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ABSTRACT

Large language models (LLMs) have emerged as a powerful method for causal
discovery. Instead of utilizing numerical observational data, LLMs utilize associ-
ated variable semantic metadata to predict causal relationships. Simultaneously,
LLMs demonstrate impressive abilities to act as black-box optimizers when given
an objective f and sequence of trials. We study LLMs at the intersection of these
two capabilities by applying LLMs to the task of interactive causal discovery:
given a budget of I edge interventions over R rounds, minimize the distance be-
tween the ground truth causal graph G∗ and the predicted graph ĜR at the end
of the R-th round. We propose an LLM-based pipeline incorporating two key
components: 1) an LLM uncertainty-driven method for edge intervention selec-
tion 2) a local graph update strategy utilizing binary feedback from interventions
to improve predictions for non-intervened neighboring edges. Experiments on
eight different real-world graphs show our approach significantly outperforms a
random selection baseline: at times by up to 0.5 absolute F1 score. Further we
conduct a rigorous series of ablations dissecting the impact of each component of
the pipeline. Finally, to assess the impact of memorization, we apply our inter-
active causal discovery strategy to a complex, new (as of July 2024) causal graph
on protein transcription factors. Overall, our results show LLM driven uncertainy
based edge selection with local updates performs strongly and robustly across a
diverse set of real-world graphs.

1 INTRODUCTION

Given a set of variables X1, ..., Xn, the causal discovery task involves finding a directed causal
graph G∗ on the nodes X1, ..., Xn whose edges capture causal relationships between the parent
(source) and child (target). Often, observational data can be collected for the variables X1, ..., Xn.
This data can then be used to predict an initial causal graph G0 using statistical causal discovery
techniques (Spirtes & Zhang, 2016). Recently, Large language models (LLMs) have emerged as a
competitive alternative method for predicting causal graphs (Kıcıman et al., 2024; Abdulaal et al.,
2024; Chen et al., 2024). Unlike pre-existing statistical methods, LLMs require no observational
data (Kıcıman et al., 2024), instead relying purely on semantic metadata such as variable names
and descriptions. Another line a work (Yang et al., 2024) investigates the abilities of LLMs to act
as in-context black-box optimizers. Given an objective function f and an evaluation budget B, the
LLM is tasked with finding a maximizer x∗ of f by sequentially proposing queries {xi}Bi=1 and
observing their associated values {f(xi)}Bi=1. Taken together, these directions suggest a powerful
new application of LLMs: interactive causal discovery.

Given an initial predicted causal graph Ĝ0 and a series of intervention rounds 1, ..., R, the interactive
causal discovery problem involves minimizing the distance d(Ĝk, G

∗) between the predicted causal
graph Ĝk at round k and the true causal graph G∗ through a sequence of targeted interventions on
edges. This requires the LLM to solve two key sub-tasks:

1. Intervention selection: Selecting which edges (Xi, Xj) to intervene in the next round.

2. Graph updates: Updating the predicted causal graph from Ĝk−1 to Ĝk given binary feedback
based on the outcome of the previous interventions.
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We propose to solve this task with the Interactive Causal Discovery Agent (ICDA): a novel LLM
agent uncertainty-driven approach. Uncertainty estimates are predicted and maintained for each
unknown edge e ∈ Ĝk. Edges are then selected for intervention by prioritizing those with the
highest uncertainty. When feedback is received on the selected interventions, pairwise-local updates
on both edge predictions and uncertainty estimates are performed for each edge sharing a parent or
child variable with an intervened edge. This process continues for R rounds with I edges selected for
intervention each round. We benchmark ICDA on eight real world causal graphs, finding uncertainty
driven selection with local updates far outperforms a baselines. In summary, we make the following
contributions:

• The interactive causal discovery problem as a novel application of LLM capabilities.
• LLM based uncertainty guided intervention selection as a policy for prioritizing which edges to

intervene on.
• A local update strategy for robustly updating the predicted graph Gk with binary intervention

feedback.
• Ablations rigorously evaluating the contribution of each pipeline component and other discovery

strategies.

