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ABSTRACT
Introduction. Cyberbullying, as a form of abusive online behavior,
although not well–defined, is a repetitive process, i.e., a sequence
of harassing messages sent from a bully to a victim over a period
of time with the intent to harm the victim. Numerous automated,
data–driven approaches have been developed for the automatic
classification of cyberbullying instances, with emphasis on classifi-
cation accuracy. While the importance of highly accurate classifiers
is undoubted, a key pitfall of existing cyberbullying detection meth-
ods is that (i) they disregard the repetitive nature of the harassing
process, and (ii) they work retrospectively (i.e., after a cyberbully-
ing incident has occurred), making it difficult to intervene before
an interaction escalates. Motivated by the scarcity of methods to
anticipate cyberbullying, we focus on cyberbullying prediction with
the goal of reducing the time from detection to intervention.
Methods. We formulate the prediction of the number of harassing
comments a media session will receive over a period of time as a
regularized multi–task regression problem. In our formulation, we
consider two settings where (i) the progression of cyberbullying be-
havior from some time point in the near future to subsequent time
points further into the future is modeled given limited knowledge
of the recent past, and (ii) increasingly more historical data is accu-
mulated to improve prediction accuracy. To validate our approach,
we conduct an extensive experimental evaluation on a real–world
dataset from Instagram, the online social media platform with the
highest percentage of users reporting experiencing cyberbullying.
Results. Intuitively, the larger the number of observed comments
in the recent past of a media session, the better the predictive
power of our approach. The downside to using more historical
data is that decisions must be postponed until more comments are
collected. Therefore, the trade–off between accuracy and decision
speed is examined. In general, our approach outperforms compet-
ing approaches by up to 31.4% and 46.2% in Recall and Mathew
correlation coefficient respectively.
Discussion. Our approach can be used to effectively prioritize
media sessions for increased monitoring as time goes by or for
immediate intervention before a conversation escalates. In future
work, we plan to incorporate additional features and investigate
the generalizability of our approach on other key social networking
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venues where users frequently become victims of cyberbullying.
Beyond cyberbullying prediction, our work is, to the best of our
knowledge, the first to provide insights on the forecasting per-
formance of multi–task regression as a function of the prediction
horizon and the length of available historical data. We thus believe
that our work can serve as a reference point on the forecasting
performance of multi–task regression both for researchers and
practitioners.
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1 INTRODUCTION
A growing number of online users abuse the Internet to harass
other users, leading to a tide of cyberbullying incidents [12, 18].
Bullying, once limited to physical spaces (e.g., schools, workplaces
or sports fields) and particular times of the day (e.g., school hours),
can now occur anytime, anywhere [24, 37]. Cyberbullying, a type
of cyberharassment, can take many forms, typically however, refers
to repetitive hostile behavior using digital media (e.g., hurtful com-
ments, videos and images) in an effort to intentionally and repeat-
edly harass or harm individuals [24]. Cyberbullying is permanent
(i.e., content remains accessible online unless removed) and poten-
tially widespread (i.e., online social media provide a wide audience,
and quick spread of online posts).

The potentially devastating real–world consequences to victims,
which include but are not limited to psychological suffering and
isolation, escalated physical confrontations, and suicide [18, 20],
have led to the development of numerous methods for the auto-
matic classification of cyberbullying instances [1, 35, 36] in a va-
riety of online social networks and with a plethora of constraints
[5, 8, 32, 33, 43, 44]. While highly accurate classifiers are of para-
mount importance to greatly reduce the burden on human moder-
ators employed by online social media platforms, a key pitfall of
existing cyberbullying detection methods is that they work retro-
spectively (i.e., after a cyberbullying incident has occurred), making
it difficult to intervene before an interaction escalates. In contrast,
approaches for cyberbullying prediction would be advantageous in

Full & Short Papers WebSci ’19, June 30–July 3, 2019, Boston, MA, USA

37

https://doi.org/10.1145/3292522.3326024
https://doi.org/10.1145/3292522.3326024
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3292522.3326024&domain=pdf&date_stamp=2019-06-26


(i) identifying in advance vulnerable users that may fall victims of
cyberbullying (i.e., before toxic comments, from which text–based
features can be extracted, appear), using only limited data such as
the image and caption provided by the creator of the media, and
(ii) scaling detection methods to the staggering rates at which con-
tent is generated (e.g., 95 million photos and videos are shared on
Instagram per day1) in online social media by targeting available
computational resources on the subset of media sessions projected
to experience cyberbullying, rather than blindly classifying all me-
dia sessions indiscriminately.

