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Abstract

A significant use case of instruction-finetuned Large Language Models (LLMs) is
to solve question-answering tasks interactively. In this setting, an LLM agent is
tasked with making a prediction by sequentially querying relevant information from
the user, as opposed to a single-turn conversation. This paper explores sequential
querying strategies that aim to minimize the expected number of queries. One such
strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects
the query that maximizes information gain or equivalently minimizes uncertainty.
However, obtaining accurate estimates of mutual information or conditional entropy
for LLMs is very difficult in practice due to over- or under-confident LLM proba-
bilities, which leads to suboptimal query selection and predictive performance. To
better estimate the uncertainty at each iteration, we propose Conformal Information
Pursuit (C-IP), an alternative approach to sequential information gain based on
conformal prediction sets. More specifically, C-IP leverages a relationship between
prediction sets and conditional entropy at each iteration to estimate uncertainty
based on the average size of conformal prediction sets. In contrast to conditional
entropy, we find that conformal prediction sets are a distribution-free and robust
method of measuring uncertainty. Experiments with 20 Questions show that C-IP
obtains better predictive performance and shorter query-answer chains compared
to previous approaches to IP and uncertainty-based chain-of-thought methods.
Furthermore, extending to an interactive medical setting between a doctor and a
patient on the MediQ dataset, C-IP achieves competitive performance with direct
single-turn prediction while offering greater interpretability.
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While there are many strategies to interactively arrive at a final prediction, we consider strategies
that yield a small number of queries. One such strategy is to always ask the most “informative”
query given the prior history, until the model is confident enough to make a prediction. This
process is characterized in a framework called Information Pursuit (IP) [16, 38], which defines the
most informative query as the one that maximizes information gain at each iteration. This requires
selecting the query whose answer has the maximum mutual information [18, 21, 30, 77, 145] with
the prediction, given the history of prior query-answer pairs. Equivalently, one can select the query
whose answer minimizes the uncertainty of the prediction, as quantified by the conditional entropy.

In practice, implementing IP for LLMs requires estimating
3- -1.0 the conditional entropy, which is very challenging because
the probabilities of LLM outputs, such as logits of output
tokens, are often miscalibrated: LLM predictions are of-
ten strongly over- or under-confident [6, 31, 39, 55, 78,
109, 113, 118, 121, 128, 132, 142, 144, 147, 148]. Conse-
quently, using probability estimates to measure uncertainty
leads to inaccurate estimates of information and lower pre-
dictive performance. We illustrate this phenomenon in
Figure 2 using the example of two LLMs playing 20 Ques-
0- 0.0 tions. In this setting, the Querier LLM has to guess the
0 4 8 12 16 20 object that the Answerer LLM is thinking of by asking
Number of Queries Asked a sequence of most informative questions. Ideally, the
uncertainty and accuracy of the prediction should behave
Figure 2: IP with calibrated (solid) versus un- Jjke the solid red and solid blue curves. At the first iter-
calibrated (dashed) measures of uncertainty. ;441 gince the Querier LLM has not gathered sufficient
information, the uncertainty of the prediction should be high. As iterations proceed, uncertainty
should diminish and converge to a certain level, where any new query would no longer offer any
additional information than what the Querier LLM already knows. Then, the Querier LLM should
stop and make a prediction. However, we observe that using the LLM’s output probabilities to
estimate uncertainty yields a flat and uninformative curve (dashed red curve). Naturally, this leads to
suboptimal query selection and lower predictive performance (dashed blue curve). This motivates the
need for better uncertainty estimation.
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To obtain more accurate measures of uncertainty for the outputs of the LLM, we propose an alternative
approach to sequential information gain that leverages the notion of prediction sets from predictive
inference and conformal prediction [5, 124]. Although the history of prediction sets dates back to
the 1940s [103, 119, 120, 125, 133], the use of the expected size of a prediction set as a measure of
uncertainty has been studied and popularized only recently [4, 28, 32, 58, 82, 100, 101]. In more
recent applications, it has also been used to calibrate the LLMs’ output probabilities for a more
accurate measure of model confidence [23, 61, 80, 95, 140]. By and large, standard entropy as a
measure of uncertainty relies heavily on proper estimation of the target distribution, while prediction
sets from conformal prediction allow for a distribution-free and instance-wise measure, offering more
flexibility, robustness, and interpretability. Given its dual purpose of being a tool for uncertainty
quantification and calibration, we are motivated to use prediction sets as a measure of informativeness
in lieu of conditional entropy.

Therefore, in this paper we propose Conformal Information Pursuit (C-IP), a greedy sequential
approach that asks informative queries in the order of information gain by minimizing prediction
set size instead of the standard entropy. We first leverage the relationship between entropy and the
expected size of prediction sets using results from Correia et al. [27], allowing us to upper bound the
entropy of the target distribution given the history of query-answer pairs by the expected logarithm of
the size of the prediction set for the ground-truth answer given the history. Then, utilizing conformal
prediction, we propose two ways of constructing sequences of prediction sets, which allows us to
provide accurate measures of informativeness for any given query at any iteration of the algorithm.
To demonstrate the properties and behavior of our method, we perform a thorough study of our
method in the setting of 20Q. Finally, we apply our method to the setting of interactive medical
question answering on the MediQ [70] dataset. Our results demonstrate not only the applicability
of our method in real-world settings, but also its competitive predictive performance. Our code is
available at https://www.github.com/ryanchankh/ConformalInformationPursuit/.
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2 Information Pursuit: A Framework for Sequential Information Gain

We first review the Information Pursuit (IP) framework [16, 38, 51], which will help us lay the
groundwork for developing a greedy algorithm that asks queries using the information gain crite-
rion [21, 30, 51, 145]. Throughout the paper, (X, Y") denotes an input-output pair, where X : Q — X
and Y : Q0 — Y are random variables, {2 is the sample space, and X and ) are the sets of values that
they can take on. We denote by I(X;Y") the mutual information between X and Y, by H(X) the
entropy of the random variable X, and by H(Y | X) the conditional entropy of X given Y.

Setup. The modern generative version of IP is a framework for making interpretable predictions:
The user defines a set Q of task-relevant queries. Each query ¢ € Q is a functiongq : X — A
that maps the textual input © € X to an answer ¢(z) € A. For example, for the task of disease
classification, X contains the set of patient features (e.g., clinical notes), ) is the set of disease
labels (e.g., “pneumonia”, “cardiomegaly”), Q is a set of queries about the patient such as “Are you
coughing?” or “Do you have fever?”, and A to be the set of possible query answers (e.g. “Yes, I do”,
“The patient feels warm.”). Last but not least, for our question-answering task, all query-answers .4
and labels ) are a subset of the space of natural language X.

An important desired property of the query set is sufficiency, which states that for all z, y,

Py |z) =P(y | Q(x)) =P(y | {2’ € X : q(x) = ¢(a'), Vg € Q}). (D

That is, the answers to all queries about x, Q(x) := {q(z) : ¢ € Q}, determine the posterior P(y | x).
In this work, we consider obtaining Q either from an offline set of answerable questions based on the
task, or by prompting an LLM pre-trained with open-domain knowledge, hence capable of generating
any necessary query. In either case, Q is expected to satisfy sufficiency.

IP Algorithm. Given an input 2°* € X', the IP algorithm makes a prediction for Y by sequentially
selecting queries q1, ga, ... € Q in order of information gain, i.e., by maximizing the conditional
information between a query answer and the prediction given the history of prior query-answer pairs:

g = IP(0) = argmax I(¢(X); Y);

(IP)
Qo1 = IP({qs, q;(2°®) }1.1) = arg gleagl(q(X);Y | qre(z°P%)).
When k = 0, the history of prior query-answer pairs is empty, i.e., q1.; := 0, and IP selects

the query whose answer is most informative for predicting Y. When k£ > 1, IP selects the most
informative query conditioned on the history gy..(z°%)”. IP terminates at iteration L if Vgj 41 €
Q, I(qr+1(X); Y | q1..(z°%)) = 0, meaning that no additional query provides extra information
about the target Y. In practice, evaluating P(Y | g;.(2°*)) at test time allows us to observe how
each query and answer affects the prediction at each iteration k =1, ..., L.

IP for LLLMs. Previous work of IP [16, 17, 19, 37, 60] involves learning the joint distribution
P(Y, Q(X)) (or the conditional distribution P(Y | g1.x(x))) from training data such that samples
of P(Y | qu.x(x)) can be obtained efficiently. In contrast, here we assume that the conditional
distribution is given by an LLM directly: We construct a probabilistic predictor’ f : X — A()),
which takes a text prompt as input and outputs a set of probability scores for each class. In particular,
we first extract the logits of the output tokens of interest (such as class names), and then apply a
softmax transform to obtain a predicted distribution (More details in Appendix §G.5).

Since P is given in this case, we can simplify by writing the equivalent formulation of (IP) as
conditional entropy minimization, for each k:

argmax I(q(X); Y | qua(2°™)) = argmax {H (Y | que(z°™)) — H(Y | ¢(X), qrx(2°™))}
q€Q qeQ
= argmin H(Y | ¢(X), qu.r(z°™)). 2)
q€Q

In other words, at any iteration, the query that maximizes the conditional mutual information also
minimizes the conditional entropy. To find the query in (2), one would have to collect samples,
estimate H (Y | g1.x(x°*)) for each g, and select the query that minimizes the conditional entropy.

Note that P(- | q1.5(z°%)) = P(- | {2’ € X : qi(z) = qi(2°™) foralli = 1,...,k})
*Here A (YY) is the set of probability distributions over ).



However, as we have argued in §1, since f is not trained to model P(Y, Q(X)) but is extracted from
an LLM that models Pp 1 (X) as a general language distribution, the output probabilities are often
miscalibrated, motivating our need for an alternative approach to IP.

3 Conformal Information Pursuit: Information Gain with LLMs

3.1 Uncertainty Estimation via Predictive Inference

Next, we propose an alternative approach which leverages recent developments in predictive inference
and conformal prediction [5, 124]. Specifically, the results of Correia et al. [27] allow us to upper
bound entropy by the size of certain prediction sets for the ground-truth answers, hence measuring
uncertainty in a distribution-free and robust manner. We now turn to introducing this approach.

Preliminary on Predictive Inference. Consider a function f that assigns to each value x the
predicted probabilities f(z) = (f(x)1,..., f(z)[y|) for the classes 1,...,|)V|. We may assume
that f is pre-trained with data drawn from some unknown-distribution Py,t,. Predictive inference,
generally speaking, seeks to provide guarantees about the prediction f(Xies) of a new test sample
(Xtost, Yiest) ~ Pdata. One way of doing so is using prediction sets: For a threshold 7 € [0, 1], a

prediction set function C, : X — 2| selects labels with predicted probabilities f (x)y larger than 7:

Cr(x) ={y e V| f(x)y >7}" 3)
Then, we seek to guarantee that the true label Y;et is in the prediction set C- with probability 1 — «.

While there are a number of ways to set the threshold 7, conformal prediction [102, 123] was
introduced as a non-parametric, finite-sample way to achieve such guarantee. Specifically, we will
introduce the method of Split Conformal Prediction (SCP) [88].

Let Deay = {(X;,Y3),i € [N]}, where (X;,Y;) ~ Pyata and [N] := {1,..., N}, be a calibration
dataset of feature-label, independent of the training samples of f. By only assuming the exchange-
ability of the values f(X;)y;,¢ € [IN] U {test}, SCP satisfies the so-called marginal guarantee:

P—Xteshyteshpual (Y;eSt € C‘? (Xtest)) > 1- Q, (4)

by setting 7 as the [(1 — a)(NN + 1)]-th smallest of the values f(X;)y;,i € [N]°. Even if the
distribution of f(X)y when (X,Y) ~ Pjata does not have any point masses, then the coverage
probability is also upper bounded by 1 — ey for ay = @ — 1/(N + 1). Hence, C, () here is also
commonly referred to a conformal prediction set. As we will see later, while SCP assumptions are
fairly mild, obtaining a calibration set from the same data distribution P in the sequential setting
poses additional challenges.

Contrasting Notions of Uncertainty. There is a plethora of work that uses notions from predictive
inference, such as the size of a prediction set, as a means to measure uncertainty [4, 28, 32, 58, 82, 100,
101]. We seek to mathematically characterize the relation between entropy and the size of prediction

sets by leveraging a connection provided by Correia et al. [27] via the following proposition:
Proposition 3.1 (Correia et al. [27], simplified). For « € (0,0.5), consider any prediction set
function C; satisfying

].—OtS]PX’y’D (YGC;(X))S:[—O[N. 5)

Let Ay := hp(a) + alog|V|—(1 — an) log(1 — «), where hy, is the binary entropy function. For the
true distribution Pyai,, We have

HY | X) < Ao+ (1 —ay)logEx[|C+(X)]]. (6)

cal

In words, the uncertainty of Y given data X is upper bounded by the expected size of the prediction
set. The more uncertain one is about Y, the higher the entropy and the larger the prediction set
size, and vice versa. The proposition also tells us the following: whatever the construction of the
prediction set may be, as long as it satisfies the marginal guarantee, the relationship between entropy
and prediction set holds. Next, using this fact, we will derive a conformalized formulation for IP.

“The definition typically requires defining a nonconformity score ¢ : X x J) — R. Here we directly define
the ¥ (z,y) = —P(y | ) for simplicity.
>Which can be obtained via sample quantiles. See Algorithm 1.



3.2 Conformal Information Pursuit Algorithm

We will now formalize our proposed method. Since we leverage SCP to obtain prediction sets at test
time, we refer to our new approach to IP as Conformal Information Pursuit (C-IP)°. Throughout
our work, we assume our prediction set takes the form

C(aa@) = {y e V1 P(Y | 01a(@)) := Flars(a)), > 7} ™

Since both the query answers ¢(«) and the query-answer chains ¢;.x () are represented as text, they
both live in the domain of X'. In the following, we will use the results in §3.1 to derive a new method
for choosing the next query given history. For clarity, we use 7(-) to denote 7’s dependencies.

C-IP: First Query ¢;. To select the first query, recall from (2) that argmax o I(¢(X);Y) =

argmin o H(Y | ¢(X)). Therefore, we can use Proposition 3.1 to construct a C;(,) for every
q € Q that satisfies the marginal coverage guarantee (5):

1—a< ]P)X,Y,Dm] (Y S C,;-(q)(q(X))) <1-ap. ®)
Then,
min H(Y | (X)) < minlogEx |Cs( (40 ] ©

In words, C-IP selects the first query ¢; by minimizing the above upper bound on the entropy.

