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Abstract

The period from 2019 to the present has represented one of the biggest paradigm shifts
in information retrieval (IR) and natural language processing (NLP), culminating in the
emergence of powerful large language models (LLMs) from 2022 onward. Methods leverag-
ing pretrained encoder-only models (e.g., BERT) and decoder-only generative LLMs have
outperformed many previous approaches, particularly excelling in zero-shot scenarios and
complex reasoning tasks. Our survey study investigates the evolution of model architectures
in IR, focusing on two key aspects: backbone models for feature extraction and end-to-end
system architectures for relevance estimation. The review intentionally separates architec-
tural considerations from training methodologies, in order to provide a focused analysis of
structural innovations in IR systems. We trace the development from traditional term-based
methods to modern neural approaches, particularly discussing the impact of transformer-
based models and subsequent large language models (LLMs). We conclude with a forward-
looking discussion of emerging challenges and future directions, including architectural op-
timizations for performance and scalability, handling of multimodal, multilingual data, and
adaptation to novel application domains such as autonomous search agents that might be
the next-generation paradigm of IR.

1 Introduction

Information Retrieval (IR) aims to retrieve relevant information sources to satisfy users’ information needs.
In the past decades, IR has become indispensable for efficiently and effectively accessing vast amounts of
information across various applications. Beyond its traditional role, IR now also plays a critical role in
assisting large language models (LLMs) to generate grounded and factual responses under the generative
AI era. Research in IR primarily centers on two key aspects: (1) extracting better query and document
feature representations, and (2) developing more accurate relevance estimators. Extracting better query
and document feature representations focuses on modeling textual content so that queries and documents
can be compared in a meaningful space, ranging from early term-frequency vectors (e.g., TF–IDF and
BM25) to modern contextual embeddings derived from pre-trained language models. Developing more
accurate relevance estimators then builds on these representations to assess how well a document satisfies an
information need, using scoring functions or learned ranking models such as BM25, neural interaction models,
or later learning-to-rank frameworks that combine multiple signals. The approaches for extracting query and
document features have evolved from traditional term-based methods, such as boolean logic (Radecki, 1979;
Kraft & Buell, 1983) and vector space models (Salton et al., 1975), to modern solutions such as dense retrieval
based on pre-trained language models (Lee et al., 2019; Karpukhin et al., 2020; Logeswaran et al., 2019; Lin
et al., 2022, inter alia).

Relevance estimators have evolved alongside advances in feature representations. Early approaches, including
probabilistic and statistical language models, computed relevance with simple similarity functions based on
term-based features. Learning-to-rank (LTR) techniques later emerged, incorporating machine learning
models like support vector machines (Cortes & Vapnik, 1995), boosting methods (Kearns & Valiant, 1994;
Freund & Schapire, 1995) as well as multi-layer neural networks for relevance estimation (Li, 2011). The
success of LTR methods can be largely attributed to their extensive use of manually engineered features,
derived from both statistical properties of text terms and user behavior data collected from web browsing
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Figure 1: An overview of this survey.

2



Under review as submission to TMLR

traffic (Qin & Liu, 2013). In the 2010s, a vast literature explored neural rerankers in different architectures to
capture the semantic similarity between queries and documents (Pang et al., 2016; Guo et al., 2016a; Xiong
et al., 2017; Dai et al., 2018, inter alia). Then pre-trained transformers, represented by BERT (Devlin et al.,
2019) and its variants (Liu, 2019; Sun et al., 2019; Lan et al., 2020; Beltagy et al., 2020), quickly revolutionized
the model design, leading to an era where retrieval and ranking models adopt simpler architectures for
relevance estimation, such as dot product operations and MLP prediction heads, which operate on learned
neural representations (MacAvaney et al., 2019b; Lee et al., 2019; Karpukhin et al., 2020; Nogueira et al.,
2020; Lin et al., 2022; Formal et al., 2021b;a).

Recent advancements in LLMs have revolutionized applied machine learning (ML) communities, including
IR. One intriguing property of modern instruction-following LLMs (e.g., ChatGPT OpenAI (2022)) is that
they can be used for feature extraction and relevance estimation, achieving strong performance without
extensive training (Ni et al., 2022a; Neelakantan et al., 2022; BehnamGhader et al., 2024; Sun et al., 2023;
Qin et al., 2024b, inter alia). The rise of these models builds upon a rich foundation of neural architectures,
including the classical Transformer architecture with multi-head attention (MHA, Vaswani et al., 2017),
Recurrent Neural Networks (RNN, Elman, 1990), Attention mechanisms (Bahdanau, 2014), and pre-trained
static word representations like Word2Vec (Mikolov, 2013) and GloVe (Pennington et al., 2014) (Collobert
et al., 2011; Le & Mikolov, 2014, inter alia).

This work reviews the evolution of model architectures in IR (with an overview in Figure 1). Here, the
meaning of model architecture is twofold: it describes (1) backbone models for extracting query and doc-
ument feature representations, and (2) end-to-end system architectures that process raw inputs, perform
feature extraction, and estimate relevance. Different from prior works and surveys (Lin et al., 2022; Zhu
et al., 2023), we intentionally separate our discussion of model architectures from training methodologies and
deployment best practices to provide a focused architectural analysis, which serves as the core components of
AI infra under the LLM era. The shift towards neural architectures, particularly Transformer-based models,
has fundamentally transformed IR by enabling rich, contextualized representations and improved capacity
for handling complex queries. While this evolution enhanced retrieval performance, it also presents new
challenges, especially with the development of LLMs. These challenges include the need for architectural in-
novations to optimize performance and scalability, handle multimodal and multilingual data, and understand
complex instructions. Moreover, as IR systems are increasingly integrated into diverse applications — from
robotics (Xie et al., 2024b), protein structure discovery (Jumper et al., 2021) to autonomous agents (Wu
et al., 2023a; Chen et al., 2025; Hu et al., 2025; OpenAI, 2025; Wu et al., 2025b, inter alia) that are capable
of reasoning and search — the field must evolve beyond traditional search paradigms. We conclude this sur-
vey by examining these challenges and discussing their implications for the future of IR model architectures
research.

2 Background and Terminology

We focus on the classical ad hoc retrieval task, which forms the foundation for many modern IR applications.
In this section, we define the core task, introduce key system architectures and evaluation paradigms, and
clarify the scope of our architectural review.

Task Definition and Evaluation. Given a query Q, the task is to find a ranked list of k documents,
denoted as {D1, D2, . . . , Dk}, that exhibit the highest relevance to Q. This is achieved either by retrieving
top-k documents from a large collection C (|C| ≫ |k| ), which typically comprises millions or billions of
documents, or by reranking the top-k candidates returned by a retriever. System performance is measured
using standard, list-wise IR metrics. Common metrics include:

• Mean Reciprocal Rank (MRR): Measures the rank of the first relevant document. It is particu-
larly useful for tasks where finding one correct answer is the primary goal (e.g., question answering).

• Recall@k: Measures the fraction of all relevant documents that are found within the top-k results.
It emphasizes the system’s ability to find all relevant items.
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• Normalized Discounted Cumulative Gain (nDCG@k): A sophisticated metric that evaluates
the quality of the ranking over the top-k documents. It gives higher scores for ranking highly relevant
documents at the top of the list and uses a logarithmic discount to penalize relevant documents that
appear lower in the ranking. It is the de facto standard for evaluating ranked lists with graded
relevance judgments.

The Multi-Stage “Retrieve-then-Rerank” Architecture. Modern large-scale IR systems almost uni-
versally operate on a multi-stage pipeline, commonly known as the “retrieve-then-rerank” architecture. This
design balances the tradeoff between efficiency and effectiveness.

1. Retrieval (or First-Stage Ranking): In the first stage, a computationally efficient but less precise
model scans the entire collection C (potentially billions of documents) to quickly identify an initial
set of several hundred or thousand candidate documents. These models, often called retrievers, must
be extremely fast. Examples include traditional models like BM25 (Section 3) or modern bi-encoder
models (Section 6).

2. Reranking (or Second-Stage Ranking): In the second stage, a more powerful but computation-
ally expensive model, known as a reranker, is applied only to the small candidate set returned by the
retriever. This model can afford to perform deep, fine-grained analysis of the interaction between
the query and each candidate document to produce a more accurate final ranking. Examples include
Learning-to-Rank models (Section 4) and modern cross-encoder transformers (Section 6).

This two-stage process is a central architectural pattern in IR, and much of the evolution discussed in this
survey can be understood as developing more advanced models for each of these stages.

Query and Document. A query expresses an information need and serves as input to the ad hoc retrieval
system. We denote document as the atomic unit for retrieval and ranking. Our discussions are primarily
based on text-based documents, but a document can also refer to a webpage or an email, depending on the
actual IR application of interest.

Disentangling Model Architecture from Training Strategies. Similar to other applied ML domains,
the performance of an IR system is a product of its model architecture, its training methodology (e.g., loss
functions, data augmentation, optimization algorithms), and deployment best practices (e.g., indexing, quan-
tization, parallelization, algorithm-hardware co-design). In this survey, we intentionally seek to disentangle
these aspects to provide a focused analysis on the evolution of model architecture. This focus allows for
a clearer narrative on how the core components for representation learning and relevance estimation have
changed over time, from term-based logic to deep neural networks. We refer readers to dedicated surveys for
in-depth reviews of training strategies and other related topics (Schütze et al., 2008; Lin et al., 2022; Song
et al., 2023).

3 Traditional IR Models

In this section, we briefly review traditional Information Retrieval (IR) models prior to neural methods, with
a focus on the Boolean model, vector space model, probabilistic model, and statistical language
model. These models, which serve as the foundation for later developments in IR (Sections 4 to 7), are
built upon the basic unit of a “term” in their representations (Nie, 2010).