Present Work.Motivated by the scarcity of methods to antic-
ipate cyberbullying [22, 26], and the fact that most existing ap-
proaches disregard the repetitive nature of the harassing process
[44], we focus on cyberbullying prediction on Instagram, the online
social media platform with the highest percentage of users report-
ing experiencing cyberbullying [18]. Instagram has more than 800
million registered users as of Sep. 2017, and over 40 billion uploaded
photos as of Oct. 2015.

Instead of trying to detect all possible harassment, aggressive,
antisocial, inflammatory, or toxic content in online social media,
we focus on harassing comments, that are common to a number
of types of unwanted behavior, including cyberharassment and
cyberbullying. More importantly, we are interested in exploiting
the temporal dynamics of the repetitive bullying behavior over time
directly in our modeling. To this end, we formulate cyberbullying
prediction as regularized multi–task regression [2, 4, 13], where
the progression of the number of hateful comments Instagram
content will receive over time is estimated from limited historical
data. Our experimental results show that our proposed approach
consistently outperforms competing methods. We also perform
sensitivity analysis to examine the impact of the parameters on the
performance of the proposed approach.

Our main contributions can be summarized as follows:

• Novel Formulation:We propose a novel formulation of cy-
berbullying prediction on Instagram as a regularized multi–
task regression problem. In order to support different in-
tervention strategies, as well as to assess the difficulty of
variants of this problem, we consider two settings as fol-
lows. In our first formulation, we estimate the progression
of harassment from some time point in the near future to
subsequent time points further into the future based on lim-
ited knowledge of the recent past. In our second formulation,
increasingly more historical data is accumulated to improve
prediction accuracy. A model learned from the first formu-
lation would result in projections at multiple times in the
future, therefore providing a potential timeline for escalat-
ing discourses, whereas, the second formulation attempts to
improve overall prediction accuracy by leveraging common
knowledge shared across the forecasting tasks.
• Experimental Evaluation:We evaluate the forecasting ac-
curacy of our approach as a function of the prediction hori-
zon and the length of historical data on a real–world dataset
of 10K Instagram comments. To ensure the reproducibility

133 Mind–Boggling Instagram Stats & Facts for 2018: https://www.wordstream.com/
blog/ws/2017/04/20/instagram-statistics

of our work, we make the source code of our approach avail-
able at https://github.com/IDIASLab/CyberBullyingPrediction.
• Broader Applicability: Intuitively, the predictive power
of forecasting models improves with the accumulation of
historical data and deteriorates further into the future predic-
tions. To the best of our knowledge, this is the first work to
examine the forecasting performance of multi–task regres-
sion as a function of the prediction horizon and the length
of available historical data.

Outline. The rest of this paper is organized as follows. We first
review prior and related work in Section 2. We formulate the prob-
lem of cyberbullying prediction in online social networks in Sec-
tion 3. We describe our evaluation methodology and results on a
real–world dataset in Section 4. We conclude with a discussion of
our results, limitations, and possible future directions in Section 5.

2 RELATEDWORK
Cyberbullying Detection.We argue that it is imperative to pre-
dict the potential of a media session to receive harassing comments
in the future so as to facilitate timely interventions. However, with
the exception of few recent attempts at cyberbullying prediction
[22, 26], the majority of prior work, an overview of which can be
found at [1, 35, 36], focuses on cyberbullying detection. Neverthe-
less, with the exception of [44], no prior work has studied cyber-
bullying as a repetitive process. Out of the two recent methods for
cyberbullying prediction, [22] examined prediction feasibility given
only the initial image–content and text caption of an Instagram
post, whereas [26] focused on predicting harassment escalation in
comments following the first hostile comment in a discussion. In
contrast to these methods, the approach presented in this work can
make predictions at any given time.
Cyberbullying Indicators. Despite the scarce research work on
cyberbullying prediction, features that may be useful for predict-
ing cyberbullying instances have been explored in the context of
cyberbullying detection. Specifically, text has been a major factor
in detecting cyberbullying in online social media. However, fea-
tures ranging from gender information, user context, linguistic and
non–verbal features, and graph properties have also been used
[5, 6, 9, 46]. The use of profanity and hate speech has been well
correlated with toxic comments on the Web [10, 11, 16, 17]. How-
ever, what may constitute hate speech and profanity is context
dependent (i.e., relative to time and location) [3]. The sociological
literature review in [26] motivated some of the features used in this
work.
Hostility & Harassment Detection. The related problem of de-
tecting harassing and hostile behavior on the Web has been very
well studied [5, 7, 10, 16, 21, 23, 25, 28, 29, 34, 38, 42], with the ma-
jority of this body of work having primarily focused on text–based
features, excluding critical information in the various modalities
(e.g., image, video, user profile, time, and location) typically asso-
ciated with content shared on online social media [8]. Similarly
to state–of–the–art for cyberbulying detection, to the best of our
knowledge, all existing approaches for detecting hostile content on
the Web ignore the fact that as a process that unfolds with time,
cyberbullying is repetitive in nature [44].
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Multi–Task Learning. Multi–task learning utilizes commonali-
ties among multiple related prediction problems to improve perfor-
mance [2, 4, 13]. The key challenges in multi–task learning are to
define and exploit such relatedness [13], while maintaining a small
number of predictive features shared across all learned models [2].
Multi–task learning approaches have been applied in many do-
mains, however, to the best of our knowledge, ours is the first work
that applies multi–task learning for harassment intensity predic-
tion. More importantly, no prior work has examined the forecasting
power of the multi–task learning framework as a function of the
prediction horizon and the length of historical data.