C-IP: Subsequent Queries q;. Similarly, for the subsequent iterations £k > 1, due to (2),
argmax,co I(q(X);Y | qui(2°™)) = argmingco H(Y | q(X), qu:x(2°")). Again, from Propo-
sition 3.1, we construct a C; (4 q,., (zobs)) fOr every ¢ € Q that satisfies the coverage guarantee (5)
conditioned on the obtained qy.;,(z°"%), i.e.,

11—« S PX)Y)DcaI (Y € C;.(q’ql:k(mobs))(q(X)) ‘ ql;k(l‘ObS)) S 1-— QN . (10)

Then,
. obs . bs
{ZTQBH(Y | ¢(X), qu(2°7%)) < {Iféléllog]EX 1Cs (qqu.r (zore)) (@(XD))| | @1 (2° )]- (11

Our C-IP method aims to choose g; by minimizing the above upper bound. We will refer to the
algorithm that uses empirical estimates of the entropy on the left-hand side of (11) as IP and to the
algorithm that uses empirical estimates of the upper bound on the right-hand side of (11) as C-IP.

From our derivation above, directly applying Proposition 3.1 requires coverage guarantees in (8)
and (10) that condition on the one instantiation of the history q,.;(x°"*) obtained from running
C-IP. Unfortunately, this is intractable in general [59, 64], as the number of possible qlzk(a:"bs) is
exponentially large, of size ~ |Q|*. Even when the maximum number of iterations L is small,
ensuring this would also in general require a large enough subset of the calibration dataset X,
i € [N], with the same history ¢y, (2°P%). Therefore, we propose a related, but relaxed, formulation.

Obtaining Prediction Sets C. To ensure tractability, we propose the following guarantee:
11—« gIP’X,val:kypcal (YEC;—(k)(Qlk(X))) <1-ap, fork = 1,...,L, (12)

which means to offer a guarantee over the distribution of random query-answer chains (1.5 (X)
with length k rather than a single choice of g;.1,(2°"). As a result, our marginalized guarantee only
requires us to construct L prediction set functions. We refer this as length marginalization.

With length marginalization in mind, we now turn the discussion to obtain samples from Q1. to
construct C; () and satisfy (12). The question of how to efficiently sample histories arises in many
occasions when implementing IP (see Related Work in Appendix §B for discussion). In this work,
we consider two possible parameterizations, adaptive to the possible choices of the query set Q:

5We remark that “conformalized” often refers to a wrapper of a method that enjoys a conformal guarantee;
this is not the sense in which we use it.



» Sampling Histories from a Uniform Parameterization: When the query set Q is a closed set
with pre-determined queries, an effective strategy is to parameterize queries at each iteration with a
uniform distribution over the query set. As for V-IP [17], we propose to marginalize our coverage

over uniformly sampled histories of length k. At each iteration k = 1,..., L, where L is the
maximum number of iterations allowed, let Q1. = (Q1,---, Q) be a selection of k queries
sampled uniformly at random from the set Q, i.e.

Q1. ~ Unif(Q)F for k=1,...,L. (13)

» Sampling Histories from LLM Simulations: If O is an open query set with the space of questions
in natural language, another option is to consider the distribution of histories obtained from LLM:s.
For a given observation 2°° and query chain q.1, qx+1 can be obtained by directly prompting for
the next query, i.e., gx1+1 ~ Prim(Q, q1.x(2°%)). We refer this strategy as Direct Prompting (DP)
(see Appendix §I for the algorithm), where the distribution of queries is:

Q1 ~DP(X,Y) for k=1,...,L. (14)

Hence, we obtain a list of prediction set functions C; (1) . ..Cs (1) for every length. The precise
procedure is described in Appendix §1, Algorithm 1.

C-IP Algorithm. To summarize, the C-IP algorithm is as follows. First, we obtain a list of prediction
set functions Cz, . ..C:, based on the desired coverage 1 — «. Then, for any given observation xobs,

q = C-IP(0) = argrréin log Ex[|Cz (1) (¢(X))[];
qe

obs : obs (C'IP)
Q1 = C-IP({qi, qi (™) }1x) = argmin log Ex [|Cs(k+1) (q(X))I] qr:x(2°7%)].
qe

Similar to IP, the quantities in expectation are estimated by their empirical expectations. See Appendix
§1 for pseudocode for the IP, C-IP and DP algorithms.

Remark 1: Stopping Criteria. As mentioned in §2, IP stops when Vg € Q, I(Y; q(X) | q1.x(2°")) =
0. From (2), this corresponds to Vqr+1 € Q, H(Y | qr.1(2°)) — H(Y | q1.1(z°%%)) = 0 (also
referred to as the stability criterion [17]. This also nicely extends to C-IP: When the model is
highly confident, the prediction set should be on average a singleton, which implies Vqiy1 €
Q,1og Ex[|Cs(k+1)q1:k+1(k + 1)|] = log Ex[|Cs ) (q1:£(X))|] = 0. In other words, the stopping
criteria are equivalent in IP and C-IP. In practice, this stringent stopping criterion may not be reached.
Hence, we stop querying once the standard deviation of the estimated entropy for every query is
smaller than a chosen threshold € > 0. See Appendix §G.10 for more details.

Remark 2: Risk Control. Our marginalization approach is a means to estimate uncertainty. Ideally,
one would characterize the full distribution over IP histories. We present our work as a first step in
this direction, and consider the aspect of error control as future work.

4 Exploration with 20 Questions

To create a simple synthetic setting for validating our framework, we explore the properties of IP and
C-IP by playing 20Q with two LLMs, one Querier LLM and one Answerer LLM. The task is simple:
The Answerer LLM thinks of an animal and the Querier LLM is tasked to guess it within 20 queries.

4.1 Experiment Setup

Dataset. We obtain 20 common animal names from the Animals with Attributes 2 (AwA2) [136]
dataset. On the one hand, this ensures that the LLMs we consider have sufficient knowledge about
each class, allowing us to accurately evaluate our algorithm in a setting where the LLM performance
is high. On the other hand, the AwA?2 dataset provides an annotated set of binary attributes about each
animal. This allows us to obtain a binary query set with expert-labeled answers. We consider a closed
query set Qjosed> in Which 85 annotated attributes from AwA?2 are converted into textual questions,
and an open query set Qqpen, Where queries are free-form questions obtained by prompting LLMs. We
consider binary query-answers with Apinary = {“Yes”, “No”} based on the AwA?2 expert labels, and
open query-answers with Agec ex¢ being the set of English sentences (Examples in Appendix §J.1).
In the 20Q setting, the data space is equal to the label space (X = )), thus reducing the problem’s
complexity to help establish the effectiveness of using info-theoretic quantities in guiding LLMs.
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Figure 3: Evaluations of C-IP with a closed query set Qciosea (fop row) and open query set Qopen (bottom
row). Each curve shows the average performance with shaded area as std.. Left column: Performance on
the 20 Questions task of C-IP and baselines with binary (dashed) and non-binary (solid) query answers using
Llama-3.1-8b. Middle column: Uncertainty estimated by IP and C-IP, with each curve evaluating the uncertainty
of the selected query at each iteration. Right column: Desired (dashed) and empirical (solid) coverage of C-IP.
Hyperparameter choice is marked with different colors, with desired and empirical coverage as dashed and solid.

Models and Implementation. We consider three open-source instruction-tuned models: Llama-3.1-
8B [42], Qwen2.5-7B [7] and Phi-3-small [2]. We present results for Llama-3.1-8B in the main text,
and other results in Appendix §E.1. To achieve the target coverage for both closed and open query sets,
we calibrate using 100 random histories and labels. Every entropy term is estimated with 4 randomly
drawn samples. We obtain our prediction sets C’s by sampling via (13) for the setting with closed
query set Celosea and via (13) for the setting with open query set Copen. For LLM hyperparameters
during generation, prompts, and further implementation details, refer to Appendix §G.

Baselines. To compare the performance of C-IP in the closed query set setting, we consider two
baselines: Random, which uniformly selects a query from Q,jseq at each iteration, and IP, which
evaluates (2) at each iteration. For the open query set setting, the baselines are Direct Prompting (DP)
and Uncertainty of Thought (UoT) [49]. Direct Prompting, as described in §3.2 and Appendix §I,
directly prompts the LLM for a single query at each iteration. Furthermore, we compare C-IP against
IP with calibrated probabilities obtained via Platt Scaling [92] and Temperature Scaling [46].

4.2 Results

Predictive Performance. We evaluate C-IP against baselines on predictive performance in Figure 3
(top left). For each iteration up to a maximum of 20, we evaluate the test accuracy given qi.;(2°%).
We use a target coverage of 1 — o = 0.9. For the results with binary answers, we observe a sharp
difference between random selection and IP-based methods, with C-IP performing better at each
iteration. For non-binary answers, C-IP outperforms IP at every iteration, showing that early query
selection weighs greatly for performance. While outperforming random selection in iterations 1-6,
it performs comparably in iterations 7-20. We argue that this occurs due to the simplicity of the
task, where the combination of open query-answers and random selection on task-relevant queries
pre-determined by AwA2 provides sufficient information to achieve high accuracy. Overall, this
result shows that C-IP is a better method for selecting queries from a pre-defined, closed query set.

We perform a similar performance evaluation for C-IP with Qgpeq in Figure 3 (bottom left). Here,
we observe that C-IP with o = 0.15 outperforms both baselines IP and DP. This shows that direct
prompting may not always suggest the most informative query, and C-IP as an uncertainty estimate
can potentially generalize to previously unseen queries.

Uncertainty Estimation. To ensure that C-IP selects informative queries, we evaluate the estimation
of the entropy H(Y | qri1(X),qu.,(x°P%)) at each iteration. C-IP bounds this via the size of
prediction sets in (11) and IP directly estimates it as in (2). In Figure 3 (top middle), we observe that,
for both binary Apinary and free-text query answers Agree-texi> the C-IP bounds (blue curves) decrease
as the algorithm progresses, whereas entropy estimates (orange curves) revolve around the same



level. This shows that C-IP uncertainty measures are more informative than entropy estimates. The
results for C-IP with Qe (Figure 3, bottom middle) also show a decrease in the estimated entropy
as the number of iterations increases. In the case of binary query answers Apinary, While we observe a
less stable decay, C-IP still performs comparably with our baselines, showing that the estimation of
uncertainty is robust despite noisy probabilities.

Empirical Coverage. To evaluate the coverage of our prediction sets, we choose three target values
of o and evaluate the empirical probability that the true label is contained in the prediction set at
each iteration over our test set (See Appendix §G.11 for empirical formula). Our results are shown
in Figure 3 (right column). For Cgjoseq With both binary Apinary and free-text query answers Afree-text
the realized coverage is close to the target for 1 — a = 0.99, whereas our method undercovers for
1 —a =0.95 and 0.99. Overall, the choice of « largely influences the predictive performance of
C-IP, which explains the superior performance for C-IP over IP and random query selection when
1 — o = 0.99. On the other hand, for Cypen With both binary Apinary and free-text query answers
Alfree-text» W€ Observe a slight over-coverage for smaller choices of o and under-coverage for early
iterations. This is likely due to the wide range of possible queries in few initial steps, leading to
under-coverage and misspecification. See Appendix §F.1 for ablation studies regarding choices of a.

Comparison with Probability Calibration Methods. C-
IP can be considered as a version of IP that can be used

50'50 with miscalibrated measures of uncertainty. Here, we
S explore the option of first calibrating the predictive prob-
g abilities with popular calibration methods such as Platt
2 0.25 BT Scaling and Temperature Scaling (TS), then applying IP
@ et i with the updated probabilities. Briefly, Platt Scaling is a
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Figure 4: Comparison with Probability Cal-
ibration Baselines under open query set set-
ting Qopen With binary (top) and free-text (bot-
tom) query answers.

parametric method that learns a linear regression model
using the calibration data to re-calibrate probabilities, and
TS is a non-parametric method that divides the predicted
probabilities by some temperature scalar 7. We evaluate
three choices of temperature T' € {0.5,0.75,1.25}. See
more implementation details in §G.13.

The results of the comparison is shown in Figure 4. For
an open query set Qopen, C-IP outperforms IP with cal-
ibrated probabilities in the case of binary queries, and
performs comparably with non-binary query answers. We
hypothesize this occurs due to the complexity of the dis-
tribution of histories, where distribution-free uncertainty
quantification methods such as SCP shine.

Comparison with UoT. We compare our method with a
state-of-the-art LLM reasoning method, Uncertainty-of-
Thought (UoT) [49]. UoT handles multi-turn conversa-
tions by propagating rewards based on information gain
from future steps. At each iteration, it builds a shallow

tree computing the information gain of a few potential trajectories, akin to seeing a few steps ahead.
Importantly, UoT applies only to the setting with open query set and binary query answers. We will
compare UoT with IP and C-IP, as both are entropy-based uncertainty quantification methods for
interactive question answering. Further details are provided in Appendix G.

Our results are shown in Table 1. For bi-
nary query answers, UoT achieves higher
success rate than IP or C-IP. This is rea-

Table 1: Comparison of C-IP with UoT reasoning, averaged
across 5 runs with std..

sonable as accumulating information gain ~_Method Query Answers A Avg.Len  Accuracy
a few iterations ahead is likely more ad- H)oT Einaﬂ/ }?2(7) i égg 82? i 8‘(1)‘3‘
. . . mnary B . . B
vantageous than using immediate rewards. |, free-text 1004+ 045 0.65L018
However, for free-text query answers, C-  C.IP (a = 0.1) binary 11.87+0.83 037£0.11
IP achieves a near 45% accuracy improve_ C-IP (a = 0.1) free-text 10.58 £ 0.58 0.83 £ 0.05

ment, with a smaller average number of
queries. Thus, using an immediate reward with free-text query answers works better than accumu-
lated entropy-based rewards with binary answers.
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Figure 5: Top: Predictive Performance in Medical Interactive Question Answering on the MediQ dataset. The
tasks are divided based on specialty. Desired coverage is 1 — a = 0.8 for IM and P and 1 — o = 0.7 for N.
Bottom: Comparison of empirical and desired coverage for C-IP. Desired coverage (dashed curve) is shown for
1—a € {0.7,0.8,0.9}. Since the number of queries may depend on the datapoints, Empirical Coverage (solid
curve) at iteration k is evaluated for all test datapoints that have stopped at or before iteration k. Each curve is
averaged over three splits, with the shaded area denoting their standard deviation.

5 Application to Interactive Medical Question Answering

In this section, we apply C-IP to an interactive medical question-answering task on the MediQ dataset.
We provide the basic setup here and other details (such as prompts) can be found in Appendix §G.

5.1 Setup

Dataset. MediQ [70] is an interactive medical question-answering dataset extended from
MedQA [53], a large-scale medical question-answering dataset designed to evaluate the profes-
sional knowledge and clinical decision-making abilities of LLMs. All data is drawn from medical
licensing examinations in the United States. Each datapoint in MediQ contains a medical question,
four multiple-choice answers, a label for the specialty/area, and a list of facts from a context paragraph
about the patient’. For IP in this context, X is the set of patients’ information, Q is the set of (closed)
queries one can ask about the patient, and ) is the set of multiple-choice answers.

The task simulates an interactive setting between an Expert LLM (the predictor and the querier in
our nomenclature) and a Patient LLM (the query-answerer), and the goal is that the Expert LLM
diagnoses the patient by answering the provided medical questions. For our application, we consider
medical questions from the following three categories: “Internal Medicine (IM)” (290 samples),
“Pediatrics (P)” (217 samples) and “Neurology (N)” (108 samples). We treat each category as a single
task, and the coverage is calculated using calibration data obtained from the same category.