Boolean Model. In the Boolean Model, a document D is represented by a set of terms it contains, i.e.,
D = {t1, t2, . . . , tn}, and a query Q is represented as a similar boolean expression of terms. A document is
considered relevant to a query only if a logical implication D → Q holds, i.e., the document representation
logically implies the query expression. This basic model can be extended by incorporating term weighting,
allowing both queries and documents to be represented as sets of weighted terms. Consequently, the logical
implication D → Q is also weighted. Common approaches for this include using a fuzzy set extension of
Boolean logic (Radecki, 1979; Kraft & Buell, 1983) and the p-norm (Salton et al., 1983).
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Vector Space Model. In Vector Space Models (VSMs, Salton et al., 1975), the queries and documents
are represented by vectors, e.g., Q =< q1, q2, . . . , qn > and D =< d1, d2, . . . , dn >. The vector space is
defined by a vocabulary of terms V =< t1, t2, . . . , tn > and each element (qi or di, 1 ≤ i ≤ n) in the
vectors represents the weight of the corresponding term in the query or the document. The weights qi or di

could be binary, representing presence or absence. Given the vector representations, the relevance score is
estimated by a similarity function between the query Q and the document D. The weights qi or di can be
determined by more sophisticated schema (Salton & Buckley, 1988), such as TF-IDF (Sparck Jones, 1972)
and BM25 (Robertson et al., 1995). This allows for more abundant features that can improve the capacity
and accuracy of the models. Besides, given the vector representations of query Q and document D, the most
commonly used is cosine similarity, defined as:

sim(Q, D) = Q · D
|Q| × |D|

,

where Q · D is the dot product and |Q|, |D| denotes the length of the vector.

Probabilistic Model. In the Probabilistic Model, the relevance score of a document D to a query Q
depends on a set of events {xi}n

1 representing the occurrence of term ti in this document. The simplest
probabilistic model is the binary independence retrieval model (Robertson & Jones, 1976), which assumes
terms are independent so only xi = 1 and xi = 0 exist in the representation. Given a set of sample documents
whose relevance is judged, the estimation of the relevance score can be derived as

Score(Q, D) ∝
∑

(xi=1)∈D

log ri(T − ni − R + ri)
(R − ri)(ni − ri)

where T and R are the total number of sampled judged documents and relevant samples, and ni and ri

denote the number of samples and relevant samples containing ti, respectively.

In contrast, a line of statistical retrieval functions such as TF-IDF (Sparck Jones, 1972) move beyond binary
term indicators by incorporating term frequency (TF) and inverse document frequency (IDF), allowing
more nuanced term weighting while still assuming term independence. We illustrate the famous BM25
algorithm (Robertson et al., 1995):

BM25(Q, D) =
∑

ti∈Q∩D
IDF(ti) · fi · (k1 + 1)

fi + k1 ·
(

1 − b + b · |D|
avgdl

) ,

where fi is the frequency of term ti in document D, |D| is the length of the document, avgdl is the average
document length in the collection, and k1 and b are hyperparameters typically set between [1.2, 2.0] and
[0.5, 0.8], respectively. The inverse document frequency term is computed as IDF(ti) = log N−ni+0.5

ni+0.5 , where
N is the total number of documents in the collection and ni is the number of documents containing term ti.

The smoothing mechanisms (Baeza-Yates et al., 1999) are necessary to deal with zero occurrences of ti. Ex-
cept for the binary independence retrieval model, more sophisticated probabilistic models have been proposed
in the literature (Wong & Yao, 1989; Fuhr, 1992), such as the inter-dependency between terms (Van Rijs-
bergen, 1979).

Statistical Language Model. The general idea of a statistical language model is to estimate the relevance
score of a document D to a query Q via P(D|Q) (Ponte & Croft, 1998). Based on Bayes’ Rule, P(D|Q)
can be derived as directly proportional to P(Q|D)P(D). For simplification, most studies assume a uniform
distribution for P(D). The main focus is on modeling P(Q|D) as a ranking function. By treating the query
as a set of independent terms Q = {ti}n

i=1, we have P(Q|D) =
∏

ti∈Q P(ti|D). The probability P(ti|D)
is determined using a statistical language model θD that represents the document. The relevance is then
estimated by log-likelihood: Score(Q, D) = log P(Q|θD) =

∑
ti∈Q log P(ti|θD), where the estimation of the

language model θD is usually achieved by maximum likelihood.

The statistical language models for IR (Miller et al., 1999; Berger & Lafferty, 1999; Song & Croft, 1999;
Hiemstra & Kraaij, 1999) also encounter the problem of zero occurrences of a query term ti, i.e., the
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probability P(Q|θD) becomes zero if a query term ti does not appear in the document. This is too restrictive
for IR, as a document can still be relevant even if it contains only some of the query terms. To address
this zero-probability issue, smoothing techniques are applied, assigning small probabilities to terms that do
not appear in the document. The principle behind smoothing is that any text used to model a language
captures only a limited subset of its linguistic patterns (or terms, in this case). The commonly used smoothing
methods (Zhai & Lafferty, 2004; Zhai et al., 2008) include Jelinek-Mercer smoothing (Jelinek, 1980), Dirichlet
smoothing (MacKay & Peto, 1995), etc.

These foundational models, while useful, share a common characteristic: they rely on heuristic-based scoring
functions derived from statistical properties of terms. Although their parameters can be tuned (e.g., k1
and b in BM25), the functional form of the model is fixed. A natural evolution is to frame ranking as a
supervised machine learning task, where a model learns to combine various signals of relevance automatically
from labeled data. This approach allows for the systematic combination of not only scores from traditional
models like BM25 but also a multitude of other features describing the query, the document, and their
interaction. This paradigm shift from hand-crafted formulas to learned functions is the core idea behind
Learning-to-Rank models, which we discuss next.

4 Learning-to-Rank Model Architectures

Different from traditional IR models that rely on heuristic-based scoring formulas (Section 3), Learning-to-
Rank (LTR) reframes ranking as a supervised machine learning problem (Liu, 2009). The core idea is to
train a model that can optimally combine a wide array of signals, or “features”, to predict the relevance of
documents to a query. For each query-document pair (Qi, Di), a k-dimensional feature vector xi ∈ Rk is
extracted, and a relevance label yi (e.g., from human judgments) is provided. The goal is to learn a ranking
model f parameterized by θ that minimizes an empirical loss l(·) on a labeled training set Ψ:

L = 1
|Ψ|

∑
(xi,yi)∈Ψ

l(fθ(xi), yi).

LTR methods are typically categorized into three main approaches based on their input and loss function:
pointwise, pairwise, and listwise.

Feature Engineering in LTR. A cornerstone of traditional LTR is the meticulous engineering of the
feature vector xi. These features are designed to capture diverse aspects of relevance and can be grouped into
several categories: (1) Query-based features, such as the number of terms in the query; (2) Document-
based features, which are query-independent, such as document length, PageRank (Brin & Page, 1998),
or the number of incoming URL links; and (3) Query-document interaction features, which form the
largest and most critical group. This category includes scores from traditional IR models like BM25 and
Language Models, counts of matching terms, proximity features measuring how close query terms are in the
document, and various TF-IDF-related statistics. The power of LTR lies in its ability to learn complex,
non-linear combinations of these diverse signals, moving beyond what a single hand-tuned formula could
achieve.

4.1 Pointwise, Pairwise, and Listwise Approaches with ML Models

The pointwise approach is the simplest, treating each document independently. It frames the problem as a
regression or classification task, where the model f(xi) aims to predict the exact relevance label yi. While
straightforward, this approach ignores the crucial fact that ranking is about the relative order of documents,
not their absolute scores (Burges, 2010).

The pairwise approach addresses this by focusing on the relative order of document pairs. Given two
documents Di and Dj for the same query, the goal is to predict which one is more relevant. This transforms
ranking into a binary classification problem. Seminal pairwise models include RankSVM (Joachims, 2006),
which adapts the Support Vector Machine framework to maximize the number of correctly ordered pairs,
and RankNet (Burges et al., 2005), which uses a neural network and a probabilistic cost function based on
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Table 1: A list of learning-to-rank works and their model architectures.
Name Backbone Architecture Loss Function
MART (Friedman, 2001) Boosting Pointwise
RankBoost (Freund et al., 2003) Boosting Pairwise
RankNet (Burges et al., 2005) Neural Network Pairwise
RankSVM (Joachims, 2006) SVM Pairwise
LambdaRank (Burges et al., 2006) Neural Network Pairwise
ListNet (Cao et al., 2007) Neural Network Listwise
SoftRank (Taylor et al., 2008) Neural Network Listwise
ListMLE (Xia et al., 2008) Linear Listwise
LambdaMART (Burges, 2010) GBDT Listwise
ApproxNDCG (Qin et al., 2010) Linear Listwise
DLCM (Ai et al., 2018a) Neural Network Listwise
GSF (Ai et al., 2019) Neural Network Listwise
ApproxNDCG (Bruch et al., 2019) Neural Network Listwise
SetRank (Pang et al., 2020) Self Attention Blocks Listwise

pairwise logistic loss. While more aligned with the nature of ranking than the pointwise approach, pairwise
methods still do not directly optimize the list-based evaluation metrics (e.g., nDCG, MRR) that are standard
in IR evaluation.

The listwise approach directly tackles this issue by defining the loss function over an entire list of documents
for a given query. These methods aim to directly optimize ranking metrics. A pivotal line of work began with
LambdaRank (Burges et al., 2006), which observed that for gradient-based optimization, one only needs
the gradients of the loss function. It introduced “Lambda gradients”, which are derived from the change
in an IR metric (like nDCG) when two documents in a ranked list are swapped. This technique was then
combined with Multiple Additive Regression Trees (MART), a Gradient Boosted Decision Tree (GBDT)
algorithm (Friedman, 2001), to create LambdaMART (Wu et al., 2010). Due to its strong performance and
robustness, LambdaMART became a dominant industry standard for many years (Ke et al., 2017).

4.2 Neural LTR Models

While LambdaMART represents a peak for GBDT-based LTR, early works also explored neural networks
for the ranking function fθ. RankNet and LambdaRank both parameterized the LTR model with neural
networks. More recent works such as GSF (Ai et al., 2019) and ApproxNDCG (Bruch et al., 2019) have
continued this trend, using multiple fully connected layers and designing differentiable approximations of IR
metrics. Other architectures like DLCM (Ai et al., 2018a), based on RNNs, and SetRank (Pang et al.,
2020), using self-attention, explore ways to model the entire document list jointly. A rigorous benchmark
by Qin et al. (2021) compared the performance of these modern neural ranking models against strong
GBDT-based baselines. A summary of LTR models and their backbone architectures is provided in Table 1.

4.3 Orthogonal Directions

Beyond core model architectures, LTR research has explored many other important directions. A significant
portion of the literature focuses on loss functions and feature transformations (Qin et al., 2021; Bruch et al.,
2019; Burges, 2010). Other critical areas include developing methods for unbiased relevance estimation from
biased user feedback (e.g., clicks) (Joachims et al., 2017; Ai et al., 2018b; Wang et al., 2018; Hu et al., 2019)
and jointly optimizing for both effectiveness and fairness in ranking systems (Singh & Joachims, 2018; Biega
et al., 2018; Yang et al., 2023b;a;c). We omit detailed discussions here and refer readers to the original
papers and prior surveys (Liu, 2009; Li, 2011).