3 PROBLEM FORMULATION
Consider a large setM of N media sessions, where each media
session s ∈ M belongs to user u ∈ U , has an associated media
object (i.e., image or video) along with its corresponding caption
and hashtags, and a set of comments {(c1, t1), . . . , (cNs , tNs )} from
users inU , where ci , i ≤ Ns indicates the i−th comment with cor-
responding timestamp ti , and Ns denotes the number of comments
in s . For training and testing purposes, we additionally consider
∀s ∈ M set {y1, . . . ,yNs }, whereyi denotes the cumulative number
of harassing comments session s has received up to time ti .

Our goal is to predict harassment intensity (i.e., the future
number of harassing comments) at t time points in the future, for
any given media session. Specifically, given time point γ , we wish
to estimate harassment intensity up to timestamp γ + h, where
h is the prediction horizon. In this context, short– and long–term
prediction refer to the scenarios where h = 1 (e.g., the next time
point) and h > 1, respectively.

From an intervention perspective, a greater prediction horizon
provides more flexibility in taking preventative measures as the
time between the final comment observed by the system and the
time of escalation increases. However, the ability to accurately
forecast the number of harassing comments up to some time in the
future may depend on (i) the number of past comments on a media
session (i.e., length of historical data), and (ii) how far ahead in the
future a prediction is to be made (i.e., prediction horizon). Intuitively,
long–term prediction is harder than short–term prediction, as many
factors can potentially affect human behavior online [30].

Figure 1 shows the evolution of harassment intensity over time
for a random sample of media sessions in our dataset (Section 4.3).
As expected, not all media sessions experience the same level of
harassment. More importantly, harassing behavior tends not to be
evenly spread out in time. Both (i) bursts of harassing comments,
whichmay be indicative of abusive behavior inwhich several people
gang up on a victim [39], and (ii) incremental changes, which may
reflect repetitive harassing comments from a single individual, can
be observed.

To capture such dynamics, we formulate the problem of harass-
ment intensity prediction as a regression problem. Specifically, in
order to predict at time γ the harassment intensity, yγ+hs , of media
session s at future time γ + h, we extract training features xγs from
the past laд comments (i.e., at times γ − 1,γ − 2, . . . ,γ − laд). For
each media session, we construct a training input xγs and output
y
γ+h
s , and we wish to learn a function yγ+hs = f (x

γ
s ,h) for multiple

Figure 1: Temporal dynamics of harassment intensity in a
random sample of Instagram media sessions in our dataset.
Each curve corresponds to a media session, and shows the
cumulative number of harassing comments the session at-
tracts over time. The x–axis represents logical time, which
increases for eachmedia session when a new harassing com-
ment arrives.

combinations of γ and h. By considering the prediction of harass-
ment intensity at a single time point as a regression task, a simple
approach to learn f (x

γ
s ,h) is to train one model for each combi-

nation of γ and h independently. However, different time points
in the future may be represented as distinct tasks, or alternatively,
tasks can be defined by the length of historical data used for predic-
tion. Additionally, jointly training multiple regression problems for
different combinations of γ and h may be advantageous due to the
intrinsic temporal smoothness relationship among the regression
problems (e.g., the difference in the number of harassing comments
between two consecutive time points should in general be small).

