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Abstract
Multi-kernel clustering (MKC) has emerged as a
powerful method for capturing diverse data pat-
terns, offering robust and generalized representa-
tions of data structures. However, the increasing
deployment of MKC in real-world applications
raises concerns about its vulnerability to adver-
sarial perturbations. While adversarial robustness
has been extensively studied in other domains,
its impact on MKC remains largely unexplored.
In this paper, we address the challenge of assess-
ing the adversarial robustness of MKC methods
in a black-box setting. Specifically, we propose
AdvMKC, a novel reinforcement-learning-based
adversarial attack framework designed to inject
imperceptible perturbations into data and mislead
MKC methods. AdvMKC leverages proximal
policy optimization with an advantage function
to overcome the instability of clustering results
during optimization. Additionally, it introduces a
generator-clusterer framework, where a generator
produces adversarial perturbations, and a clus-
terer approximates MKC behavior, significantly
reducing computational overhead. We provide
theoretical insights into the impact of adversarial
perturbations on MKC and validate these findings
through experiments. Evaluations across seven
datasets and eleven MKC methods (seven tradi-
tional and four robust) demonstrate AdvMKC’s
effectiveness, robustness, and transferability.

1. Introduction
Multi-kernel clustering (MKC) leverages multiple kernel
functions to capture diverse data patterns (Liang et al.,
2024a; Yu et al., 2024; Sun et al., 2024c). By integrating
various kernels, MKC addresses the limitations of single-
kernel methods, offering a more comprehensive and robust
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representation of data structures (Zhang et al., 2023). This
enhanced representation improves clustering robustness and
generalization, particularly in heterogeneous scenarios. As
a result, MKC has been widely applied in domains such as
disease diagnosis (Lu et al., 2020; Jiang et al., 2023) and
hyperspectral image classification (Jiang et al., 2024; Sima
et al., 2022), effectively processing intricate data.

Despite its advantages, the increasing adoption of MKC
raises concerns about its robustness against adversarial per-
turbations (i.e., small, imperceptible modifications) that can
significantly degrade performance (Szegedy et al., 2014;
Goodfellow et al., 2015; Sun et al., 2024a). Such vul-
nerabilities, demonstrated in domains like image classifi-
cation (Shen et al., 2021) and natural language process-
ing (Alzantot et al., 2018), pose significant risks to security-
critical applications. This highlights the urgent need to
evaluate the adversarial robustness of MKC methods.

However, this area remains largely underexplored. Existing
studies primarily address noise with predefined distribu-
tions (e.g., Gaussian noise (Sun et al., 2024b; Wang et al.,
2023; Yu et al., 2025)) or internal issues such as missing
or corrupted data (Liu et al., 2020), while neglecting ad-
versarial attacks involving intentional perturbations (Yang
et al., 2023). Furthermore, current research on adversarial
robustness in multi-view clustering is limited to deep multi-
view clustering methods (Huang et al., 2024), which rely
on deep representations rather than kernel-induced similar-
ity matrices central to MKC. This gap prompts a critical
question: Can adversarial attacks be effectively designed to
evaluate the robustness of MKC methods? Addressing this
question introduces two main challenges: 1) Designing a
learning paradigm that manages the instability of clustering
results during adversarial perturbation optimization, espe-
cially given the unsupervised nature of clustering and the
instability of K-Means-based methods (Ben-David et al.,
2007). 2) Reducing the computational overhead associated
with clustering operations, which are inherently expensive.

Our Work. In this paper, we address the problem of adver-
sarial attacks on MKC by formulating it as a reinforcement
learning (RL) task. In this setting, adversarial perturbations
are injected into the data, and the degradation in clustering
performance serves as a reward to guide the optimization
process. To tackle these challenges, we propose AdvMKC,
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a novel black-box adversarial attack framework specifically
designed for MKC. The framework leverages RL techniques,
particularly proximal policy optimization (Schulman et al.,
2017), to address the inefficiency caused by unstable clus-
tering results by employing the advantage function (Pan
et al., 2022; Babaeizadeh et al., 2017) during optimization.
To further enhance efficiency and reduce computational
costs, AdvMKC introduces a generator-clusterer frame-
work. In this setup, the generator produces adversarial per-
turbations, while the clusterer approximates the behavior
of MKC methods, significantly minimizing the need for re-
peated clustering operations during the attack process. Our
main contributions are summarized as follows:

• To the best of our knowledge, this is the first study to
evaluate the adversarial robustness of MKC methods in
the black-box setting. We assume an attacker injects im-
perceptible, intentional perturbations to mislead unknown
MKC methods, leading to erroneous clustering results.

• We propose AdvMKC, a novel reinforcement-learning-
based adversarial attack framework consisting of a pertur-
bation generator and a clusterer. The generator creates ad-
versarial perturbations, while the clusterer mimics MKC
behavior to accelerate optimization.

• We provide theoretical insights into the impact of adver-
sarial perturbations on MKC performance and validate
these findings through empirical evaluations.

• We conduct extensive experiments on seven benchmark
datasets and eleven MKC methods (seven traditional and
four robust methods) to demonstrate the effectiveness,
robustness, and transferability of AdvMKC.

2. Background and Related Work
2.1. Multi-Kernel Clustering

MKC enhances clustering performance by overcoming the
limitations of traditional methods such as K-Means (Mac-
Queen et al., 1967) and spectral clustering (Ng et al., 2001),
which rely on single similarity measures and struggle with
the complexity of multi-view datasets (Yang et al., 2024;
Liang et al., 2024a; Liu et al., 2022a;b). By integrating
multiple kernels, each capturing distinct data characteristics,
MKC achieves improved accuracy and robustness.

For single-view data X ∈ RN×d, where N is the number
of samples, K is the number of clusters, and d is the fea-
ture dimension, a nonlinear mapping ϕ(·) projects X into a
reproducing kernel Hilbert space. The kernel matrix is:

Ki,j = κ(xi,xj) = ϕ⊤(xi)ϕ(xj), (1)

where κ(·, ·) is a positive semi-definite kernel function, such
as Gaussian (Babaud et al., 1986) or polynomial (Smola

et al., 1998) kernels. The quality of the kernel matrix signif-
icantly influences clustering performance, making kernel se-
lection a key challenge. MKC addresses this by combining
multiple kernels to generate Nk kernel matrices {Kk}Nk

k=1.

Multi-Kernel K-Means (MKKM) (Huang et al., 2012), a
powerful MKC method, assigns weights γ ∈ RNk to each
kernel and optimizes the following objective:

min
H,γ

Tr
(
Kγ(IN −HH⊤)

)
,

s.t. H⊤H = IK , γ⊤1 = 1, γ ≥ 0,
(2)

where IK is a K ×K identity matrix, Kγ =
∑Nk

k=1 γkKk

represents the weighted kernel combination, and H ∈
RN×K is obtained through eigen decomposition of Kγ .

MKC is particularly well-suited for multi-view data, where a
single object is represented by features from diverse sources.
For multi-view data X = {X1, . . . ,XNd

}, applying mul-
tiple kernel functions to each view yields Nk = Nd × |K|
kernel matrices, where Nd is the number of views and |K|
is the number of kernel functions.

2.2. Adversarial Attacks on Clustering

Research on adversarial attacks against clustering has pre-
dominantly focused on traditional methods operating in the
original feature space. Early studies demonstrated that ad-
versarially positioning samples near cluster boundaries can
lead to mis-clustering (Dutrisac & Skillicorn, 2008; Skil-
licorn, 2009). For example, Biggio et al. (2013) attacked
hierarchical clustering, while Crussell et al. (2015) dis-
rupted DBSCAN by merging clusters. Similarly, Chhabra et
al. (2020) highlighted K-Means’ vulnerability to boundary
perturbations, and Cinà (2022) proposed a black-box attack
using genetic algorithms to generate perturbations without
knowledge of the clustering algorithm.

Adversarial attacks on MKC, however, remain underex-
plored. Huang et al. (2024) introduced adversarial methods
for multi-view clustering using generative adversarial net-
works (GANs) to disrupt view complementarity and con-
sistency. However, their approach is inapplicable to MKC
due to the absence of feedback mechanisms required to op-
timize GAN parameters. This gap underscores the need
for novel methods to systematically evaluate the adversarial
robustness of MKC methods.

Due to space constraints, related work on RL for adversarial
attacks is discussed in Appendix 3.

3. Reinforcement Learning on Adversarial
Attacks

Reinforcement learning (RL) has shown success in tackling
challenges across various domains, including adversarial ro-
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bustness. Its strength lies in optimizing sequential decision-
making processes. In adversarial contexts, RL has been
applied to attack diverse models and datasets. For instance,
Sun et al. (2020) injected nodes and adjusted links in graphs
to test graph neural networks, while Yang et al. (2020) used
RL to generate textured patches disrupting convolutional
neural networks. Sarkar et al. (2023) identified sensitive im-
age regions for minimal perturbations, and Ju et al. (2023)
leveraged RL to inject malicious nodes into graphs. Despite
these successes, RL has not been applied to adversarial at-
tacks on MKC, presenting an open research opportunity to
explore assessing MKC robustness.

4. Threat Model
Adversarial attacks require clearly defining the attacker’s
and defender’s knowledge, capabilities, and objectives.

Attacker’s Knowledege and Abilities. This study adopts
a realistic black-box scenario, where the attacker has no
access to the internal workings of the victim MKC method
C, including its objective functions and optimization strate-
gies (Chhabra et al., 2020; Cinà et al., 2022). The attacker
can access a subset of the original dataset X , introduce
perturbations, and observe the resulting representations.