2 BACKGROUND AND RELATED WORK

Causal Discovery and LLMs The causal discovery task aims to learn causal relationships from
observed empirical data (Peters et al., 2017; Spirtes & Zhang, 2016). Many proposed algorithms
exist (Spirtes et al., 1993; Yu et al., 2019; Nauta et al., 2019; Zheng et al., 2018; Chickering, 2002)
attempting to solve the causal discovery problem. However, these methods are known to struggle
on real world graphs where observations are noisy or common structural assumptions are violated
(Chevalley et al., 2023; Tu et al., 2019). Recently, LLMs have emerged as an alternative approach
to causal discovery (Kıcıman et al., 2024; Abdulaal et al., 2024; Vashishtha et al., 2023; Li et al.,
2024; Lampinen et al., 2023). Kıcıman et al. (2024) first investigated the capability of LLMs to
act as zero-shot causal discovery agents using only semantic information and pairwise prompting
on each variable pair. Follow-up work (Abdulaal et al., 2024) further improves LLM predictions
with observational data by selecting for predictions which maximize data likelihood. Vashishtha
et al. (2023) utilize triplet prompting to prevent cycles when the causal graph is acyclic. They show
only a topological ordering on variables is required for many common causal reasoning tasks (Chu
et al., 2023). Other works (Zhou et al., 2024; Chen et al., 2024) benchmark LLMs across a range
of causality related tasks including causal discovery and causal inference confirming that LLMs
struggle with integrating numerical data.

Another line of work more related to our proposed interactive causal discovery problem studies
how to incorporate background knowledge into causal discovery algorithms (Meek, 2013). Define
a set of background knowledge as the tuple K = (F,R), where F specifies a set of “forbidden”
graph edges and R specifies a set of “required” graph edges. Meek (2013) presents an algorithm for
constructing a causal graph consistent with K by leveraging an assumed structural DAG (directed-
acyclic) property. Building on Meek (2013), Chickering (2002) proposes a greedy search algorithm
that performs well in practice. In contrast to these works, our proposed algorithm utilizes LLMs to
reason about the semantic/physical, as opposed to formal/structural, relationships between variables
and edges in causal graphs. For this reason we are not required to make any DAG like structural
assumptions common in the causal discovery literature. This is desirable as in practice many real-
world causal graphs are cyclic and poorly structured (Zhu et al., 2024; Huang et al., 2021).

LLMs as Optimizers Another growing line of work utilizes LLMs as black-box optimizers (Yang
et al., 2024; Roohani et al., 2024). Yang et al. (2024) introduce the notion of an LLM as a generic
optimizer and use it to optimize performance objectives stemming from a range of tasks including
linear regression and mathematical word problems (Cobbe et al., 2021). Other works (Madaan
et al., 2023; Havrilla et al., 2024) examine the self-refinement capabilities of LLMs where the LLM
must reason and self-improve on earlier responses. A growing number of papers apply LLMs to
optimal experiment design and discovery (Roohani et al., 2024; AI4Science & Quantum, 2023; Gao
et al., 2024; Majumder et al., 2024; Jansen et al., 2024). Roohani et al. (2024) apply LLMs to
gene discovery tasks which aim to find highly-influential parent genes affecting the regulation of
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Figure 1: Diagram of the interactive causal discovery process through LLMs. The process begins
by predicting edges and confidences for each edge. Interactive discovery then proceeds by selecting
the most uncertain edges for intervention. The LLM then updates its predictions and confidences for
edges adjacent to the intervened edge. Note: only edges predicted as present are shown.

a downstream target gene. Majumder et al. (2024); Jansen et al. (2024) both present benchmarks
evaluating the ability of LLMs to perform real-world and synthesized discovery tasks.