The above reasoning motivates us to formulate harassment in-
tensity prediction as a multi–task regression problem [2, 4, 13].
Specifically, we consider two formulations, namely:
• Fixed–Lag Varying–Horizon Prediction Model (FLVH ), and
• Varying–Lag Fixed–Horizon Prediction Model (VLFH ),

which are detailed in Sections 3.1 and 3.2 respectively. FLVH at-
tempts to model the progression of cyberbullying behavior from
some time point in the near future to subsequent time points fur-
ther into the future, given a limited knowledge of the recent past
(this knowledge of the recent past is common among tasks). Con-
versely, VLFH focuses on improving the prediction of harassment
intensity at a given point in time (common to all tasks) by accumu-
lating increasingly more historical data. Figure 2 provides a visual
illustration of our proposed formulations.

3.1 Fixed–Lag Varying–Horizon Prediction
Model

Consider a multi–task regression problem of t time points with n
training samples of d features each. Let Xi = {Xi,1, ...,Xi,n }, 1 ≤
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Figure 2: Illustration (better seen in color) of the proposed formulations for cyberbullying prediction on Instagram. (a) Fixed–
Lag Varying–Horizon prediction model (Section 3.1). (b) Varying–Lag Fixed–Horizon prediction model (Section 3.2)

i ≤ t be the input data, and Yi = {yi,1, ..,yi,n } be the targets, where
Xi,s is a vector of length d , each element of which is a feature
extracted from the set of observed comments for task i , and yi,s is
the predicted number of aggressive comments that media session
s will receive up to future time hi = iτ . Parameter τ ∈ Z+ is used
to introduce prediction gaps (i.e., make the time points for which
prediction is to be made non consecutive). The goal is to learn t
models f i (Xi ) = XT

i Wi , with weight matrixW = {Wi |i = 1, ..., t },
where a linear modelWi is to be estimated for ∀i so as to predict a
harassment intensity score Yi for each media session up to future
time hi , given Xi . Therefore, our objective is to estimate matrix W.
Figure 2(a) illustrates this formulation.

The rationale behind this formulation is that in practical applica-
tions, it can be used to predict the progression of harassment in a
media session over time, from the near future (e.g., h = 1), to a time
h = tτ further into the future, where t or τ can be arbitrarily large,
given only limited knowledge (i.e., k comments) from the recent
past. Note that long–term prediction is generally harder than short–
term prediction considering the many factors that can potentially
affect the discourse of social interactions in online social networks
[30]. Typically two broad categories of methods exist for long–term
prediction [41]: (i) training a model for each prediction horizon,
and (ii) iteratively use previously predicted values as input to the
next prediction task. We chose the first category when formulating
FLVH to avoid the error accumulation problem of iterative methods
[41].

3.2 Varying–Lag Fixed–Horizon Prediction
Model

Similarly to our FLVH model, our goal in this formulation is to learn
t models W = {Wi |i = 1, ..., t } to predict the number of aggressive
comments a media session will receive by a future time h. However,
unlike FLVH in which the number of observed comments across
the t tasks is fixed, here, we vary the length of the historical data
used in each task by considering varying lags, laдi = (i − 1) ·∆t +k ,
so as to incorporate progressively more historical data into the
predictive model. Variable k ≥ 1 controls the minimum number of
comments considered. In other words, VLFH is designed to predict
harassment intensity for each media session at a future time point
h (which is common across tasks) by learning a model based on
past comments, starting from the k most recent comments, and
incorporating ∆t more comments at a time. Input dataX and targets
Y are constructed in the same manner as in FLVH. Figure 2(b)
illustrates this formulation.

The benefit of this formulation is that the impact (if any) of
additional past information on the performance of harassment
intensity prediction can be quantitatively evaluated.

3.3 Loss Function
Each of the t tasks in our two formulations above can be learned
independently using conventional single–task learning. However,
independently learning models to predict far into the future could
result in inferior predictive power; intuitively the further the pre-
diction into the future, the less indicative historical data becomes.
Moreover, the majority of media sessions on Instagram has been
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shown to receive ≤ 15 comments on average [22], leading to a
sparsity problem (i.e., not enough training data).

To address these challenges, both of our proposed formulations
learn all prediction tasks simultaneously, leveraging in this way
commonalities among tasks (e.g., shared features extracted from the
same historical data) to effectively address the training data spar-
sity problem, as well as the intrinsic temporal smoothness among
different tasks (i.e., the number of harassing comments cannot vary
significantly from one timestamp to another) to potentially improve
overall prediction performance. The additional advantage of our
proposed formulations is that they can both be used in an online
setting; a prediction can be made at any point in the lifetime of a
session once training has been performed.