Models and Evaluation. To ensure a fair evaluation, we divide each category into three equal
sets: D for estimating entropy, D, for calibration, and D for test-set evaluation. We perform
three-fold cross validation and evaluate the average performance and its standard deviation. In our
main text, we evaluate Llama-3.1-8B as both the Expert LLM and the Patient LLM. Similar to 20Q,
we first obtain the output token’s logit score based on the four options (A, B, C, D), then apply
softmax to obtain an estimate of the posterior distribution P(Y" | g1.5 (2°%)).

Baselines. We compare with two baselines. In Non-sequential prediction, the Expert LLM makes a
single prediction based on all necessary information. This serves as an upper bound on the predictive
performance, and has been shown to outperform interactive methods [70]. In Enumerate, we provide
the facts in the order of decomposition from the original context paragraph. Since our LLMs are
inherently sequential, this acts as if the LLM is reading the context paragraph in order.

"The number of facts may vary depending on the number of sentences in each sample.



S Initial Info: An 84-year-old woman with an indwelling urinary catheter and a history of recurrent nephrolithiasis is brought to the emergency room.
3 uestion:  Which of the following is most likely to be present on this patient's urine culture?
) y 4 Ly p p
5 Options:  (4) Gram-negative, oxidase-positive rods, (B) Gram-positive, novobiocin-resistant cocci,
(C) Gram-positive, gamma-hemolytic cocci, (D) Gram-negative, oxidase-negative rods.
- qq: What is the moisture level of the patient's mucous membranes? =012
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Final Prediction: D.

Explanation: The patient's symptoms and presentation suggest a urinary tract infection (UTI). The patient has an indwelling urinary catheter,
which is a risk factor for UTIs. The patient's symptoms of confusion and dry mucous membranes could be indicative of dehydration, which is a
common complication of UTIs, especially in the elderly. The patient's urine studies show a high WBC count, which is consistent with a UTI. The
patient's temperature of 38.3°C (100.9 °F) also suggests an infection. Given these symptoms and the patient s history of recurrent nephrolithiasis,
the most likely cause of the UTI is a Gram-negative, oxidase-negative rod, such as Escherichia coli (E. coli), which is a common cause of UTIs,
especially in patients with indwelling catheters. E. coli is a Gram-negative, oxidase-negative rod, making option D the correct answer:

Figure 6: Example query-answer chain produced by C-IP for a patient in Internal Medicine. C-IP sequentially
selects queries that approximately reduce uncertainty (i.e. average prediction set sizes from (11)) at each iteration.
The posterior P(Y | 1., (2°"®)) is also estimated and a prediction is made. Once uncertainty drops below a
chosen threshold ¢, the C-IP algorithm stops and makes a final prediction. Based on the obtained query-answer
chain and the prediction, an explanation is also generated.

Query Set Construction. We find that constructing a single query set for the entire test set often
leads to queries with unknown query answers. Hence, we construct a query set for each test datapoint
based on the existing atomic facts in the input, by converting each fact into a question. Therefore, the
goal of the IP algorithm is to select the queries with answers obtainable from the context. We find
this setting more constructive compared to the setting with a single query set for all evaluations.

5.2 Results

Predictive Performance and Coverage. The performance of C-IP and the baselines for the three
specialties is shown in Figure 5. C-IP and IP achieves comparable performance in all cases. This
suggests that C-IP selects more informative queries during the interactive process. To explain
the effectiveness of C-IP and why it did not strongly outperform baselines for N, we analyze
their empirical coverage at each iteration. We observe that C-IP has valid coverage IM and P but
undercovers for N. This is likely due to the small calibration set size for N (36 datapoints).

Explanations. We show a run-down of the C-IP algorithm in Figure 6. Before any query selection,
the Expert LLM is provided with initial information, the medical question, and possible options for
the answer. Then, C-IP selects the first query ¢; = “What is the moisture level of the patient’s mucous
membranes?”, to which the Patient LLM responds ¢; (z°°) = “She has dry mucous membranes”.
This process continues until the uncertainty measured based on the posterior of the answer options
from the Expert LLM drops below 0.01. Once C-IP stops, it makes the final prediction “D”, and
summarizes the query-answer chain into a paragraph explaining the decision. More examples
(including other specialties) are shown in Appendix §J.2.

6 Conclusion and Future Work

In this work, we proposed C-IP, a novel sequential information pursuit algorithm that uses prediction
set sizes as an alternative to conditional entropy to estimate uncertainty. We leveraged a mathematical
connection between prediction sets and entropy, and proposed two sampling methods for obtaining
histories. Through our empirical studies on 20Q and MediQ datasets, we demonstrated that our
proposed approach performs well in practice, and that the size of the prediction sets is an effective
measure of uncertainty. As we suggested in §3 Remark 2, an interesting avenue for future work is to
provide guarantees for the correctness of the prediction given query-answer chains, P(Y" | gy.5(2°")),
obtained by C-IP and for the query-answer chains ;.5 (2°P°) themselves. Doing so would require a
careful characterization of the distribution Q1.5 ~ IP({q;, ¢:(X)}1.x)-

10



Acknowledgements

K. H. R. C. would personally like to thank Tianjiao Ding, Uday Kiran Reddy Tadipatri, Liangzu
Peng, Darshan Thaker, Kyle Poe, Buyun Liang, Ryan Pilgrim, Aditya Chattopadhyay, and Zitong
Yang for fruitful discussions. K. H. R. C., Y. G., and R. V. acknowledge the support from NSF
2031985, Simons Foundation 814201 (THEORINET), University of Pennsylvania Startup Funds,
NSF Graduate Research Fellowship Program, Penn Engineering Dean’s Fellowship and Amazon
Fellowship. E. D. was partially supported by the NSF, ARO, AFOSR, ONR, and the Sloan Foundation.
H. H. was supported by the NSF CAREER award CIF-1943064.

11



References

[1] Z. Abbasiantaeb, Y. Yuan, E. Kanoulas, and M. Aliannejadi. Let the LLMs talk: Simulating
human-to-human conversational QA via zero-shot LLM-to-LLM interactions. Proceedings of
the 17th ACM International Conference on Web Search and Data Mining, 2023.

[2] M. Abdin, J. Aneja, H. Awadalla, A. Awadallah, A. A. Awan, N. Bach, A. Bahree, A. Bakhtiari,
J. Bao, H. Behl, et al. Phi-3 technical report: A highly capable language model locally on your
phone. arXiv preprint arXiv:2404.14219, 2024.

[3] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, 1. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[4] A. Angelopoulos, S. Bates, J. Malik, and M. 1. Jordan. Uncertainty sets for image classifiers
using conformal prediction. arXiv preprint arXiv:2009.14193, 2020.

[5] A.N. Angelopoulos and S. Bates. Conformal prediction: A gentle introduction. Foundations
and Trends® in Machine Learning, 16(4):494-591, 2023.

[6] Y. Ba, M. Mancenido, and R. Pan. Fill in the gaps: Model calibration and generalization with
synthetic data. In Conference on Empirical Methods in Natural Language Processing, pages
17211-17225, 2024.

[7] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, F. Huang, et al. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[8] S. Bates, E. Candes, L. Lei, Y. Romano, and M. Sesia. Testing for outliers with conformal
p-values. The Annals of Statistics, 51(1):149-178, 2023.

[9] A. M. Bean, R. Payne, G. Parsons, H. R. Kirk, J. Ciro, R. Mosquera, S. H. Monsalve, A. S.
Ekanayaka, L. Tarassenko, L. Rocher, et al. Clinical knowledge in llms does not translate to
human interactions. arXiv preprint arXiv:2504.18919, 2025.

[10] A. Ben Abacha and D. Demner-Fushman. A question-entailment approach to question
answering. BMC bioinformatics, 20:1-23, 2019.

[11] L. Bertolazzi, D. Mazzaccara, F. Merlo, and R. Bernardi. ChatGPT’s information seeking
strategy: Insights from the 20-questions game. In Proceedings of the 16th International
Natural Language Generation Conference, pages 153—162, 2023.

[12] G. M. Biancofiore, Y. Deldjoo, T. D. Noia, E. Di Sciascio, and F. Narducci. Interactive question
answering systems: Literature review. ACM Computing Surveys, 56(9):1-38, 2024.

[13] A.Bodrova, P. Xu, J. Varley, A. Zeng, A. Majumdar, D. Sadigh, S. Singh, F. Xia, N. Brown,
L. Takayama, A. Z. Ren, A. Dixit, Z. Xu, and S. Tu. Robots that ask for help: Uncertainty
alignment for large language model planners. ArXiv, abs/2307.01928, 2023. URL https:
//api.semanticscholar.org/CorpusId:259342058.

[14] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pretten-
hofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux.
API design for machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108—-122, 2013.

[15] E. Y. Chang. Evince: Optimizing multi-llm dialogues using conditional statistics and informa-
tion theory. arXiv preprint arXiv:2408.14575, 2024.

[16] A. Chattopadhyay, S. Slocum, B. D. Haeffele, R. Vidal, and D. Geman. Interpretable by
design: Learning predictors by composing interpretable queries. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

[17] A. Chattopadhyay, K. H. R. Chan, B. D. Haeffele, D. Geman, and R. Vidal. Variational
information pursuit for interpretable predictions. arXiv preprint arXiv:2302.02876, 2023.

12


https://api.semanticscholar.org/CorpusId:259342058
https://api.semanticscholar.org/CorpusId:259342058

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

A. Chattopadhyay, R. Pilgrim, and R. Vidal. Information maximization perspective of orthog-
onal matching pursuit with applications to explainable ai. Advances in Neural Information
Processing Systems, 36:2956-2990, 2023.

A. Chattopadhyay, K. H. R. Chan, and R. Vidal. Bootstrapping variational information pursuit
with large language and vision models for interpretable image classification. In The Twelfth
International Conference on Learning Representations, 2024.

J. Chen and J. Mueller. Quantifying uncertainty in answers from any language model and
enhancing their trustworthiness. In Annual Meeting of the Association for Computational
Linguistics, 2023. URL https://api.semanticscholar.org/CorpusId:263611057.

Y. Chen, S. H. Hassani, A. Karbasi, and A. Krause. Sequential information maximization:
When is greedy near-optimal? In Conference on Learning Theory, pages 338-363. PMLR,
2015.

Z. Chen, K. Zhou, B. Zhang, Z. Gong, W. X. Zhao, and J. rong Wen. Chatcot: Tool-augmented
chain-of-thought reasoning on chat-based large language models. ArXiv, abs/2305.14323,
2023. URL https://arxiv.org/pdf/2305.14323.pdf.

J. Cherian, I. Gibbs, and E. Candes. Large language model validity via enhanced conformal
prediction methods. In Advances in Neural Information Processing Systems, volume 37, pages
114812-114842, 2024.

J. J. Cherian, I. Gibbs, and E. Candes. Large language model validity via enhanced conformal
prediction methods. ArXiv, abs/2406.09714, 2024. URL https://api.semanticscholar.
org/CorpusId:270521658.

V. Chernozhukov, K. Wuthrich, and Y. Zhu. Exact and robust conformal inference methods
for predictive machine learning with dependent data. In Proceedings of the 31st Conference
On Learning Theory, 2018.

A. Comas, A. Chattopadhyay, F. Formosa, C. Liu, O. Camps, and R. Vidal. Incode: In-
terpretable compressed descriptions for image generation. In The Thirteenth International
Conference on Learning Representations, 2025.

A. H. Correia, F. V. Massoli, C. Louizos, and A. Behboodi. An information theoretic perspec-
tive on conformal prediction. arXiv preprint arXiv:2405.02140, 2024.

C. Cortes, A. Mao, C. Mohri, M. Mohri, and Y. Zhong. Cardinality-aware set prediction and
top-k classification. arXiv preprint arXiv:2407.07140, 2024.

L. C. Covert, W. Qiu, M. Lu, N. Y. Kim, N. J. White, and S.-I. Lee. Learning to maximize
mutual information for dynamic feature selection. In International Conference on Machine
Learning, pages 6424-6447. PMLR, 2023.

S. Dasgupta. Analysis of a greedy active learning strategy. Advances in Neural Information
Processing Systems, 17, 2004.

G. Detommaso, M. Bertran, R. Fogliato, and A. Roth. Multicalibration for confidence scoring
in LLMS. arXiv preprint arXiv:2404.04689, 2024.

G. S. Dhillon, G. Deligiannidis, and T. Rainforth. On the expected size of conformal prediction
sets. In International Conference on Artificial Intelligence and Statistics, pages 1549—1557.
PMLR, 2024.

R. Dunn, L. Wasserman, and A. Ramdas. Distribution-free prediction sets for two-layer
hierarchical models. Journal of the American Statistical Association, pages 1-12, 2022.

B.-S. Einbinder, Y. Romano, M. Sesia, and Y. Zhou. Training uncertainty-aware classifiers
with conformalized deep learning. Advances in Neural Information Processing Systems, 2022.

S. Feldman, L. Ringel, S. Bates, and Y. Romano. Achieving risk control in online learning
settings. Trans. Mach. Learn. Res., 2023, 2022. URL https://arxiv.org/pdf/2205.
09095 . pdf.

13


https://api.semanticscholar.org/CorpusId:263611057
https://arxiv.org/pdf/2305.14323.pdf
https://api.semanticscholar.org/CorpusId:270521658
https://api.semanticscholar.org/CorpusId:270521658
https://arxiv.org/pdf/2205.09095.pdf
https://arxiv.org/pdf/2205.09095.pdf

(36]

(37]

(38]

[39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

O. F’eron, J. Josse, Y. Goude, M. Zaffran, and A. Dieuleveut. Adaptive conformal predictions
for time series. In International Conference on Machine Learning, 2022. URL https:
//api.semanticscholar.org/CorpusId:246863519.

Y. Ge, K. H. R. Chan, P. Messina, and R. Vidal. Ip-crr: Information pursuit for interpretable
classification of chest radiology reports. arXiv preprint arXiv:2505.00191, 2025.

D. Geman and B. Jedynak. An active testing model for tracking roads in satellite images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1):1-14, 1996.

J. Geng, F. Cai, Y. Wang, H. Koeppl, P. Nakov, and I. Gurevych. A survey of confidence
estimation and calibration in large language models. In North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 6577-6595,
2024.

I. Gibbs and E. Candes. Adaptive conformal inference under distribution shift.
ArXiv, abs/2106.00170, 2021. URL https://api.semanticscholar.org/CorpusId:
235266057.

I. Gibbs and E. Candes. Conformal inference for online prediction with arbitrary distribution
shifts. J. Mach. Learn. Res., 25:162:1-162:36,2022. URL https://api.semanticscholar.
org/CorpusId:251622480.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

L. Guan. A conformal test of linear models via permutation-augmented regressions. arXiv
preprint arXiv:2309.05482, 2023.

L. Guan. Localized conformal prediction: A generalized inference framework for conformal
prediction. Biometrika, 110(1):33-50, 2023.