Despite their success, traditional LTR models have a fundamental ceiling. Their reliance on handcrafted
features means they are not end-to-end and, more critically, they struggle to bridge the lexical gap —
the difference between the words in a query and the semantically related words in a relevant document.

7



Under review as submission to TMLR

customized
deep network

relevance score

word embeddings

where is whitemarsh island the strategy of island ...

word embeddings

customized
deep network

(a) Representation-based neural reranker

word embeddings

where is whitemarsh island the strategy of island ...

word embeddings

customized
deep network

relevance score

(b) Interaction-based neural reranker
Figure 2: Illustration on neural ranking models. Brown boxes indicate uncontextualized word embeddings
(e.g., Word2vec).

Their understanding is based on pre-defined statistical signals, not the underlying meaning of the text. This
limitation created a clear need for a new class of models capable of learning semantic representations directly
from raw text, setting the stage for the rise of neural ranking (Section 5).

5 Neural Ranking Models

Neural ranking models emerged to directly address the key limitations of LTR (Section 4). By learning se-
mantic representations directly from raw text, they could automatically bridge the lexical gap — for instance,
recognizing that a query for “computer” is conceptually related to a document about a “PC” without rely-
ing on term overlap. This end-to-end approach simultaneously eliminated the laborious process of manual
feature engineering, shifting the paradigm from engineering statistical signals to learning semantic patterns
from data.1

Depending on how queries interact with documents during network processing, neural ranking models can be
roughly divided into representation-based models and interaction-based models (Guo et al., 2016a).
This division reflects a fundamental tradeoff between efficiency and matching depth. Representation-based
models pre-encode documents into vectors offline, enabling highly efficient retrieval suitable for first-pass
ranking. In contrast, interaction-based models process the query and document together, allowing for deeper
and more precise matching at a higher computational cost, making them ideal for reranking a smaller set of
candidates.

5.1 Representation-based Models

This genre of models can be regarded as an extension of vector space models (Section 3), which independently
encode queries and documents into a shared latent vector space, where relevance is determiend through simple
comparison functions such as cosine similarity or dot product, as illustrated in Figure 2a. This approach
maintains clear separation between query and document processing, with no interaction occurring during
the encoding procedure. The core architectural challenge is designing an encoder network that transforms a
variable-length sequence of term embeddings into a single, fixed-size semantic vector.

The Deep Structured Semantic Model (DSSM, Huang et al., 2013; Gao et al., 2014) is an early example. It
utilizes word hashing (a technique to manage large vocabularies by grouping words into a smaller number
of hash buckets) and multilayer perceptrons (MLPs) to independently encode term vectors of queries and
documents, enabling the computation of ranking scores based on the cosine similarity of their embeddings.
Later works modify DSSM’s encoder network to better capture richer semantic and contextual information.
Convolutional DSSM(C-DSSM, Shen et al., 2014a) leverages a CNN architecture. Specifically, it applies

1For the sake of paper structure, in this section we focus on neural information retrieval which cover retrieval models based
on neural networks prior to pre-trained transformers. We kindly refer more details to the dedicated surveys (Onal et al., 2018;
Mitra et al., 2018; Xu et al., 2018).
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1D convolutions over the sequence of word embeddings, allowing the model to learn representations for n-
grams and local phrases. A max-pooling layer then selects the most salient local features to form the final
document vector. Another variant of DSSM replaces MLPs with recurrent layers such as Long Short-Term
Memory (LSTM) network (Hochreiter & Schmidhuber, 1997; Palangi et al., 2016; Wan et al., 2016; Cohen
& Croft, 2016) or tree-structured networks (Tai et al., 2015). The LSTM processes the text sequentially,
and its recurrent nature allows it to capture word order and long-range dependencies across the entire text,
with the final hidden state often used as the comprehensive representation for the query or document. Based
on the assumption of documents’ hierarchical structure, Yang et al. (2016b); Song et al. (2018); Zhu et al.
(2019) use Attention (Bahdanau, 2014) to model token, phrase and sentence representations for enhanced
document/passage representations.

In line with these works, the NLP community has also extensively investigated passage/document representa-
tions. Le & Mikolov (2014) proposed Paragraph Vectors (Doc2Vec), an unsupervised algorithm that learns
fixed-length feature representations from variable-length pieces of texts, which is based on single-hidden-layer
neural network. Kim (2014) studied convolutional neural network for sentence representations while Wieting
et al. (2016) proposed to use LSTM network. Arora et al. (2017) reported a weighted average of pre-trained
word embeddings finetuned with unsupervised random walk algorithm can outperform more complex neural
networks on the sentence similarity task. However, weighted averaging word embeddings ignores the word
order, which fails to capture the rich, contextual information in longer, more complex documents.

To summarize, representation-based models excel in scenarios requiring global semantic understanding and
offer significant computational advantages through their ability to pre-compute document representations
offline (Guo et al., 2019). However, these approaches also face inherent limitations due to their reliance on
fixed-size embedding vectors, which can struggle to capture all relevant information from the original text
and may not effectively handle precise lexical matching requirements. These limitations are the focus of
interaction-based models.

5.2 Interaction-based Models

Different from representation-based models, interaction-based models (Figure 2b) process queries and docu-
ments jointly through neural networks. Instead of compressing each text into a single vector, they first build
a detailed, low-level interaction representation between the query and the document, and then use neural
networks to learn hierarchical matching patterns from this representation. The model’s output is typically a
scalar relevance score of the input query-document pair. Various network architectures have been proposed
under this paradigm. MatchPyramid (Pang et al., 2016) employs CNN over the interaction matrix be-
tween query and document terms. The interaction matrix is treated as an image, allowing the CNN with its
2D filters to capture local matching patterns (e.g., phrases or bigrams matching) through convolution and
pooling operations (Hu et al., 2014).

Building upon the concept of interaction-focused models, Guo et al. (2016a) highlight the importance of exact
term matches in neural ranking models and proposed the Deep Relevance Matching Model (DRMM). Rather
than a single interaction matrix, DRMM creates a matching histogram for each query term. This histogram
discretizes the similarity scores against all document terms into bins, effectively capturing the distribution
of matching signals (e.g., how many terms in the document are an exact match, a strong semantic match, or
a weak match to a given query term). An MLP then learns the relevance contribution from these histogram
features.

Kernel-Based Neural Ranking Model (K-NRM, Xiong et al., 2017) further advances interaction-based ap-
proaches. It employs radial basis function (RBF) kernels to transform the query-document interaction matrix
into a more informative feature representation. Each kernel corresponds to a certain similarity level (e.g.,
“exact match”, “strong match”, “weak match”). The model uses these kernels to produce “soft-TF” counts
for each query term — counting how many document words match the query term at each similarity level.
These soft-match features are then aggregated and fed into a simple feed-forward network to compute the
final relevance score. This kernel-based mechanism enables models to capture nuanced matching features,
enhancing their ability to model complex query-document interactions. Conv-KNRM (Dai et al., 2018)
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later extends it to convolutional kernels to capture n-gram level soft matches, further improving matching
granularity.

In line with these works, the interaction matrix-based approach have been explored for short text match-
ing (Lu & Li, 2013; Yin et al., 2016; Yang et al., 2016a) as well as long document ranking (Mitra et al., 2017;
Hui et al., 2017; 2018, inter alia). Multi-Perspective CNN approaches compare sentences via diverse pooling
functions and filter widths to capture multiple perspectives between texts He et al. (2015). aNMM (Yang
et al., 2016a), as an example of Attention-based methods, computes passage terms’ attention weights over
query terms using a query attention network and achieves performance improvement compared to CNN-
based baseline (Severyn & Moschitti, 2015). Term adjacency and positional information represent another
important dimension of interaction modeling. Models such as MatchPyramid, PACRR, and ConvKNRM
capture term adjacency patterns and position-dependent interactions (Pang et al., 2016; Hui et al., 2017;
Dai et al., 2018).

The interaction functions in these models can be categorized as either non-parametric (using traditional
similarity measures like cosine similarity, dot product, or binary indicators) or parametric (learning similar-
ity functions from data through neural networks) (Dong et al., 2022b). While interaction-focused models
require one forward pass through the entire model for each potentially relevant document, making them com-
putationally more expensive than representation-focused approaches, they typically achieve superior ranking
quality due to their ability to capture fine-grained matching signals. We list some representative works
in Table 2 and direct readers to these works for architectural details.

5.3 Hybrid Models

Recognizing the complementary strengths of representation-focused and interaction-focused architectures,
researchers have proposed hybrid models that combine the efficiency of representation-based methods with
the effectiveness of interaction-based approaches. These models represent a third category in neural ranking
architectures, alongside the two primary approaches.

The most notable example is DUET (Mitra et al., 2017), which employs two separate deep neural networks
operating in parallel. One network performs local interaction-based matching similar to interaction-focused
models, while the other learns distributed representations for query and document separately, similar to
representation-focused approaches. The term interaction matrix between query and document feeds into the
exact matching layers, while term embeddings of the input sequence enter the semantic matching layers.
The outputs from both networks are then combined using a fully connected network to produce the final
ranking score.

Different from the metric learning theme of representation-based models, a line of works formulates the
ranking problem as a classification problem (commonly referred to as Extreme Label Classification, or
XMC), where the input is the query, and the output is a probability distribution over the corpus, where each
document is a unique “class” or “label”. Instead of optimizing the similarity between query and document
representations, XMC models aim to predict the correct subset of relevant document IDs (Prabhu & Varma,
2014; Jain et al., 2016; Liu et al., 2017; Jain et al., 2019). In the inference time, XMC methods use tree-based
hierarchies or cluster-based sampling to quickly narrow down the search path to the likely labels without
scanning every candidates (Prabhu et al., 2018; You et al., 2019). AttentionXML (You et al., 2019) uses
an attention mechanism to focus on specific parts of the input text that are most relevant to the label’s
semantic meaning, and thus can be considered a hybrid model. We refer readers to (Dasgupta et al., 2023)
for a comprehensive review of XMC methods.