Defender’s Knowledege and Abilities. The defender lacks
specific knowledge of the adversarial attack, such as the
identities of perturbed samples or modified kernel matrices.
However, they can employ robust MKC methods to mitigate
the impact of adversarial perturbations.

Attacker’s Goals. The attacker aims to introduce minimal
perturbations N to the dataset, constrained by a predefined
noise threshold ϵ. These perturbations are designed to sig-
nificantly degrade clustering performance, as evaluated by
external metrics M. The optimization problem is:

argmin
N

M (C(X ⊕N ),Y) , s.t. ∥N∥ ≤ ϵ, (3)

where Y denotes the ground-truth labels, and ⊕ represents
the operator that injects adversarial perturbations into spe-
cific views of selected samples.

5. Methodology
5.1. Overview

Adversarial attacks on MKC pose unique challenges due
to the characteristics of MKC algorithms: 1) MKC often
relies on the K-Means algorithm to cluster latent represen-
tations without supervision. The absence of labeled data
impedes the consistent learning of representative features,
while random initialization of cluster centers further exac-
erbates instability (Lu et al., 2024), complicating the eval-
uation of perturbation effectiveness. 2) MKC algorithms

require iterative representation learning following each per-
turbation, significantly increasing computational demands
for attackers optimizing perturbations based on previous
results. To address these challenges, AdvMKC leverages
the PPO algorithm (Schulman et al., 2017; Lee et al., 2024)
with an advantage function to mitigate clustering instabil-
ity. It employs a generator-clusterer RL framework, where
the generator produces adversarial perturbations, and the
clusterer approximates the victim MKC algorithm, ensuring
reliable feedback while reducing computational complexity.

As shown in Figure 1, AdvMKC operates as follows: Given
the original dataset X , the attacker perturbs Np data samples
in specific views, acknowledging the practical constraints of
multi-view data collection from diverse sources. Section 6
analyzes the impact of varying the number of perturbed sam-
ples and views on attack performance. In the RL framework,
an episode represents a complete interaction sequence be-
tween the adversarial generator and its environment, starting
from an initial state and terminating at a predefined state.
During each episode, the generator incrementally injects
perturbations into the dataset, evaluates rewards based on
clustering performance, and adjusts perturbation directions.
The process is limited to T steps, defining the episode length
of the adversarial attack.

5.2. Attack Environment

The adversarial attack is modeled as an RL process, denoted
as ⟨X̂ ,N,R⟩, with its components detailed below:

Perturbed Dataset X. The perturbed dataset Xt at time
step t represents the adversarially modified multi-view data.

Perturbation N. The attacker is constrained to perturbing
Np samples. To maximize attack efficacy, the MKC method
is first applied to the original dataset to derive latent rep-
resentations: H = C(X ), where C(·) represents the MKC
algorithm, and H ∈ RN×K denotes the representations.
Subsequently, K-Means clustering is performed on H, pro-
ducing: centroid matrix M ∈ RK×K , with rows mi as clus-
ter centroids, and cluster indicator matrix I ∈ {0, 1}N×K ,
where assignments are determined as:

Ii,k =

1, if k = argmin
j∈{1,··· ,K}

∥hi −mj∥2;

0, otherwise,
(4)

The K-Means algorithm minimizes the clustering error:

argmin
M,I

∥H− IM∥2F , s.t.
K∑

k=1

Ii,k = 1. (5)

To identify Np samples for perturbation, the distances be-
tween samples and their cluster centroids are computed as:

d =
√

diag ((H− IM)(H− IM)⊤), (6)
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Encoder Encoder Encoder
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Linear
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Concat(     ,…,     )
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Perturbation Perturbed DatasetPerturbed Dataset

Figure 1. Overview of AdvMKC. Assuming a dataset with three views, i.e., image, audio, and text, the generator is trained to produce
adversarial perturbations for the image and audio views. The clusterer evaluates the clustering performance of the perturbed dataset and
provides a reward signal to guide the generator’s optimization process.

where diag(·) extracts the diagonal elements of the resulting
matrix. The samples with the largest distances are selected:

I = argmax
I⊂{1,··· ,N},|I|=Np

∑
i∈I

di. (7)

Given practical constraints, the attacker perturbs only Np
d

views of the selected Np samples. At time step t, adversarial
perturbations Nt = {N1, . . . ,NNp

d
} are injected as:

Xt,i =

{
Xi, if i /∈ {1, . . . , Np

d };
Xi +Ni, otherwise.

(8)

Here, Nt = Decom(nt; I, Np
d ), where Decom(·) dis-

tributes vectorized perturbations across views and samples.

Reward R. The reward function quantifies the effective-
ness of adversarial perturbations and facilitates RL con-
vergence. Since MKC operates in an unsupervised setting
without ground-truth labels, the optimization in Eq. (3) is
impractical, and gradient-free metrics, such as distance mea-
sures (Biggio et al., 2013), are inadequate for guiding pertur-
bation generation. To address these limitations, clustering
performance is assessed using the average cosine similarity
of data samples within the same cluster prior to the attack.
At time step t, the reward is defined as:

rt =
1

N2

∑
i,j

H
(t)
i,: H

(t)
j,:

⊤

∥H(t)
i,: ∥2∥H

(t)
j,: ∥2

⊙Ci,j , (9)

where H
(t)
i,: represents the i-th row of the learned represen-

tations H at time step t, C = II⊤ ∈ {0, 1}N×N is the
co-occurrence matrix indicating sample cluster assignments,
and ⊙ denotes the Hadamard product.

5.3. Generator-Clusterer Framework

To reduce queries to the victim MKC and enhance optimiza-
tion efficiency, we propose a generator-clusterer framework
for perturbation generation and approximation of the victim
MKC’s functionality.

Generator. The generator G produces adversarial perturba-
tions based on the current perturbed dataset Xt. To ensure
the perturbations remain within a predefined threshold ϵ,
their magnitude is constrained as:

nt = ϵ · G(Xt; θ) · ∥G(Xt; θ)∥−1
, (10)

where θ represents the generator’s parameters. The pertur-
bation vector nt is decomposed into per-view components,
as shown in Eq. (8).

The generator G adopts an encoder-decoder architecture, as
shown in Figure 1. The encoder consists of Nd encoders,
each corresponding to a dataset view, minimizing computa-
tional complexity. The decoder includes Np

d decoders, one
for each perturbed view. Representations from the encoders
are concatenated via the Concat(·) operator, effectively inte-
grating multi-view information for generating perturbations.

Clusterer. Following the generation of perturbations by G
and the creation of the updated dataset Xt, the clusterer Ĉ
approximates clustering performance to provide feedback
for optimizing the generator.

The clusterer is designed to mimic the functionality of the
victim MKC method while treating it as a black box. Shar-
ing the same encoder architecture as G, the clusterer ex-
tracts latent multi-view representations, which are further
processed through a multi-layer perceptron to produce clus-
tering outcomes. The clusterer predicts a reward S(Xt; ρ)
for the generated adversarial perturbations using Eq. (9),
where ρ represents the clusterer’s parameters, and H(t) is
derived from the clusterer instead of the black-box MKC.

5.4. Training Procedure

To optimize the adversarial generator and clusterer, we adopt
the PPO algorithm (Schulman et al., 2017) with an experi-
ence replay mechanism utilizing a memory buffer B. During
training, decision-making processes are simulated to gen-
erate training data, which is stored in B with a maximum
sequence length of T . Each entry in B is represented as
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a triplet (Xt,Nt, rt), encapsulating the perturbed dataset,
perturbation, and reward. To address the variability in re-
wards, the advantage function At is employed to estimate
the relative value of rewards compared to a baseline:

At =

T∑
t′=t

γt′−trt′ − S(Xt; ρ), (11)

where γ is the discount factor, and T is the total number of
time steps per episode.

Generator Loss. The generator aims to maximize the ex-
pected advantage while ensuring stable updates through a
clipped surrogate objective:

Lg(θ) = Et [min (ϑtAt, clip(ϑt, 1− η, 1 + η)At)] , (12)

where ϑt =
π(G(Xt;θ))

π(G(Xt;θold))
is the probability ratio of the new

generator relative to the old one, and η is a hyperparameter
regulating the allowable deviation. The clipping function
clip(·) constrains the ratio to (1−η, 1+η), mitigating abrupt
updates to enhance the robustness and sample efficiency
compared to standard gradient methods.

Clusterer Loss. The clusterer estimates the expected attack
performance for each perturbation by minimizing the error
between predicted rewards and actual outcomes:

Lc(ρ) = Et

∥∥∥∥∥S(Xt; ρ)−
T∑

t′=t

γt′−trt′

∥∥∥∥∥
2
 , (13)

where S(Xt; ρ) denotes the clusterer’s predicted reward for
the perturbed dataset Xt given parameters ρ.

Entropy Loss. To foster exploration and prevent premature
convergence, an entropy term is added to the loss:

Lentropy(θ) = −
∑
X

π (G(Xt; θ)) log π (G(Xt; θ)) . (14)

This term encourages diverse perturbation generation, re-
ducing the risk of suboptimal solutions.

Magnitude Loss. To prevent the magnitude of generated
perturbations from exceeding a specified limit, a regulariza-
tion term is introduced to limit the perturbation magnitude:

Lmag(θ) = max(∥G(Xt; θ)∥ − ϵ, 0). (15)

By optimizing these components together, the training pro-
cess achieves a balance between exploitation and explo-
ration, refining the generator-clusterer framework. The over-
all loss function is:

L = −Lg(θ)+αLc(ρ)−βLentropy(θ)+γLmag(θ), (16)

where α, β, and γ are balancing coefficients.