L. Guan and R. Tibshirani. Prediction and outlier detection in classification problems. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 84(2):524-546, 2022.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks.
In International conference on machine learning, pages 1321-1330. PMLR, 2017.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

B. Hou, Y. Liu, K. Qian, J. Andreas, S. Chang, and Y. Zhang. Decomposing uncertainty for
large language models through input clarification ensembling. ArXiv, abs/2311.08718, 2023.
URL https://api.semanticscholar.org/CorpusId:265213190.

Z. Hu, C. Liu, X. Feng, Y. Zhao, S.-K. Ng, A. T. Luu, J. He, P. W. Koh, and B. Hooi.
Uncertainty of Thoughts: Uncertainty-aware planning enhances information seeking in large
language models. arXiv preprint arXiv:2402.03271, 2024.

Z. Huang, S. Rossi, R. Yuan, and T. Hannagan. From predictions to confidence intervals: an
empirical study of conformal prediction methods for in-context learning. In unknown, 2025.
URL https://api.semanticscholar.org/CorpusId:277994329.

E. Jahangiri, E. Yoriik, R. Vidal, L. Younes, and D. Geman. Information Pursuit: A Bayesian
framework for sequential scene parsing. arXiv preprint arXiv:1701.02343,2017.

P. Jiang, J. Rayan, S. P. Dow, and H. Xia. Graphologue: Exploring large language model
responses with interactive diagrams. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology, 2023.

D. Jin, E. Pan, N. Oufattole, W.-H. Weng, H. Fang, and P. Szolovits. What disease does this
patient have. A Large-scale Open Domain Question Answering Dataset from Medical Exams.
arXiv [cs. CL], 2020.

14


https://api.semanticscholar.org/CorpusId:246863519
https://api.semanticscholar.org/CorpusId:246863519
https://api.semanticscholar.org/CorpusId:235266057
https://api.semanticscholar.org/CorpusId:235266057
https://api.semanticscholar.org/CorpusId:251622480
https://api.semanticscholar.org/CorpusId:251622480
https://api.semanticscholar.org/CorpusId:265213190
https://api.semanticscholar.org/CorpusId:277994329

[54] Q. Jin, B. Dhingra, Z. Liu, W. W. Cohen, and X. Lu. Pubmedqa: A dataset for biomedical
research question answering. arXiv preprint arXiv:1909.06146, 2019.

[55] S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez, N. Schiefer, Z. Hatfield-
Dodds, N. DasSarma, E. Tran-Johnson, et al. Language models (mostly) know what they
know. arXiv preprint arXiv:2207.05221, 2022.

[56] R. Kaur, S. Jha, A. Roy, S. Park, E. Dobriban, O. Sokolsky, and I. Lee. iDECODe: In-
distribution equivariance for conformal out-of-distribution detection. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2022.

[57] R. Kaur, C. Samplawski, A. D. Cobb, A. Roy, B. Matejek, M. Acharya, D. Elenius, A. M.
Berenbeim, J. Pavlik, N. D. Bastian, and S. Jha. Addressing uncertainty in llms to enhance relia-
bility in generative ai. ArXiv, abs/2411.02381,2024. URL https://api.semanticscholar.
org/CorpusId:273822044.

[58] S. Kiyani, G. J. Pappas, and H. Hassani. Length optimization in conformal prediction. In
Advances in Neural Information Processing Systems, volume 37, pages 99519-99563, 2024.

[59] C. Koch, C. Strassle, and L.-Y. Tan. Superconstant inapproximability of decision tree learning.
Proceedings of Machine Learning Research vol, 196:1-32, 2024.

[60] S. Kolek, A. Chattopadhyay, K. H. R. Chan, H. Andrade-Loarca, G. Kutyniok, and R. Vidal.
Learning interpretable queries for explainable image classification with information pursuit.
arXiv preprint arXiv:2312.11548, 2023.

[61] B. Kumar, C. Lu, G. Gupta, A. Palepu, D. Bellamy, R. Raskar, and A. Beam. Conformal
prediction with large language models for multi-choice question answering. arXiv preprint
arXiv:2305.18404, 2023.

[62] B. Kumar, C.-C. Lu, G. Gupta, A. Palepu, D. R. Bellamy, R. Raskar, and A. Beam.
Conformal prediction with large language models for multi-choice question answering.
ArXiv, abs/2305.18404, 2023. URL https://api.semanticscholar.org/CorpusId:
258967849.

[63] P. Laban, H. Hayashi, Y. Zhou, and J. Neville. Llms get lost in multi-turn conversation. arXiv
preprint arXiv:2505.06120, 2025.

[64] H. Laurent and R. L. Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15-17, 1976.

[65] J. Lei and L. Wasserman. Distribution-free prediction bands for non-parametric regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):71-96, 2014.

[66] J. Lei, J. Robins, and L. Wasserman. Distribution-free prediction sets. Journal of the American
Statistical Association, 108(501):278-287, 2013.

[67] J. Lei, A. Rinaldo, and L. Wasserman. A conformal prediction approach to explore functional
data. Annals of Mathematics and Artificial Intelligence, 74(1):29-43, 2015.

[68] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman. Distribution-free predictive
inference for regression. Journal of the American Statistical Association, 113(523):1094—-1111,
2018.

[69] S.Li, X. Ji, E. Dobriban, O. Sokolsky, and I. Lee. PAC-Wrap: Semi-supervised pac anomaly
detection. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2022.

[70] S.Li, V. Balachandran, S. Feng, J. Ilgen, E. Pierson, P. W. W. Koh, and Y. Tsvetkov. MediQ:
Question-asking 1lms and a benchmark for reliable interactive clinical reasoning. Advances in
Neural Information Processing Systems, 37:28858-28888, 2024.

[71] Y. Li, X. Shen, X. Yao, X. Ding, Y. Miao, R. Krishnan, and R. Padman. Beyond single-turn: A
survey on multi-turn interactions with large language models. arXiv preprint arXiv:2504.04717,
2025.

15


https://api.semanticscholar.org/CorpusId:273822044
https://api.semanticscholar.org/CorpusId:273822044
https://api.semanticscholar.org/CorpusId:258967849
https://api.semanticscholar.org/CorpusId:258967849

[72] Z. Liang, Y. Zhou, and M. Sesia. Conformal inference is (almost) free for neural networks
trained with early stopping. In International Conference on Machine Learning, 2023.

[73] Z. Liang, M. Sesia, and W. Sun. Integrative conformal p-values for out-of-distribution testing
with labelled outliers. Journal of the Royal Statistical Society Series B: Statistical Methodology,
page gkad138, 01 2024.

[74] Z. Lin, S. Trivedi, and J. Sun. Generating with confidence: Uncertainty quantification for
black-box large language models. Trans. Mach. Learn. Res., 2024, 2023. URL https:
//api.semanticscholar.org/CorpusId:258967487.

[75] C. Ling, X. Zhao, X. Zhang, W. Cheng, Y. Liu, Y. Sun, M. Oishi, T. Osaki, K. Matsuda,
J. Ji, et al. Uncertainty quantification for in-context learning of large language models. arXiv
preprint arXiv:2402.10189, 2024.

[76] O.Liu, D. Fu, D. Yogatama, and W. Neiswanger. DeLL.Ma: Decision making under uncertainty
with large language models. arXiv preprint arXiv:2402.02392, 2024.

[77] S. Luttrell. The use of transinformation in the design of data sampling schemes for inverse
problems. Inverse Problems, 1(3):199, 1985.

[78] Q. Lyu, K. Shridhar, C. Malaviya, L. Zhang, Y. Elazar, N. Tandon, M. Apidianaki, M. Sachan,
and C. Callison-Burch. Calibrating large language models with sample consistency. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 1926019268,
2025.

[79] D.J. MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

[80] C. Mohri and T. Hashimoto. Language models with conformal factuality guarantees. In
International Conference on Machine Learning, pages 36029-36047. PMLR, 2024.

[81] C. Mohri and T. Hashimoto. Language models with conformal factuality guarantees.
ArXiv, abs/2402.10978, 2024. URL https://api.semanticscholar.org/CorpusId:
267750963.

[82] U. K. Miiller and M. W. Watson. Measuring uncertainty about long-run predictions. Review of
Economic Studies, 83(4):1711-1740, 2016.

[83] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes,
and A. Mian. A comprehensive overview of large language models. arXiv preprint
arXiv:2307.06435, 2023.

[84] D. Noever and F. McKee. Chatbots as problem solvers: Playing twenty questions with role
reversals. arXiv preprint arXiv:2301.01743, 2023.

[85] A.Pal, L. K. Umapathi, and M. Sankarasubbu. Medmcqa: A large-scale multi-subject multi-
choice dataset for medical domain question answering. In Conference on health, inference,
and learning, pages 248-260. PMLR, 2022.

[86] A. Panchenko, E. Fadeeva, M. Panov, D. Vasilev, T. Baldwin, A. Tsvigun, K. Fedyanin,
A. Shelmanov, E. Goncharova, S. Petrakov, A. Vazhentsev, and R. Vashurin. Lm-polygraph:
Uncertainty estimation for language models. ArXiv, abs/2311.07383, 2023. URL https:
//api.semanticscholar.org/CorpusId:265149591.

[87] J.-C. Pang, H.-B. Fan, P. Wang, J.-H. Xiao, N. Tang, S.-H. Yang, C. Jia, S.-J. Huang, and Y. Yu.
Empowering language models with active inquiry for deeper understanding. arXiv preprint
arXiv:2402.03719, 2024.

[88] H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Inductive confidence machines
for regression. In European Conference on Machine Learning, pages 345-356. Springer, 2002.

[89] S. Park, O. Bastani, N. Matni, and I. Lee. PAC confidence sets for deep neural networks via
calibrated prediction. In International Conference on Learning Representations, 2020.

16


https://api.semanticscholar.org/CorpusId:258967487
https://api.semanticscholar.org/CorpusId:258967487
https://api.semanticscholar.org/CorpusId:267750963
https://api.semanticscholar.org/CorpusId:267750963
https://api.semanticscholar.org/CorpusId:265149591
https://api.semanticscholar.org/CorpusId:265149591

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

S. Park, E. Dobriban, I. Lee, and O. Bastani. PAC prediction sets under covariate shift. In
International Conference on Learning Representations, 2022.

S. Park, E. Dobriban, I. Lee, and O. Bastani. PAC prediction sets for meta-learning. In
Advances in Neural Information Processing Systems, 2022.

J. Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999.

H. Qiu, E. Dobriban, and E. Tchetgen Tchetgen. Prediction sets adaptive to unknown covariate
shift. Journal of the Royal Statistical Society Series B: Statistical Methodology, page qkad069,
07 2023.

V. Quach, A. Fisch, T. Schuster, A. Yala, J. Sohn, T. Jaakkola, and R. Barzilay. Conformal
language modeling. ArXiv, abs/2306.10193, 2023. URL https://api.semanticscholar.
org/CorpusId:259203582.

V. Quach, A. Fisch, T. Schuster, A. Yala, J. H. Sohn, T. S. Jaakkola, and R. Barzilay. Conformal
language modeling. In The Twelfth International Conference on Learning Representations,
2024.

H. Rajabzadeh, S. Wang, H. J. Kwon, and B. Liu. Multimodal multi-hop question answering
through a conversation between tools and efficiently finetuned large language models. arXiv
preprint arXiv:2309.08922, 2023.

A.Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia,
J. Varley, Z. Xu, D. Sadigh, A. Zeng, and A. Majumdar. Robots that ask for help: Uncertainty
alignment for large language model planners. ArXiv, abs/2307.01928, 2023. URL https:
//arxiv.org/pdf/2307.01928. pdf.

A.Z.Ren,]. Clark, A. Dixit, M. Itkina, A. Majumdar, and D. Sadigh. Explore until confident:
Efficient exploration for embodied question answering. arXiv preprint arXiv:2403.15941,
2024.

J. Robinson and D. Wingate. Leveraging large language models for multiple choice question
answering. In International Conference on Learning Representations, 2023.

Y. Romano, M. Sesia, and E. Candes. Classification with valid and adaptive coverage. Advances
in Neural Information Processing Systems, 2020.

M. Sadinle, J. Lei, and L. Wasserman. Least ambiguous set-valued classifiers with bounded
error levels. Journal of the American Statistical Association, 114(525):223-234, 2019.

C. Saunders, A. Gammerman, and V. Vovk. Transduction with confidence and credibility. In
Sixteenth International Joint Conference on Artificial Intelligence, pages 722—726, 1999.

H. Scheffe and J. W. Tukey. Non-parametric estimation. I. Validation of order statistics. The
Annals of Mathematical Statistics, 16(2):187-192, 1945.

T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Q. Tran, Y. Tay, and D. Metzler.
Confident adaptive language modeling. ArXiv, abs/2207.07061, 2022. URL https://arxiv.
org/pdf/2207.07061 . pdf.

M. Sesia, S. Favaro, and E. Dobriban. Conformal frequency estimation using discrete sketched
data with coverage for distinct queries. Journal of Machine Learning Research, 24(348):1-80,
2023.

H. Shahrokhi, D. Roy, Y. Yan, V. Arnaoudova, and J. R. Doppa. Conformal prediction sets for
deep generative models via reduction to conformal regression. ArXiv, abs/2503.10512, 2025.
URL https://api.semanticscholar.org/CorpusId:276961510.

C. E. Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379-423, 1948.

17


https://api.semanticscholar.org/CorpusId:259203582
https://api.semanticscholar.org/CorpusId:259203582
https://arxiv.org/pdf/2307.01928.pdf
https://arxiv.org/pdf/2307.01928.pdf
https://arxiv.org/pdf/2207.07061.pdf
https://arxiv.org/pdf/2207.07061.pdf
https://api.semanticscholar.org/CorpusId:276961510

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile comput-
ing and communications review, 5(1):3-55, 2001.

M. Shen, S. Das, K. Greenewald, P. Sattigeri, G. Wornell, and S. Ghosh. Thermometer:
Towards universal calibration for large language models. arXiv preprint arXiv:2403.08819,
2024.

W. Si, S. Park, 1. Lee, E. Dobriban, and O. Bastani. PAC prediction sets under label shift. In
The Twelfth International Conference on Learning Representations, 2024.

K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn, M. Amin, L. Hou, K. Clark, S. R. Pfohl,
H. Cole-Lewis, et al. Toward expert-level medical question answering with large language
models. Nature Medicine, pages 1-8, 2025.

J. Song, Z. Wang, H. Chen, Y. Huang, and L. Ma. Look before you leap: An exploratory study
of uncertainty measurement for large language models. ArXiv, abs/2307.10236, 2023. URL
https://api.semanticscholar.org/CorpusId:259991714.

C. Spiess, D. Gros, K. S. Pai, M. Pradel, M. R. 1. Rabin, A. Alipour, S. Jha, P. Devanbu, and
T. Ahmed. Calibration and correctness of language models for code. In IEEE/ACM 47th

International Conference on Software Engineering, pages 495-507. IEEE Computer Society,
2025.

J. Su, J. Luo, H. Wang, and L. Cheng. Api is enough: Conformal prediction for large language
models without logit-access. In Conference on Empirical Methods in Natural Language
Processing, 2024. URL https://api.semanticscholar.org/CorpusId:268230867.