This hybrid architecture demonstrates that combining distributed representations with traditional local
representations is favorable, with the combined approach significantly outperforming either neural network
individually. More recent hybrid approaches have focused on reducing computational costs while maintaining
effectiveness, with some models incorporating cached token-level representations to enable faster query-
document interactions when document representations are pre-computed (Wrzalik & Krechel, 2020). The
success of hybrid models has established that interaction-based and representation-based approaches can be
effectively combined for further improvements in ranking performance (Liu et al., 2018).
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Table 2: A list of neural ranking models and their model architectures.
Name Architecture Backbone Embeddings
DSSM (Huang et al., 2013) Representation-based MLP Semantic Hashing
CDSSM (Shen et al., 2014a) Representation-based CNN Semantic Hashing
CLSM (Shen et al., 2014b) Representation-based CNN Semantic Hashing
ARC-I (Hu et al., 2014) Representation-based CNN Word2Vec
Tai et al. (2015) Representation-based Tree-structured LSTM GloVe
LSTM-RNN (Palangi et al., 2016) Representation-based LSTM Randomly Initialized
MV-LSTM (Wan et al., 2016) Representation-based Bi-LSTM Word2Vec
DESM Nalisnick et al. (2016a) Representation-based MLP Randomly Initialized
Lu & Li (2013) Representation-based MLP Randomly Initialized
ARC-II (Hu et al., 2014) Interaction-based CNN Word2Vec
MatchPyramid (Pang et al., 2016) Interaction-based CNN Randomly Initialized
DRMM (Guo et al., 2016a) Interaction-based MLP Word2Vec
ABCNN (Yin et al., 2016) Interaction-based CNN + Attention Word2Vec
aNMM (Yang et al., 2016a) Interaction-based Attention Word2Vec
DESM (Nalisnick et al., 2016b) Interaction-based MLP Word2Vec
K-NRM (Xiong et al., 2017) Interaction-based MLP + RBF kernels Word2Vec
Conv-KNRM (Dai et al., 2018) Interaction-based CNN Word2Vec
PACRR (Hui et al., 2017) Interaction-based CNN + RNN Word2Vec
Co-PACRR (Hui et al., 2018) Interaction-based CNN Word2Vec
TK (Hofstätter et al., 2020c) Interaction-based Transformer + Kernel GloVe
TKL (Hofstätter et al., 2020a) Interaction-based Transformer + Kernel GloVe
NDRM (Mitra et al., 2021) Interaction-based Conformer + Kernel BERT

5.4 Orthogonal Directions

In addition to the development of network architecture, pre-trained embeddings (Salakhutdinov & Hinton,
2009; Mikolov, 2013; Pennington et al., 2014; Le & Mikolov, 2014) provide semantic-based term representa-
tions to enable neural ranking models to focus on learning relevance matching patterns, improving training
convergence and retrieval performance on both representation-based and interaction-based models (Levy
et al., 2015). Both GloVe (Pennington et al., 2014) and Word2Vec (Mikolov, 2013) learn dense vector rep-
resentations for each vocabulary term from large-scale text corpora. By initializing the embedding layer
with these pre-trained vectors, models start with a strong semantic foundation, which proved crucial for
performance, especially on smaller training datasets (Guo et al., 2016b). Interaction-based models with
crosslingual word embeddings (Joulin et al., 2018) for crosslingual reranking have also been explored (Yu
& Allan, 2020). Table 2 shows a list of neural ranking models and backbone architectures. Researchers
have explored different backbone neural network architectures in this era, including Convolutional Neural
Network (CNN, LeCun et al., 1989), Long Short Term Memory (LSTM, Hochreiter & Schmidhuber, 1997)
and kernel methods (Vert et al., 2004; Chang et al., 2010; Xiong et al., 2017).

Notably, a line of research explores integrating kernel methods with the Transformer architecture (Vaswani
et al., 2017). The main distinction between this line of research and the models discussed in Section 6 is
that the transformer modules here are not pre-trained on large-scale corpora like Wikipedia and C4 (Devlin
et al., 2019; Raffel et al., 2020). We consider this line of research as an intersection between neural ranking
models (Section 5) and retrieval with pre-trained transformers (Section 6). TK (Hofstätter et al., 2020c) uses
a shallow transformer neural network (up to 3 layers) to encode the query Q and document D separately.
After encoding, the contextualized representations are input to an interaction module inspired by K-NRM,
where RBF kernels are used to create soft-match features from the contextualized embeddings. This fusion
of a transformer encoder with a kernel-based interaction mechanism allowed the model to achieve better
performance-efficiency tradeoff compared to BERT-based reranker (Nogueira et al., 2019b). The main
bottleneck of applying transformer architectures to long document reranking is O(n2) time complexity,
where n denotes the document length. TKL (Hofstätter et al., 2020b) further improves upon TK with a
local attention mechanism and leads to performance improvement on long document ranking.
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(a) Transformer-based reranker
(b) Learned dense retrieval. (w are token-level scalar
weights)

(c) Learned sparse retriever (d) Multi-vector representations
Figure 3: Illustration on transformer-based retrieval and reranking models. Yellow boxes indicate pretrained
Transformers (e.g., BERT). Query text, embeddings, and associated weights are color-coded in orange,
whereas document representations are color-coded in blue.

The neural ranking models described above, particularly later developments like TK and TKL, demon-
strated the potential of the transformer’s attention mechanism for modeling relevance. However, the true
paradigm shift occurred when the IR community moved from using these architectures trained from scratch
to leveraging massive, pre-trained transformer models like BERT (Devlin et al., 2019) and its variants (Liu,
2019; Sun et al., 2019; Lan et al., 2020; Beltagy et al., 2020). This marked a fundamental change in ap-
proach: instead of designing novel, task-specific network backbones (e.g., CNNs, LSTMs) on top of static
word embeddings, research shifted to fine-tuning a single, powerful, and deeply contextualized architecture
for IR tasks. This new foundation did not eliminate the core architectural tradeoffs but rather recast them
in a more powerful form, leading to the development of cross-encoder rerankers and bi-encoder retrievers,
which we explore next.

6 IR with Pre-trained Transformers

BERT (Devlin et al., 2019) revolutionized research in both natural language processing (NLP) and informa-
tion retrieval (IR). Its success is largely attributed to two key factors: (1) the Multi-Head Attention (MHA)
architecture (Vaswani et al., 2017), which enables high-dimensional, contextualized token representations;
and (2) large-scale pre-training, which equips BERT with the ability to capture rich semantics and world
knowledge. The expressive power of BERT has been extensively analyzed in prior work, e.g., (Rogers et al.,
2020; Tenney et al., 2019; Clark, 2019).
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High-level architectural families. Before discussing specific IR modeling architectures, it is useful to
understand the architectural families of transformers, as they have distinct implications for IR tasks:

• Encoder-only models (e.g., BERT (Devlin et al., 2019), RoBERTa (Liu, 2019)) use a bidirec-
tional self-attention mechanism, allowing each token’s representation to be informed by the entire
input sequence (both left and right context). This deep contextual understanding makes them nat-
urally suited for representation-focused tasks. In IR, they have been the workhorses for building
powerful bi-encoder retrievers and cross-encoder rerankers.

• Decoder-only models (e.g., proprietary GPT series (Radford et al., 2019; Brown et al., 2020;
OpenAI et al., 2024), open-weight Llama (Touvron et al., 2023), Mistral (Jiang et al., 2023a))
use a unidirectional (causal) self-attention mechanism, where each token can only attend to previous
tokens in the sequence. This architecture is optimized for next-token prediction and, by extension,
text generation. Their application to representation tasks like retrieval is less direct and often
requires architectural adaptations to create meaningful summary vectors from their unidirectional
hidden states.

• Encoder-decoder models (e.g., T5 (Raffel et al., 2020), BART (Lewis et al., 2020a)) combine
both architectures. The encoder processes the input sequence bidirectionally to create a rich repre-
sentation, which then conditions the decoder to generate an output sequence autoregressively. This
“sequence-to-sequence” design makes them highly versatile. In IR, they can be framed as rerankers
(generating a “relevant” or “irrelevant” token), or as generative retrievers that directly generate
document identifiers.

This section discusses IR architectures based on pre-trained transformers, with a focus on BERT-type
encoder models, which is to be distinct from encoder-decoder models and decoder-only models covered
in Section 7. We structure our review around the fundamental architectural tradeoff between interaction
depth and computational efficiency. These constraints necessitate two primary paradigms:

1. Cross-Encoder (Deep Interaction): A single model processes the concatenated query and doc-
ument as one sequence, allowing every query token to interact deeply with every document token.
This provides state-of-the-art ranking quality but is computationally expensive, making it suitable
only for reranking.

2. Bi-Encoder (Separable Pre-computation): Separate encoders process the query and document
independently to create fixed-size vectors. Since document vectors can be pre-computed offline, this
architecture enables extremely fast similarity search suitable for first-stage retrieval.

We first discuss the crucial training strategies used to optimize these two architectures. We then detail the
cross-encoder models that perform deep, full interaction, followed by the separable bi-encoder architectures
that prioritize efficiency, exploring their dense, sparse, and multi-vector variants. Finally, we discuss advanced
hybrid models and orthogonal improvements such as continual training and interpretability.

6.1 Training Strategies for Transformer-Based IR

Although we aim to disentangle model architectures from training strategies, the co-evolvement of these two
areas is a defining pattern of this era. The architectural dichotomy (cross-encoder vs. bi-encoder) has an
impactful influence the training methodology, extending the loss function categories discussed in Section 4
into the deep learning paradigm.

Contrastive and Listwise Objectives. The application of contrastive learning builds on the principle
of the InfoNCE loss Oord et al. (2018), which is derived from Noise-Contrastive Estimation (Gutmann &
Hyvärinen, 2012). The general goal is to learn a model that distinguishes a “positive” sample from a set of
“negative” samples.

13



Under review as submission to TMLR

The InfoNCE framework is primarily used to optimize bi-encoders in the dense retrieval setting. In this
context, the relevance score f is a simple similarity function (e.g., dot product) between the query and
document vectors, f(Q, D) = sim(vQ, vD). For a query Qi, a positive document D+

i , and a set of negative
documents D−

i , the bi-encoder is trained to minimize the negative log probability of correctly classifying the
positive document:

− 1
|S|

∑
(Qi,D+

i
)∈S

log exp fθ(Qi, D+
i )

exp fθ(Qi, D+
i ) +

∑
D−

j
∈D−

i

exp fθ(Qi, D−
j )

where S is the training set and D−
i is the set of sampled negative documents.