6. Theoretical Analysis
This section explores the impact of injected perturbations on
clustering performance, with a focus on the MKKM (Huang
et al., 2012) algorithm as a representative clustering method.
For optimization stability, the kernel matrix is normalized
as K̄γ = 1

NKγ .

We reformulate the MKKM objective function and describe
its optimization using the reduced gradient method. The
objective function is defined as:

f(γ) = min
H⊤H=IK

Tr
(
K̄γ(IN −HH⊤)

)
. (17)

Proposition 6.1. The function f(γ) in Eq. (17) is differen-
tiable. The gradient’s p-th component is given by:

∂f(γ)

∂γp
= 2γp Tr(K̄p(IN − ĤĤ⊤)),

where Ĥ = argminH⊤H=IK Tr(K̄γ(IN −HH⊤)).

Building on Proposition 6.1, we use the reduced gradient
method (Rakotomamonjy et al., 2008) to optimize Eq. (17),
maintaining the constraints on γ. Let u ∈ {1, · · · , Nk}
denote a fixed index. The reduced gradient is calculated as:

[∇f ]p =
∂f(γ)

∂γp
− ∂f(γ)

∂γu
, ∀ p ̸= u;

[∇f ]u =
∑
p ̸=u

(
∂f(γ)

∂γu
− ∂f(γ)

∂γp

)
.

(18)

To ensure the positivity of γ, the descent direction d =
[d1, · · · , dNk

]⊤ is defined as:

dp =


0, if γp = 0 and κ(γ) > 0;

− 1
Nk−1κ(γ), if γp > 0 and p ̸= u;
1

Nk−1

∑
p ̸=u,γp>0 κ(γ), if p = u;

(19)
where κ(γ) = ∂f(γ)

∂γp
− ∂f(γ)

∂γu
.

Compared to Rakotomamonjy et al. (2008), the reduced gra-
dient here is normalized by Nk − 1 to promote convergence
within fewer iterations. The update rule is γ = γ + ηd,
where the step size η ensures monotonic convergence of
f(γ) by the reduced gradient method. This algorithm is
referred to as MKKM-RG.

Assumption 6.2. For any kernel weights γ ∈ RNk , let
δk(γ) denote the gap between the k-th and (k+1)-th eigen-
values of K̄γ . We assume for any γ ∈ RNk , δk(γ) ≥ c >
0, where c is a constant.

This assumption is consistent with standard results in ma-
trix theory (Stewart, 1990; Yu et al., 2014) and statistical
theory (Von Luxburg et al., 2008; Mitz & Shkolnisky, 2022;
Liang et al., 2024a).
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Table 1. Effectiveness of AdvMKC against traditional MKC methods (%). Lower metric values indicate better performance. No-attack
denotes the scenario where no adversarial attack is applied during clustering.

Dataset Attack SMKKM EEOMVC LSWMKC LSMKC
NMI ARI ACC PR NMI ARI ACC PR NMI ARI ACC PR NMI ARI ACC PR

MSRCv1

no-attack 59.96 50.54 69.05 69.05 65.76 59.21 76.19 76.19 59.52 47.99 67.62 69.05 59.52 47.99 67.62 69.05
RAMKC 61.89 53.89 72.38 72.38 58.92 47.73 63.81 66.67 55.36 43.06 64.90 65.33 58.13 49.28 69.05 69.05
EAMKC 60.45 52.43 71.43 71.43 56.65 46.89 64.29 66.19 55.10 43.08 64.76 64.76 54.41 43.39 64.76 64.76
AdvMKC 59.44 49.57 68.00 68.00 53.18 43.03 62.86 64.29 54.22 42.42 64.29 64.29 53.90 42.05 63.19 63.19

BBCSport

no-attack 67.50 66.21 85.11 85.11 62.50 59.39 79.78 79.78 83.12 84.42 93.75 93.75 66.30 64.96 81.07 81.07
RAMKC 67.50 66.21 85.11 85.11 63.21 59.70 79.96 79.96 83.12 84.42 93.75 93.75 66.27 64.92 80.88 80.88
EAMKC 67.50 66.21 85.11 85.11 62.99 59.29 79.78 79.78 82.47 84.08 93.57 93.57 66.27 64.92 80.88 80.88
AdvMKC 67.23 65.80 84.93 84.93 62.99 59.29 79.78 79.78 82.06 83.57 93.13 93.13 66.03 64.20 79.23 79.23

Protein
Fold

no-attack 39.97 11.20 29.11 38.90 42.49 12.69 32.71 40.78 39.97 11.20 29.11 38.90 40.58 11.71 30.84 38.18
RAMKC 31.47 09.07 23.92 29.11 42.41 12.94 33.57 39.34 42.60 13.94 31.70 38.90 39.95 11.27 30.84 37.03
EAMKC 29.42 07.57 21.18 26.80 41.98 13.10 32.85 40.35 43.57 15.32 33.14 39.63 39.97 11.81 31.56 38.62
AdvMKC 28.68 07.06 21.09 26.22 39.15 09.66 28.67 38.33 38.93 10.81 28.27 37.61 39.90 10.99 28.10 36.75

Caltech
101-7

no-attack 34.73 22.41 36.97 80.66 45.82 27.26 36.69 83.65 41.73 25.65 37.04 82.02 45.78 34.68 47.76 81.61
RAMKC 34.73 22.46 37.31 80.66 43.88 29.83 46.00 79.82 41.37 25.65 37.04 82.02 45.77 34.54 47.69 81.61
EAMKC 34.73 22.46 37.31 80.66 45.62 31.46 45.66 81.48 41.37 25.65 37.04 82.02 45.36 34.53 47.96 81.61
AdvMKC 34.52 22.29 36.52 80.46 43.73 26.77 32.40 77.95 41.23 25.34 37.02 81.98 45.28 34.42 47.56 81.52

Citeseer

no-attack 25.96 23.65 51.78 54.50 23.74 18.06 44.75 46.74 41.28 41.67 66.33 69.05 19.33 14.45 41.12 41.88
RAMKC 27.78 25.05 52.57 56.40 22.23 17.13 41.85 44.87 41.18 41.52 66.27 68.96 16.07 12.54 37.14 38.59
EAMKC 26.75 23.99 51.81 55.10 22.30 16.94 41.58 45.14 40.81 41.14 66.00 68.75 23.32 18.73 43.81 46.35
AdvMKC 25.33 23.54 51.30 54.38 22.02 17.03 40.63 43.08 40.73 41.07 65.06 67.81 14.27 10.39 33.81 34.29

no-attack 08.51 04.26 24.76 32.82 07.66 03.38 21.39 30.53 06.64 02.90 23.83 29.65 08.09 04.22 22.91 31.53
RAMKC 08.46 04.21 24.66 32.82 07.41 02.99 20.78 30.40 06.54 02.92 23.66 29.65 08.07 04.14 23.13 31.60
EAMKC 08.47 04.23 24.69 32.77 06.83 03.63 23.71 32.01 06.55 02.86 23.69 29.67 08.01 04.18 22.78 31.50

NUS-
WIDE-
SCENE AdvMKC 08.39 04.14 24.51 32.40 06.68 02.62 19.44 30.31 06.50 02.58 23.55 29.51 08.00 04.00 22.53 31.35

Theorem 6.3. Let γ and γ̃ denote the kernel weights ob-
tained from MKKM-RG using the original and perturbed
kernel matrices, respectively. Assuming identical initializa-
tion and a step size η ≤ c, where c > 0, we have:

∥γ − γ̃∥∞ ≾ max
k∈{1,··· ,Nk}

∥Nk∥,

where Nk represents the adversarial noise injected into the
k-th kernel matrix, and ∥ · ∥ is the spectral norm.

From Theorem 6.3, it follows that the impact of adversar-
ial perturbations is determined by both the magnitude and
number of perturbations. Specifically, increasing either the
perturbation magnitude or the proportion of noisy samples
leads to a decline in clustering performance, as further vali-
dated by the experimental results in Subsection 7.5.

7. Experimental Evaluation
This section presents a comprehensive evaluation to address
the following research questions:

• RQ I: Can AdvMKC effectively generate perturbations
that degrade the performance of MKC methods?

• RQ II: Can AdvMKC successfully deceive robust MKC
methods designed to handle noisy data?

• RQ III: Do perturbations generated by AdvMKC for one
MKC method transfer effectively to other MKC methods?

• RQ IV: Does AdvMKC demonstrate consistent perfor-
mance across different settings and hyperparameters?

7.1. Experimental Setup

Comprehensive descriptions of the following datasets, base-
lines, and MKC algorithms are provided in Appendix B. The
source code is publicly available at https://github.
com/csyuhao/AdvMKC-Official.

Datasets. We assess the attack performance of AdvMKC
on seven benchmark datasets: MSRCv1 (Winn & Jojic,
2005), BBCSport (Greene & Cunningham, 2006), Protein-
Fold (Damoulas & Girolami, 2008), HW-6Views (Huang
et al., 2020), Caltech101-7 (Dueck & Frey, 2007), Cite-
seer (Giles et al., 1998), and NUS-WIDE-SCENE (Chua
et al., 2009).

Compared Methods. As there are no existing adversarial at-
tack approaches for MKC, we introduce two baseline attack
strategies: 1) RAMKC adds random Gaussian noise as ad-
versarial perturbations. 2) EAMKC optimizes the noise dis-
tribution using the Evaluation Strategy (Loshchilov, 2017)
and the reward function in Eq. (9).