H. Suri, Q. Zhang, W. Huo, Y. Liu, and C. Guan. Mediaqa: A question answering dataset on
medical dialogues. arXiv preprint arXiv:2108.08074, 2021.

J. H. Szabadvéry. Beyond conformal predictors: Adaptive conformal inference with confidence
predictors. arXiv preprint arXiv:2409.15548, 2024.

S. Tayebati, D. Kumar, N. Darabi, D. Jayasuriya, R. Krishnan, and A. R. Trivedi. Learning
conformal abstention policies for adaptive risk management in large language and vision-
language models. ArXiv, abs/2502.06884, 2025. URL https://arxiv.org/pdf/2502.
06884 . pdf.

K. Tian, E. Mitchell, A. Zhou, A. Sharma, R. Rafailov, H. Yao, C. Finn, and C. D. Manning.
Just ask for calibration: Strategies for eliciting calibrated confidence scores from language
models fine-tuned with human feedback. arXiv preprint arXiv:2305.14975, 2023.

J. W. Tukey. Non-parametric estimation II. Statistically equivalent blocks and tolerance
regions—the continuous case. The Annals of Mathematical Statistics, 18(4):529-539, 1947.

J. W. Tukey. Nonparametric estimation, III. Statistically equivalent blocks and multivariate
tolerance regions—the discontinuous case. The Annals of Mathematical Statistics, 19(1):30-39,
1948.

D. T. Ulmer, M. Gubri, H. Lee, S. Yun, and S. J. Oh. Calibrating large language models using
their generations only. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics, pages 15440—-15459. Association for Computational Linguistics,
2024.

V. Vovk. Conditional validity of inductive conformal predictors. In Asian Conference on
Machine Learning, pages 475-490. PMLR, 2012.

V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of algorithmic
randomness. In International Conference on Machine Learning, 1999.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a Random World. Springer
Science & Business Media, 2005.

A. Wald. An extension of Wilks’ method for setting tolerance limits. The Annals of Mathemat-
ical Statistics, 14(1):45-55, 1943.

18


https://api.semanticscholar.org/CorpusId:259991714
https://api.semanticscholar.org/CorpusId:268230867
https://arxiv.org/pdf/2502.06884.pdf
https://arxiv.org/pdf/2502.06884.pdf

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

B. Wang, X. Yue, and H. Sun. Can ChatGPT defend its belief in truth? evaluating LLM
reasoning via debate. In Conference on Empirical Methods in Natural Language Processing,
2023.

K. Wang, F. Duan, S. Wang, P. Li, Y. Xian, C. Yin, W. Rong, and Z. Xiong. Knowledge-Driven
CoT: Exploring faithful reasoning in LLMs for knowledge-intensive question answering. arXiv
preprint arXiv:2308.13259, 2023.

P. Wang, L. Li, L. Chen, Z. Cai, D. Zhu, B. Lin, Y. Cao, Q. Liu, T. Liu, and Z. Sui. Large
language models are not fair evaluators. arXiv preprint arXiv:2305.17926, 2023.

Q. Wang, T. Geng, Z. Wang, T. Wang, B. Fu, and F. Zheng. Sample then identify: A
general framework for risk control and assessment in multimodal large language models.
ArXiv, abs/2410.08174, 2024. URL https://api.semanticscholar.org/CorpusId:
273233940.

X. Wang and R. J. Hyndman. Online conformal inference for multi-step time series forecasting.
arXiv preprint arXiv:2410.13115, 2024.

Z. Wang, Q. Wang, Y. Zhang, T. Chen, X. Zhu, X. Shi, and K. Xu. Sconu: Selective
conformal uncertainty in large language models. In unknown, 2025. URL https://api.
semanticscholar.org/CorpusId:277954950.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022.

S. S. Wilks. Determination of sample sizes for setting tolerance limits. The Annals of
Mathematical Statistics, 12(1):91-96, 1941.

S. Wu, X. Shen, and R. Xia. A new dialogue response generation agent for large language
models by asking questions to detect user’s intentions. arXiv preprint arXiv:2310.03293, 2023.

H. Xi, K. Liu, H. Zeng, W. Sun, and H. Wei. Robust online conformal prediction under
uniform label noise. ArXiv, abs/2501.18363, 2025. URL https://api.semanticscholar.
org/CorpusId:275994111.

Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning—a comprehensive
evaluation of the good, the bad and the ugly. IEEFE transactions on pattern analysis and
machine intelligence, 41(9):2251-2265, 2018.

G. Xiong, J. Bao, and W. Zhao. Interactive-KBQA: Multi-turn interactions for knowledge
base question answering with large language models. In Annual Meeting of the Association

for Computational Linguistics, 2024.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning.
HotpotQA: A dataset for diverse, explainable multi-hop question answering. arXiv preprint
arXiv:1809.09600, 2018.

S. Yao, J. Zhao, D. Yu, N. Du, 1. Shafran, K. Narasimhan, and Y. Cao. ReAct: Syner-
gizing reasoning and acting in language models. In International Conference on Learning
Representations, 2023.

F. Ye, M. Yang, J. Pang, L. Wang, D. Wong, E. Yilmaz, S. Shi, and Z. Tu. Benchmarking
LLMs via uncertainty quantification. In Advances in Neural Information Processing Systems,
volume 37, pages 15356-15385, 2024.

F. Ye, M. Yang, J. Pang, L. Wang, D. F. Wong, E. Yilmaz, S. Shi, and Z. Tu. Benchmarking
Ilms via uncertainty quantification. ArXiv, abs/2401.12794, 2024. URL https://arxiv.
org/pdf/2401.12794 . pdf.

M. Zhang, M. Huang, R. Shi, L. Guo, C. Peng, P. Yan, Y. Zhou, and X. Qiu. Calibrating the
confidence of large language models by eliciting fidelity. In Conference on Empirical Methods
in Natural Language Processing, pages 2959-2979, 2024.

19


https://api.semanticscholar.org/CorpusId:273233940
https://api.semanticscholar.org/CorpusId:273233940
https://api.semanticscholar.org/CorpusId:277954950
https://api.semanticscholar.org/CorpusId:277954950
https://api.semanticscholar.org/CorpusId:275994111
https://api.semanticscholar.org/CorpusId:275994111
https://arxiv.org/pdf/2401.12794.pdf
https://arxiv.org/pdf/2401.12794.pdf

[143]

[144]

[145]

[146]

[147]

[148]

Y. Zhang, J. Lu, and N. Jaitly. Probing the multi-turn planning capabilities of LLMs via 20
question games. arXiv preprint arXiv:2310.01468, 2023.

T. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before use: Improving few-shot
performance of language models. In International Conference on Machine Learning, pages
12697-12706, 2021.

A. X. Zheng, I. Rish, and A. Beygelzimer. Efficient test selection in active diagnosis via
entropy approximation. arXiv preprint arXiv:1207.1418, 2012.

Z. 7Zhi, C. Feng, A. Daneshmend, M. Orlu, A. Demosthenous, L. Yin, D. Li, Z. Liu, and
M. Rodrigues. Seeing and reasoning with confidence: Supercharging multimodal llms with an
uncertainty-aware agentic framework. ArXiv, abs/2503.08308, 2025. URL https://arxiv.
org/pdf/2503.08308. pdf.

H. Zhou, X. Wan, L. Proleev, D. Mincu, J. Chen, K. A. Heller, and S. Roy. Batch calibra-
tion: Rethinking calibration for in-context learning and prompt engineering. In The Tivelfth
International Conference on Learning Representations, 2024.

C. Zhu, B. Xu, Q. Wang, Y. Zhang, and Z. Mao. On the calibration of large language models
and alignment. In Conference on Empirical Methods in Natural Language Processing, 2023.

20


https://arxiv.org/pdf/2503.08308.pdf
https://arxiv.org/pdf/2503.08308.pdf

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our contributions and scope are clearly listed in our introduction (Section 1).
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See limitations in Appendix Section C.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

21



Justification: We do not have any theoretical results in this work.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of our experimental settings are listed in Section 4 and Section 5 in our
main manuscript, as well as Appendix G.We will provide further instructions in the Github
repo for easily reproducible results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release the code upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of our experimental settings are listed in Section 4 and Section 5 in our
main manuscript, as well as Appendix G.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experimental results shown in Section 4 and Section 5 are all done over
5 runs with different random seeds. Each reported metric reports the mean and standard
deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computation resources used in this paper is described in Appendix G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the code of ethics strictly when performing research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix D for where we dicuss broader impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our results are all produced with open-source LLMs. Safeguards are set in
place by those who trained the models. Please refer to each model’s technical report for
more details.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All models and references are cited properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will provide all necessary documentation and assets in supplementary
materials.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have any human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not use any data that requires IRB review.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are not used during the idea formulation. LLMs are only used for
editing purpose for this work. All details of LLM usages for experiments are described in
our experiment section.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Outline
» Appendix §B is the Related Work section.

* Appendix §C discusses the limitations of this work.

* Appendix §D discusses broader impacts.

» Appendix §E provides additional results, which include results for other models, etc.
* Appendix §F provides further ablation studies.

* Appendix §G provides implementation details including hyperparameters.

* Appendix §H provides the prompts used for generating responses with LLMs.

» Appendix §I is the pseudocode for the different algorithms including IP, C-IP and DP.
* Appendix §J provides additional examples of query-answer chains.

» Appendix §K provides examples of sampled queries in open query set settings.

B Related Work

B.1 Large Language Models and Interactive Settings

Information-Seeking Environments of LLMs. In information seeking environments, LLM agents
seek information by constructing well-design prompts and designing proper rewards with reinforce-
ment learning (RL) to encourage proper information-seeking behavior. Prompting-based meth-
ods [1, 87, 126, 126, 127, 134] typically involve LLM agents interacting and solving a task together.
Advanced techniques include building graphs [52], using tools such as APIs and databases [96, 137],
and leveraging Chain-of-Thought (CoT) methods [22, 49, 75, 127] to ensure interaction is valid and
improve performance. However, they do not explicit attempt to minimize the average number of
interactions needed. On the other hand, RL-based methods such as ReAct and DelLLLMa [76, 139]
usually involves designing a good reward or utility function (can be non-entropy-based) that balances
between exploration and exploitation, which our method can be classified in the pure exploitation
regime. By and large, prompting-based methods and RL-based methods consider a different strat-
egy that is not as explicit as our work here, and are not always plug-and-play to the interactive
question-answering setting.

Interactive Medical Question Answering Setting. As our motivation (see Fig. 1), interactive
medical question answering is one potentially impactful application of our work. While there
are many existing benchmarks of medical question answering on LLMs such as MedQA [53],
MedQuAD [10], MedMCQA [85], PubMedQA [54], they mostly focus on single-turn one-input-
one-response type interaction. Instead, we focus on a more recently trending setting of interactive
medical question answering and diagnosis. Datasets in this setting are still rare, with the two being
the WMeDiaQA [115], which is a chinese interactive dataset, and the MediQ [70]. Importantly
furthermore, it has been shown that LLMs in interactive human-LLM medical/clinical settings are
subpar: as shown in Bean et al. [9], they perform nearly 30% worse than LLLMs acting alone.
Similarly, Li et al. [70] has also shown that directly applying LLMs for interactive settings perform
worse without additional guidance to the iterative process.

To summarize, the research question of why LLMs in a multi-turn, interactive environments perform
worse than single-turn use-cases remains active and highly relevant in today’s use-cases [63, 70]. Our
work seeks to provide some answer via the lens of information gain.

B.2 Uncertainty Quantification

Predictive Inference and Conformal Prediction. Our proposed formulation uses entropy and
mutual information, which are fundamental measurements of uncertainty that dates back to Shannon’s
Information Theory [79, 107, 108] and predictive inference [103, 119, 120, 125, 133]. Amongst exist-
ing methods for predictive inference, conformal prediction has gained popularity due to its flexibility
for constructing prediction intervals with a marginal coverage guarantee under the exchangeability
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of data points. While distribution-free inference and the conformal prediction framework have
been extensively studied in recent works, with many going beyond standard assumptions [see, e.g.,
5, 8, 25, 33, 34, 4345, 56, 65-69, 72, 73, 88-91, 93, 100, 102, 105, 110, 122—124], few has for-
malized the framework in the interactive and iterative setting. Arguably, the most similar setting is
the online or adaptive setting [35, 36, 40, 41, 116, 130, 135], where distribution shift exists and the
exchangeability assumption no longer holds. This line of research is different from our work in two
major ways: 1) they focus on an online setting where data points are sequentially provided, such as
time series, with assumptions such as affine transformations for the distribution shifts. In contrast,
our work focuses on an interactive question answering setting that depends on multiple factors, such
as the query set Q (open and closed setting), the query answers q;.x (x°*), and the target distribution
Y’; 2) they focus on providing tighter risk control in an online setting, whereas our work focuses
on how to use uncertainty measured from prediction sets to drive decision making. While we agree
adaptive conformal prediction and sequential information gain via conformal prediction draw some
resemblances, we reserve the research of their precise relationship in a future work.

Uncertainty Quantification for LLMs. Methods for quantifying uncertainty in LLMs largely
revolve around controlling the quality and ensuring correctness of LLM generations, either via
minimizing entropy with a constructed distribution [13, 20, 48, 74, 86, 112, 141] or leveraging
conformal prediction [24, 50, 57, 62, 81, 94, 97, 104, 106, 114, 117, 129, 131, 141, 146]. Here we
highlight the ones that are highly relevant to our method: Ling et al. [75] considers the problem of
uncertainty quantification in the context of in-context learning. Similar to our IP baseline, it also
measures uncertainty by computing the entropy of distributions estimated from the token distribution.
On the other hand, Kumar et al. [61] applies conformal prediction to question answering with multiple
choices. Their method also extracts probability of each choice by obtaining the logits of each answer
token, but their setting is single-turn rather than multi-turn. Last but not least, Chang [15] considers
multi-turn LLM collaboration debates while using mutual information as a measurement of dialogue
and diversity. As aforementioned, there exist multiple methods to measure uncertainty in LLMs,
and we reserve how different choices might affect the interactive question-answering process in this
paper’s setting for future work.

Uncertainty Quantification in Interactive Environments. The two closely related works are
Uncertainty of Thought (UoT) [49] and EQA work by Ren et al. [98]. UoT is in the setting of efficient
reasoning for LLMs, in which the method formulates its exploration as a tree. At each iteration, UoT
explores multiple branches of solutions with up to a depth at three, then evaluates the accumulated
information gain at the leaf node, ultimately choosing the leaf with the highest information gain.
Compared to C-IP, UoT considers only binary query-answers, considers accumulated rewards, and
computes entropy directly, whereas C-IP considers free-text query answers, immediate rewards at
each iteration, and utilizes calibrated information. On the other hand, Ren et al. [98] is positioned
the setting of robotics, where the Vision-Language Model (VLM) agent has to answer a question by
exploring different parts of the room. While this work also uses conformal inference and prediction
set size to estimate confidence, the connection to entropy was not presented. It also differs from our
language-domain setting by using a custom, domain-specific score function called “relevance” rather
than the probability score as in the case of C-IP.