For cross-encoders, which compute relevance over a concatenated list, the objective is also listwise but
often simplified to a standard Negative Log-Likelihood (NLL) loss over the final softmax probabilities of
the candidates, minimizing the distance between the predicted distribution and the ground truth relevance
distribution for the entire list.

Hard Negative Mining (HNM). A critical challenge in training bi-encoders is generating sufficiently
difficult negative examples, as random sampling typically yields easy negatives that do not challenge the
model effectively. This is where Hard Negative Mining becomes essential. HNM strategies ensure that
the model is exposed to challenging cases where positive and negative document features are difficult to
distinguish. Key strategies include:

1. In-Batch Negatives (IBN): Leveraging other queries’ positive documents within the same mini-
batch as negative examples for the current query. IBN provides a balance of efficiency and difficulty.

2. Lexical Negatives: Using documents highly ranked by a traditional sparse model (e.g., BM25)
but not labeled as relevant.

3. Iterative Hard Negative Mining: Employing an existing dense retriever to periodically mine
difficult negatives from the collection (i.e., documents that the current model mistakenly ranks
highly). Seminal methods like ANCE (Xiong et al., 2020) and ADORE (Zhan et al., 2021) use this
iterative approach to continually feed the model better training data.

Knowledge Distillation (KD). To further narrow the effectiveness gap between efficient bi-encoders and
powerful cross-encoders, the community widely adopted Knowledge Distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015). KD is a technique for training a smaller, efficient “student” model by transferring
knowledge from a larger, more capable “teacher” model (Hinton et al., 2015; Gou et al., 2021). In IR, KD is
used to create fast rerankers or retrievers that approximate the performance of slower, larger models, which
is critical for production systems (Hofstätter et al., 2020a; 2021a; Xu et al., 2025c; Zhang et al., 2025b).

Let ft denote the teacher model (typically a cross-encoder) and fs denote the student model (typically a bi-
encoder or a smaller cross-encoder). For a given query Q and a list of candidate texts Dq = {D1, D2, . . . , Dk},
we first compute relevance scores (logits) from both models:

zt = [ft(Q, D1), ft(Q, D2), . . . , ft(Q, Dk)]
zs = [fs(Q, D1), fs(Q, D2), . . . , fs(Q, Dk)]

The student model fs is trained to mimic the teacher’s output distribution over the candidate texts by
minimizing the Kullback-Leibler (KL) divergence between the two softened probability distributions:

LKD = DKL

(
softmax

(zt

T

) ∣∣∣∣softmax
(zs

T

))
where T is the temperature hyperparameter. A higher temperature creates a softer probability distribution,
which can help in transferring more nuanced information from the teacher. KD thus provides an essential
bridge, allowing the efficiency of bi-encoders to approach the effectiveness ceiling set by cross-encoders.
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6.2 Deep Interaction Models: The Cross-Encoder for Reranking

The most effective application of transformers in IR involves full, deep interaction between query and doc-
ument tokens. This architecture, known as a cross-encoder (Humeau et al., 2020), takes the concatenated
sequence of (Q, D) as a single input. Nogueira et al. (2019b) first employed this approach in their monoBERT
model for reranking candidate passages from a first-stage retriever. The model outputs a relevance score
s via a linear layer on top of the final BERT representation, typically from a linear layer using the [CLS]
token’s representation (Figure 3a).

Conceptually similar to pre-Transformer interaction-based neural ranking models, this schema has proven
effective across various pre-trained encoders (Zhang et al., 2021b), as well as other transformer architectures
architectures (Section 7). However, this cross-encoder schema faces two primary challenges: (1) the fixed
context length of models like BERT (e.g., 512 tokens) makes processing long documents difficult, and (2)
relying on a single token’s fixed-dimensional representation (e.g., 768-dimensional representation for BERT)
may limit the model’s expressive power.

Handling Long Documents. Corresponding mitigations for these two challenges have been extensively
investigated in literature. Chunk-and-aggregate approaches represent a practical solution to handle long
documents that exceed BERT’s input constraints by decomposing the ranking problem into passage-level
scoring followed by aggregation (Gao & Callan, 2022). The fundamental strategy involves splitting documents
into fixed-length passages or sentences, applying BERT-based cross-encoders to score each query-passage
pair independently, then combining these scores to produce a final document-level relevance score. Early
work in this direction explored sentence-level aggregation, where BERT scores computed at the sentence
level were shown to be effective for document ranking (MacAvaney et al., 2020; Yilmaz et al., 2019). The
BERT-MaxP (Dai & Callan, 2019a) approach became particularly influential, where documents are split
into fixed-length passages and the maximum passage score serves as the document score.

Two primary aggregation strategies have emerged: (1) score-pooling and (2) representation aggregation.
Score-pooling methods apply simple operations like maximum, sum, or first passage scores to combine
passage-level relevance scores (Dai & Callan, 2019a). In contrast, representation aggregation methods address
both the long-document problem and the single-vector expressiveness limitation. Instead of collapsing each
passage’s signal into a single scalar score, these approaches gather the rich, low-dimensional [CLS] token
representations from each passage. This collection of vectors forms a more comprehensive and expressive
document-level feature set, which is then processed by additional neural networks (MacAvaney et al., 2020).
Notable systems like PARADE (Li et al., 2020) employ CNNs and transformers for aggregation, while
CEDR (MacAvaney et al., 2019b) pioneered joint approaches that combine BERT outputs with existing
neural IR models through averaging.

While chunk-and-aggregate approaches successfully handle long documents, they fundamentally limit query-
document interactions to the passage level, creating information bottlenecks where passage scores or low-
dimensional representations constrain the model’s ability to capture document-wide relevance patterns. Hof-
stätter et al. (2021b) argue that this tradeoff between scalability and interaction richness remains a defining
characteristic of this approach.

6.3 Efficient Pre-computation Models: The Bi-Encoder Architecture

While cross-encoders offer state-of-the-art effectiveness, their computational cost — requiring a full trans-
former pass for every (Q, D) pair — makes them infeasible for retrieval over large collections. This limitation
motivated the development of bi-encoder architectures, which are conceptually similar to representation-
based neural ranking models (Section 5).2

A bi-encoder uses a backbone network (typically a transformer) to encode the query Q and document D
separately. The resulting dense vector representations are then used to compute a relevance score with a
simple similarity function like dot product or cosine similarity (Xiong et al., 2020; Karpukhin et al., 2020;

2The term “bi-encoder” is also known as a two-tower architecture or an embedding model. We use “bi-encoder” to contrast
with “cross-encoder”, which takes concatenated input.
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Gao et al., 2021b). The key advantage of this separation is efficiency: the entire document collection can be
encoded into a vector index offline. At query time, retrieval becomes a fast approximate nearest neighbor
(ANN) search problem (Johnson et al., 2019; Malkov & Yashunin, 2016) or search with an inverted index
data structure (Zobel et al., 1998), avoiding costly neural network inference.

A notable insight from Lin (2021) is that the bi-encoder framework provides a unifying lens for understanding
diverse retrieval approaches. Dense retrieval models, learned sparse retrieval models, and traditional bag-
of-words approaches like BM25 can all be viewed as parametric variations of this architecture, differing
primarily along two dimensions: the representation basis (dense semantic vectors vs. sparse lexical vectors)
and whether the representations are learned or hand-crafted. Existing methods based on this bi-encoder
architecture vary primarily in their representation format (dense vs. sparse), pooling strategies, and training
methodologies.

6.3.1 Learned Dense Retrieval

Dense retrieval models employ a standardized dual encoder architecture built on pre-trained transformer
models, most common BERT in this section. The standard formulation uses separate BERT encoders
for queries and documents, with a layer-normalized linear projection applied to the token representation:
Encoder(·) = Linear

(
BERT(·)

)
. The encoder weights can be separate or shared between query and document

sides.

The core architectural principle involves encoding queries and documents into low-dimensional dense vectors,
typically 768 dimensions matching BERT’s hidden size. Rather than using all hidden representations, most
models compress the sequence information using a reduction function, usually the token representation or
mean pooling of the final transformer layer outputs. This creates a single dense vector representation per
text sequence that captures semantic information beyond simple lexical matching.

Relevance scoring in dense retrieval is performed through simple similarity functions, most commonly dot
product or cosine similarity between query and document vectors. This design enables efficient approximate
nearest neighbor (ANN) search over pre-computed document representations (Johnson et al., 2019), making
dense retrieval practical for large-scale collections while maintaining the semantic understanding capabilities
of transformer models. The success of this architecture stems from its ability to learn semantic representations
that address the vocabulary mismatch problem inherent in traditional sparse retrieval methods (Lee et al.,
2019; Karpukhin et al., 2020; Xiong et al., 2020; Reimers & Gurevych, 2019). Dense retrieval models have
demonstrated notable effectiveness improvements over BM25 baselines across various tasks including open-
domain question answering and web search.

6.3.2 Learned Sparse Retrieval

Learned sparse retrieval (LSR, Figure 3c) employs the same bi-encoder architecture as dense retrieval but
produces fundamentally different representations.3 While sharing the transformer backbone, sparse retrieval
models encode queries and documents into high-dimensional sparse vectors whose dimensionality typically
matches the vocabulary size of the underlying pre-trained model, often containing tens of thousands of dimen-
sions. Each dimension corresponds to a specific vocabulary term, creating an interpretable representation
where non-zero weights indicate term importance (Formal et al., 2021b;a; Nguyen et al., 2023).

Three key architectural constraints distinguish sparse encoders from their dense counterparts. First, sparsity
is enforced through explicit regularization techniques, ensuring most term weights remain zero to maintain
efficiency (Formal et al., 2021b; Xu et al., 2025b). Second, all weights must be non-negative to maintain
compatibility with traditional inverted index software designed for lexical search systems like Lucene. Third,
the high-dimensional vocabulary-aligned vectors enable integration with existing inverted index infrastruc-
ture and optimization algorithms (Turtle & Flood, 1995; Broder et al., 2003; Bruch et al., 2024). Notably,
inference-free learned sparse retrieval methods such as SPLADE-Doc (Formal et al., 2021a; Shen et al.,

3We focus on the learned sparse retrieval under the bi-encoder formulation, which excludes works including learned document
expansion, e.g., Nogueira et al. (2019a); Zbib et al. (2019), and document term reweighting, e.g.,DeepCT (Dai & Callan, 2019b).
See Mallia et al. (2021); Basnet et al. (2024) for a unified narrative for learned sparse retrieval that includes these lines of works.
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2025) eliminates requirement of specialized accelerators such as GPUs, making them highly efficient for
inference on multi-core CPU machines.