3 METHOD

Setup As input we are given a set of variables X1, ..., Xn with associated metadata including
variable names and variable descriptions. We define the notation Y → X to indicate when Y is a
causal parent of X and the set of causal parents of a variable X as Pa(X) = {Xi : Xi → X}.
We can then consider the directed ground truth causal graph G∗ = {(Xi, Xj) : Xi ∈ Pa(Xj)}
with unlabeled and unweighted edges. Note: The only assumed graph structure is simplicity i.e.
no self-edges or multi-edges. No additional structure on the graph (such as acyclicity) is assumed.
We can frame the prediction of G∗ as an edge-wise binary classification problem over the complete
graph Kn, where an edge (Xi, Xj) has the label lij = 1 if Xi → Xj and lij = 0 otherwise. G∗ can
then be written as a collection of ground truth labelings G∗ = {(Xi, Xj , lij) : 1 ≤ i ̸= j ≤ n}.
The interactive causal discovery task then aims to learn G∗ by interacting with the discovery envi-
ronment via interventions on each edge (Xi, Xj). We define an intervention on an edge (Xi, Xj)
as an operation revealing the ground truth label li,j . This intervention operation is purposefully
kept abstract and could correspond to any number of real-world experimental intervention strate-
gies including do operations (Sharma & Kiciman, 2020), conditional interventions, or instrumental
variables. Interactive causal discovery then proceeds in two phases:

Phase 1 (Zero-shot prediction): Produce an initial causal graph prediction Ĝ0 using avail-
able variables X1, ..., Xn plus semantic metadata.
Phase 2 (Interactive Discovery): Over a series of R rounds, propose I edge interventions
on (Xi, Xj) each round and receive binary feedback on lij . Use this to produce an updated
prediction Ĝr−1 → Ĝr

We evaluate the accuracy of a prediction Ĝ using the F1 objective, i.e.

F1(G∗, Ĝ) =
2 · PrecisionĜ · RecallĜ

PrecisionĜ + RecallĜ

where PrecisionĜ and RecallĜ are computed with the label predictions (Xi, Xj , l̂ij) ∈ Ĝ and
lij as ground truth. The goal of the interactive discovery process is then to maximize F1(G∗, ĜR).
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Algorithm 1 Interactive Causal Discovery Through LLMs

0: procedure LLMDISCOVERY(Ĝ, R, I) {
+ Ĝ is the initial causal graph prediction with confidences
+ R is the number of intervention rounds
+ I is the number of interventions per round}

0: for r ← 1 to R do
0: # Step 1: first select edges for intervention
0: sorted edges← sort(Ĝ, key = “conf”)
0: interventions = sorted edges[: I] # choose I most uncertain edges to intervene
0: binary feedback ← do interventions(interventions)

0: # Step 2: update Ĝ using feedback
0: for i← 1 to I do
0: edge, edge gt← interventions[i], binary feedback[i]
0: adjacent edges← get adjacent edges(edge)
0: for a← 1 to length(adjacent edges) do
0: Ĝ[a][“update confs”] ← LLMLocalUpdate(edge, edge gt, a) # see Sec. B for

the LLM prompt
0: end for
0: end for
0: # average over updates for next round predictions
0: for a in do
0: Ĝ[a][“conf ′′]← mean(Ĝ[a][“update confs′′])

0: Ĝ[a][“pred′′]←1Ĝ[a][“conf ′′]>0

0: end for
0: end for
0: return Ĝ
0: end procedure=0

Method Our proposed method ICDA begins by generating a zero-shot graph prediction Ĝ0. A
prediction for each variable pair (Xi, Xj), 1 ≤ i ̸= j ≤ n, is generated by prompting an LLM to
reason about Xi → Xj in a manner similar to the pairwise-prompting strategy utilized in Kıcıman
et al. (2024). In addition, we prompt the LLM to reason about its confidence in the prediction
and output a confidence score from 1 - 100. Section B shows the exact prompt used. To obtain a
reliable confidence estimate we sample the LLM K = 16 times. We denote the initial confidence
for (Xi, Xj) as c0ij and set it to be the (signed) average over K = 16 output confidences. The initial
edge label l0ij is then taken as the boolean l0ij = 1c0ij≥0. This gives us the initial prediction Ĝ0.