B.3 Sequential Information Gain via Information Pursuit

Previous Iterations of IP. Information Pursuit framework was first proposed by Jahangiri et al.
[51] as an active-testing algorithm for scene parsing. Later learning-based approaches, such as
generative approach [16] and variational approaches [17, 19, 26], require having access to the data
distribution and learning a model to estimate the posterior distribution. Our work differs from all of
the above in multiple aspects: 1) learning-based approaches of IP largely focus on computer vision
tasks such as image classification and image generation, whereas our work focuses on the language
domain; 2) their setting often provides sufficient samples that allows for a good estimation of the
posterior distribution P(Y | q1.;(2°")), which enables efficient implementation with faster and
scalable inference and make it applicable to large-scale tasks. In contrast, LLMs may not provide
good estimates of the posterior distribution because they are pretrained models; 3) IP has mostly
been written as an interpretability framework rather than a framework for interactive guidance. It’s
unclear yet how IP will perform in settings where multiple off-the-shelf models are involved; 4)
query set in previous iterations of IP is always a pre-determined fixed set, whereas our work explores
explores both the closed setting and an open generation setting where queries are obtained from
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LLMs iteratively; and 5) query answers in previous iterations of IP are either concept-based or raw
features such as pixel-values. All the reasons above provide strong motivation to our current work.

Efficient Sampling. The challenge of efficiently obtaining samples for estimating mutual information
often arises in IP. The generative approach [16] learns a joint distribution of P(Q(X), Y), then uses
Langevin Dynamics to compute the conditional distribution. Alternative, V-IP [17], the current
state-of-the-art implementation of IP, learns a query selection function g parameterized by a neural
network gy, which also requires efficient sampling of random histories. In this work, our uniform
parameterization is inspired from V-IP, whereas our sampling via LLM prompting provides a new
domain-specific way to sample query-answer chains. This technique is also applied to extensions of
IP for other applications [19, 37, 60].

C Limitations

Our work explores the areas of using LLMs interactively and using information gain to obtain
further information. While efficient, it still requires sampling in order to estimate quantities such
as conditional entropy and prediction sets. One potential exploration is to find ways to estimate
posteriors via a single pass, for example, via tractable approximations. Moreover, the success of our
method also relies on LLMs that can follow instructions well, which today’s LLMs are still not fully
reliable yet and instruction-following in general is still an active area of research. Furthermore, as
stated in our Section 6, we are not fully leveraging the potential of conformal prediction as we are
only using it as a measure of uncertainty but not using it as means to control risk and evaluate the
correctness of the overall query-answer chains. We reserve these interesting directions for future
work.

D Broader Impacts

Our work studies the setting of using LLMs interactively, where information is not provided all at once
but sequentially depending on the previous responses of LLMs. While currently understudied, this
research direction aligns closely with how human-human or human-LLM behaves in the real world,
and potentially describes the predominant way of how human would use LLMs as the capabilities of
LLMs grows. Hence, it is crucial to understand the behavior through careful mathematical formulation
and experimental designs. We argue that the formulation in this work can serve as the foundational
ground work for further analysis when interactively using LLMs. Our empirical study with interactive
medical question answering also demonstrates potential applications of our method in real-world
medical settings.
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E Additional Results

E1l 20Q

The predictive performance of 20Q on two additional models (Qwen2.5-7B [7] and Phi-3-small [2])
are shown in Figure 7 and Figure 8, respectively. Moreover, we visualize the different thresholds
obtained from split conformal prediction in Figure 9, with thresholds for each model in each row.
We will discuss the performance of C-IP with respect to the thresholds obtained together, as they
demonstrate a picture of when C-IP would be successful and unsuccessful in guiding LLMs.
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Figure 8: Predictive Performance of 20Q with Phi-3-small model.

Successful Cases of C-IP. We first discuss the setting of 20Q with closed query set Qjosed- It is clear
that for all three models (including Llama-3.1-8B from Figure 3), C-IP outperforms IP and random
query selection, where it is able to achieve a higher accuracy at every iteration. One sign of this
success can be attributed to the fact that our empirical marginal coverage guarantee follows closely to
the desired guarantee at each iteration.

Alternatively, one can attribute this success by looking at the thresholds obtained through split
conformal prediction from Figure 9. In the closed query set setting (right two columns), we observe a
progressive increase in the thresholds also as the number of iterations increase. This matches with
our intuition: in the first few iterations, the model is not confident about its prediction, hence the
threshold 7 remains small, and a large number of classes y would be in the prediction set. As the
number of iterations increase, the predictor (on average relative to the calibration set) becomes more
confident, hence the threshold 7 increases.

Unsuccessful Cases of C-IP. We now turn to the unsuccessful cases of C-IP, which largely pertains
the open query set setting for Qwen2.5-7B and Phi-3-small. We observe that C-IP in fact does not
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Figure 9: Thresholds obtained through split conformal prediction for 20Q. The legend below shows different
colors Each color corresponds to different choices of target coverage a.

outperform the DP method. To understand why, we argue it from the perspective of meaningful
calibration.

Recall that in the open query set setting, C-IP is calibrated on query-answer chains obtained from
DP. Turning to Figure 7 (a, b) and Figure 8 (a, b), we observe that the empirical coverage is below
the desired coverage a majority of the iterations, a sharp contrast to successful cases of C-IP where
empirical and desired coverage is mostly coincides. To explain the misalignment between the
empirical coverage and desired coverage, we can also infer from Figure 9, where we observe sudden
jumsp in the thresholds in the open query set setting for Qwen2.5-7B and Phi-3-small. From our
results, we observe the following: Given Qwen2.5-7B and Phi-3-small models are relatively strong
models and our task is relatively simple, it is often the case where the label is guessed correctly within
a few iteration. Once the correct prediction is made, it becomes part of the history ¢y, (2°%) (e.g. “Is
the animal a dolphin? Yes.”) and any new query no longer provides any meaningful information gain.
This ultimately leads to an over-confident prediction for every data point, yielding an uninformative
threshold. As a result, every prediction now requires a very high probability (near 1) to be an element
in the prediction set. Consequently, the prediction sets cannot quantify uncertainty in a meaningful
way, leading to suboptimal results.

While there exist cases where C-IP does not outperform other methods, we argue it is more inter-
pretable than IP in that one can observe its failure modes from the thresholds obtained and empirical
coverage. As discussed in our Future Work (Section §6) and Limitations (Appendix §C), this direction
of obtaining the proper conformal coverage guarantee over distributions of natural language deserves
further study, and we reserve this for future work.
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Additional Comparisons with UoT. We provide the full comparison with UoT for Llama-3.1-8B in
Table 2. Focusing on IP and C-IP, we can see that C-IP is able to outperform IP in all four settings,
which aligns with our previous results regarding the predictive performance. Comparing C-IP with
UoT, C-IP is able to outperform UoT in free-text query answers, but not in closed binary query answer
setting. This can be explained by the design of the respective methods: C-IP relies on immediate
reward (information gain) whereas UoT looks ahead, accumulates and propagates rewards up to the
certain depth before selecting the next query.

As discussed previously in Section §E.1, while having binary query answers allow UoT to look
forward and accumulate rewards (akin to a beam search), free-text query answers provide a much
larger marginal gain over binary query answers and is a more realistic setting to consider.

Table 2: Full Comparison of C-IP with UoT reasoning, averaged across 5 runs with shaded area as standard
deviation.

Method | Query Set Q Query Answers A | Avg. Len. Avg. Success Len.  Success Rate
UoT open binary 13.57 £ 1.69 8.75£0.82 0.57 £0.13
P open binary 11.40 £ 0.78 10.48 +0.98 0.31 £ 0.04
P open free-text 10.04 £ 0.45 9.66 £+ 0.68 0.65 +0.18
P closed binary 10.74 £+ 0.59 10.98 + 0.86 0.29 + 0.11
1P closed free-text 13.81 £ 0.16 13.73 £ 0.24 0.71 £ 0.08
C-IP (« = 0.1) open binary 11.87 +0.83 12.12 +0.26 0.37 £ 0.11
C-IP (o =0.1) open free-text 10.58 4+ 0.58 10.45 +£0.63 0.83 £+ 0.05
C-IP (« = 0.1) closed binary 11.26 £0.84 10.58 £ 0.61 0.29 £ 0.04
C-IP (o =0.1) closed free-text 8.87 + 0.31 8.24 + 0.51 0.83 £ 0.07
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E2 MediQ

The thresholds 7 obtained through split conformal prediction is shown in Figure 10. Similar to our
observations in the 20Q case, we observe that a useful and successful case of C-IP can be attributed
to having good calibration and finding meaningful thresholds.

0.58 0.71 0.84

e T

—— — —— K 0.00 — -
0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
Number of Iterations Number of Iterations Number of Iterations
(a) Internal Medicine (b) Pediatrics (c) Neurology

— a=0.01 — a=0.1 — a=0.2 a=0.3 a=0.4
— a=0.05 — @=Ll — a=0.25 — a=0.35 a=0.45

Figure 10: Thresholds obtained through split conformal prediction for MediQ. The legend below shows different
colors Each color corresponds to different choices of target coverage a.
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F Ablation Studies

F.1 Varying Desired Coverage

We compare predictive performance of 20Q (Figure 11) and MediQ (Figure 12). In nearly all cases,
we observe only minor differences between different levels of «, which indicates C-IP is fairly robust
with the appropriate choices of a.
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Figure 12: Predictive Performance of MediQ with different choices of a.

F.2 Varying Number of Estimation Samples

We evaluate whether C-IP is sensitive to the number of samples nes used during estimation for the
task of 20Q on Llama-3.1-8B (Figure 13). Recall that by the number of estimation samples neg, we
refer to the number of samples used to estimate the upper bound (C-IP). In our ablation study for
20Q on Llama-3.1-8b with closed query set Qciosed, binary query answers Apinary and open query
set Qopen, binary query answers Apinary, We find that the number of samples do have impact on the
performance. While one would expect the more is better, but we find that using ny € {1, 2,4, 8}
performs somewhat similarly. One possible explanation that aligns with empirical observations of
LLMs is that stochasticity plays a role in obtaining better predictive performance in LLMs, akin
to how LLMs decoding via sampling based on output token distribution often outperforms greedy
decoding where tokens are selected deterministically by choosing the most likely token [47].
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F.3 Varying Number of Queries Sampled for Open Query Set.
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Figure 14: Performance of 20Q in the open query setting with different number of sampled queries m. Here we
focus on Free-text Query Answer Asre-text. Each curve corresponds to the averaged accuracy over 5 runs, with

shaded areas representing their standard deviation.

We evaluate whether C-IP on Llama-3.1-8B for 20Q with the open query set Qqpen is sensitive to the
number of queries m asked at each iteration (Figure 14). We observe a comparable performance for

all choices of m.
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G Implementation Details

G.1 Reproducibility

Our code is available at

https://www.github.com/ryanchankh/ConformalInformationPursuit/.

G.2 Computational Resources

The experiments are conducted on a workstation of 8 NVIDIA A5000 GPUs. Each LLM used in this
work is able to load and run on a single A5000 GPU.

G.3 Code

All experiments are implemented in Python 3.12. The main packages used are hugging-
face, PyTorch, Numpy, and TogetherAI API (for UoT baseline). The three models used
are meta-llama/Meta-Llama-3.1-8B-Instruct, microsoft/Phi-3-small-128k-instruct,
and Qwen/Qwen2.5-7B-Instruct. Unless stated otherwise, we use the default hyperparame-
ters from huggingface. We use the following LLM hyperparameters every time we inference:
do_sample=True, temperature=0.7, and max_new_tokens=1024.

G.4 Classes for 20Q and MediQ

For 20Q, we select 20 classes from all 50 classes that are available in the Animals with Attributes
2 [136] dataset. The 20 classes are: giraffe, zebra, elephant, killer whale, dalmatian, polar bear, giant
panda, hippopotamus, rhinoceros, lion, tiger, blue whale, walrus, grizzly bear, siamese cat, cow,
german shepherd, gorilla, dolphin, and moose.

For MediQ, each medical question is a multiple-choice question with four options: A, B, C, and D.
Note that the possible choices and order of the options are different for each problem.

G.5 Obtaining Probabilities from LLM

In this work, we focus on LLMs where logit scores of output tokens are accessible. While there are
many methods for obtaining a posterior distribution P(Y | 1. (2°"%)) for a given z, we estimate
the posterior by first obtaining the LLMs’ output token logits based on the class labels’ tokens, then
applying softmax function. When certain class names consist of multiple tokens, we select the first
token’s probability to represent the class’s probability. For all of our models, none of the classes
consist of the same first token. In the case that happens, one may consider adding a prefix such as
enumerations (“1.”, “2.”, ...) or leveraging special symbols trained with large language models.

G.6 Entropy Estimation

Estimation of terms such as entropy in (IP) or upper bounds in (C-IP) requires samples of (X,Y")
pairs. We use 4 randomly drawn samples for all 20Q experiments whenever a entropy term needs
to be estimated and use 12 randomly drawn samples from the estimation set Dy for all MediQ
experiments.

To be specific, the empirical estimation H(Y | q1.;(z)) with a probability estimator P(Y |
q1.£(x)) := f(q1.x(x)) is estimated by

HY [qur@) = D flaux())logs f(arr(x)) (15)

(2,y) €Dea

G.7 Calibration
Achieving marginal coverage in (12) requires calibration samples. For 20Q, we sample 100 randomly

drawn labels. For MediQ, we sample 200 randomly drawn datapoints with replacement in the
calibration set Dg,;.
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G.8 Preprocessing Query Answers for 20Q

To avoid generating query-answers from LLMs at each iteration for every query, in the case of closed
query set Qgjoseq and free-text query-answers, we generate query-answers offline by sampling 10
possible query-answers for every class and query. Then, in our experiments, for any given query and
class, we select a query answer by uniformly sampling one out of the ten generated answers. For
binary answers, we only consider query-answers with “Yes” and “No”, without any variability.

G.9 Evaluation of Predictive Accuracy

We discuss the two evaluation methods for 20Q and MediQ separately as they are different. 20Q is
often played in a manner that the Querier LLM keeps guessing until either it guesses correctly or
until the maximum number of iterations L is reached®. Here, we following the same protocol. If the
Querier LLM guesses the correct prediction 3;; at iteration k, then §j;, = g7 fori =k +1,..., L.
For MediQ, since the neither the Expert LLM or Patient LLM knows what the correct prediction is,
we require C-IP to reach the stopping criteria (See Appendix §G.10). For any given datapoint 2:°°,
suppose the stopping criterion is reached at iteration k < L and §j;, is the prediction. Then we assume

the prediction does not change after iteration k and set §j; = g fori = k+1,...,L.

G.10 Stopping Criteria

As mentioned in Section 3.2 Remark 1, arriving at I(q(X); Y | q1.x(2°)) = 0 in practice is highly

unlikely. Here, we explain how one goes about arrive at an approximation I(q(X); Y | q1.x(x°?%)) ~
0.