At a conceptual level, learned sparse retrieval can be viewed as a sophisticated evolution of traditional term
weighting schemes, learning context-aware token importance scores from data rather than relying on heuristic
formulas (Zamani et al., 2018; Dai & Callan, 2019b; Mallia et al., 2021; Yu et al., 2024a; Xu et al., 2025b).
This approach inherits desirable properties from bag-of-words models such as exact term matching while
leveraging the semantic understanding capabilities of pretrained transformers. Notable implementations
include SPLADE (Formal et al., 2021a), DeepImpact (Mallia et al., 2021), and uniCOIL (Lin & Ma,
2021), which demonstrate that transformer-based sparse representations can achieve effectiveness comparable
to dense retrieval while maintaining the efficiency benefits of inverted indexes.

6.4 Bridging the Gap: Advanced Interaction and Hybrid Models

The standard bi-encoder’s lack of term-level interaction is a performance bottleneck compared to cross-
encoders. Several lines of research aim to bridge this gap by introducing more granular representations or
by combining different retrieval paradigms.

6.4.1 Multi-Vector Representations

To re-introduce query-document interaction without the full cost of a cross-encoder, multi-vector models
represent queries and documents using multiple vectors. Poly-Encoder (Humeau et al., 2020) computes a
fixed number of vectors per query and aggregates them with softmax attention over document vectors. ME-
BERT (Luan et al., 2021) represents documents with m vectors and uses the maximum similarity between
any query and document vector to estimate relevance.

In line with this idea, ColBERT (Khattab & Zaharia, 2020; Santhanam et al., 2022; Hofstätter et al.,
2022) represent each token in the query and document as a contextualized vector. It then performs a “late
interaction” step where each query vector is compared against all document vectors via a MaxSim operator,
and the final score is the sum of these maximum similarities. This late interaction scheme (Figure 3d) allows
ColBERT for end-to-end training to achieve strong performance while still achieving efficient retrieval
through a dedicated index structure. On the other hand, it also leads to drastically increased index size,
which has been the focus in later studies (Santhanam et al., 2022; Hofstätter et al., 2022, inter alia).

We should also note that multi-vector retrieval can be viewed as a special case of dense retrieval where
the learned feature representation is a matrix of size n × h, with n vectors of hidden dimension h. This
matrix can be conceptually flattened into a single dense vector, showing its connection to the vanilla single-
vector retrieval. The key difference lies not in the representation itself but in the richer relevance estimation
strategy: instead of applying a simple linear relevance like dot product, models like ColBERT aggregate
fine-grained token-level interactions to compute a relevance score.

6.4.2 Hybrid Retrieval

Another direction combines the strengths of different retrieval systems. A simple yet effective approach is
ranklist fusion (e.g., Reciprocal Rank Fusion, Cormack et al., 2009), which merges ranked lists from sparse
(e.g., BM25) and dense retrievers post-retrieval without architectural changes. More integrated models
combine signals at a deeper level. COIL (Gao et al., 2021a) enhances traditional bag-of-words retrieval
with semantic embeddings from a BERT encoder. uniCOIL (Lin & Ma, 2021) simplifies this by reducing
the semantic embedding to a single dimension, effectively learning a term weight akin to LSR models like
SPLADE (Formal et al., 2021b;a). A few works fall into the intersection of learned sparse retrieval and multi-
vector representations. For example, SLIM (Li et al., 2023b) first maps each contextualized token vector
to a sparse, high-dimensional lexical space before performing late interaction between these sparse token
embeddings. SPLATE (Formal et al., 2024) takes an alternative approach to first encode contextualized
token vectors, then map these token vectors to a sparse vocabulary space with a partially learned SPLADE
module. Both models achieve performance improvement compared to learned sparse retrieval baselines such
as SPLADE (Formal et al., 2021b;a).
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Table 3: Summary of IR model architecture for passage retrieval and passage ranking based on pre-trained
transformers. Dense Retrieval and LSR denote learned dense retrieval and learned sparse retrieval, respec-
tively. DeepCT (Dai & Callan, 2019b) is trained without labeled training set. Contrastive Learning and
in-batch negatives means listwise loss function is used. SentenceBERT (Reimers & Gurevych, 2019) is
originally designed for the symmetrical sentence similarity tasks, but is quickly expanded to asymmetrical
retrieval tasks.

Name Model Architecture Backbone LM Training strategy
monoBERT (Nogueira et al., 2019b) Reranking Cross-encoder BERT Classification
CEDR (MacAvaney et al., 2019b) Reranking Cross-encoder BERT Contrastive Learning
BERT-MaxP (Dai & Callan, 2019a) Reranking Cross-encoder BERT Pairwise Loss
Gao et al. (2020) Reranking Cross-encoder BERT Distillation
TART-full (Asai et al., 2023) Reranking Cross-encoder Flan-T5-Enc Instruction Tuning
ODQA (Lee et al., 2019) Dense Retrieval Bi-encoder BERT Unsupervised
SentenceBERT (Reimers & Gurevych, 2019) Dense Retrieval Bi-encoder BERT Triplet
DPR (Karpukhin et al., 2020) Dense Retrieval Bi-encoder BERT Contrastive Learning
ANCE (Xiong et al., 2020) Dense Retrieval Bi-encoder RoBERTa Contrastive Learning
RepBERT (Zhan et al., 2020) Dense Retrieval Bi-encoder BERT In-batch negatives
Margin-MSE (Hofstätter et al., 2020a) Dense Retrieval Bi-encoder DistilBERT Distillation
TAS-B (Hofstätter et al., 2021a) Dense Retrieval Bi-encoder BERT Distillation
RocketQA (Qu et al., 2020) Dense Retrieval Bi-encoder ERNIE Contrastive Learning
RocketQA-v2 (Ren et al., 2021) Dense Retrieval Bi-encoder ERNIE Distillation
GTR (Ni et al., 2022b) Dense Retrieval Bi-encoder EncT5 Contrastive Learning
TART-dual (Asai et al., 2023) Dense Retrieval Bi-encoder Contriever Instruction Tuning
E5 (Wang et al., 2022a) Dense Retrieval Bi-encoder BERT Contrastive Learning
GTE (Li et al., 2023c) Dense Retrieval Bi-encoder BERT Contrastive Learning
Poly-encoder (Humeau et al., 2020) Multi-vector Misc BERT In-batch Negatives
ME-BERT (Luan et al., 2021) Multi-vector Bi-encoder BERT Contrastive Learning
ColBERT (Khattab & Zaharia, 2020) Multi-vector Bi-encoder BERT Pairwise Loss
COIL (Gao et al., 2021a) Multi-vector Bi-encoder BERT Contrastive Learning
ColBERT-v2 (Santhanam et al., 2022) Multi-vector Bi-encoder BERT Distillation
ColBERTer (Hofstätter et al., 2022) Multi-vector Bi-encoder BERT Distillation
DeepCT (Dai & Callan, 2019b) LSR Bi-encoder BERT Unsupervised
SparTerm (Bai et al., 2020) LSR Bi-encoder BERT Contrastive Learning
SPLADE (Formal et al., 2021b) LSR Bi-encoder BERT Contrastive Learning
SPLADE-v2 (Formal et al., 2021a) LSR Bi-encoder BERT Distillation
DeepImpact (Mallia et al., 2021) LSR Bi-encoder BERT Contrastive Learning
uniCOIL Lin & Ma (2021) LSR Bi-encoder BERT Contrastive Learning
SparseEmbed (Kong et al., 2023) LSR Bi-encoder BERT Contrastive Learning
SLIM (Li et al., 2023b) LSR + Multi-vector Bi-encoder BERT Contrastive Learning
SLIM++ (Li et al., 2023b) LSR + Multi-vector Bi-encoder BERT Distillation
SPLATE (Formal et al., 2024) LSR + Multi-vector Bi-encoder BERT Distillation

6.5 Orthogonal Improvements and Analysis

Beyond architectural innovations, performance can be enhanced through improvements to the underlying
models and a deeper analysis of their behavior. We show a list of models and their corresponding architectures
in Table 3, a majority of which use BERT (Devlin et al., 2019) as the backbone, with exceptions using
DistilBERT (Sanh, 2019), RoBERTa (Liu, 2019), and T5 (Raffel et al., 2020; Sanh et al., 2022; Mo et al.,
2023; Chung et al., 2024).

Continual Training and Adaptation. Instead of modifying the retrieval architecture, this line of work
enhances the backbone language model itself through domain adaptation or continued pre-training, a proven
strategy in NLP (Howard & Ruder, 2018; Gururangan et al., 2020). For instance, Lee et al. (2019) pre-
train BERT with an Inverse-Cloze Task (Taylor, 1953) for better text representations. Condenser (Gao
& Callan, 2021) proposes a dedicated pre-training architecture to “condense” text representations into the
[CLS] token. COCO-DR (Yu et al., 2022c) extends Condenser by using a technique named Distribu-
tionally Robust Optimization to mitigate distribution shifts in dense retrieval. A line of works have also
explored other pre-training objectives such as masked auto-encoders (Xiao et al., 2022; Wu et al., 2023b)
and bag-of-words prediction (Ma et al., 2024a). Recent works (Wang et al., 2023a; Nussbaum et al., 2025;
Yu et al., 2024b, inter alia) have employed a “middle-stage” training on large-scale unlabeled text pairs, be-
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tween pretrained encoder models and supervised finetuning on labeled text pairs, and have demonstrated the
corresponding performance improvement compared to the traditional two-stage pipeline. We refer readers
to the original papers for details.

Interpretability and Explainability. A few works have attempted to interpret what transformer-based
models learn, i.e., mechanistic interpretability (Elhage et al., 2021; Saphra & Wiegreffe, 2024). MacAvaney
et al. (2022) showed that neural models rely less on exact match signals and instead encode rich semantic
information. Ram et al. (2023a) connected dense and sparse retrieval by projecting a dense retriever’s
intermediate representations into the vocabulary space. Separately, other work focuses on designing systems
that provide model-agnostic explanations (Rahimi et al., 2021; Yu et al., 2022b; Xu et al., 2024b) to satisfy
desiderata like faithfulness (Jacovi & Goldberg, 2020; Xu et al., 2023). As IR systems become integral
to other applied ML domains, we believe it is important to study and design interpretable, truthful, and
trustworthy IR models.