Formally, each of our proposed formulations solves the following
general optimization problem: min

W
L (W) + λΩ(W), where L (W)

denotes the empirical loss function, Ω(W) encompasses regular-
ization terms that encode task relatedness, and λ is a vector of
tuning parameters used to balance the trade–off between the loss
and regularization terms. Specifically, the goal for each task i is to
learn matrix W, such that the penalized empirical loss

L (W,X,Y) =
t∑
i=1
∥Xi,sWi − Yi ∥

2
F + λ1 ∥W∥

2
F +

λ2
t−1∑
i=1
∥Wi −Wi+1∥

2
F + λ3 ∥W∥2,1 (1)

isminimized. In Eq. 1, the first term corresponds to the least–squares
loss function. The first regularization term, λ1 ∥W∥2F , controls the
generalization error, λ1 controls the sparsity of W (equivalently
the complexity of the trained models), and ∥.∥2F is the square
of Frobenius norm of a matrix. The second regularization term,
λ2
∑t−1
i=1 ∥Wi −Wi+1∥2F , controls the similarity between two neigh-

boring tasks. When λ2 is large, the difference between any two
neighboring tasks is forced to be small (i.e., large prediction devia-
tions at neighboring time points are penalized). The group Lasso
regularization term, λ3 ∥W ∥2,1, based on the ℓ2,1−norm penalty
for feature selection [45], ensures that all models at different time
points share a common set of features. This is achieved by intro-
ducing row sparsity in W across all tasks using the ℓ2,1−norm.

Learning all models requires obtaining the optimal weight ma-
trix W by computing: W∗ = argmin

W
L (W,X,Y). As the objec-

tive function consists of smooth and non–smooth terms, meth-
ods such as subgradient descent can be used to tackle convex and
non–differentiable functions, but have high complexity O ( 1√

K
),

where K denotes the number of iterations. For faster convergence
rate, we use the accelerated gradient descent method, an itera-
tive algorithm with O ( 1

K 2 ) complexity [27]. In accelerated gra-
dient descent, the solutionWi + 1 on each step is computed as
a gradient of the current search pointWi . The key operation in
this iterative process is the computation of the proximal operator
W∗ = argmin

W
η
2
W − (Wi −

1
η∇L (Wi )


2
+ Ω(W), where η is the

step size, to find the next search pointW ∗ based on the current
search pointWi . Accelerated gradient descent differs from the sub-
gradient method in the sense that the current search pointWi is
the affine combination of the previous two points with parameter

α , instead of only using the latest one. Specifically,Wi is updated
asWi+1 =Wi − α (Wi −Wi−1), whereWi is initialized by Xi × Yi ,
and the stopping criterion is set to 10−5. Parameters α and η are
initialized to −1 and 1, respectively.

4 EXPERIMENTAL EVALUATION
In this section, we provide a thorough experimental evaluation of
our proposed formulations. Specifically, we begin by evaluating
the effectiveness and efficiency of our approach on real data in
comparison to baselines. We continue by studying the parameter
sensitivity of our formulations. In our experiments, we considered
t = 10 tasks, and set k = 10 and τ = 1 for both FLVH and VLFH,
and ∆t = 2 for VLFH. All experiments were conducted on a 64–
bit machine with a dual–core Intel processor @2.7GHz and 16GB
memory.

4.1 Baselines
To the best of our knowledge, only two methods have thus far been
proposed for cyberbullying prediction, both on Instagram [22, 26].
We included both of these methods in our experimental evaluation
for performance comparison.
• LRFS [22]: Logistic Regression classifierwith forward Feature
Selection for cyberbullying prediction on Instagram media
sessions based on a cohort of features extracted from the first
15 comments and caption, post time, user properties, and
image content. Our performance comparison in Section 4.5
demonstrates the superiority of our approach over LRFS,
while using only a fraction of the features used by LRFS.
• LRLR [26]: Logistic Regression classifierwith L2 Regulariza-
tion that, given all comments up to and including the first
hostile comment, predicts whether the total number of hos-
tile comments on a media session will be greater than or
equal to a predetermined threshold N after some future time
h. LRLR has been shown to achieve its best performance for
a threshold of 10 (i.e., N = 10) and a lead time of 3 hours
(i.e., h = 3) [26]. We reached the same conclusion in our
experiments, and thus set parameters N = 10 and h = 3 (this
corresponds to ∼ 1 timestep, on average, in our formulation)
for a fair comparison in Section 4.5.

