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ABSTRACT

We train a U-Net model to generate masks over reward-related objects in images.
Our approach allows to train the U-Net model without explicit label information,
but only using feedback from a critic model which learned to estimate the expected-
reward value of an image observation. The masking is learned in contrastive fashion
with image pairs using an adversarial scheme for employing the critic score gradient
with respect to the mask operation: The pair consists of two images, where the first
has a high and the second a low critic value. Training with such pairs enables the
U-Net model to produce masks that decrease the critic value in the first image and
increase the critic value in the second image when transferring pixels in the masked
segment from the first to the second image. The training of the U-Net model
is based on an imitation database from the NeurIPS 2020 MineRL Competition
Track, where our agent took the ?-place winning entry. Video demonstration:
www.rebrand.ly/Rewarding-Objects-mp4

1 INTRODUCTION

Exploration in environments with sparse feedback is a key challenge for deep reinforcement learning
(DRL) research Bach et al. (2020); Harter et al. (2020); Schilling & Melnik (2018). Representation of
reward-related objects can accelerate exploration and generalization. Humans explicitly learn object-
centric representations König et al. (2018); Melnik et al. (2018b); Konen et al. (2019). Auxiliary
targets generated in an unsupervised manner can accelerate learning Mirowski et al. (2016).

In this work, we aim to learn to segment objects using rewarding signals of interactions with the
environment. Such a domain-agnostic approach can adapt to novel domains without significant
changes. For example, auxiliary information about reward related objects in images help to efficiently
find goal-directed actions Melnik et al. (2019; 2018a). Learning of the reward related objects can
be leveraged from a large amount of unlabelled sensory data from a replay buffer or from human
demonstrations Guss et al. (2021) to bootstrap learning for reinforcement learning tasks.

2 METHODS

We use an Encoder-Decoder architecture with skip connections inspired by U-Net Ronneberger et al.
(2015). The Encoder has 5 convolution layers with 8, 8, 8, 16 and 32 channels respectively. The
last layer results in a non spatial bottleneck (dimensions: 1x1x32). Each layer is followed by a
LeakyReLU and we use max pooling after the first 4 layers. The Decoder has a mirrored structure
but we switch the pooling layers with up sampling. Its output layer is passed through the Sigmoid
function to produce the mask. The Critic shares the Encoder and after the Bottleneck additionally
consists of two fully connected layers with 32 units each.

We tested our approach in a first-person Minecraft environments from the MineRL 2020 Competition
Guss et al. (2021). The provided imitation learning database consists of data recorded from human
players. We used only images (64x64x3 HSV color space) and recorded sparse reward signals from
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Figure 1: Phase 1 (highlighted in red): Image A (high critic value) passes through the U-Net, forming
a mask M. Phase 2: the mask M is used to merge image A (high critic value) with image B (low
critic value) resulting in image X (masked parts of A replaced with B) and image Y (masked parts of
A injected in B). Images A, B, X, and Y are then passed through the encoder and critic. The losses
penalize differences in critic values for image pairs A : Y, and B : X. Mask loss penalizes positive
pixels of the mask and prevents convergence to a trivial solution when the mask M takes the entire
image. Video explanation: www.rebrand.ly/Rewarding-Objects-mp4

the database to train the Critic. Every time a player collected the log item that appears after repeatedly
using the attack action against a tree trunk, the agent received reward = 1. In all other steps the agent
received reward = 0.

3 TRAINING AND RESULTS

The training is divided into two stages. In stage one we train the Critic using the Bellman equation to
predict the expected value of a state: Vs = rs + γVs+1 where our states are 64x64x3 HSV single

Figure 2: Segmentation results: The U-Net model learns to segment reward related objects (tree trunks)
without any label information but only from reward signals. In the first four columns the trained U-Net
model detects different instances of rewarding objects (white and brown tree trunks). The model is
resistant to generation of false positive masks (columns 5-8). The first row shows the input images,
the second row shows the masked segments of the input images, and the third row shows the U-Net
generated masks. Video demonstration: www.rebrand.ly/Rewarding-Objects-mp4
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image observations. We use a batch size of 128 and the mean squared error as loss function. After
the first stage, we use the trained Critic to split the database into images with high critic values A and
low critic values B for the stage two.