One approach is to utilize the model confidence P(Y | g1.x(x°)). In previous variations of IP,
including the generative version [16] and the variational approaches [17, 29], the algorithm stops
querying once the posterior P(y | g1.,(2°")) > ¢ for any y € ). This is suited for previous cases
because the predictor model f is learned from training data, which provides better estimates for the
posterior. Unfortunately, in the case where model confidence is miscalibrated, this process becomes
unstable and unreliable.

Empirically, we observe that while estimated conditional entropy (either with direct computation
or with approximation via prediction sets) for every ¢, i.e. H(Y | q(X),qu.x(z°")), does not
converge to 0 as the sequence length increases. However, it tends to converge to some constant
number when the algorithm is confident enough to some number. Hence we propose to calculate the
standard deviation between obtained estimations. Precisely, given a query set Q (closed or open), the
query-answer chain q1.; (2°"%), and a stopping threshold ¢, the stopping criterion can be described as:

e Step 1. Let
¢i = H(Y | ¢(X), qui(z®™)) forqe Q. (16)
* Step 2. Compute the estimated standard deviation

19| Q]

1
EZZCi, o= 72(01 —6)2. (17)
i=1 <l i=1
* Step 3. Stop if & < ¢, else continue the algorithm.

G.11 Evaluation of Empirical Coverage

Suppose we have a test set Dese = { (24, y3) } 1~ with size n for evaluation. The empirical coverage
at iteration k is evaluated by
TNitest

> 1{yi € Cr (qun(i))} (18)
Thtest P
where (z;,v;) € Dees is the i-th test sample, C+, is the prediction set for query-answer chains of
length k, q1.(x;) is the obtained query answer chain (e.g. from C-IP), and 1(-) is a binary indicator
function, which equals to 1 when the condition in the parameter is true and 0 otherwise.

PX,Y,lek,Dcal (Y € Cf'k (Qlk(X))) ~

8This is also consistent with UoT [49].
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G.12 Hyperparameters for UoT Baseline

Unless specified below, we follow the default settings as suggested in UoT’s main manuscript [49]
and their Github repository https://github.com/zhiyuanhubj/UoT/tree/main/src/uot.

For results in Table 1, to ensure the fairness of the experiments, we set the number of branches in
their method (n_potential_actions in their code) to 5. Their experimental results are produced
with API from TogetherAl. Please see their website https://www.together.ai/ for more details.
The total charges to produce our results for the three models cost no more than $50.

G.13 Details on Probability Calibration Methods

For Platt Scaling, for each length k € {1,..., L}, we sample randomo histories of length &k from
the calibration data D, and train a logistic regression for each class. The logistic classifier is
implemented using Scikit-learn python package [14] using default hyparameters (¢ — 2-regularization
and a inverse of regularization strength of 1).

For temperature scaling (TS), we did not do any hyperparameter search but reported the best three
curves for T' € {0.5,0.75,1.25}.
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H Prompts

Here we provide the prompts used in our experiments.

H1 20Q

System Instruction for Querier LLM

You are an expert on animals. Your goal is to predict the animal given the information you have gathered. The
animal must be one of the following: {class_names}. Be as precise and as direct as possible. You may provide
your reasoning first before making a prediction. End your response by making a guess and saying 'The animal is:
X' (e.g. The animal is: dog) at the end of your reasoning, where X is your guess. Do not provide any
additional information. Your response should all fit in a single paragraph. If you are not provided any
information, make a random guess.

LLELE

Input Prompt for Querier LLM Obtaining the Posterior

You have not gathered any information yet. Please make a random guess. # If history is empty

Here is the information you have gathered. # If history is not empty
1. {q1} {q1(x)}
2. {q2} {q2(x)}
3. {q3} {g3(x)}
4. {q4} {qa(x)}

Given the information you have gathered, make an intermediate SINGLE prediction of what you think the animal is.
< First make your guess in the format 'The animal is: X' (e.g. The animal is: dog), where X is your guess, then
< provide your reasoning. Do not provide any additional information. Your response should all fit in a single
< paragraph. Make sure your prediction is one of the classes: {class_names}.

Input Prompt for Querier LLM Suggesting Queries in Open Query Set Setting

You have not gathered any information yet. Please make a random guess. # If history is empty

Here is the information you have gathered. # If history is not empty
1. {q1} {q1(x)}
2. {q2} {q2(x)}
3. {q3} {g3(x)}
4. {q4} {q4(x)}

Now suggest {n_queries_per_step} questions.\nReturn the question in this format:\n{{"questions": ["QUESTION_1",
< "QUESTION_2", "QUESTION_3"]1}}

System Instruction for Expert LLM for Non-binary Query Answers

You are an expert on {label}. Based on the question provided, answer truthfully about the question. Do not

< directly tell the other player what you are thinking. Be as precise and as direct as possible, and answer in
<> complete sentence. For example, if the question is "Does the animal have a tail?", you can answer "The animal
<> has a tail." without saying yes or no. Do not say the name of the animal in your answer.

System Instruction for Expert LLM for Binary Query Answers

You are an expert on {label}. Based on the question provided, answer truthfully about the question. Do not

< directly tell the other player what you are thinking. Be as precise and as direct as possible, and answer with
<~ a single word. For example, if the question is "Does the animal have a tail?", you can answer "Yes." or "No.".
<> Do not say the name of the animal in your answer. If you don't know the answer, make a guess. Do not answer
< anything other than "Yes." or "No.".
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H2 MediQ

System Instruction for Expert LLM Obtaining the Posterior

You are a medical doctor specialized in {specialty}, trained to provide accurate, evidence-based responses to

< medical inquiries. Your goal is to answer questions with clarity, precision, and professionalism while

< ensuring your responses align with established medical guidelines. Answer concisely, accurately, and

< compassionately. Make a prediction and provide your reasoning as explanation. Respond in the following format:

{{"answer": "A/B/C/D", "explanation": "YOUR EXPLANATION HERE"}}

Input Prompt for Expert LLM Obtaining the Posterior

Answer the multiple choice based on the context.
Context: {context}

Question: {question}

Options:
A - {option_a}
B - {option_b}
C - {option_c}
D - {option_d}

Please select the most appropriate answer (A/B/C/D).

System Prompt for Converting Facts into Queries

Convert the medical fact into a question, in which the answer is the fact itself. The question should be specific
< and relevant to the patient's condition. Please do not ask any questions that are not related to the patient's
< medical history or condition. Suggest one question only. Return only your question and nothing else.

Medical fact: He has a non-productive cough for 4 months.
Question: What are some preliminary symptoms?

Medical fact: He complains of nausea and 1 episode of vomiting during the past day.
Question: Did the patient complain about nausea?

System Prompt for Converting Facts into Queries

Medical fact: {fact}
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I Pseudocode for Implementation

Algorithm 1 Constructing Prediction set functions for each length C+, ...Cs, .

Input: Calibration set Dy with ng, samples, Desired Coverage 1 — «, maximum iteration L,
LLM-based predictor f.
1: for eachlength k =1...L do
2.
3 Step 1: Obtain conformal scores
4 for (2;,y;) € Dcy do
5: Option 1.1: Uniform Sampling
6: Sample random history gi.; ~ (1., based on Equation 13.
7.
8
9
0

Option 1.2: DP Sampling
Sample histories from direct prompting ¢;.;, ~ DP(X,Y") based on Equation 14.
Obtain scores based on LLM’s output token logits for each class

sz(xuyZ) = f(QI:k(‘Ti))yi
11: end for

12:
13: Step 2: Quantile Estimation
14: Estimate quantiles using the obtained scores:
— a+1)(1—
7 = Quantile <{5'L =15 [(nea + 1) Oéﬂ)
Ncal
15:
16: Step 3: Prediction Set Construction
17: Construct and define the prediction set function using the calculated quantile
Calqui(@) ={y € V| flaur(z)) > 7}
18: end for

19: return Prediction set functions for each length C+, ...Cs, .

Algorithm 2 Information Pursuit with a closed query set Q. josed-

Input: Observation or test sample z°°, maximum iteration L, LLM-based predictor f, query set
Q = O losed, €stimation set Deg
Qutput: Selected queries ¢;.; and predictions .k
1: Setiteration k < 0
2: Initialize an empty history Sp = {}
3: while stopping criteria is met or £ < L do
4 Predict yx11 = argmax,cy f(Sk)y
5 Estimate the entropy of Y given each query q using Deg select the most informative query

Gr11 = argmin fI(Y | ¢(X),Sk)
qeQ

6: Compute query answer g1 (2°"*) and update current history

Sit1 = Sk U {1 (2°}

7: k+k+1
: end while

o]
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Algorithm 3 Information Pursuit with a open query set Qqpen.

Input: Observation or test sample z°°, maximum iteration L, LLM-based predictor f, an LLM
LLM(+), m queries to sample at each iteration, estimation set Deg
Qutput: Selected queries ¢.; and predictions .k
1: Setiteration k < 0
2: Initialize an empty history Sp = {}
3: while stopping criteria is met or £ < L do
4 Predict g1 = argmax, v, f(y | Sk)
5 Prompt language model for m queries based on current history

Q = {q;}7y + LLM(Y, g (2°™), m)

6: Estimate the entropy of Y given each query q using D, select the most informative query

Qr+1 = argminf[(Y | ¢(X),Sk)
qeQ

7: Compute query answer g1 (z°P°) and update current history

Sk1 = Sk U {qp1 (2}

o]

k+—k+1
: end while

NeJ

Algorithm 4 Conformal Information Pursuit with a closed query set Q josed-

Input: Observation or test sample 2°, maximum iteration L, LLM-based predictor f, query set
Q = Qlosed, Prediction set functions for each length Cz, .. .C5, , estimation set Deg
Output: Selected queries g;. and predictions §.x
1: Set iteration k <— 0
2: Initialize an empty history Sp = {}

3. while stopping criteria is met or k£ < L do

4: Predict g1 = argmax,cy, f(Sk)y

5: Estimate the entropy of Y given each query q using Deg select the most informative query
Gr+1 = mmin {Xa + (1 - an)logEx[|Cs, ., (a(X), Si)l]}

6: Compute query answer gy 1(2°"*) and update current history

Sit1 = Sk U {qrg1(z®)}

7: k+k+1
: end while

o]
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Algorithm 5 Information Pursuit with a open query set Qqpen.

Input: Observation or test sample z°°, maximum iteration L, LLM-based predictor f, an LLM
LLM(-), m queries to sample at each iteration, Prediction set functions for each length C;, ...Cs,,
estimation set Deg

Output: Selected queries q.; and predictions ;.5

1: Set iteration k <— 0

2: Initialize an empty history Sy = {}

3: while stopping criteria is met or £k < L do

4: Predict §js41 = argmax, .y, f(y | Sk)

5: Prompt language model for m queries based on current history

Q ¢ LLM(Y, g1:4 (™), m)
6: Estimate the entropy of Y given each query q using De select the most informative query

gi+1 = 1D {Aa + (1 = an)logEx|[|Cs,,, (a(X),Sk)|]}

7: Compute query answer gy 1(2°"%)

Sit1 = Sk U {@rr1 ()}

and update current history

8: k+—k+1
9: end while

Algorithm 6 Direct Prompting

Input: Observation or test sample 2°% maximum iteration L, a Querier LLM QuerierLLM(-), a
Expert LLM ExpertLLM(-), LLM-based predictor f
Output: Selected queries q;.; and predictions ¢;.x
1: Initialize an empty history Sp = {}
2: fork=0,...,Ldo
3: Predict with f
g = argmax f(y | Sk)
yey
4: Prompt Querier LLM for one single query given history
qk+1 = QuerierLLM(Sk)
5: Obtain query answer and update history
Qry1(2°P%) = ExpertLLM(qp 41, 2°°%)
Sk1 = Sk U {gr11(z°7)}
6: end for
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J Additional Examples of Query-Answer Chains
In this section, we provide additional examples of query-answer chains obtained using C-IP. All the

examples we provide in the following are correct predictions. Here we only show the iteration that
the method stopped.

J1 20Q

Here we provide one example for each setting, which is either open or closed query set and either
binary or free-text query answers.

| )¢

ed Query Set and Binary Query Answers

ple of 20Q with C

## System Instruction
You are an expert on animals. Your goal is to predict the animal given the information you have gathered. The

< animal must be one of the following: 'giraffe', 'zebra', 'elephant', 'killer whale', 'dalmatian', 'polar bear',
< 'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale', 'walrus', 'grizzly bear','siamese
< cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose'. Be as precise and as direct as possible. You may
< provide your reasoning first before making a prediction. End your response by making a guess and saying 'The
< animal is: X' (e.g. The animal is: dog) at the end of your reasoning, where X is your guess. Do not provide

< any additional information. Your response should all fit in a single paragraph. If you are not provided any

< information, make a random guess.

## Input Prompt

Here is the information you have gathered.
1. Does the animal live in the Arctic? No.
2. Does the animal have stripes? No.

3. Is the animal domestic? Yes.

Given the information you have gathered, make an intermediate SINGLE prediction of what you think the animal is.
First make your guess in the format 'The ansmal is: X' (e.g. The animal is: dog), where X is your guess, then
provide your reasoning. Do not provide any additional information. Your response should all fit in a single
paragraph. Make sure your prediction is one of the classes: 'giraffe', 'zebra', 'elephant', 'killer whale',
'dalmatian', 'polar bear', 'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale',
'walrus', 'grizzly bear','siamese cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose’.

ELLLL

## Response

The animal is: cow. Given the information that the animal lives in the Arctic is no, which eliminates polar bear,
< walrus, and grizzly bear, and that it is domestic, which eliminates most wild animals, leaving domesticated
< options such as a cow.

Example of 20Q with C

uery Answers

## System Instruction
You are an expert on animals. Your goal is to predict the animal given the information you have gathered. The

animal must be one of the following: 'giraffe', 'zebra', 'elephant', 'killer whale', 'dalmatian', 'polar bear',
'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale', 'walrus', 'grizzly bear', 'siamese
cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose'. Be as precise and as direct as possible. You may

provide your reasoning first before making a prediction. End your response by making a guess and saying 'The
animal is: X' (e.g. The animal is: dog) at the end of your reasoning, where X is your guess. Do not provide
any additional information. Your response should all fit in a single paragraph. If you are not provided any
information, make a random guess.

EELLEL

## Input Prompt
Here is the information you have gathered.
1. This animal primarily inhabits grasslands and savannas, rather than dense forests.

Given the information you have gathered, make an intermediate SINGLE prediction of what you think the animal is.
First make your guess in the format 'The ansmal is: X' (e.g. The animal is: dog), where X is your guess, then
provide your reasoning. Do not provide any additional information. Your response should all fit in a single
paragraph. Make sure your prediction is one of the classes: 'giraffe', 'zebra', 'elephant', 'killer whale',
'dalmatian', 'polar bear', 'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale',
'walrus', 'grizzly bear','siamese cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose’.