MKC Methods. We compare AdvMKC with seven tra-
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Table 2. Robustness of AdvMKC against robust MKC methods (%). Lower metric values indicate better performance. No-attack refers to
clustering without adversarial attacks.

Dataset Attack JMKSC ONMSC MKCDNM MKSSC-ERC
NMI ARI ACC PR NMI ARI ACC PR NMI ARI ACC PR NMI ARI ACC PR

MSRCv1

no-attack 04.87 00.11 23.81 24.29 81.64 78.16 90.00 90.00 89.77 88.41 94.76 94.76 58.24 40.12 57.14 63.81
RAMKC 03.42 -0.45 21.90 22.86 80.62 76.99 89.52 89.52 91.74 91.13 96.19 96.19 57.06 39.18 56.19 62.38
EAMKC 02.84 -1.06 20.00 21.90 80.19 76.19 89.05 89.05 86.17 84.93 93.33 93.33 57.06 39.18 56.19 62.38
AdvMKC 01.63 -1.39 19.38 19.86 80.02 76.09 89.00 89.00 85.70 82.17 90.71 90.71 56.71 38.73 55.71 61.90

BBCSport

no-attack 43.74 23.88 55.70 56.80 80.49 81.69 88.05 88.05 46.31 39.43 59.01 66.91 39.98 32.09 54.78 58.46
RAMKC 53.96 37.51 65.07 65.07 80.14 81.17 87.87 87.87 46.21 39.17 58.82 66.73 39.70 25.64 47.06 59.74
EAMKC 46.78 25.85 55.70 59.01 80.86 81.68 88.05 88.05 45.85 38.82 58.27 66.73 39.78 25.40 46.14 59.74
AdvMKC 38.74 20.30 52.21 55.51 80.04 81.02 87.35 87.35 45.11 37.86 57.90 65.99 38.77 24.90 45.06 58.19

Protein
Fold

no-attack 27.41 08.02 23.63 25.36 20.08 07.09 19.31 20.61 18.89 04.46 20.32 21.90 22.06 07.38 22.33 23.34
RAMKC 25.25 07.91 21.76 23.78 21.23 06.49 18.44 21.04 18.54 05.22 21.33 21.76 22.49 07.33 20.89 21.76
EAMKC 24.80 07.81 22.19 23.63 20.65 07.40 20.03 21.04 19.29 04.19 21.76 21.76 14.48 01.32 17.29 17.44
AdvMKC 23.65 06.90 21.04 22.92 19.48 06.46 18.16 20.46 18.08 04.14 20.03 21.05 14.04 01.19 17.15 17.58

Caltech
101-7

no-attack 00.98 -0.23 38.60 54.21 42.65 26.65 37.99 82.43 50.76 32.93 48.85 85.28 55.31 40.14 51.76 84.40
RAMKC 01.12 00.08 17.84 51.14 42.66 26.69 38.20 82.43 50.32 32.89 45.93 85.01 55.44 40.41 52.10 84.46
EAMKC 00.94 00.86 29.51 54.14 42.66 26.66 38.06 82.43 50.49 32.78 49.19 85.21 55.88 40.18 51.76 83.92
AdvMKC 00.30 -0.30 17.31 50.14 42.52 26.60 36.90 82.40 50.25 32.22 44.71 84.87 55.15 38.78 49.59 83.92

Citeseer

no-attack 01.15 -0.04 21.50 21.68 24.20 21.07 50.09 51.78 21.06 19.57 46.35 48.70 38.54 34.42 61.62 63.22
RAMKC 01.58 00.96 22.95 24.15 26.39 24.76 54.35 56.28 19.70 16.11 43.51 48.10 39.50 36.57 61.14 65.34
EAMKC 01.59 01.00 23.07 24.18 27.04 25.24 54.71 56.73 07.55 02.49 27.57 31.31 39.96 36.81 62.32 65.31
AdvMKC 01.06 -0.05 21.07 21.21 24.00 20.38 47.19 49.94 06.91 02.47 27.14 30.40 38.01 33.55 60.91 62.46

no-attack 01.11 00.23 21.27 28.47 07.87 03.10 21.03 29.99 07.93 03.39 21.27 30.55 06.32 02.97 21.78 30.84
RAMKC 01.11 00.40 17.34 28.47 07.88 03.10 21.15 29.99 07.93 03.40 21.39 30.55 06.38 03.00 21.73 30.92
EAMKC 01.36 -0.44 18.58 28.47 07.95 03.10 21.10 29.96 07.93 03.41 21.20 30.62 06.38 02.97 21.71 30.87

NUS-
WIDE-
SCENE AdvMKC 00.40 -0.52 18.01 27.68 07.81 03.06 20.15 29.01 07.87 03.30 21.12 30.31 06.30 02.95 21.70 30.82

ditional MKC methods: MVC-LFA (Wang et al., 2019),
LSMKKM (Liu et al., 2021), MKKM-SR (Lu et al., 2022),
SMKKM (Liu, 2023), EEOMVC (Wang et al., 2024),
LSWMKC (Li et al., 2024), and LSMKC (Liang et al.,
2024b), as well as four robust MKC methods designed for
noisy data: JMKSC (Yang et al., 2019), ONMSC (Zhou
et al., 2020), MKCDNM (Zhang et al., 2022), and MKSSC-
ERC (Xu et al., 2024).

Evaluation Metrics. To assess clustering performance be-
fore and after adversarial attacks, we use four external eval-
uation metrics: normalized mutual information (NMI), ad-
justed rand index (ARI), accuracy (ACC), and purity (PR).

Implementation Details. To ensure imperceptible adver-
sarial perturbations, we modify 10% of the dataset samples,
with 50% of the views being targeted by default. Following
established practices (Chen et al., 2020), the perturbation
magnitude is computed using the ℓ2 norm, with a default
value of ϵ = 0.1

√
d. Specifically, for a feature vector of size

d, an ℓ2 norm perturbation of magnitude ϵ corresponds to
an average perturbation of ϵ/

√
d per feature.

7.2. RQ I: Effectiveness Evaluation

This section evaluates the adversarial robustness of state-of-
the-art MKC methods, targeting seven methods as victims.
Results for SMKKM, EEOMVC, LSWMKC, and LSMKC

are presented in Table 1, with additional findings provided
in Table 5. Key observations are summarized as follows:

1) Adversarial attacks degrade MKC performance. As
demonstrated in the theoretical analysis (Section 6) and
experimental results (Table 1), adversarial perturbations sig-
nificantly reduce clustering performance. For instance, on
the MSRCv1 dataset, attacking EEOMVC reduces NMI
from 65.76% to 53.18%. These results confirm that MKC
methods, like other machine learning models, are suscepti-
ble to adversarial attacks.

2) ACC and PR metrics coincide in some cases. Since
clustering is an unsupervised task, both metrics rely on the
best possible label assignment. ACC determines the optimal
one-to-one mapping between cluster IDs and ground truth
labels using the Hungarian algorithm (Kuhn, 2010), whereas
PR assigns each cluster to the most frequent ground truth
label. When clusters closely align with single ground truth
classes (i.e., each cluster predominantly contains data points
from one class), both metrics yield identical values.

3) AdvMKC outperforms RAMKC and EAMKC. Ad-
vMKC consistently achieves superior performance in gener-
ating effective perturbations. For example, on the MSRCv1
dataset, when attacking SMKKM, AdvMKC achieves the
most significant impact, demonstrating its ability to opti-
mize the perturbation generator through RL.
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7.3. RQ II: Robustness Evaluation

This section evaluates the effectiveness of AdvMKC against
robust MKC algorithms, specifically targeting JMKSC, ON-
MSC, MKCDNM, and MKSSC-ERC as victim methods.
The experimental results, summarized in Table 2, yield the
following key insights:

1) Robust MKC methods struggle to defend against ad-
versarial attacks. For instance, on the MSRCv1 dataset,
when attacking the JMKSC algorithm, AdvMKC reduces
NMI to 1.63%. This highlights a critical limitation of current
robust MKC methods, which often assume perturbations
follow Gaussian distributions, rendering them ineffective
against more complex adversarial scenarios.

2) Robust MKC methods are resilient to Gaussian noise.
For example, on the ProteinFold dataset, RAMKC does
not significantly degrade the clustering performance of the
ONMSC method (NMI: 21.23% under attack vs. 20.08%
without attack). This demonstrates that robust MKC meth-
ods are well-suited to handle Gaussian noise but remain
vulnerable to advanced adversarial attacks.

7.4. RQ III: Transferability Evaluation

This subsection investigates the transferability of adversarial
attacks, acknowledging that the defender’s specific MKC
method is often unknown. It also considers an extreme
scenario in which attacking a multi-view clustering model
necessitates extensive queries to the target MKC method,
leading to substantial resource consumption. To evaluate
this, a randomly selected MKC method (referred to as the
surrogate MKC) is used to train the perturbation generator,
and its effectiveness is subsequently tested on a different
victim MKC method. The experimental results, summarized
in Table 3, yield the following key observation:

1) Adversarial attacks demonstrate significant transfer-
ability across MKC methods. For instance, when JMKSC
is used as the surrogate MKC method and SMKKM is the
victim method, AdvMKC still achieves a 5% reduction in
NMI. This transferability likely arises from the common
characteristics underlying clustering performance in differ-
ent unsupervised learning approaches.

7.5. RQ IV: Sensitivity Evaluation

This subsection investigates the influence of three factors
on attack performance: the number of selected samples
Np

d , the number of perturbed views Np
k , and the magnitude

of adversarial perturbations ϵ. LSMKC and ONMSC are
chosen as the victim MKC methods. Note that in scenarios
where PR and ACC are nearly identical, the ACC curve is
obscured by the PR curve in the experimental results.

