Example 1 The Euclidean metrics of R2 in Cartesian coordinates (x, y) and polar coordinates
(r, θ) are represented by the matrix respectively

gC =

(
1 0
0 1

)
, gP =

(
1 0
0 r2

)
.

Consider two adjacent smooth manifolds Mi, Mi+1 equipped with the Riemannian metrics g(i),
g(i + 1) and let ϕ : Mi → Mi+1 be a smooth map. Then these two Riemannian metrics can be
connected by the pullback ϕ∗ through ϕ, i.e., g(i) = ϕ∗g(i+1). Given two coordinate systems x(i)
and x(i + 1) of Mi and Mi+1 respectively, the metric in i-th coordinate system can be expressed
by the metric in (i+ 1)-th coordinate system:

g(x(i))ai,bi =

dim(Mi+1)∑
ai+1,bi+1

(
∂ϕ

∂x(i)

)ai+1

ai

g(x(i+ 1))ai+1,bi+1

(
∂ϕ

∂x(i)

)bi+1

bi

= (Ji)
ai+1
ai

(Ji)
bi+1

bi
g(x(i+ 1))ai+1,bi+1 ,

(3)

where ϕ = x(i+1) = x(i)+f(x(i),Wi) in residual networks and Ji is the Jacobian matrix in local

coordinates, i.e., (Ji)
ai+1
ai =

(
∂ϕ

∂x(i)

)ai+1

ai

. Note that we use the Einstein summation to simplify the

summation nation. Furthermore, the metric in i-th coordinate system can also be directly expressed
by the Euclidean metric in the output coordinate system based on Eq.(2) and Eq.(3):

g(x(i))ai,bi =

n−1∏
i

[(
∂ϕ

∂x(i)

)ai+1

ai

(
∂ϕ

∂x(i)

)bi+1

bi

]
gEan,bn =

n−1∏
i

[
(Ji)

ai+1
ai

(Ji)
bi+1

bi

]
gEan,bn . (4)

In this case, the Riemannian metric tensor with the coordinate representation tends to be Euclidean
from the input manifold to the output manifold.

3 TIME-EVOLVING GEOMETRY IN CONTINUOUS-DEPTH NETWORKS

3.1 HOMOGENEOUS RICCI FLOW AND RICCI SOLITON

Previous works (Hauser & Ray, 2017; Benfenati & Marta, 2022) build the geometry around discrete-
depth networks. When considering a time-dependent continuous-depth network, we naturally need
to rebuild the geometric principle in terms of flow. An intuitive idea is to introduce the Ricci flow
since it is a partial differential equation (PDE) for the evolution of manifolds, involving the alteration
of the manifold’s metric to reveal changes in its geometric and topological properties over time.
The Ricci flow was first published by Hamilton Hamilton et al. (1982), whose purpose is to prove
Thurston’s Geometrization Conjecture and Poincaré Conjecture by evolving the metric to make the
manifold become “round”. Naturally, the metric will evolve towards certain fundamental geometric
structures, and the connected sum decomposition by sphere and tori will somehow emerge Sheridan
& Rubinstein (2006), which is performed “surgery” on the manifold Perelman (2003). Given a
Riemannian manifold M with a time-dependent metric g(t), the Ricci flow yields

∂

∂t
g(t) = −2Rc[g(t)], (5)

where Rc denotes the Ricci curvature tensor and g(0) = g0 is the initial metric.

Given a transitive Lie group G ⊂ I(M, g0) and a isotropy subgroup K ⊂ G at some point p ∈ M,
a homogeneous space G/K is represented as

(M, g(t)) = (G/K, g⟨·,·⟩(t)), with the same reductive decomposition g = k⊕ p (6)

where g and k are the Lie algebras of G and K, respectively. And p can be naturally identified
with the tangent space p = TpG/K. When the homogeneous space is presented, we can denote
g⟨·,·⟩(t) as the G-invariant metric on G/K Duistermaat & Kolk (2012). This G-invariant metric
is completely determined by its value at the origin g⟨·,·⟩(t)|p, which is an Ad(K)-invariant inner
product on p defined by g.
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Homogeneous Ricci flow For the family g⟨·,·⟩(t), the Ricci flow in homogeneous spaces reduces
to the ODE Lauret (2013)

d

dt
g⟨·,·⟩(t) = −2Rc

[
g⟨·,·⟩(t)

]
. (7)

And the solution g⟨·,·⟩(t) to homogeneous Ricci flow still stays Ad(K)-invariant for all t and guar-
antees the short time existence and uniqueness.