Next, in each intervention round r ≤ R, we sort the confidence scores {crij : 1 ≤ i, j ≤ n} by
absolute value and intervene on the I edges with the lowest absolute confidence (and highest un-
certainty). This reveals the ground truth labels lij for for each intervened edge (Xi, Xj). Using
this feedback, we update the predicted edge labels for intervened edges to lr+1

ij = lij and the con-
fidences to cr+1

ij = 100. Additionally, we prompt the LLM, conditioned on the ground truth label
lij , to update its prediction and confidence for each edge (Xi, Xk) or (Xl, Xj), 1 ≤ k, l ≤ n which
shares a node with (Xi, Xj) and has absolute confidence less than 100. We call each update to an
edge (Xl, Xk) a local update. It may be that an edge (Xl, Xk) is adjacent to multiple intervened
edges (Xi1 , Xj1), (Xi2 , Xj2) in a single round and thus receives multiple local updates. To manage
these cases we set the next confidence cr+1

lk to the (signed) average of all individual local updates to
crlk. Then we set lr+1

lk = 1clk≥0 as before. This continues until the final round R is reached.

We call the complete discovery pipeline the ICDA: Interactive Causal Discovery Agent. A diagram
of the full pipeline is shown in Figure 1 and written as pseudo-code in the Appendix Section D. We
report all prompts in appendix Section B.
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Figure 2: Results on real world graphs showing F1 score of the predicted graph against percentage
of edges in the graph intervened on. ICDA almost always outperforms both the random baseline and
static selection via uncertainty. Note: static confidence selection without local updates is determin-
istic and thus has no confidence intervals.

4 RESULTS

We evaluate our approach on seven real-world causal graphs. Each graph ranges from 8 - 30
variables and varies widely in causal structure (some are acyclic while others are cyclic). De-
tails for each graph can be found in Appendix C. To produce initial zero-shot graph predic-
tions Ĝ0 for all graphs we utilize pairwise causal prompting as in Kıcıman et al. (2024) with
Meta-Llama-3-70B-Instruct as the base LLM. For the interactive discovery phase we then
initialize all methods using Ĝ0. we compare to several baselines:

Random selection: Starting from Ĝ0 we randomly select edges to intervene. After re-
ceiving binary feedback we update incorrect predictions on intervened edges for the next
round. We do not allow edges to be intervened twice.

Direct LLM: To select edges for intervention at round r we directly prompt the base LLM
conditioned on the entire predicted graph Ĝr. We update edges using binary feedback by
prompting the base LLM output updates conditioned on Ĝr and the binary feedback.

Static confidence selection: We select edges for intervention based on the initial con-
fidence scores cij . No updates are performed beyond fixing incorrect predictions in the
intervention set.

Meta-Llama-3-70B-Instruct is used as the base LLM when applicable. To assess perfor-
mance, we plot the mean F1 score, averaged over five independent runs, against the percent of edges
intervened in each graph. Results are shown in Figure 2.

Uncertainty driven intervention selection with local updates performs best. In all but one of
the causal graphs, uncertainty driven intervention selection with the LLM utilizing interventional
feedback to perform local updates performs best. Further, it outperforms the random selection base-
lines at nearly every round on every graph, at times by up to 0.5 absolute F1 score. The only excep-
tion to this is the Arctic sea ice graph where local updates initially perform poorly. We attribute this
to the highly cyclic and thus harder-to-predict graph structure. Notably, even on graphs where the
LLM proposes a poor zero-shot initial prediction, the LLM is able to recover quickly, converging to
the correct causal structure with local updates. This suggests the LLM is able to effectively utilize
interventional feedback even when lacking detailed domain knowledge.