Number of Selected Samples Np
d . The impact of the

Table 3. Transferability of AdvMKC by leveraging surrogate MKC
methods to attack unknown victim MKC methods.

Dataset Surrogate
MKC

SMKKM MKSSC-ERC
NMI ARI ACC PR NMI ARI ACC PR

MSRCv1

no-attack 59.96 50.54 69.05 69.05 58.24 40.12 57.14 63.81
EEOMVC 57.65 49.61 68.48 68.48 56.14 38.22 57.02 62.86
LSMKC 57.35 48.73 68.52 68.52 55.43 39.20 57.10 61.43
JMKSC 54.39 45.58 64.29 64.29 54.96 37.81 55.71 59.52
ONMSC 56.37 48.67 68.05 68.05 54.19 37.19 56.14 60.48

BBCSport

no-attack 67.50 66.21 85.11 85.11 39.98 32.09 54.78 58.46
EEOMVC 66.25 65.03 84.56 84.56 38.85 30.75 52.12 57.68
LSMKC 66.57 65.50 84.74 84.74 38.22 26.42 47.46 57.29
JMKSC 66.89 65.35 84.74 84.74 32.67 09.37 71.73 45.40
ONMSC 67.42 66.12 85.00 85.00 39.52 24.94 46.32 58.82

Protein
Fold

no-attack 39.97 11.20 29.11 38.90 22.06 07.38 22.33 23.34
EEOMVC 30.15 07.54 21.33 26.80 21.38 01.37 18.59 22.91
LSMKC 29.57 08.11 20.89 26.37 22.01 00.75 17.29 20.75
JMKSC 28.93 07.40 20.61 24.64 21.78 02.77 19.88 22.97
ONMSC 29.88 07.75 21.33 27.81 21.45 02.98 18.30 22.36

0.05 0.10 0.15 0.20 0.25 0.30
0%

25%

50%

75%

100%

(a) LSMKC

NMI RI ACC PR

0.05 0.10 0.15 0.20 0.25 0.30
0%

25%

50%

75%

100%

(b) ONMSC

Figure 2. The impact of the proportion of perturbed samples on the
MSRCv1 dataset.

proportion of perturbed samples is analyzed by vary-
ing the ratio of selected samples to the total dataset as
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. Evaluations are con-
ducted on the MSRCv1, BBCSport, and ProteinFold
datasets. Results for the MSRCv1 dataset are shown in
Figure 2, while Figures 5 and 6 present results for BBC-
Sport and ProteinFold, respectively. The findings indicate
that increasing the proportion of perturbed samples leads
to a corresponding decline in clustering performance, as
expected, since perturbing more samples exacerbates perfor-
mance degradation.

Number of Perturbed Views Np
k . The effect of the num-

ber of perturbed views is evaluated on the MSRCv1, HW-
6Views, and Caltech101-7 datasets, with Np

k varied as
{1, 2, 3, 4, 5, 6}. Results for the MSRCv1 dataset are pro-
vided in Figure 3, while Figures 7 and 8 show results for
HW-6Views and Caltech101-7, respectively. The results
demonstrate that an increase in the number of perturbed
views leads to a notable decline in clustering performance.

Magnitude of Adversarial Perturbations ϵ. The influ-
ence of perturbation magnitude is assessed by varying ϵ as
{0.01

√
d, 0.05

√
d, 0.10

√
d, 0.15

√
d, 0.20

√
d, 0.25

√
d} on

the MSRCv1, BBCSport, and ProteinFold datasets. Re-
sults for the MSRCv1 dataset are shown in Figure 4, with
Figures 9 and 10 displaying results for the other two datasets,
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(b) ONMSC

Figure 3. The impact of the number of perturbed views on the
MSRCv1 dataset.
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(b) ONMSC

Figure 4. The impact of adversarial perturbation magnitude on the
MSRCv1 dataset.

respectively. The analysis reveals that higher magnitudes
cause more severe degradation in clustering performance.

8. Conclusion
In this paper, we proposed AdvMKC, the first black-box ad-
versarial attack method specifically designed for MKC. By
formulating adversarial attacks on MKC as an RL problem,
we utilized proximal policy optimization with an advan-
tage function to address the instability of clustering results
during optimization. We developed an innovative generator-
clusterer framework, where the generator produces adver-
sarial perturbations and the clusterer approximates MKC
behavior, thereby significantly reducing computational over-
head. A theoretical analysis was conducted to clarify the
impact of injected perturbations on clustering performance,
supported by extensive evaluations. Experimental results
validated the effectiveness, robustness, and transferability
of the proposed approach.
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A. Theoritical Analysis
A.1. Proof of Proposition 6.1

Proposition A.1. The function f(γ) in Eq. (17) is differentiable. The p-th component of its gradient is given by:

∂f(γ)

∂γp
= 2γp Tr(K̄p(IN − ĤĤ⊤)),

where Ĥ = argminH⊤H=IK Tr(K̄γ(IN −HH⊤)).

Proof. The objective function f(γ) can be expressed as the sum of two components:

f(γ) = f1(γ) + f2(γ),

where
f1(γ) = Tr(K̄γ), f2(γ) = max

H⊤H=IK
Tr(K̄γHH⊤).

1) Differentiability of f1(γ). It is straightforward to verify that f1(γ) is differentiable, and its gradient is given by:

∂f1(γ)

∂γp
= 2γp Tr(K̄p).

2) Differentiability of f2(γ). From Theorem 1 in Liu et al. (2023), f2(γ) is differentiable, and its gradient is:

∂f2(γ)

∂γp
= 2γp Tr(K̄pĤĤ⊤),

where Ĥ = argmaxH⊤H=IK Tr(K̄γHH⊤).

3) Differentiability of f(γ). Since f(γ) = f1(γ) + f2(γ), it is differentiable, and its gradient is the sum of the gradients
of f1(γ) and f2(γ):

∂f(γ)

∂γp
=

∂f1(γ)

∂γp
+

∂f2(γ)

∂γp
.

By substituting the expressions for ∂f1(γ)
∂γp

and ∂f2(γ)
∂γp

, we obtain:

∂f(γ)

∂γp
= 2γp Tr

(
K̄p(IN − ĤĤ⊤)

)
.

Furthermore, Ĥ is also the optimal solution of the equivalent minimization problem: Ĥ = argminH⊤H=IK Tr(K̄γ(IN −
HH⊤)).

A.2. Proof of Thereom 6.3

Before completing the proof of Theorem 6.3, we introduce the following definition, which quantifies the alignment level
between a base kernel matrix and the consensus clustering indicator matrix.

Definition A.2. Let α ∈ RNk represent a set of kernel weights, and let Ĥα denote the consensus clustering indicator matrix.
The alignment level between the p-th base kernel K̄p and Ĥα is defined as:

T (K̄p, Ĥα) = Tr(K̄p)− Tr(K̄pĤαĤ
⊤
α).

To prove Theorem 6.3, we utilize the following three lemmas. Here, we provide the proof of Lemma A.3.

Lemma A.3. Let A,B ∈ RN×N be positive semi-definite matrices. Then,

Tr(AB) ≤ ∥A∥ · Tr(B),

where ∥A∥ denotes the spectral norm of A.
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Proof. Let B
1
2 be the unique positive semi-definite matrix satisfying B

1
2B

1
2 = B. Using this, we rewrite the trace term as:

Tr(AB) = Tr
(
B

1
2AB

1
2

)
.

Since B
1
2 (∥A∥ · IN )B

1
2 ≽ B

1
2AB

1
2 (by the definition of the spectral norm), we have:

Tr
(
B

1
2AB

1
2

)
≤ Tr

(
B

1
2 (∥A∥ · IN )B

1
2

)
.

Expanding the right-hand side gives:

Tr
(
B

1
2 (∥A∥ · IN )B

1
2

)
= ∥A∥ · Tr(B),

which concludes the proof.

The following lemma provides a perturbation bound for eigenvectors of Hermitian matrices, which is useful in our analysis.

Lemma A.4. (Yu et al., 2014) Let A,B ∈ RN×N be Hermitian matrices with eigenvalues λ1 ≥ · · · ≥ λN and λ̂1 ≥
· · · ≥ λ̂N , respectively. Fix 1 ≤ r ≤ s ≤ N , and assume min(λr−1 − λr, λs − λs+1) > 0, where λ0 := ∞ and
λN+1 := −∞. Define d := s − r + 1, and let H = [hr,hr+1, . . . ,hs] ∈ RN×d and Ĥ = [ĥr, ĥr+1, . . . , ĥs] ∈ RN×d

be column-orthogonal matrices satisfying Ahj = λjhj and Bĥj = λ̂jĥj for j ∈ {r, . . . , s}. Then, the following bound
holds: ∥∥∥sin θ(H, Ĥ)

∥∥∥
F
≤ 2min(d1/2∥A−B∥op, ∥A−B∥F)

min(λr−1 − λr, λs − λs+1)
,

where θ(H, Ĥ) ∈ Rd×d is diagonal with j-th diagonal entry equal to arccos(h⊤
j ĥj). Additionally, there exists an

orthogonal matrix Ô ∈ Rd×d such that:

∥∥∥ÔĤ−H
∥∥∥
F
≤ 23/2 min(d1/2∥A−B∥op, ∥A−B∥F)

min(λr−1 − λr, λs − λs+1)
,

where ∥·∥F represents the Frobenius norm and ∥·∥op denotes the operator norm.