Definition 6 Given two homogeneous spaces G0/K0 and Gt/Kt, a differentiable map ϕ :
G0/K0 → Gt/Kt is called a diffeomorphism if it is a bijection and its inverse ϕ−1 : Gt/Kt →
G0/K0 is differentiable as well.

Remark 1 Two manifolds G0/K0 and Gt/Kt are diffeomorphic (usually denoted G0/K0 ≃
Gt/Kt) if there is a diffeomorphism ϕ from G0/K0 to Gt/Kt.

Remark 2 Considering the properties of diffeomorphisms, the activation function is required to be
diffeomorphic. For example, tanh and sigmoid are satisfied, but ReLU is not satisfied.

All the manifolds including the input G0/T0 and output GT /KT are homogeneous, then we have
the time-dependent family of diffeomorphisms (with ϕ(0) = id) ϕ(t) : G0/K0 → Gt/Kt between
homogeneous spaces. In this case, ϕ(t) as the equivariant diffeomorphism is determined by a Lie
group isomorphism between G0 and Gt.

Homogeneous Ricci soliton However, the evolution of Ricci flow is very complex and often de-
velops singularities, which makes it difficult to be solved. Hence, we turn our attention to Ricci
solitons that are special solutions of the Ricci flow. More precisely, a Ricci soliton (M, g) yields a
self-similar solution to the Ricci flow equation, that is, only by scaling and pullback by diffeomor-
phisms (Lafuente & Lauret, 2014).

Definition 7 A homogeneous space (G/K, g⟨·,·⟩) is called a homogeneous Ricci soliton if, and
only if, there exists a smooth vector field V such that

Rc(g⟨·,·⟩) = λg⟨·,·⟩ −
1

2
LV g⟨·,·⟩ = λg⟨·,·⟩ −

1

2
lim
δt→0

(ϕδt
V )∗gϕδt

V ⟨·,·⟩ − g⟨·,·⟩

δt
, (8)

for some constant λ ∈ R. Here L represents the Lie derivative.

It is worth mentioning that, up to diffeomorphism and depending on the sign of λ, a homogeneous
Ricci soliton homothetically shrinks (λ > 0), remains steady (λ = 0) or expands (λ < 0) under
homogeneous Ricci flow. Later, we will focus on the case that ricci solitons are steady.

3.2 THE SOLUTION OF HOMOGENEOUS RICCI FLOWS

Inspired by previous work (Chen et al., 2021), we consider that both Ricci flow and continuous-depth
networks serve the same purpose, i.e., to continuously evolve the input manifold such that the output
manifold has specific geometric properties. Naturally, we can establish the geometry principle for
continuous-depth networks on the basis of homogeneous Ricci flow and Ricci soliton. Of course,
we can proceed with the discretization to check whether the geometric principle degenerates into a
discrete case (Hauser & Ray, 2017), and then evaluate the rationality of the proposed theory.

Ricci curvature tensor using homogeneous Ricci soliton We consider that a homogeneous
Ricci soliton is steady. Then the Ricci curvature tensor yields −2Rc(g⟨·,·⟩) = LV g⟨·,·⟩ =

limδt→0
1
δt

(
(ϕδt

V )∗gϕδt
V ⟨·,·⟩ − g⟨·,·⟩

)
. The Lie derivative is the speed with which the Riemannian

metric tensor changes under the space deformation caused by the flow. Formally, given a differen-
tiable (time-independent) vector field V on a homogeneous space G/K, let ϕδt