Local updates can outperform random selection even with few interventions. Allowing the
LLM to make local edge updates using intervention feedback quickly improves the predicted graph
even when relatively few edges are intervened on. This behavior is particularly desirable, as in prac-
tice it may be expensive to intervene on even a small fraction of all edges. On some graphs, where
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Figure 3: Average rank of each method when numbered from 0 to 2 across each timestep on each
graph. The full LLM driven update agent consistently achieves rank 0 across all timesteps. Note:
lower is better.

the initial LLM confidence estimates are good, the static confidence selection baseline without local
updates is also able to quickly outperform random selection. Yet, even when the initial confidence
estimates are subpar, local updates compensate and allow for the prediction to quickly improve with
just a few edge interventions. This again demonstrates the broad effectiveness of local updates even
when initial predictions are poor.

Static uncertainty driven selection performs better than random selection. Despite not fully
utilizing interventional feedback, static uncertainty driven selection still outperforms the random
selection baseline on five out of seven graphs. This method performs particularly well on AZ and
Covid graphs where the initial LLM predictions are already reasonably good. On these graphs static
uncertainty selection quickly outperforms randomly selection and is competitive even with local
updates. This shows that, on a subset of the graphs, the LLM’s confidence in its predictions are
well-calibrated, allowing our selection policy to prevent wasting interventions on edges which are
most likely already correct. However, we also see the LLM’s confidence estimates can be poorly
calibrated on graphs for which the initial predictions are inaccurate. See for example the Asphyxia
and Neuropathic pain graphs, which start with initial F1 score less than 0.2. On these graphs the
static confidence selection component struggles to outperform the random baseline.

Figure 3 aggregates the ranks of all methods across all time-steps averaged across all graphs. These
results demonstrate our proposed method ICDA, combining LLM based uncertainty driven interven-
tion selection with local updates, significantly and consistently outperforms all baselines. Exper-
iments are conducted on real-world graphs with diverse causal structures establishing the practical
utility of our method. In an effort to better understand the factors behind ICDA’s success we conduct
a number of ablations in the following section.

4.1 ABLATIONS

The previous section demonstrates the performance of our proposed method ICDA. In this section
weablate various components of the pipeline to understand their impact on performance.

Impact of intervention improvements versus update improvements As a starting point we de-
fine the net graph improvement in a round r as the difference between the number of edges correctly
classified in in Ĝr versus in Ĝr−1. If an edge (Xi, Xj) is correctly classified in Ĝr but not in
Ĝr−1 we say it has been improved. Recall there are two potential mechanisms of improvement for
(Xi, Xj): 1) (Xi, Xj) was selected for intervention in the previous round r − 1 and feedback on
the intervention was received at the start of round r 2) The prediction for (Xi, Xj) was updated by
the LLM after receiving interventional feedback for an adjacent edge (Xk, Xl). We call the former
improvements intervention improvements and the latter update improvements. In a given round r we
are interested in how much of the net improvement for a graph is due to intervention improvements
versus update improvements. To examine this, we plot both quantities in Figure 4 for the discovery
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Figure 4: % Improvement from interventions vs. LLM prediction updates across timesteps. Im-
provement directly from LLM updates peaks early but then falls off. Improvement from interven-
tions stays constant or improves with more interventions as confidence scores become better cali-
brated.

processes discussed in the previous section. In addition, we plot the net graph improvement and
total number of edges changed from each round.

In all seven graphs we see both the total number of changed edges and the net improved edges peak
at the first round and then decay towards zero. Notably, on some graphs there is a significant gap
between net improvement and total change, indicating many edges changed during dynamic updates
are misclassified after previously being correctly classified. This decline in total and net change
is reflected in the number of update improvements which peak early and sharply decline to zero.
This observation supports our intuition above that allowing the LLM to dynamically update edge
predictions without direct intervention feedback on the edge can dramatically improve performance
at small percentages of interventions. In contrast, intervention improvement accounts for a smaller
percentage (less than 40%) of edge improvements early on. However, in most graphs the number of
intervention improvements stays nearly constant until at least 50% of edges are already intervened.
As a result, improvement from interventions grows to account for 90% of all edge improvements
for rounds performed during this period. This demonstrates improvements from interventions and
updates complement each other, with update improvement driving net improvement early and
intervention improvement driving net improvement later on.