Without loss of generality, assume the attacker injects adversarial perturbations N = {N1, . . . ,NNp
k
} into the first Np

k

views, while the remaining views {Np
k + 1, . . . , Nk} remain unperturbed. The perturbed kernel matrices are given by

K̃ = {K̃1, . . . , K̃Np
k
,KNp

k+1, . . . ,KNk
}, and the normalized fused kernel matrix is:

K =
1

N
K̃.

Lemma A.5. For any two sets of kernel weights α and β, let:

Ĥα = argmin
H⊤H=IK

Tr(K̄α(IN −HH⊤)), H̃β = argmin
H⊤H=IK

Tr(Kβ(IN −HH⊤)).

Then, for p ∈ {1, . . . , Np
k}, the difference between T (K̄p, Ĥα) and T (Kp, H̃β) satisfies:∣∣∣T (K̄p, Ĥα)− T (Kp, H̃β)

∣∣∣ ≾ ∥α− β∥∞ + max
q∈{1,...,Nk}

∥Nq∥.

Similarly, for p ∈ {Np
k + 1, . . . , Nk}, the bound is given by:

T (K̄p, Ĥα)− T (Kp, H̃β) ≾ ∥α− β∥∞ + max
q∈{1,...,Nk}

∥Nq∥.
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Proof. For p ∈ {1, · · · , Nk}, consider the following:∣∣∣T (K̄p, Ĥα)− T (Kp, H̃β)
∣∣∣

=
∣∣∣Tr (K̄p(IN − ĤαĤ

⊤
α)

)
− Tr

(
Kp(IN − H̃βH̃

⊤
β )

)∣∣∣
≤∥Np∥ · Tr

(
1

N
IN

)
+
∣∣∣Tr(K̄pĤαĤ

⊤
α)− Tr(K̄pĤβĤ

⊤
β )

∣∣∣+ ∣∣∣Tr(K̄pĤβĤ
⊤
β )− Tr(K̄pH̃βH̃

⊤
β )

∣∣∣
+
∣∣∣Tr(K̄pH̃βH̃

⊤
β )− Tr(KpH̃βH̃

⊤
β )

∣∣∣
(20)

Applying the trace inequality and Lemma A.3, we bound each term:∣∣∣T (K̄p, Ĥα)− T (Kp, H̃β)
∣∣∣

≤ ∥Np∥+
∥∥K̄p

∥∥
F
·
∥∥∥ĤαĤ

⊤
α − ĤβĤ

⊤
β

∥∥∥
F
+
∥∥K̄p

∥∥
F
·
∥∥∥ĤβĤ

⊤
β − H̃βH̃

⊤
β

∥∥∥
F
+ ∥K̄p −Kp∥ ·

∣∣∣∣ 1N Tr(H̃βH̃
⊤
β )

∣∣∣∣
(21)

Using Jensen’s inequality, we have
∥∥K̄p

∥∥
F
≤ 1, i.e.,

∥∥K̄p

∥∥
F
=

√
1

N2
Tr(K2

p) ≤
√

1

N2
Tr2(Kp) ≤ 1. (22)

Subsequently, applying the above equation, we have∣∣∣T (K̄p, Ĥα)− T (Kp, H̃β)
∣∣∣ ≾ ∥Np∥+

∥∥∥ĤαĤ
⊤
α − ĤβĤ

⊤
β

∥∥∥
F
+
∥∥∥ĤβĤ

⊤
β − H̃βH̃

⊤
β

∥∥∥
F
. (23)

For any orthogonal matrix O ∈ RK×K , we have∥∥∥ĤαĤ
⊤
α − ĤβĤ

⊤
β

∥∥∥
F
=
∥∥∥ĤαOO⊤Ĥ⊤

α − ĤβĤ
⊤
β

∥∥∥
F

≤
∥∥∥ĤαOO⊤Ĥ⊤

α − ĤαOĤ⊤
β

∥∥∥
F
+

∥∥∥ĤαOĤ⊤
β − ĤβĤ

⊤
β

∥∥∥
F

≤∥ĤαO∥ ·
∥∥∥ĤαO− Ĥβ

∥∥∥
F
+ ∥Ĥβ∥ ·

∥∥∥ĤαO− Ĥβ

∥∥∥
F

≾
∥∥∥ĤαO− Ĥβ

∥∥∥
F
.

(24)

By Lemma A.4 (let r = 1, s = k), with Assumption 6.2, we have∥∥∥ĤαĤ
⊤
α − ĤβĤ

⊤
β

∥∥∥
F
≾

∥∥∥H̃αO− H̃β

∥∥∥
F

≾

∥∥∥∥ 1

N
Kα − 1

N
Kβ

∥∥∥∥
F

≤
Nk∑
p=1

|α2
p − β2

p | ·
∥∥∥∥ 1

N
Kp

∥∥∥∥
F

≤ ∥α− β∥∞ ·
Nk∑
p=1

(αp + βp)

≾ ∥α− β∥∞.

(25)

Similarly, we have∥∥∥ĤβĤ
⊤
β − H̃βH̃

⊤
β

∥∥∥
F
≾

∥∥∥K̄β − K̃β

∥∥∥
F
≤

Np
k∑

p=1

β2
p

∥∥∥∥ 1

N
(Kp − K̃p)

∥∥∥∥
F

≤
Np

k∑
p=1

β2
p∥Np∥ ·

∥∥∥∥ 1

N
I

∥∥∥∥
F

≤ max
q∈{1,··· ,Nk}

∥Nq∥.

(26)
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Substituting Eq. (25) and Eq. (26) into Eq. (24), we can obtain the first bound as follows∣∣∣T (K̄p, Ĥα)− T (Kp, H̃β)
∣∣∣ ≾ ∥α− β∥∞ + max

q∈{1,··· ,Nk}
∥Nq∥.

For p ∈ {Np
k + 1, · · · , Nk}, we have∣∣∣T (K̄p, Ĥα)− T (K̄p, H̃β)

∣∣∣ = ∣∣∣∣ 1N Tr(Kp(H̃βH̃
⊤
β − H̃αH̃

⊤
α))

∣∣∣∣
≤
∣∣∣∣ 1N Tr(Kp(H̃βH̃

⊤
β − ĤβĤ

⊤
β ))

∣∣∣∣+ ∣∣∣∣ 1N Tr(Kp(ĤβĤ
⊤
β − ĤαĤ

⊤
α))

∣∣∣∣
≾∥α− β∥∞ + max

q∈{1,··· ,Nk}
∥Nq∥.

(27)

Finally, we present the proof of Theorem 6.3.

Proof. Assume noiseless kernel matrices lead to the kernel weight sequence {α(t)}Tt=0, where α(t) represents the weights
at the t-th update. Similarly, let {β(t)}Tt=0 denote the kernel weights for the noised kernel matrices. Since the initialization
is identical, we have α(0) = β(0).

Fix an index u ∈ {1, . . . , Np
k}. At the (t+ 1)-th step, we analyze the change in |α(t+1)

u − β
(t+1)
u |:

|α(t+1)
u − β(t+1)

u | − |α(t)
u − β(t)

u |
≤|α(t+1)

u − α(t)
u − (β(t+1)

u − β(t)
u )|

≤ 1

Nk − 1

∣∣∣∣∣∣
∑

p ̸=u,p∈{1,··· ,Np
k}

(
α(t)
p T (Kp, Ĥα(t))− α(t)

u T (Ku, Ĥα(t))
)
−

∑
p ̸=u,p∈{1,··· ,Np

k}

(
β(t)
p T (K̃p, H̃β(t))− β(t)

u T (K̃u, H̃β(t))
)∣∣∣∣∣∣︸ ︷︷ ︸

A

+
1

Nk − 1

∣∣∣∣∣∣
m∑

p=Np
k+1

(
α(t)
p T (Kp, Ĥα(t))− α(t)

u T (Ku, Ĥα(t))
)
−

Nk∑
p=Np

k+1

(
β(t)
p T (Kp, H̃β(t))− β(t)

u T (K̃u, H̃β(t))
)∣∣∣∣∣∣︸ ︷︷ ︸

B

.

(28)

For term A, we bound it as follows:

A =

∣∣∣∣∣∣
∑

p ̸=u,p∈{1,··· ,Np
k}

(
α(t)
p T (Kp, Ĥα(t))− β(t)

p T (K̃p, H̃β(t))
)
− (Np

k − 1)
(
α(t)
u T (Ku, Ĥα(t))− β(t)

u T (K̃u, H̃β(t))
)∣∣∣∣∣∣

≾(Np
k − 1) max

q∈{1,··· ,Np
k}

∣∣∣α(t)
q T (Kq, Ĥα(t))− β(t)

q T (K̃q, H̃β(t))
∣∣∣

=(Np
k − 1) max

q∈{1,··· ,Np
k}

∣∣∣α(t)
q T (Kq, Ĥα(t))− β(t)

q T (Kq, Ĥα(t)) + β(t)
q T (Kq, Ĥα(t))− β(t)

q T (K̃q, H̃β(t))
∣∣∣

≤(Np
k − 1) max

q∈{1,··· ,Np
k}

∣∣∣α(t)
q − β(t)

q

∣∣∣ · T (Kq, Ĥα(t)) + (Np
k − 1) max

q∈{1,··· ,Np
k}

β(t)
q ·

∣∣∣T (Kq, Ĥα(t))− T (K̃q, H̃β(t))
∣∣∣

≾(Np
k − 1)∥α(t) − β(t)∥∞ + (Np

k − 1)

(
∥α(t) − β(t)∥∞ + max

q∈{1,··· ,Np
k}

∥Nq∥
)

(By Lemma A.5.)