In addition to state–of–the–art for cyberbullying prediction, we
are also interested in evaluating the benefit of learning multiple
tasks simultaneously as opposed to learning t tasks independently.
Therefore, we consider a final baseline, termed STL for Single Task
Learning, in which the penalized empirical loss function in Eq. 1 is
used, but contrary to our methods, all models are trained indepen-
dently by setting the term λ2

∑t−1
i=1 ∥Wi −Wi+1∥2F = 0 in Eq. 1.

4.2 Evaluation Metrics
We use coefficient of determination (i.e., R2 score) as our main
evaluation criterion to measure how well observed outcomes are
replicated, based on the proportion of total variation of outcomes
explained by the model [40]. A negative R2 score indicates bad fit,
whereas R2 = 1 indicates perfect fit. The regularization terms in our
loss function used to learn a more generalizable model (i.e., reduce
overfitting) are expected to result in a relatively low R2 score due to
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larger mean squared error. Additionally, the frequency of harassing
comments could be arbitrarily large, leading to unbounded errors.

We further consider the most prevalent performance metrics in
empirically evaluating the classification performance of cyberbul-
lying detection methods. These include accuracy, precision, recall,
and F–measure. As such metrics however can result in misleading
conclusions in highly imbalanced datasets [19], we additionally
consider the Matthews correlation coefficient (MCC), which is less
sensitive to data skewness as it considers mutual accuracies of
both classes and all four values of the confusion matrix [31]. We
compute these metrics for the cyberbullying class by treating the
harassment intensity prediction problem as a binary classification
task. Specifically, we consider a naive classification rule motivated
by the definition in [22], where a media session is classified as an
instance of cybebullying if the predicted frequency of aggressive
comments is ≥ 2. This simplified classification problem additionally
enables a direct and fair comparison with the baselines.

4.3 Dataset
We use comments spanning 22.1% of all media sessions containing
≥ 40% profanities from the Instagram dataset available by [22].
Comments have been manually annotated by 10 experts. The orig-
inal dataset has been collected using snowball sampling starting
from a random seed node. For each user, all media the user shared,
users who commented on the media, and the comments posted on
the media had been collected. Of all media sessions containing at
least 40% profanities 47.5% had been manually labeled as positive if
“there are negative words and/or comments with intent to harm some-
one or other, and the posts include two or more repeated negativity
against a victim” [22]. We performed 3−fold cross validation for
model selection, where within each fold, 2/3 of the data was used
for training, and the rest for testing.

4.4 Feature Engineering
Although feature engineering may be as important as modeling in
a prediction problem, our main objective in this work is to improve
upon existing cyberbullying prediction methods. For a fair com-
parison, we consider the following features: #. of mentions, #. of
words, density of uppercase, density of punctuation, #. of hashtags,
#. of urls, density of bad words from a dictionary [14], compound
Vader sentiment [15], and ten unigrams selected by [22] and [26].
Although [26] uses additional features (i.e., unigrams, word2vec,
and lexicons), incorporating all such features into our multi–task
regression formulation could be problematic in terms of efficiently
solving the optimization problem to find W. The use of a much
smaller subset of features as compared to [26] could put our ap-
proach at a major disadvantage in terms of data representation.
Nevertheless, our results show improvements over LRLR even with
such a significantly smaller feature set.

Table 1 shows the specific features, ranked from highest to lowest,
selected by our proposed formulations across different tasks. The
features selected are very relevant to cyberbullying detection, as
well as consistent across tasks.

Approach Features
FLVH “fuck", “bitch", #. of mentions, “hate",

#. of uppercase letters, “beauty", text
length

VLFH “fuck", “bitch", #. of mentions, “hate", #.
of uppercase letters, “ugly", # of hash-
tags, “shut", “gay"

Table 1: Top features (ranked by coefficients) selected by
FLVH (top) and VLFH (bottom).