ELLL

## Response
The animal is: zebra. This is because the information provided suggests a grassland or savanna habitat, which
< aligns with the typical habitats of zebras, as they are commonly found in grasslands and savannas.
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ple of 20Q

## System Instruction
You are an expert on animals. Your goal is to predict the animal given the information you have gathered. The

animal must be one of the following: 'giraffe', 'zebra', 'elephant', 'killer whale', 'dalmatian', 'polar bear',
'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale', 'walrus', 'grizzly bear','siamese
cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose'. Be as precise and as direct as possible. You may

provide your reasoning first before making a prediction. End your response by making a guess and saying 'The
animal is: X' (e.g. The animal is: dog) at the end of your reasoning, where X is your guess. Do not provide
any additional information. Your response should all fit in a single paragraph. If you are not provided any
information, make a random guess.

FELLLLL

## Input Prompt

Here is the information you have gathered.

1. This animal primarily lives on land.

2. It is native to Europe and Asia, but was later introduced to the Americas and Africa.

3. This animal is a carnivore by natural instinct and primarily feeds on a diet rich in meat.

Given the information you have gathered, make an intermediate SINGLE prediction of what you think the animal is.
First make your guess in the format 'The ansmal is: X' (e.g. The animal is: dog), where X is your guess, then
provide your reasoning. Do not provide any additional information. Your response should all fit in a single
paragraph. Make sure your prediction is one of the classes: 'giraffe', 'zebra', 'elephant', 'killer whale',
'dalmatian', 'polar bear', 'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale',
'walrus', 'grizzly bear','siamese cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose’.

LELLL

## Response

e animal is: dalmatian. The animal primarily lives on land, which matches with the fact that it is native to
Europe and Asia, but was later introduced to the Americas and Africa, indicating a terrestrial habitat. This
animal is a carnivore by natural instinct and primarily feeds on a diet rich in meat, which aligns with the
characteristics of a dalmatian.

RN

Set and Binary Query Answers

## System Instruction
You are an expert on animals. Your goal is to predict the animal given the information you have gathered. The

animal must be one of the following: 'giraffe', 'zebra', 'elephant', 'killer whale', 'dalmatian', 'polar bear',
'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale', 'walrus', 'grizzly bear', 'siamese
cat', 'cow', 'german shepherd', 'gorilla', 'dolphin','moose'. Be as precise and as direct as possible. You may

provide your reasoning first before making a prediction. End your response by making a guess and saying 'The
animal is: X' (e.g. The animal is: dog) at the end of your reasoning, where X is your guess. Do not provide
any additional information. Your response should all fit in a single paragraph. If you are not provided any
information, make a random guess.

FELLLLS

## Input Prompt

Here is the information you have gathered.

. Does the animal primarily eat plants? No.

. Does the animal primarily live on land? Yes.
. Does the animal have four legs? Yes.

Does the animal have a large body size (over 400 kg)? Yes.
Does the animal live in a herd? No.

Is the animal known to be aggressive? Yes.

. Does the animal have a long neck? No.

. Does the animal have sharp claws? Yes.

Is the animal a carnivore? Yes.

10. Is the animal a mammal? Yes.

© 0N WN

Given the information you have gathered, make an intermediate SINGLE prediction of what you think the animal is.
First make your guess in the format 'The ansmal is: X' (e.g. The animal is: dog), where X is your guess, then
provide your reasoning. Do not provide any additional information. Your response should all fit in a single
paragraph. Make sure your prediction is one of the classes: 'giraffe', 'zebra', 'elephant', 'killer whale',
'dalmatian', 'polar bear', 'giant panda', 'hippopotamus', 'rhinoceros', 'lion', 'tiger', 'blue whale',
'walrus', 'grizzly bear','siamese cat', 'cow', 'german shepherd', 'gorilla', 'dolphin', 'moose’.

LLELE

## Response

The animal is: lion. I based my prediction on the fact that the animal is a carnivore (9), lives on land (2), has
< a large body size (4), and is known to be aggressive (6). These characteristics are commonly associated with
< big cats, and the lion is one of the most aggressive and large land carnivorous mammals.
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J2 MediQ

Here we provide one example for each specialty. Recall that, query answers (denoted as Patient’s
Fact in the prompt), is obtained in the order that C-IP obtains. When formatting as input, we ignore

the query as that provides repetitive information as the query answer.

Some text that involves characters «, /3, i are unable to render in our example, so we replace with

with spelled out words, i.e. « — “alpha”.

E

ple of Diagnos

## Input

You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of
< basic and clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and
< modes of therapy, answer the following multiple choice question. Select one correct answer from A to D. Base
< your answer on the current and standard practices referenced in medical guidelines. Repond in the following
— format:

{{"answer": "A/B/C/D", "explanation": "YOUR EXPLANATION HERE"}}
Answer the multiple choice based on the context.

Initial Info: A 54-year-old woman presents to the emergency department due to recent onset of a high fever,
<> accompanied by severe headache and neck stiffness.

Conversation Log between doctor and patient:

Here is the information you have gathered.

Patient's Fact: The patient's current blood pressure reading is 112/71 mmHg.

Patient's Fact: She is currently on immunosuppressants after a kidney transplant 6 months ago. Her current

< medication regimen includes immunosuppressants.

Patient's Fact: The patient is 54 years old.

Patient's Fact: The patient has a history of rapidly progressive glomerulonephritis. She also underwent a kidney
< transplant 6 months ago and is currently on immunosuppressants.

Patient's Fact: The patient's current body temperature is 102.2°F (39°C).

Patient's Fact: The patient's neck pain is severe with neck flexion and reciprocal knee flexion. Facts 9 and 9 are
< the answer to this question.

Patient's Fact: The patient cannot answer the question about the typical triad of symptoms associated with

< meningitis.

Patient's Fact: Her respirations are 22/min.

Question: Which of the following characteristics is true of the most likely cause of this patient's disorder?
Options:

A - Anaerobic spore forming rods

B - Catalase-negative

C - Coagulase-positive

D - Tumbling motility in broth

Please select the most appropriate answer (A/B/C/D).

Medical conditions are complex, so you should seek to understand their situations across many features. First,
< consider which medical specialty is this patient’s case; then, consider a list of necessary features a doctor
< would need to make the right medical judgment. Think step by step, reason about the patient information, the
< inquiry, and the options.

## Response

{"answer": "D", "explanation": "The patient's presentation of high fever, severe headache, neck stiffness, and
neck pain with neck flexion and reciprocal knee flexion (positive Brudzinski's sign) suggests meningitis,
which is an inflammation of the protective membranes covering the brain and spinal cord, known as the meninges.
Given the patient's history of immunosuppression following a kidney transplant, she is at increased risk for
opportunistic infections. The patient's inability to answer questions about the typical triad of symptoms
associated with meningitis (headache, fever, and stiff neck) further supports this diagnosis.

patient's age and immunosuppressed state make her susceptible to various pathogens, but the most likely cause
of meningitis in this context is Listeria monocytogenes. Listeria monocytogenes is a gram-positive,
catalase-negative bacterium that exhibits tumbling motility in broth. This characteristic is unique to
Listeria species, making option D the correct answer.

hlg (0000

Listeria monocytogenes is a common cause of meningitis in immunocompromised individuals, particularly those with a
history of organ transplantation. It is also a cause of meningitis in pregnant women, the elderly, and
individuals with certain underlying medical conditions. The other options do not accurately describe the
typical characteristics of Listeria monocytogenes. Anaerobic spore-forming rods (option A) are more commonly
associated with Clostridium species. Coagulase-positive (option C) is characteristic of Staphylococcus aureus,
and while some anaerobic bacteria may exhibit catalase-negative (option B), this is not a specific
characteristic of the most likely cause of this patient's disorder."}

EELLLE
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## Input

You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of
< basic and clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and
< modes of therapy, answer the following multiple choice question. Select one correct answer from A to D. Base
< your answer on the current and standard practices referenced in medical guidelines. Repond in the following
< format:

{{"answer": "A/B/C/D", "explanation": "YOUR EXPLANATION HERE"}}
Answer the multiple choice based on the context.
Initial Info: An 8-year-old girl of Asian descent is brought to the physician because of fatigue.

Conversation Log between doctor and patient:

Here is the information you have gathered.

Patient's Fact: The patient's eye color and appearance is that she has pale conjunctivae.

Patient's Fact: The patient's mean corpuscular volume is 74 um3.

Patient's Fact: The chief complaint in this case is fatigue. She is not able to keep up with the rest of her
< classmates in gym class because she tires easily.

Patient's Fact: The patient tires easily during physical activities because she is not able to keep up with her
< classmates in gym class and is brought to the physician because of fatigue. This is also due to her pale
<> conjunctivae and small, pale red blood cells.

Patient's Fact: She has a serum ferritin level of 77 ng/mL.

Patient's Fact: The patient's current Hemoglobin level is 11.0 g/dL.

Patient's Fact: She has normal hemoglobin electrophoresis. Hemoglobin electrophoresis is normal.

Question: Which of the following best describes the pathogenesis of the disease process in this patient?"
Options:

A - Decreased production of beta-globin proteins

B - Amino acid substitution in the beta-globin protein

C - Cis deletion of alpha-globin genes

D - Acquired inhibition of heme synthesis

Please select the most appropriate answer (A/B/C/D).

Medical conditions are complex, so you should seek to understand their situations across many features. First,
< consider which medical specialty is this patient's case; then, consider a list of necessary features a doctor
< would need to make the right medical judgment. Think step by step, reason about the patient information, the
< inquiry, and the options.

## Response

{"answer": "C", "explanation": "This patient's presentation of fatigue, pale conjunctivae, and small, pale red
blood cells (microcytosis) is suggestive of anemia. The patient's mean corpuscular volume (MCV) of 74 um3
indicates a microcytic anemia. The normal hemoglobin electrophoresis rules out hemoglobinopathies such as
sickle cell disease or thalassemia major. The serum ferritin level of 77 ng/mL is elevated, which suggests
iron overload. However, the patient's hemoglobin level is low, which is not consistent with iron overload. The
most likely diagnosis is beta-thalassemia trait, which is a mild form of thalassemia. Beta-thalassemia trait
is caused by a cis deletion of one of the beta-globin genes, leading to reduced production of the beta-globin
protein. This results in a mild anemia, which is consistent with the patient's presentation. The patient's
fatigue and pale conjunctivae are due to the anemia, and the small, pale red blood cells are consistent with
microcytic anemia. The normal hemoglobin electrophoresis and elevated ferritin level support this diagnosis.
Therefore, the correct answer is C - Cis deletion of alpha-globin genes is incorrect, as the patient has
beta-thalassemia trait, not alpha-thalassemia. The correct answer is actually Cis deletion of beta-globin
genes but the options provided do not have beta-globin, so the closest option is C."}

\end{1stlisting}

FELEEEERLLLL
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ple of Diagnosis in Neurology

## Input

You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of
< basic and clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and
< modes of therapy, answer the following multiple choice question. Select one correct answer from A to D. Base
< your answer on the current and standard practices referenced in medical guidelines. Repond in the following
— format:

{{"answer": "A/B/C/D", "explanation": "YOUR EXPLANATION HERE"}}
Answer the multiple choice based on the context.
Initial Info: A 25-year-old man presents to the ER after a street fight.

Conversation Log between doctor and patient:

Here is the information you have gathered.

Patient's Fact: He has been rapidly decompensating since several hours after the initial hit. Since then, he has
<> been rapidly decompensating.

Patient's Fact: The patient cannot answer the question about the exact cause of the altered mental status and head
<> pain. However, the patient is experiencing head pain and altered mental status. The atomic factual statements
<> that answer the question partially are: - He is grabbing his head in pain.- His mental status is altered.
Patient's Fact: The patient's right pupil is dilated. The information comes from fact #7.

Question: If this patient's symptoms are allowed to progress without intervention, which of the following would be
< expected to occur?
Options:

A - Right sided hemiparesis

B - Down and in gaze of the right pupil

C - Right sided homonymous hemianopsia.

D - Right eye with an inability to abduct

Please select the most appropriate answer (A/B/C/D).

Medical conditions are complex, so you should seek to understand their situations across many features. First,
<> consider which medical specialty is this patient’s case; then, consider a list of necessary features a doctor
<> would need to make the right medical judgment. Think step by step, reason about the patient information, the
<> inquiry, and the options.

## Response

{"answer": "A", "explanation": "Based on the patient's symptoms of rapidly decompensating altered mental status
< and head pain, along with a dilated pupil on the right side, the most likely diagnosis is a mass lesion in the
< brain, such as a hemorrhage or an ischemic stroke. The dilated pupil is a sign of third cranial nerve

< (oculomotor nerve) compression, which is often seen in patients with a space-occupying lesion in the brain.

If this patient's symptoms are allowed to progress without intervention, it is likely that the mass lesion will
< continue to increase in size and cause further brain damage. This could lead to a range of complicatiomns,

< including right-sided hemiparesis, which is weakness on the opposite side of the body from the lesion.
Right-sided hemiparesis is a common consequence of a left-sided brain lesion, as the motor tracts in the brain
cross over to the opposite side of the body. The other options are not directly related to the expected
outcome of a space-occupying lesion in the brain. Down and in gaze of the right pupil would be more consistent
with a third cranial nerve palsy, but the patient's symptoms are not consistent with this diagnosis.
Right-sided homonymous hemianopsia would be more consistent with a lesion in the visual pathway, and an
inability to abduct the right eye would be more consistent with a sixth cranial nerve palsy, which is not
suggested by the patient's symptoms."}

FLELLELL
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K Examples of Sampled Queries

Here we provide some brief examples of queries sampled in the 20Q open query set setting. Here the
number of queries to sample m = 3.

[
"Does the animal have four legs?",
"Does the animal live on land?",
"Is the animal a mammal?"
1,
L
"Does the animal have spots or stripes?",
"Does the animal primarily live on land?",
"Does the animal have a long neck?"
1,
L
"Does the animal primarily eat plants?",
"Does the animal live in a group?",
"Does the animal have a distinctive coat pattern?"
1,
[
"Does the animal have a long neck?",
"Does the animal primarily eat bamboo?",
"Does the animal give birth to a single cub at a time?"
1,
L
"Does the animal have a large body size?",
"Does the animal primarily eat bamboo?",
"Does the animal have a distinctive coat pattern?"
1,
L
"Does the animal primarily consume bamboo?",
"Does the animal have retractable claws?",
"Does the animal have a distinctive pattern of black and white stripes rather than spots?"
1,
[
"Does the animal primarily feed on plants?",
"Does the animal have a herbivorous diet?",
"Is the animal native to Asia?"
1,
[
"Does the animal primarily feed on bamboo?",
"Is the animal a carnivore?",
"Does the animal have a large body size compared to other land animals?"
1,
L
"Does the animal primarily walk on all fours?",
"Does the animal have a long gestation period?",
"Is the animal a member of the Ursidae family?"
1,
[
"Does the animal have a long snout?",
"Is the animal native to Africa?",
"Does the animal have a large body size compared to its neck?"
1,
[
"Does the animal primarily live on land?",
"Is the animal a carnivore?",
"Does the animal have a large body size compared to other animals on the list?"
]
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