Our analysis here also confirms the effectiveness of allowing the LLM agent to update both the pre-
diction and confidence for an edge. Even when only considering improvements from interventions
when doing local updates, we see a major improvement over the static confidence baseline. This
suggests the updates made to edge confidence scores are equally important in achieving good
performance, allowing for sustained intervention improvement throughout the discovery process.

Impact of Confidence Based Selection and Local Prompting We now ablate the impact of two
key components of our discovery strategy: 1) confidence based edge selection and 2) local update
prompting. To ablate 1) we directly prompt the LLM to generate a list of edges to intervene on
instead of selecting via confidence. This requires us to put the entire current predicted graph Ĝr

in-context. When dynamically updating Ĝr after receiving interventional feedback we remove all
confidence estimates but retain the local prompting strategy. To ablate 2) we retain the same con-
fidence edge selection proposed but replace local update prompts after with a single global update
prompt containing the current prediction Ĝr and all recently received intervention feedback. We
report the results of running the interactive discovery process with these methods in Figure 5.

We find both ablations struggle to perform better than the random baseline. Local updates without
confidence selection perform well early on but fall off quickly. F1 score on the Covid graph even
regresses after the initial improvements, likely due to incorrect local updates and a poor intervention
selection policy. This suggests in addition to providing a strong intervention selection procedure,
maintaining running confidence estimates for each edge reduces the variance of local updates from
intervention feedback. Turning to the ablation for local prompting, we again find performance not
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Figure 5: Ablating confidence based edge selection and local update prompting.

much better than the random baseline. Surprisingly, even on Covid where the static confidence
selection performs well, confidence based selection + global updates still struggles. This indicates
the base LLM is not able to correctly update the predicted graph when giving everything in context at
once. This further motivate the practical importance of the local prompting procedure, which greatly
simplifies the context the LLM must consider in each model call. Additionally, we notefFor large
enough graphs, putting everything in context is simply not feasbile. By contrast, local prompting is
easily scalable to larger graphs, albeit at a quadratic cost.

Impact of the LLM Model Size The above experiments exclusively use a single base LLM (
Meta-Llama-3-70B-Instruct) to perform both the initial round of zero-shot edge predic-
tions and dynamically update edge predictions/confidences using intervention feedback. Now, we
examine the impact of changing both the base model size and type. In Figure 6 we initialize the dis-
covery process with zero-shot predictions made by Meta-Llama-3-70B-Instruct and run
local updates using the smaller Meta-Llama-3-8B-Instruct as well as two models from
the Qwen2 series.

We find the original Meta-Llama-3-70B-Instruct consistently performs best on all graphs
at every time step. The other 70B model, Qwen2-72B-Instruct, performs similarly but con-
sistently worse. In contrast, on the Asia and Covid causal graphs, both 8B models perform worse
than even the random baseline. Surprisingly Meta-Llama-3-8B-Instruct performs reason-
ably well on the Sangiovese graph, performing similarly even to the 9x larger Qwen2 70B model.
Overall however these results indicate performance on the interactive causal discovery task can be
substantially improved with model scale.

We next investigate the performance of different models on the initial zero-shot edge prediction
task. Using the pairwise confidence estimation prompt in Section B we prompt each of four models
to produce a zero-shot prediction Ĝ0 with edge confidence values. Using the predicted confidence
estimates we run greedy static confidence selection procedure as in 4. Ranks for each selection
procedure averaged over all graphs are plotted in Figure 7. F1 scores in each graph are reported
in Figure 9 in the Appendix. As with the interactive discovery task, the smaller 8B models under
perform even the random baseline. Only Meta-Llama-3-70B-Instruct consistently outpe-
forms the baseline across all time steps.

Impact of Memorization The success of LLMs in causal discovery stems from their immense
background knowledge acquired during pre-training. This background knowledge informs the
model during edge prediction and confidence calibration, allowing for strong performance even

8
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Figure 6: Performance of LLM driven interactive causal discovery on different sized models. Small
LLMs (8B params) underperform the random baseline.