Accuracy Recall Precision F–measure MCC
FLVH (h = 1) 0.7087 0.8807 0.6085 0.7173 0.4743
FLVH (h = 2) 0.7152 0.8841 0.6290 0.7330 0.4807
FLVH (h = 3) 0.7138 0.8984 0.6365 0.7431 0.4792
FLVH (h = 4) 0.7198 0.9079 0.6497 0.7558 0.4868
FLVH (h = 5) 0.7237 0.9164 0.6592 0.7653 0.4914
FLVH (h = 6) 0.7261 0.9305 0.6656 0.7747 0.4945
FLVH (h = 7) 0.7317 0.9350 0.6758 0.7834 0.4992
FLVH (h = 8) 0.7345 0.9390 0.6829 0.7897 0.4990
FLVH (h = 9) 0.7412 0.9405 0.6939 0.7975 0.5049
FLVH (h = 10) 0.7431 0.9471 0.6982 0.8026 0.5055

LRFS 0.7489 0.7206 0.7217 0.7211 0.4768
Table 2: FLVH performance comparison with LRFS [22].

4.5 Performance Comparisons
1) Fixed–Lag Varying–Horizon Prediction: LRFS [22] resembles our
FLVH model in that a fixed number of comments is used to classify
media sessions. However, unlike FLVH, in which predictions are
made in predetermined points h in the future from any given time
γ , a “prediction" by LRFS is made only after the last comment for a
givenmedia session becomes available.We also report the aggregate
performance of FLVH across all tasks for comparison with LRFS.
Note that this comparison is unfair to our model since the problem
we are trying to solve does not concern the “eventual” status of
media sessions (i.e., binary classification after the last comment for
a given media session becomes available). Instead, FLVH focuses
on predicting the number of harassment comments a session is
expected to receive in the near future (i.e., regression problem).

Table 2 summarizes this performance comparison. The results
indicate that our approach significantly outperforms LRFS with
respect to recall, F-measure and MCC both for individual tasks (i.e.,
different prediction horizons) and on average.

2) Varying–Lag Fixed–Horizon Prediction: LRLR [26] uses all avail-
able comments in a media session to predict the presence of cyber-
bullying 3 hours after the most recent hostile comment. We found
the average number of comments received within 3 consecutive
hours in our dataset to be 0.042. Since LRLR uses a fixed prediction
horizon for all media sessions, it is more similar to our proposed
VLFH method when the prediction horizon is set to 1. Unlike VLFH
where in task i , only k + ∆i lag comments are used, LRLR uses all
past comments up to the first hostile comment to predict harass-
ment intensity for all media sessions. Nevertheless, to verify the
extent to which the amount of past knowledge affects (if at all)
prediction performance, we compare all VLFH tasks to LRLR.

Table 3 shows the results. Notably, the performance of VLFH
across all metrics improves as more past comments are considered.
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Figure 3: Comparison between (a) FLVH and (b) VLFH with single–task learning in terms of R2 score.
.

Accuracy Recall Precision F–measure MCC
VLFH (lag = 10) 0.7131 0.8759 0.6237 0.7286 0.4712
VLFH (lag = 12) 0.7272 0.9179 0.6504 0.7613 0.5020
VLFH (lag = 14) 0.7395 0.9370 0.6728 0.7832 0.5204
VLFH (lag = 16) 0.7560 0.9517 0.6970 0.8047 0.5441
VLFH (lag = 18) 0.7740 0.9651 0.7196 0.8244 0.5719
VLFH (lag = 20) 0.7883 0.9698 0.7392 0.8389 0.5902
VLFH (lag = 22) 0.8002 0.9731 0.7557 0.8508 0.6052
VLFH (lag = 24) 0.8087 0.9761 0.7677 0.8594 0.6149
VLFH (lag = 26) 0.8151 0.9784 0.7772 0.8662 0.6198
VLFH (lag = 28) 0.8157 0.9803 0.7800 0.8688 0.6161

LRLR 0.5918 0.4759 0.3193 0.3704 0.1017
Table 3: VLFH performance comparison with LRLR [26].

The results also show that VLFH consistently outperforms LRLR in
terms of accuracy, recall, precision, F–measure and MCC.

3) Advantage of Multi–Task Regression: Figure 3 reveals the advan-
tage of FLVH and VLFH in predicting the future by training tasks
jointly given the same amount of access to past information. Both
of our models take advantage of the commonality between tasks to
address the sparsity of training samples and improve the forecast-
ing performance for all future time points, as opposed to STL (i.e.,
single–task learning model) in terms of R2 score. Specifically, the
results demonstrate that learning all tasks jointly is advantageous
to single–task learning under the assumption that the further in
the future a prediction is to be made, the less indicative the present
(similarly, the recent past) becomes.