The architectural innovations discussed in this section highlight a mature research field dedicated to harness-
ing pre-trained transformers for information retrieval. The central theme has been the architectural tradeoff
between interaction depth and computational cost, giving rise to a spectrum of models from highly effec-
tive cross-encoder rerankers to efficient bi-encoder retrievers. By developing advanced representations — be
they dense, sparse, or multi-vector — and hybridizing different approaches, the community has pushed the
boundaries of the classic “retrieve-then-rank” paradigm. However, these models still primarily function as
specialized components for representation and scoring. The next wave of innovation would come from models
capable not just of understanding text, but of generating it, leading to the era of Large Language Models.

7 Large Language Models for IR

The natural evolution from pre-trained encoders is the recent ascendance of Large Language Models (LLMs).4
While building on the same transformer principles discussed in Section 6, the sheer scale and generative
capabilities of modern instruction-following LLMs are reshaping the architectural landscape of IR. These
models are not just larger backbones for feature extraction; their proficiency in language understanding,
generation, and instruction-following allows them to take on entirely new roles. Trained to align with
human preferences (OpenAI, 2023; Gemini et al., 2023; Bai et al., 2022), LLMs can perform complex tasks
such as reasoning (Wei et al., 2022; Hurst et al., 2024; Guo et al., 2025), tool usage (Schick et al., 2023;
Patil et al., 2024b; Qin et al., 2024a; Patil et al., 2024a) and planning (Song et al., 2023; Huang et al.,
2024a). In this section, we review how these powerful models — spanning decoder-only and encoder-decoder
architectures — are being adapted for IR tasks, moving beyond established paradigms into new frontiers of
retrieval, reranking, and direct generation.

7.1 LLM as Retriever

A straightforward yet highly effective application of LLMs is to serve as the backbone for bi-encoder retrieval
models. We categorize these developments into backbone scaling, architectural adaptation, and unified
modeling. We show a shortlist of works in Table 5.

Scaling Bi-Encoders. The dramatic increase in parameter count and training data provides LLMs with
richer world knowledge and a more nuanced understanding of semantics compared to their smaller BERT-
sized predecessors. This directly translates to performance improvements. Neelakantan et al. (2022) fine-
tuned a series of off-the-shelf GPT models towards text and code representation. They empirically verified
that the bi-encoder retriever’s performance can benefit from increased backbone language model capacity.
Muennighoff (2022); Ma et al. (2024b) empirically verified the effectiveness of scaling the size of dense retriev-
ers with open-weight models such as GPT-J (Wang & Komatsuzaki, 2021) and Llama-2 (Touvron et al.,

4The term “Large Language Model” lacks a precise, universally accepted definition in the literature. In this survey, we use
the term to refer to models with over one billion parameters that are pre-trained with a text generation objective, such as text
infilling (e.g., T5) or causal language modeling (e.g., the GPT series), and are often optionally post-trained for instruction
following and human preference alignment.
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2023). Today, common text retrieval benchmarks like BEIR (Thakur et al., 2021) and MTEB (Muennighoff
et al., 2023) are dominated by proprietary and open-source LLM-based embedding models (Wang et al.,
2023a; Li et al., 2023c; Lee et al., 2025; Zhang et al., 2025b; Muennighoff et al., 2025, inter alia).

Decoder-Only Adaptation. A parallel line of research focuses on adapting the unidirectional architecture
of decoder-only LLMs (e.g., Llama) to better suit the needs of bidirectional text representation. Standard
decoder-only models are optimized for next-token prediction, which may not be ideal for creating a single
summary vector for a whole text. To address this, LLM2Vec (BehnamGhader et al., 2024) enables bidirec-
tional attention and further trains Llama-2 (Touvron et al., 2023) with specific unsupervised and supervised
adaptive tasks. Similarly, NV-Embed (Lee et al., 2025) introduces a new latent attention mechanism to
produce improved representations, leading to improved performance on the MTEB benchmark compared to
directly enabling bi-directional attention.

Unified Modeling. GritLM (Muennighoff et al., 2024) finetunes Mistral family models with both dense
retrieval task and text generation task with different attention mechanisms and demonstrate the potential
of unifying retrieval and generation with one single foundation model.

7.2 LLM as Reranker

The reranking task has also been significantly advanced by LLMs, which introduce new capabilities beyond
the cross-encoder architecture discussed in Section 6. This evolution can be categorized into two main
architectural approaches: fine-tuning and zero-shot prompting. We show a shortlist of works that use LLM
as rerankers in Table 6.

Fine-tuned Rerankers. First, LLMs can be fine-tuned as powerful rerankers. Extending earlier work
on BERT-type models, researchers have applied similar techniques to larger encoder-decoder models like
T5 (Raffel et al., 2020) and decoder-only models like Llama (Touvron et al., 2023).

• Pointwise and Pairwise: Nogueira et al. (2020) fine-tuned T5 with a classification loss, treating
reranking as a binary relevance decision. RankT5 (Zhuang et al., 2023a) took a more direct approach
by fine-tuning T5 to output a numerical relevance score, optimizing the model with established
ranking losses like RankNet (Burges, 2010). Further, Zhuang et al. (2023a) also investigated the
impact of language model architectures (T5 encoder-decoder versus T5 encoder), loss functions
(pointwise, pairwise, listwise), and pooling strategies to ranking performance.

• Listwise: Instead of scoring documents individually, ListT5 (Yoon et al., 2024) adopts a Fusion-
in-Decoder architecture (Izacard & Grave, 2021a) to process and rank an entire list of candidate
documents in a single forward pass. More specifically, the architecture consists of an encoder and
decoder, where the encoder takes a query and multiple passages as input in parallel, and the decoder
outputs a sorted list of input passages in the decreasing order of relevance, achieving better reranking
efficiency compared to pointwise methods. Yang et al. (2025b) finetuned QwQ-32B Team (2025) for
listwise reranking where multiple passages are concatenated together as input and achieved better
performance than pointwise reranking, leveraging the reasoning and long context capability of the
strong base model.

• Long-Context Reranking: The long-context capabilities of modern LLMs have also enabled a new
reranking paradigm. RankLlama (Ma et al., 2024b) demonstrated superior pointwise reranking
performance compared to BERT and T5-based rerankers for long document reranking where the
input is truncated at 4,096 tokens.

Zero-shot / Few-shot Prompting. Second, the instruction-following ability of modern LLMs has un-
locked zero-shot and few-shot reranking via prompting. This paradigm requires no task-specific fine-tuning.
Instead, the LLM is prompted with a query and a list of candidate documents and asked to identify the
most relevant ones (Ma et al., 2023; Zhang et al., 2023c; Pradeep et al., 2023b;c; Sun et al., 2023). This
listwise approach is a natural fit for the long context windows of models like GPT-4. To mitigate the high
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Table 4: Taxonomy of identifier types in Generative Retrieval. The choice of identifier is a key architectural
distinction.

Identifier Type Description

Atomic Identifiers Unique integers assigned to documents. Simple but lacks semantic generalization.
String Identifiers Natural language strings (titles, URLs). Leverages pre-trained knowledge but can

be ambiguous.
Semantic Identifiers Structured IDs derived from clustering embeddings. Enables semantic generaliza-

tion in the ID space.

computational cost and context length limitations of processing full documents, Liu et al. (2024b) proposed
using passage embeddings as compact document representations for the LLM, training a specialized reranker
that operates on these embeddings to improve efficiency. As this line of research primarily involves prompt
engineering rather than architectural changes, we refer readers to a recent survey (Zhu et al., 2023) for
further details.

7.3 Generative Retrieval

Perhaps the most radical architectural shift enabled by LLMs is generative retrieval. Traditional IR systems
follow the “retrieve-then-rerank” paradigm (Schütze et al., 2008; Xu et al., 2025d). Generative retrieval
fundamentally challenges this by reframing retrieval as a sequence-to-sequence task. Instead of searching an
index, an autoregressive language model is trained to directly generate the unique identifiers (DocIDs) of
relevant documents in response to a query.

Evolution of the Paradigm. The foundational work in generative retrieval emerged from the entity
linking domain with Generation of ENtity REtrieval (GENRE, De Cao et al., 2021). Rather than treating
entity retrieval as a classification problem over atomic labels with dense representations, GENRE reframed
it as a generative task where an encoder-decoder model produces entity names autoregressively, token-by-
token, conditioned on the input context. Building on GENRE’s success, DSI introduced generative retrieval
to the broader document retrieval domain (Tay et al., 2022). The core innovation was fully parameterizing
traditional “retrieve-then-rerank” pipelines within a single neural model, where all corpus information is
encoded in the model parameters rather than external indices (Tay et al., 2022; Pradeep et al., 2023a). DSI
operates through two fundamental sequence-to-sequence tasks that can be trained jointly or sequentially (He
et al., 2024): the indexing task (Learn to Index) and the retrieval task (Learn to Retrieve).

Taxonomy of Identifiers. A critical design choice in DSI involves document identifier representation
(summarized in Table 4).

• Atomic and String Identifiers: Early work explored atomic identifiers (unique integers) and
simple string identifiers (titles, URLs) (Chen et al., 2023a). DSI can be implemented in two variants:
classification-based approaches that use a classification layer to output atomic document identifiers,
and generative approaches that autoregressively generate identifier strings (Mehta et al., 2022). More
sophisticated methods have introduced n-gram-based identifiers (Bevilacqua et al., 2022).

• Semantic Identifiers: Semantically structured identifiers created through clustering algorithms
proved most effective (Zhu et al., 2023). This often involves hierarchical representations using tech-
niques like residual quantization (Zeng et al., 2024), where the model learns to associate document
content with corresponding semantically meaningful document identifiers (Kishore et al., 2023).