V : G/K → G/K
be the corresponding local flow. Since ϕδt

V is a local diffeomorphism for each δt, it gives rise to a
pullback of metrics. Since the diffeomorphism is given by the neural network, we can define the
Lie derivative using Eq.(3). Consequently, we formally define the Ricci curvature tensor at time t of
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continuous-depth networks:

Rc(x(t))at,bt

= lim
δt→0

− 1

2δt

(
g⟨·,·⟩(x(t− δt))at−δt,bt−δt

− g⟨·,·⟩(x(t))at,bt

)
= lim

δt→0
− 1

2δt

((
∂ϕ

∂x(t− δt)

)at

at−δt

(
∂ϕ

∂x(t− δt)

)bt

bt−δt

g⟨·,·⟩(x(t))at,bt − g⟨·,·⟩(x(t))at,bt

)

= lim
δt→0

− 1

2δt

(
(Jt−δt)

at
at−δt

(Jt−δt)
bt
bt−δt

g⟨·,·⟩(x(t))at,bt − g⟨·,·⟩(x(t))at,bt

)
= lim

δt→0
− 1

2δt

(
(Jt−δt)

at
at−δt

(Jt−δt)
bt
bt−δt

− I
)
g⟨·,·⟩(x(t))at,bt ,

(9)
where ϕ = x(t) and I is a identity matrix that can be written as I = (Jt)

at
at
(Jt)

bt
bt

. Let the
depth of a neural network to be T , then a homogeneous Ricci flow is to evolve the manifold on
the time t ∈ [0, T ]. Substituting the above formula into Eq.(7), the homogeneous Ricci flow in a
homogeneous Ricci soliton yields

d

dt
g⟨·,·⟩(t) =

1

δt
(Jt−δtJt−δt − I) g⟨·,·⟩(t). (10)

Riemannian metric using homogeneous Ricci flow Mathematically, we can solve for the Rie-
mannian metric g⟨·,·⟩(t) by integrating the above formula from t to T . Note that the metric g⟨·,·⟩(T )
of the output manifold is set in advance, e.g., the Euclidean metric on the basis of Eq.(2). We have

g⟨·,·⟩(x(t))at,bt

= g⟨·,·⟩(x(T ))aT ,bT exp

(∫ t

T

1

δt

((
∂ϕ

∂x(t− δt)

)at

at−δt

(
∂ϕ

∂x(t− δt)

)bt

bt−δt

− I

)
dt

)

= g⟨·,·⟩(x(T ))aT ,bT exp

(∫ t

T

1

δt

(
(Jt−δt)

at
at−δt

(Jt−δt)
bt
bt−δt

− I
)
dt

)
= exp

(
ODESolve

(
log(g⟨·,·⟩(x(T ))aT ,bT ),

(
(Jt−δt)

at
at−δt

(Jt−δt)
bt
bt−δt

− I
)
/δt, t, T,W

))
,

(11)
where this numerical integral can be solved by a Neural ODE solver (Chen et al., 2018).

Now, we introduce Type I product integral corresponding to Volterra’s original definition Dollard &
Friedman (1979); Slavı́k (2007)

b∏
a

(I + S(t)δt) = exp

(∫ b

a

S(t)dt

)
, (12)

which can be used to check the rationality of the proposed theory. In particular, δt = 1 holds in
discrete-depth networks. There is no doubt that after the discretization, Eq.(11) will degenerate into
Eq.(4), which proves that our geometric principle is a generalization of previous works (Hauser &
Ray, 2017; Benfenati & Marta, 2022).

4 THE RICCI CURVATURE TENSOR GOVERNED BY NEURAL NETWORKS

We introduced the Riemannian metric tensor by solving the homogeneous Ricci flow. And the most
important thing is that we introduced another concept in Riemannian geometry: Ricci curvature
tensor. The corresponding pseudo-code is described in Algorithm 1. In this section, we delve into
an exploration of neural network behavior through the lens of the homogeneous Ricci flow. The
central idea is to scrutinize the connection between neural networks and the evolution of manifolds,
shedding light on the theoretical underpinnings that untangle the data by the learning.