Figure 7: Static confidence based selection ranks for different models averaged across causal graphs.
Meta-Llama-3-70B-Instruct is the only model to consistently outperform random guessing.
Note: lower is better.
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Figure 8: Performance curves of uncertainty driven selection + local prompting vs. baselines on the
Brain causal graph (Zhu et al., 2024) recently published in July 2024. Both LLM driven methods
perform well despite the LLM never having possibly seen the graph during training.

zero-shot. However, if benchmark graphs are contained verbatim in pre-training data, memoriza-
tion becomes a significant confounding factor. To investigate to what extent memorization impacts
performance we find a recently published causal graph (published in July 2024) from Zhu et al.
(2024) modeling the gene regulatory network underlying 29 protein transcription factors. Because
Meta-Llama-3-70B-Instruct finished training in 2023 this graph is guaranteed to be mem-
orization free. Figure 8 plots the performance of uncertainty driven edge selection + local updates
compared to the static selection and random baseline.

Figure 8 shows our confidence driven selection + local update approach performs very well even on
graphs with minimal memorization contamination. As previously observed, local prediction updates
allow for fast improvement over the random baseline even with a small number of interventions.
Surprisingly, the static confidence selection approach also works well here. This indicates zero-shot
edge confidence scores can be well calibrated on graphs with no contamination from memorization.
We additionally note this graph has a complex causal structure with many cycles of varying lengths.
This shows our method performs well even on graphs which strongly violate often assumed DAG
conditions.

5 CONCLUSIONS AND FUTURE WORK

In this work we proposed a novel application of LLMs to interactive causal discovery. This is done
by simultaneously treating the LLM as a tool for uncertainty estimation and as an optimizer uti-
lizing interventional feedback. Our experiments confirm the proposed ICDA method significantly
outperforms baselines. Further, our ablations confirm both uncertainty driven edge selection and
local updates using interventional feedback as importantly contributing to the method’s good per-
formance. Future work might apply the method to larger graphs or incorporate tools relying on
numerical observational data.

Ethics Statement As with any work studying generative models, we note generative modeling
can suffer from pre-existing biases in the training data. This behavior may help propagate existing
societal biases present today.

Reproducibility Statement This work utilizes only open-source models and datasets making it
100% reproducible. All benchmark graphs are documented in Appendix Section C. We additionally
plan to release code in the case of an acceptance.
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Figure 9: Static confidence selection over multiple models.

A STATIC CONFIDENCE SELECTION OVER MULTIPLE MODELS

B PROMPTS

Zero-shot Confidence Estimation Prompt

{task description} Your goal is to understand the direct causal parents of {target}. Another
variable is a direct causal parent of {target} if an intervention on the variable affects {target}
and there are no other causal parents between the variable and {target}. Now, you must
determine whether {parent} is a causal parent of {target}. Here is a list of all other variables
to consider:
{variables info}
Do some brainstorming, comparing relevant characteristics of both variables and
then print your judgement at the end of your response enclosed in the tags ¡deci-
sion¿YES/NO¡/decision¿. Print YES if {parent} is causal. Otherwise print NO. You should
also print your confidence from a scale from 1 - 100 (with 100 being most confident) in the
tags ¡confidence¿...¡/confidence¿.
Information about {target}: {target info}
Information about {parent}: {parent info}
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Parent Update Prompt

You are a causal discovery expert. You have been given the following list of variables and
tasked with predicting the true causal graph through a sequence of interventions on edges.
{variables info}
Note: each edge has an associated confidence value from 1 - 100. The presence of an edge is
represented as (A-¿B,CONFIDENCE) where A is the parent and B is the child. The absence
of an edge is represented as (NOT A-¿B, CONFIDENCE)
From one intervention you have discovered {intervention feedback} Previously you pre-
dicted {intervention prediction}
Now you should update your belief about the other edges of {parent} based on the results
of the intervention. Consider the predicted edge
{other edge prediction}
Now you should reason about how to update your belief about the above edge based on
the intervention. This means you can either keep your confidence the same, update your
confidence, or change your prediction entirely. At the end of your response give your
updated prediction at the end of your response in the format ¡decision¿PARENT/NOT
CAUSAL¡/decision¿ ¡confidence¿CONFIDENCE¡/confidence¿. Print ’PARENT’ if the
edge should be present and ’NOT CAUSAL’ if the edge should be absent.
You should do this in three steps.
Step 1: Brainstorm what physical causal connection there may be, if any.
Step 2: Reason about what the intervention feedback tells you. Think carefully about how
similar the new child is to the intervened child.
Step 3: Give your final decision.