Stage two (mask training) is subdivided into two phases (shown in Fig 1) for training the U-Net to
mask reward-related objects in images, as well as continue training the Critic. The challenge is that
we don’t have explicit ground truth masks as the training target. Instead, we pick image pairs such
that always one member (image A) has high critic value and the other (image B) low critic value and
use these pairs to implement a contrastive loss to detect reward-related objects. To this end, we use
the U-Net to generate a mask M from the high-critic-value image A (Phase 1). Next, in Phase 2, we
probe this mask for how strongly it happens to capture reward-related content in image A. We do
this by swapping the pixels in images A, B that are in mask position, thereby generating a second
pair of images: X (image A with masked pixels replaced by image content of B) and Y (image B
with image content substituted by masked pixels from image A). Key idea then is to evaluate the
ability of the generated mask M for capturing the reward-related content of image A by comparing
critic values within pairs A, Y and B, X: for a "perfect" mask, the critic values in both pairs should
be similar (high in the first pair, since Y has received all reward related content of A, and low in the
second pair, since in X all reward-related content has become replaced by contents from low-reward
image B). This translates into training the U-Net with the Backpropagation 2 path where individual
pixels of the mask produced in Phase 1 are adjusted by gradients penalizing differences VA − VY
and VB − VX in Critic’s values for image pairs A, Y and B, X (Fig. 1). To better exemplify this: A
poor mask would leave all essential image elements within X, contributing a high training loss, since
then VX remains high, while VB is low; similarly, Y would hardly receive any reward related content
from A, keeping VY low whereas VA is high (Fig. 1). Using this adversarial contrastive training
scheme allows us to generate high-quality masks highlighting reward-related objects for RL in a
self-supervised, domain-agnostic manner.

In order to avoid trivial solutions like a full image mask replacing the complete images, we apply a
linear regularization to enforce sparse masks. The loss is minimized if the mask highlights features
that the critic uses to predict a high value. During stage two (mask training) the implicit mask loss
will influence the Encoder and therefore also influence the Critic. That is why we continue the critic
training as in stage one.

If in Phase 1 (of stage 2) we only sample high value images for A (as indicated in Fig. 1), it is hard
for the Decoder to learn to produce empty masks for low value images. Therefore, we also include a
proportion of low value images for A. Every batch contains 128 images: 32 with high critic value and
32 with low critic value are used as A and 64 with low critic value are used for B. Note that this will
not produce any "bad" gradients from the chosen error functions, since VA − VY and VB − VX will
both be small, this time because both images have similar (low) critic values from the outset. This
allows the gradient from the regularization term that favors sparse masks to drive the U-Net response
towards the desired empty mask output when receiving a low critic image as input. No such problem
exists with regard to exclusively choosing low value images for B, since the Decoder produces its
mask based on A and relies on the fact that B has a low value. U-Net segmentation results are shown
in Figure 2.

4 DISCUSSION

In this contribution we showed that it is possible to generate high-quality masks depicting reward-
related objects in images without explicit label information, but only using feedback from the critic
model. This makes our approach flexible and domain agnostic.

Both of our training stages demand similar features. So instead of using a completely separated
critic and U-Net model, they both share the encoder: In first stage the encoder is trained to create a
meaningful feature representation of observation images that makes the expected-reward prediction
from the critic possible. In the second stage the Decoder can use skip connections and the Bottleneck
to access these representation, which we found greatly improves mask quality in comparison to a
separate critic.

There are interesting possibilities for future work. RL has been applied successfully in various video
games for training high-performing agents. Since these games often require perceptive modules
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identifying progress-related objects, it seems obvious that our approach could boost exploration.
Also an important sub-field in RL is to find ways to better apply RL within the real world. This is
still a major problem since real world training would require a huge amount of training time and
adapting an artificially trained model to the real world is difficult since simulation can not capture all
conditions. Our approach could be used as an add-on module for realizing a faster and goal-directed
training of the agent in real-life. For training this add-on, only unlabeled demonstrations and reward
information would be necessary.
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