As shown in Figure 1, we express (G0/K0, g⟨·,·⟩(0)) and (GT /KT , g⟨·,·⟩(T )) as the input and output
manifolds, which we interpret as the initial and final states of a process, respectively. Meanwhile,
we view the other states as intermediate stages in the evolution of these manifolds. This portrayal
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input manifold evolution manifolds output manifold

Figure 1: The diagram illustrates that the manifold will gradually “pinch off” in terms of the evolu-
tion of the Ricci flow, where the black line represents this 2-manifold. From the input manifold to
the output manifold, the curvature gradually swells near the hyperplanes, and with that comes the
manifold pinching, which tends to decompose into two sub-manifolds.

allows us to envision how the positions of the blue and orange points transform as the manifold
evolves. The visual aid provided by the black line, representing a 2-manifold, helps convey this
concept more vividly. In the transition from the input manifold to the output manifold, an intriguing
phenomenon emerges. The curvature of the manifold exhibits a gradual swelling in proximity to the
hyperplanes. This curvature evolution initiates a process known as “manifold pinching” (Sheridan
& Rubinstein, 2006), wherein the manifold becomes increasingly constricted and tends to split into
two distinct sub-manifolds. It’s within this framework that we observe the neural network’s capacity
to segregate data. In essence, the Ricci curvature serves as the foundational geometrical attribute
that enables neural networks to carry out the separation of data categories. This deep connection
between the Ricci curvature and neural network behavior opens avenues for further exploration at
the intersection of geometry and machine learning.

Algorithm 1 Pseudo-code for understanding continuous-depth networks.
Require: parameters W , start time 0, stop time T , intermediate state x(t).
Ensure: The continuous-depth network has been well trained.

1: Set the metric g⟨·,·⟩(T ) of the output manifold;

2: Compute the Jacobian, i.e., Jt−δt =
(

∂x(t)
∂x(t−δt)

)at

at−δt

and Jt−δt =
(

∂x(t)
∂x(t−δt)

)bt
bt−δt

;

3: Compute the Riemannian metric tensor g⟨·,·⟩(t) = g⟨·,·⟩(T ) exp
(∫ t

T
1
δt (Jt−δtJt−δt − I) dt

)
;

4: Compute the Ricci curvature tensor Rc(t) = − 1
2δt (Jt−δtJt−δt − I) g⟨·,·⟩(t);

5 NUMERICAL EXPERIMENTS

In this section, it follows from Hauser & Ray (2017) that we yield similar 2D visualizations to
show two geometric quantities: Riemannian metric and Ricci curvature tensor corresponding to the
untangling process of a continuous-depth network. Note that this paper only provides theoretical
insights and does not involve improvements to the network structure. Since the experiments are
only for the visualization and interpretability of the proposed theory, they are conducted on toy
data (spiral and two circles) rather than real data, where the two circles are from sklearn library
and the spiral is achieved from https://gist.github.com/45deg. All the experiments
implemented in Python are conducted with PyTorch.

2-dimensional spiral and circles datasets. We generated a dataset of 1000 2-dimensional spirals
and circles. For two types of spirals, half are clockwise while the other half are counter-clockwise.
For two types of circles, data points within one circle belong to one category, while data points
within the other circle belong to a different category. To introduce diversity and simulate real-world
imperfections, we introduced Gaussian noise with a standard deviation of 0.02.
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(a) The untangling process of a continuous-depth network

(b) The Riemannian metric tensor g⟨·,·⟩(t) corresponding to the untangling process

(c) The Ricci curvature tensor Rc(t) corresponding to the untangling process

Figure 2: The evolution of the homogeneous Ricci flow is governed by a continuous-depth network
to untangle the spiral data, where the gray ellipses represent the Ricci curvature tensor that came
from the right hand side of the Ricci flow and the color ellipses represent the Riemannian metric
tensor that came from the left side of the Ricci flow.