Child Update Prompt

You are a causal discovery expert. You have been given the following list of variables and
tasked with predicting the true causal graph through a sequence of interventions on edges.
{variables info}
Note: each edge has an associated confidence value from 1 - 100. The presence of an edge is
represented as (A-¿B,CONFIDENCE) where A is the parent and B is the child. The absence
of an edge is represented as (NOT A-¿B, CONFIDENCE)
From one intervention you have discovered {intervention feedback} Previously you pre-
dicted {intervention prediction}
Now you should update your belief about the other edges of {child} based on the results of
the intervention. Consider the predicted edge
{other edge prediction}
Now you should reason about how to update your belief about the above edge based on
the intervention. This means you can either keep your confidence the same, update your
confidence, or change your prediction entirely. At the end of your response give your
updated prediction at the end of your response in the format ¡decision¿PARENT/NOT
CAUSAL¡/decision¿ ¡confidence¿CONFIDENCE¡/confidence¿. Print ’PARENT’ if the
edge should be present and ’NOT CAUSAL’ if the edge should be absent.
You should do this in three steps.
Step 1: Brainstorm what physical causal connection there may be, if any.
Step 2: Reason about what the intervention feedback tells you. Think carefully about how
similar the new parent is to the intervened parent.
Step 3: Give your final decision.

C CAUSAL GRAPHS

D ALGORITHMS
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Algorithm 2 Interactive Causal Discovery Through LLMs
0: procedure LLMDISCOVERY(Xs, K, R, I) {

+ Xs is a list of variable names and descriptions
+ K is the number of self-consistency samples for an initial zero-shot edge prediction
+ R is the number of intervention rounds
+ I is the number of interventions per round}

0: n← length(Xs)
0: confs← [0, ..., 0] {Initialize signed confidences array of length n2}
0: for k ← 1 to K do {First generate zero-shot prediction Ĝ0}
0: for i← 1 to n do
0: for j ← 1 to n do
0: confs[i][j]← confs[i][j] + PairwiseConfidenceLLM(Xs[i], Xs[j])
0: end for
0: end for
0: end for
0: confs← [False, ..., False] {Initialize boolean predictions array of length n2}
0: for i← 1 to n do
0: for j ← 1 to n do
0: confs[i][j]← confs[i][j]/K
0: preds[i][j]← confs[i][j] > 0
0: end for
0: end for
0: for r ← 1 to R do {Begin interactive discovery}
0: sorted conf inds← argsort(confs)
0: interventions = sorted conf inds[: I] {Choose I most uncertain edges to intervene

on.}
0: binary feedback ← do interventions(interventions)
0: for i← 1 to I do
0: edge← interventions[i]
0: edge gt← binary feedback[i]
0: adjacent edges← get adjacent edges(edge)
0: for a← 1 to length(adjacent edges) do
0: confs[a]← LocalUpdateLLM(edge, edge gt, adjacent edge[a])
0: preds[a]← confs[a] > 0
0: end for
0: end for
0: end for
0: return preds
0: end procedure=0
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Figure 10: Arctic sea ice causal graph.

Figure 11: Asia causal graph.
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Figure 12: Asphyxia causal graph.

Figure 13: Alzheimers causal graph.
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Figure 14: Covid causal graph.

Figure 15: Neuropathic pain causal graph.
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Figure 16: Sangiovese causal graph.

Figure 17: Brain causal graph.
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