≾(Np
k − 1)(∥α(t) − β(t)∥∞ + max

q∈{1,··· ,Np
k}

∥Nq∥)

,

(29)
where ∥Nq∥ denotes the noise magnitude.
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For term B, a similar derivation yields:

B =

∣∣∣∣∣∣
Nk∑

p=Np
k+1

(
α(t)
p T (Kp, Ĥα(t))− β(t)

p T (Kp, H̃β(t))
)
− (Nk −Np

k )
(
α(t)
u T (Ku, Ĥα(t))− β(t)

u T (K̃u, H̃β(t))
)∣∣∣∣∣∣

≾ max
q∈{1,··· ,Nk}

(Nk −Np
k )

(
α(t)
q T (Kq, Ĥα(t))− β(t)

q T (Kq, H̃β(t))
)
+ (Nk −Np

k )
(
α(t)
u T (Ku, Ĥα(t))− β(t)

u T (K̃u, H̃β(t))
)

(By Lemma A.5.)

≾(Nk −Np
k )

(
∥α(t) − β(t)∥∞ + max

q∈{1,··· ,Nk}
∥Nq∥

)
.

.

(30)

Combining Eq. (29), Eq. (30), and Eq. (28), we have

|α(t+1)
u − β(t+1)

u | − |α(t)
u − β(t)

u | ≾ ∥α(t) − β(t)∥∞ + max
q∈{1,··· ,Nk}

∥Nq∥. (31)

Similarly, for p ∈ {1, · · · , Np
k}, p ̸= u, we have

|α(t+1)
p − β(t+1)

p | − |α(t)
p − β(t)

p |

≤|α(t+1)
p − α(t)

p − (β(t+1)
p − β(t)

p )|

≤ 1

Nk − 1

∣∣∣α(t)
u T (Ku, Ĥα(t))− α(t)

p T (Kp, Ĥα(t))
∣∣∣+ 1

Nk − 1

∣∣∣β(t)
u T (K̃u, H̃β(t))− β(t)

p T (K̃p, H̃β(t))
∣∣∣

≾∥α(t) − β(t)∥∞ + max
q∈{1,··· ,Nk}

∥Nq∥.

(32)

For p ∈ {Np
k + 1, · · · , Nk}, we have

|α(t+1)
p − β(t+1)

p | − |α(t)
p − β(t)

p |

≤ 1

Nk − 1

∣∣∣α(t)
u T (Ku, Ĥα(t))− α(t)

p T (Kp, Ĥα(t))
∣∣∣+ 1

Nk − 1

∣∣∣β(t)
u T (K̃u, H̃β(t))− β(t)

p T (Kp, H̃β(t))
∣∣∣

≾∥α(t) − β(t)∥∞ + max
q∈{1,··· ,Nk}

∥Nq∥.

(33)

Combining the upper bounds in Eq. (31), Eq. (32) and Eq. (33), we can obtain

∥α(t+1) − β(t+1)∥∞ ≾ ∥α(t) − β(t)∥∞ + max
q∈{1,··· ,Nk}

∥Nq∥. (34)

Based on the above recurrence formula, we have

∥α(T ) − β(T )∥∞ ≾ ∥α(T−1) − β(T−1)∥∞ + max
q∈{1,··· ,Nk}

∥Nq∥

≾ · · · ≾ ∥α(0) − β(0)∥∞ + max
q∈{1,··· ,Nk}

∥Nq∥ = max
q∈{1,··· ,Nk}

∥Nq∥.

The proof is complete.

B. Details of Experimental Setup
Datasets. We evaluate our approach on seven multi-view datasets, described as follows:

• MSRCv1 (Winn & Jojic, 2005) contains 210 objects from 7 classes (tree, building, airplane, cow, face, car, bicycle) with
6 data views.
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Table 4. Summary of seven benchmark datasets.

Dataset # Sample # View # Cluster # Feature Perturbed View Index

MSRCv1 210 5 7 [24, 576, 512, 256, 254] [1, 4]
BBCSport 544 2 5 [3183, 3203] [1]
ProteinFold 694 12 27 [27, 27, · · · , 27, 27] [1, 2, 3, 4]
Caltech101-7 1474 6 7 [48, 40, 254, 1984, 512, 928] [1, 2]
HW-6Views 2000 6 10 [216, 76, 64, 6, 240, 47] [3, 4]
Citeseer 3312 2 6 [3312, 3703] [1]
NUS-WIDE-SCENE 4095 5 33 [128, 73, 144, 225, 64] [2, 5]

• BBCSport (Greene & Cunningham, 2006) includes 544 sports news articles in 5 categories with two views: 3,183-
dimensional MTX features and 3,203-dimensional TERMS features.

• ProteinFold (Damoulas & Girolami, 2008) comprises 694 instances across 27 classes, each represented by 12 feature
sets.

• Caltech101-7 (Dueck & Frey, 2007) is a subset of the Caltech101 dataset containing 1,474 images across 7 categories
(e.g., DollaBill, Faces). Each image is described using six feature types: Gabor (48 dimensions), Wavelet Transform and
Moments (40 dimensions), Centered Histogram (254 dimensions), Histogram of Oriented Gradients (1,984 dimensions),
Global Image Scene Representation (512 dimensions), and Local Binary Patterns (928 dimensions).

• HW-6Views (Huang et al., 2020) contains 2,000 handwritten numerals (0–9) with 6 heterogeneous views labeled into 10
classes.

• Citeseer (Giles et al., 1998) is a graph dataset of 3,312 scientific publications in 6 categories (e.g., AI, ML). Nodes
represent papers with a 3,703-dimensional keyword vector, and edges indicate citations.

• NUS-WIDE-SCENE (Chua et al., 2009) features 4,095 images across 33 classes with 5 feature types: Color Histogram
(64 dimensions), Color Correlations (144 dimensions), Edge Direction Histogram (73 dimensions), Wavelet Texture (128
dimensions), and Block-Wise Color Moment (225 dimensions).

The summary of each dataset is presented in Table 4. In our evaluations, we utilize Gaussian (Babaud et al., 1986) and
Polynomial (Smola et al., 1998) kernels to construct the kernel matrices for each data view.

MKC Methods. We evaluate our method (AdvMKC) against seven traditional MKC approaches:

• MVC-LFA (Wang et al., 2019) aligns consensus clustering partitions with weighted base partitions.

• LSMKKM (Liu et al., 2021) incorporates local alignment to enhance the fusion of base kernel information.

• MKKM-SR (Lu et al., 2022) combines spectral rotation with multiple kernel K-Means clustering for simultaneous
optimization of discrete and continuous cluster labels.

• SMKKM (Liu, 2023) minimizes kernel weight alignment errors while maximizing clustering assignment accuracy.

• EEOMVC (Wang et al., 2024) integrates common latent representation and clustering indicator matrix generation into a
unified framework.

• LSWMKC (Li et al., 2024) denoises graphs and learns neighborhood kernels to reveal latent local manifold representa-
tions.

• LSMKC (Liang et al., 2024b) assumes isotropic Gaussian distributions for samples and optimizes cluster assignments of
expectation kernel matrices.

Additionally, we compare AdvMKC with four robust MKC methods designed for noisy data:

• JMKSC (Yang et al., 2019) learns an optimal consensus kernel from predefined candidates for reliable clustering results.
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Table 5. Effectiveness of AdvMKC against traditional MKC methods (%). Lower metric values indicate better performance. No-attack
refers to clustering without adversarial attacks.

Dataset Attack MVC-LFA LSMKKM MKKM-SR
NMI ARI ACC PR NMI ARI ACC PR NMI ARI ACC PR

MSRCv1

no-attack 63.42 56.26 74.76 74.76 61.38 53.92 73.81 73.81 58.54 49.99 70.00 72.38
RAMKC 61.75 53.58 71.43 71.90 61.75 54.51 73.81 73.81 53.95 44.29 66.19 66.19
EAMKC 62.29 54.05 73.33 73.33 60.16 52.48 70.48 70.48 54.54 45.19 66.67 66.67
AdvMKC 59.37 51.15 70.00 70.48 60.02 51.39 69.95 69.95 52.73 42.78 64.76 65.19

BBCSport

no-attack 69.23 71.25 81.88 81.07 54.32 39.72 69.49 69.85 54.67 52.98 67.46 74.08
RAMKC 67.79 60.00 71.32 80.88 52.23 41.49 70.04 70.40 55.15 53.24 67.46 74.08
EAMKC 68.76 60.51 71.32 80.88 54.88 40.21 69.67 70.04 55.12 53.24 67.46 74.08
AdvMKC 68.70 60.31 71.25 80.02 29.08 13.69 51.10 51.84 52.60 51.58 66.42 72.04

Protein
Fold

no-attack 44.07 17.47 34.01 41.21 22.76 04.72 19.60 24.64 39.97 11.20 29.11 38.90
RAMKC 44.15 16.78 34.29 42.51 20.73 03.35 19.16 23.05 38.64 10.33 27.95 37.32
EAMKC 43.75 16.56 33.86 42.22 18.79 01.80 16.71 20.46 39.88 11.28 29.39 39.34
AdvMKC 42.34 15.22 32.85 39.77 18.02 01.65 16.14 20.31 37.26 08.16 25.09 35.18

Caltech
101-7

no-attack 48.34 28.13 37.52 83.79 55.92 39.75 52.10 85.35 43.90 33.74 48.10 79.35
RAMKC 45.89 27.93 38.94 82.50 56.05 39.40 52.10 85.35 44.08 33.78 48.03 79.72
EAMKC 45.95 27.64 36.57 82.43 55.93 39.31 52.17 85.28 42.84 29.68 38.94 44.78
AdvMKC 45.78 27.63 36.43 82.29 55.91 39.26 52.04 85.28 39.30 26.22 36.25 45.69