Experiment details. In the experiments, in order to ensure that each layer has 2D visualiza-
tion, we choose the linear layer of a neural network as nn.Linear(2,2) and the output layer as
nn.Linear(2,1) in Pytorch. We train with 200 epochs and adopt the Adam optimizer with a weight
decay of 0.05 where the learning rate is 0.01. Note that the numerical approximation of Algo-
rithm 1 can be achieved by the Neural ODE solver at https://github.com/rtqichen/
torchdiffeq.
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(a) Gaussian noise with a standard deviation of 0.02

(b) Gaussian noise with a standard deviation of 0.2

(c) Gaussian noise with a standard deviation of 0.8

Figure 3: Comparison of the Ricci curvature tensor on the spiral data with different noise. As the
noise increases to a certain extent, a continuous-depth network can still govern the Ricci curvature
to evolve the data manifold such that untangling the spiral data.

Untangling process, Ricci curvature, and Riemannian metric. In this experiment, we visualize
the untangling process, and the corresponding Riemannian metric and Ricci curvature tensor by
uniformly sampling several time nodes, where the size and direction of the ellipse represent the size
and angle of the tensor. Note that the untangling process in Figure 2(a) and geometric quantities in
Figure 2(b),2(c) are in one-to-one correspondence at the same time node.

In Figure 2, it seems that the homogeneous Ricci flow evolves on a manifold into the analog of
hyperplanes to push the orange and blue points away from each other. Just like the characteristics
described by Ricci flow, the manifold will “pinch off” near the hyperplanes and gradually decompose
into two sub-manifolds to complete the untangling. This implies that the swelling of the curvature
is gradually concentrated near hyperplanes. In the stop time (Time 9) as shown in Figure 2(b),
distances are measured by the Euclidean metric and so the ellipses (metric) are “round”. Especially
in Figure 2(c), the Ricci curvature tensor tends to become particularly large where the two types
of points are entangled closely. And it tends to become small where the two types of points are
relatively far apart. Until the stop time (Time 9), the ellipses (curvature) are “zero”. Intuitively,
we consider that the Ricci curvature may be the root in terms of geometry that continuous-depth
networks are able to drive the different kinds of data apart from each other.

Effect of noise on the Ricci curvature. In this experiment, we present the Ricci curvature and
the corresponding untangling behavior of a continuous-depth network under different noise and
coordinate representations. In this case, a continuous-depth network with several hidden layers has
been well-trained such that the data points can be untangled with 0% error rate. In Figure 3, as the
noise increases to a certain extent, a continuous-depth network can still govern the Ricci curvature
to evolve the data manifold such that untangling the spiral data.

6 CONCLUSION

This paper presents a novel time-dependent geometric perspective on the untangling behavior of
continuous-depth networks through the lens of homogeneous Ricci flows. By introducing the self-
similar solution (Ricci soliton) of the homogeneous Ricci flow, the Ricci curvature tensor, as a
fundamental concept on the Riemannian manifold, can be found by the coordinate representations
learned by continuous-depth networks. In essence, we consider that the Ricci curvature may be the
root in terms of geometry that continuous-depth networks are able to drive the different kinds of
data apart from each other. In our future work, we intend to explore practical computer vision tasks,
leveraging the theoretical insights acquired from Ricci flow in deep neural networks.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2000.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Alessandro Benfenati and Alessio Marta. A singular riemannian geometry approach to deep neural
networks i. theoretical foundations. Neural Networks, 2022.
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A EFFECT OF COORDINATE CHOICE ON THE RICCI CURVATURE

In Figure 4, a continuous-depth network in Cartesian coordinates takes a long time to evolve the
manifold to untangle the points of two classes on the circles. In contrast, a continuous-depth network
in polar coordinates can easily untangle the points of two classes on the circles. And the Ricci
curvature on the data manifold is gradually swelling, especially in the middle of the two types of
data, which further pushes the two types of data away.

(a) The Ricci curvature tensor Rc(t) with Cartesian coordinates

(b) The Ricci curvature tensor Rc(t) with polar coordinates

Figure 4: Comparison of the Ricci curvature tensor with different coordinate representations on
the two circles data. In Cartesian coordinates, the Ricci curvature governed by a continuous-depth
network seems to be difficult to untangle the two circles data. In contrast, the two circles data can
be easily untangled in polar coordinates.
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