4.6 Parameter Sensitivity Analysis
An important issue in the practical application of FLVH and VLFH
is the selection of regularization parameters λ1, λ2, and λ3. Ideally,
λ1 and λ3 should each be set to a large value so that only the most
powerful features will be selected, and the time complexity of the
learned model becomes small. Similarly, a large value for λ2 should

be used to penalize large prediction deviations at neighboring time
points. Setting λ2 = 1000, while varying parameter λ1 and λ3
accordingly from 0 to 1000 with a step size of 200, we found the
maximum difference between accuracy scores across all tasks to
be less than 0.9%. We obtained similar results for λ2 when keeping
λ1 fixed. We obtained these results for both FLVH and VLFH. The
“insensitivity" to parameter λ3 can be potentially explained by the
large variance in the discriminating capability of features for the
particular problem of harassment intensity prediction. In other
words, it is possible that even without regularization (i.e. λ3 = 0),
the coefficients of “less important” features are already set close to
zero.

Next, we focus on the sensitivity (if any) of FLVH and VLFH on
the number of observed comments used for prediction (i.e., laд),
and prediction horizon h. Figure 4 shows the sensitivity results of
varying the value of h from 5 to 20 for FLVH (i.e., a task refers to a
time point progressively further away in the future). In general, for
all tasks, accuracy increases as h increases. Intuitively, the larger
the number of observed comments in the recent past of a media
session, the better the predictive power of the model, even for 10
comments into the future. Thus, setting h to larger values can yield
better accuracy. The downside to setting h to larger values is that
decisions must be postponed until more comments are collected.
Therefore, the trade–off between accuracy and speed of decision
must be considered when deciding which value of h to use.

Figure 5 shows the sensitivity results of VLFH (i.e., the number of
observed comments varies across tasks) on the prediction horizon,
in the range {3, 5, 10, 15, 20}. Note that in our dataset, the maximum
number of comments in a media session is 147. Thus, for laд > 28,
no media sessions exist with enough comments to train a model
with > 6 tasks. Accuracy is relatively stable for all tasks, with a
slight increase as h increases for 10 ≤ laд ≤ 16 (i.e., for up to
16 past comments). Accuracy is quite stable even when h is large,
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Figure 4: Sensitivity analysis of the proposed FLVH model
on the number of observed comments (i.e., laд).

Figure 5: Sensitivity analysis of the proposed VLFH model
on prediction horizon.

demonstrating that a good prediction can be made even with a
small number of observed comments.

5 CONCLUSION
Contributions. In this paper, we presented two novel multi–task
regression formulations to the problem of harassment intensity
prediction on Instagram given a limited amount of historical data.
By distinguishing between media sessions that are more likely to
receive many harassing comments in the future, and those that are
expected to receive few or none, our proposed approach can be
used to effectively prioritize media sessions either for increased
monitoring as time goes by or for immediate intervention before a
conversation escalates, rather than investigating an event after its
occurrence.

Our work considered the estimation of predictive models at dif-
ferent time points in the future with both fixed and varying lengths
of historical data as a multi–task regression problem. Our extensive
experimental evaluation results demonstrate the benefit of leverag-
ing shared information between prediction tasks, which effectively
increases the sample size, and incorporating into the training pro-
cess the intrinsic temporal smoothness relationship between tasks
to improve forecasting accuracy. Our results additionally showed
that our approach can effectively predict harassment intensity on
Instagram media sessions, outperforming competing methods by
up to 31.4% and 46.2% in recall and Mathew correlation coefficient
respectively.

Future Directions. In our ongoing work, we focus on features
that have been shown to be informative for cyberbullying classi-
fication and more recently for harassment prediction. Given that
Instagram is primarily a photo-sharing site, in future work, we plan
to investigate the predictive power of non–text features extracted
from image classification algorithms. Attributes engineered from
user profiles and activity history as well as network structure infor-
mation may provide additional context for forecasting. Finally, it
may be possible to extract from these data insights into human be-
havior. For example, it may be possible to identify responses (if any)
that may diffuse, as opposed to escalate, harassment in online social
media. We are also planning to evaluate the performance of our
approach on additional datasets from diverse platforms including
Ask.fm and Twitter, which are reported to be key social networking
venues where users frequently become victims of cyberbullying.

Broader Applicability. Beyond cyberbullying, our work is, to
the best of our knowledge, the first to examine the forecasting
power of the multi–task regression framework as a function of the
prediction horizon and the length of historical data. Our findings
based on our experimental results reveal the advantage of multi–
task regression over traditional single–task learning methods for
forecasting, particularly so as the prediction horizon increases. We
thus believe that our work can serve as a reference point on the
forecasting performance of multi–task learning both for researchers
and practitioners.
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