Citeseer

no-attack 28.70 26.30 54.50 57.07 07.06 00.08 25.45 25.51 20.73 15.64 44.20 44.96
RAMKC 28.40 25.98 54.26 56.88 07.00 00.07 25.39 25.45 11.20 07.26 31.91 34.21
EAMKC 28.36 26.03 54.41 56.94 07.18 00.11 25.54 25.60 10.17 06.93 32.37 34.72
AdvMKC 28.08 25.01 54.00 56.10 05.83 00.05 24.43 24.61 10.17 06.90 31.06 32.42

no-attack 07.67 03.75 22.98 32.36 06.34 01.28 26.01 31.16 06.56 02.75 22.69 31.79
RAMKC 07.90 03.90 23.81 32.63 06.23 01.22 25.59 30.96 06.59 02.88 22.93 31.89
EAMKC 07.53 03.68 22.95 32.45 06.32 01.16 25.64 30.99 06.57 02.81 22.78 31.84

NUS-
WIDE-
SCENE AdvMKC 07.50 03.21 23.64 32.41 06.20 01.08 25.54 30.92 06.47 02.70 22.66 31.79

• ONMSC (Zhou et al., 2020) enhances the representational capacity of Laplacian matrices by incorporating high-order
connections.

• MKCDNM (Zhang et al., 2022) decomposes kernel noise into dual components and minimizes them in a late fusion
framework.

• MKSSC-ERC (Xu et al., 2024) employs a stable clustering framework with automatic initialization of optimal cluster
centers.

Compared Methods. As no existing adversarial attack methods are available for MKC, we propose two baseline attack
strategies to benchmark AdvMKC:

• RAMKC generates Gaussian noise n from N (0, I), normalizes it, and rescales its magnitude to satisfy adversarial
constraints: ñ = ϵ n

∥n∥ . The noise ñ is injected into Np
d samples with Np

k views.

• EAMKC formulates adversarial perturbations as a black-box optimization problem (Williams & Li, 2023; Fang et al.,
2023; 2022). Using the LM-CMA strategy (Loshchilov, 2017), it optimizes the mean and variance of noise distributions
with a reward function defined in Eq. (9).

C. Additional Experimental Results
Effectiveness Evaluation. Table 5 presents the experimental results of adversarial attacks on the MVC-LFA, LSMKKM,
and MKKM-SR algorithms. The results reveal the susceptibility of MKC methods to adversarial attacks, with AdvMKC
demonstrating superior performance compared to other approaches.

Sensitivity Evaluation. We assess the influence of three factors on attack performance: the number of selected samples Np
d ,
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Figure 5. The impact of the proportion of perturbed samples on
the BBCSport dataset.
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Figure 6. The impact of the proportion of perturbed samples on
the ProteidFold dataset.
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Figure 7. The impact of the number of perturbed views on the
HW-6Views dataset.

1 2 3 4 5 6
0%

25%

50%

75%

100%

(a) LWMKC

NMI RI ACC PR

1 2 3 4 5 6
0%

25%

50%

75%

100%

(b) ONMSC

Figure 8. The impact of the number of perturbed views on the
Caltech101-7 dataset.
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Figure 9. The impact of adversarial perturbation magnitude on the
BBCSport dataset.
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Figure 10. The impact of adversarial perturbation magnitude on
the ProteinFold dataset.
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Figure 11. Effect of hyperparameters α, β, and γ on the MSRCv1
dataset, evaluated using the NMI metric.
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Figure 12. Effect of hyperparameters α, β, and γ on the MSRCv1
dataset, evaluated using the ARI metric.
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Figure 13. Effect of hyperparameters α, β, and γ on the MSRCv1
dataset, evaluated using the ACC metric.
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Figure 14. Effect of hyperparameters α, β, and γ on the MSRCv1
dataset, evaluated using the PR metric.

the number of perturbed views Np
k , and the magnitude of adversarial perturbations ϵ. The results, shown in Figures 5–10,

indicate that attack performance improves as these factors increase.

Additionally, we perform a sensitivity analysis on the three hyperparameters α, β, and γ in Eq. (16), which regulate
the balance among loss terms. To ensure these loss terms have magnitudes comparable to the main terms, we select
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Figure 15. Effect of hyperparameters α, β, and γ on the BBCSport
dataset, evaluated using the NMI metric.
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Figure 16. Effect of hyperparameters α, β, and γ on the BBCSport
dataset, evaluated using the ARI metric.
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Figure 17. Effect of hyperparameters α, β, and γ on the BBCSport
dataset, evaluated using the ACC metric.
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Figure 18. Effect of hyperparameters α, β, and γ on the BBCSport
dataset, evaluated using the PR metric.

Table 6. Comparison of time consumption for RAMKC, EAMKC, and AdvMKC on all six datasets (s).

Dataset Attack SMKKM EEOMVC LSWMKC LSMKC MVC-LFA LSMKKM MKKM-SR

MSRCv1
RAMKC 1125.92 528.48 1476.00 151.00 142.68 169.28 43.00
EAMKC 1162.00 605.64 1547.68 169.44 156.24 196.40 54.72
AdvMKC 640.28 314.53 960.72 97.35 93.46 116.10 26.63

RAMKC 594.36 306.12 254.12 157.36 125.92 121.60 32.60
EAMKC 626.55 345.18 329.95 188.18 157.55 153.64 43.25BBCSport
AdvMKC 42.26 187.33 185.83 89.77 80.81 75.95 27.87

RAMKC 1158.16 1501.96 2737.96 615.16 397.04 508.36 136.64
EAMKC 1356.02 1659.16 2830.79 729.16 419.07 623.62 168.40Protein

Fold AdvMKC 193.34 915.09 335.79 391.49 252.52 323.06 94.13

RAMKC 5292.00 1033.56 7884.12 487.96 579.60 520.00 125.04
EAMKC 5750.15 1149.57 8064.44 522.11 630.46 556.36 148.15Caltech

101-7 AdvMKC 1092.53 672.34 1044.33 281.26 385.33 341.34 87.57

Citeseer
RAMKC 4161.24 1014.08 19228.40 769.24 423.64 1595.28 186.56
EAMKC 4206.61 1048.15 2180.57 818.58 521.60 1683.57 190.21
AdvMKC 640.36 645.45 1955.01 520.71 299.91 1168.52 137.82

RAMKC 5396.12 2187.44 36674.16 2651.68 975.56 2060.40 362.72
EAMKC 5594.75 2302.42 39721.68 2721.95 994.56 2201.70 417.25

NUS-
WIDE-
SCENE AdvMKC 1068.54 1330.89 4167.51 1607.49 649.42 1588.76 272.86

α from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, β from {1e−5, 1e−4, 1e−3}, and γ from {1e−5, 2e−5, 3e−5, 4e−5, 5e−5, 6e−5}. The
sensitivity analysis is conducted on the MSRCv1 and BBCSport datasets, with results shown in Figure 12–18. These results
indicate that as long as the magnitudes of the loss terms remain balanced, variations in these parameters have minimal
impact on attack performance.

Time Consumption. We evaluate the time consumption of AdvMKC in comparison to two baseline methods, using the
same experimental settings as in Table 1. The results, presented in Table 6, demonstrate that AdvMKC requires less time
while achieving the highest attack performance among all methods.

Attack Efficiency. Beyond attack performance, efficiency (Li et al., 2020; Liu et al., 2024; Yang et al., 2025a;b) is a crucial
metric for evaluating adversarial attacks. Since the number of clustering operations directly affects computational cost, we
assess the attack efficiency of AdvMKC in comparison to RAMKC and EAMKC.

To fully demonstrate the potential of AdvMKC, we set the number of selected samples to Np
d = 0.5N , removing constraints

on sample selection. Evaluations are conducted using SMKKM and ONMSC as victim MKC methods on the MSRCv1 and
BBCSport datasets. The results, presented in Figures 19 - 22, show that AdvMKC consistently achieves optimal attack
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Figure 19. Attack efficiency of AdvMKC against the SMKKM algorithm on the MSRCv1 dataset. The horizontal axis represents the
number of clustering operations performed.
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Figure 20. Attack efficiency of AdvMKC against the ONMSC algorithm on the MSRCv1 dataset. The horizontal axis represents the
number of clustering operations performed.
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Figure 21. Attack efficiency of AdvMKC against the SMKKM algorithm on the BBCSport dataset. The horizontal axis represents the
number of clustering operations performed.
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Figure 22. Attack efficiency of AdvMKC against the ONMSC algorithm on the BBCSport dataset. The horizontal axis represents the
number of clustering operations performed.

performance with the fewest clustering operations. This efficiency is attributed to AdvMKC’s ability to leverage the clusterer
to approximate the behavior of the victim MKC methods.

It can be observed that AdvMKC does not attain the best performance during the initial stage of the attack. The performance
difference stems from the distinct generation methods used in AdvMKC compared to the other two approaches. As shown
in Appendix B, RAMKC injects Gaussian noise into the original data, while EAMKC optimizes the mean and variance of
noise distributions using the LM-CMA strategy and a reward function. In contrast, AdvMKC employs a neural network to
generate perturbations. Due to the initial parameter settings, the perturbation magnitude may be small at the beginning,
limiting AdvMKC’s performance in the early attack phase. However, once the memory buffer B is filled, the attacker can
optimize the generator’s parameters, resulting in improved attack performance.
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