Inference and Constraints. The technical implementation of generative retrieval systems centers on
sequence-to-sequence modeling. A critical technical requirement is ensuring only valid document identifiers
are generated during inference. This is typically achieved through constrained beam search over a prefix tree
(trie) constructed from all valid document identifiers (Tang et al., 2023). Alternative approaches include
constrained greedy search and FM-index structures (Tang et al., 2023). The T5 model backbone (Raffel
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Table 5: Summary of IR model architecture utilizing large language models as retrieval backbone.
Name Architecture Backbone LM Training strategy
CPT-Text (Neelakantan et al., 2022) LLM Encoder GPT-3 Listwise Loss
SGPT-BE (Muennighoff, 2022) LLM Encoder GPT-J & GPT-NeoX Listwise Loss
GTR (Ni et al., 2022b) LLM Encoder T5 Listwise Loss
RepLlama (Ma et al., 2024b) LLM Encoder Llama Listwise Loss
E5-Mistral (Wang et al., 2023a) LLM Encoder Mistral Synthetic Data + Listwise Loss
LLaRA (Li et al., 2023a) LLM Encoder Llama Adaptation + Contrastive Training
MambaRetriever (Zhang et al., 2024) LLM Encoder Mamba Listwise Loss
LLM2Vec (BehnamGhader et al., 2024) LLM Encoder Llama & Mistral Adaptation + Contrastive Pre-training
Grit-LM (Muennighoff et al., 2025) LLM Mistral & Mixtral 8x7B Generative/Embedding Joint Training
NVEmbed (Lee et al., 2025) LLM Encoder Mistral Adaptation + Synthetic Data + Listwise Loss
GTE-Qwen2-Instruct (Li et al., 2023c) LLM Encoder Qwen Adaptation + Synthetic Data + Listwise Loss
Qwen3-Retriever (Zhang et al., 2025b) LLM Encoder Qwen3 Synthetic Data + Listwise Loss

Table 6: Summary of IR model architecture utilizing large language models for reranking. Nogueira dos
Santos et al. (2020) and Zhuang et al. (2021) revisit the statistic language model problem with modern
transformer-based models, including BART (Lewis et al., 2020a) T5 (Raffel et al., 2020) and GPT-2 (Rad-
ford et al., 2019). We use Seq2Seq LLM to refer to encoder-decoder architecture language models such as
T5 and BART, and Casual LLM to refer to modern LLMs with causal language model architecture like
GPT family models.

Name Architecture Backbone LM Training / Prompting Strategy
Fine-tune LLM for Reranking
monoT5 (Nogueira et al., 2020) Seq2Seq LM T5 Classification
Nogueira dos Santos et al. (2020) Seq2Seq LLM BART Unlikelihood
QLM-T5 (Zhuang et al., 2021) Seq2Seq LLM T5 Language Modeling
duoT5 (Pradeep et al., 2021) Seq2Seq LLM T5 Pairwise Loss
RankT5 (Zhuang et al., 2023a) Seq2Seq LLM Encoder + Prediction Layer T5 Listwise Loss
ListT5 (Yoon et al., 2024) Fusion-in-decoder T5 Listwise Loss
SGPT-CE (Muennighoff, 2022) Causal LLM GPT-J & GPT-Neo Listwise Loss
RankLlama (Ma et al., 2024b) Casual LLM Encoder + Prediction Layer Llama Listwise Loss
RankMamba (Xu, 2024) Causal LLM Encoder + Prediction Layer Mamba Listwise Loss
RankVicuna (Pradeep et al., 2023b) Causal LLM Vicuna Listwise
RankZephyr (Pradeep et al., 2023c) Causal LLM Zephyr Listwise
Zhang et al. (2023c) Causal LLM Code-LLaMA-Instruct Listwise
Liu et al. (2024b) Embedding + Causal LLM Mistral Listwise
Qwen3-Reranker (Zhang et al., 2025b) Causal LLM Qwen3 Synthetic Data + Pairwise Loss
Prompt LLM for Reranking
Zhuang et al. (2023b) Causal LLM Multiple Pointwise Prompting
Zhuang et al. (2024a) Causal LLM Flan-PaLM-S Pointwise Prompting
UPR (Sachan et al., 2022) Seq2Seq LM & Causal LLM T5 & GPT-Neo Pointwise Prompting
PRP (Qin et al., 2024b) Seq2Seq LM Flan-UL2 Pairwise Prompting
Yan et al. (2024) Seq2Seq LM Flan-UL2 Pairwise Prompting
Zhuang et al. (2024b) Seq2Seq LM Flan-T5 Pairwise & Setwise Prompting
LRL (Ma et al., 2023) Casual LLM GPT-3 Listwise Prompting
RankGPT-3.5 (Sun et al., 2023) Causal LLM GPT-3.5 Listwise Prompting
RankGPT-4 (Sun et al., 2023) Causal LLM GPT-4 Listwise Prompting

et al., 2020) serves as the foundation for most DSI implementations, trained with cross-entropy loss on both
indexing and retrieval objectives.

Challenges. Generative retrieval faces significant challenges in dynamic environments. The tight coupling
between index and retrieval modules makes updating the corpus computationally expensive, typically re-
quiring full model retraining (Mehta et al., 2022). Scalability poses a major challenge; most research has
focused on relatively small collections, as the memory and computational requirements grow substantially as
corpus size increases. Generative retrieval is an active and rapidly evolving research area; we direct interested
readers to a dedicated survey (Li et al., 2025d) for a comprehensive review.

7.4 Broader Ecosystem and Concluding Remarks

Beyond core architectural changes, LLMs are influencing the entire IR ecosystem. Their advanced generative
and understanding capabilities are being harnessed for crucial supporting tasks:
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• Data Synthesis: Modern IR systems require extensive labeled data for training, which is expensive
to create. A promising line of work is to use LLMs to synthesize high-quality training data (e.g.,
queries, relevant passages, and hard negatives) (Bonifacio et al., 2022; Boytsov et al., 2024; Dai
et al., 2023; Lee et al., 2024; Mo et al., 2024a;c; Zhang et al., 2025b).

• Evaluation: From an evaluation perspective, LLMs’ language understanding has led to research on
using them as proxies for human relevance judges, which could dramatically accelerate the evaluation
cycle (Faggioli et al., 2023; 2024; Clarke & Dietz, 2024).

We also point readers to a comprehensive survey on conversational information retrieval (Mo et al., 2024b),
another area being reshaped by LLMs.

In conclusion, the adoption of LLMs in IR represents more than a simple increase in model scale. While they
certainly serve as more powerful feature extractors within existing bi-encoder and cross-encoder frameworks,
their unique generative and instruction-following abilities are forging entirely new architectural paradigms
like generative retrieval and zero-shot listwise reranking. However, the advancement of IR architecture is
not driven solely by the pursuit of superior semantic matching capabilities. The practical deployment of
these systems — ranging from lightweight encoders to massive LLMs — necessitates architectures that can
withstand rigorous efficiency constraints, handle diverse data modalities, and ensure reliability. We examine
these cross-cutting architectural adaptations in the following section.

8 Architectures for Diverse Scenarios and Constraints

The evolution of IR models described in previous sections — from vector space models to LLMs — primarily
traces the pursuit of better semantic matching for English text. However, deploying these models in real-
world environments requires navigating complex scenarios and constraints beyond pure textual relevance.
These include handling diverse data modalities and languages, balancing the inherent tradeoff between
accuracy and latency, and ensuring model reliability through calibration. In this section, we review how IR
architectures are adapted to meet these specific requirements. Across these settings, architectural choices
such as representation granularity and modularity, serve as the primary mechanisms to balance task-specific
constraints with scalable retrieval.

8.1 Architectures for Multimodal and Multilingual Data

8.1.1 Multilingual and Crosslingual Architectures.

Problem Definitions and Retrieval Settings. Although often used interchangeably, Multilingual In-
formation Retrieval (MLIR) and Crosslingual Information Retrieval (CLIR) correspond to distinct retrieval
scenarios. CLIR refers to the setting in which a user issues a query in a source language and retrieves
documents written in a different target language (Oard & Dorr, 1998a; Fluhr et al., 1999). This distinc-
tion has direct architectural implications: CLIR requires explicit cross-language alignment at query time,
whereas MLIR emphasizes building shared or interoperable representations during indexing. The central
architectural challenge in CLIR is bridging the lexical and semantic gap between the query and document
language spaces Goworek et al. (2025). In contrast, MLIR is a broader paradigm in which a system indexes
and searches over document collections containing multiple languages, potentially serving queries in any of
them (Oard & Dorr, 1998b; Oard et al., 1999; Fluhr et al., 1999). Architecturally, CLIR can be viewed as a
special case of MLIR that explicitly requires cross-language alignment at retrieval time.

Early Translation-Centric Architectures. The architectural foundations of crosslingual retrieval date
back to early work on the Vector Space Model (Salton et al., 1975), where cross-language retrieval was
framed as a synonymy problem. Early systems relied on bilingual thesauri to map query terms into a shared
conceptual space prior to retrieval, treating translation as a distinct pre-processing step (Salton, 1969;
1970). Architecturally, these systems isolated linguistic complexity into a separate translation component,
leaving the retrieval engine itself unchanged and monolingual. When high-quality thesauri were available,
such architectures could approach monolingual retrieval performance; however, they were brittle due to
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limited vocabulary coverage, poor handling of polysemy, and an inability to model multi-word expressions
or contextual meaning.

Statistical and Representation-Based Crosslingual Models. The availability of large parallel cor-
pora in the 1990s, such as the Canadian Hansards5, enabled a shift from static dictionaries to statistically
grounded architectures. A major departure from direct translation was introduced by Cross-Language La-
tent Semantic Indexing (CL-LSI), which projected documents and queries from different languages into a
shared, language-independent latent space using Singular Value Decomposition over parallel data Dumais
et al. (1997). In parallel, Statistical Machine Translation (SMT) became a dominant architectural component
in CLIR systems, with retrieval pipelines adopting either query translation or document translation using
probabilistic alignment models such as the IBM Models (Brown et al., 1993). Both CL-LSI and SMT-based
pipelines preserved monolingual retrieval backends, differing primarily in whether cross-lingual alignment
was achieved through latent semantic projection or probabilistic translation. These systems established the
translation-based retrieval paradigm, where the retrieval engine itself remained monolingual and linguistic
complexity was isolated within the translation module.

Multilingual Transformers and End-to-End Retrieval. The introduction of multilingual pre-trained
transformers, including mBERT and XLM-R, marked a fundamental architectural shift away from explicit
translation toward shared semantic representation learning (Devlin et al., 2019; Conneau et al., 2020a; MacA-
vaney et al., 2019a). Trained on large-scale multilingual corpora, these models enabled a single encoder to
represent queries and documents across languages, substantially reducing dependence on parallel data (Con-
neau et al., 2020b; Feng et al., 2022; Shi et al., 2020; Goswami et al., 2021). However, general-purpose
multilingual encoders often underperform in retrieval settings due to insufficient crosslingual alignment in-
duced during pretraining (Zhang et al., 2022; Elmahdy et al., 2024), which has been the focus of subsequent
research works.

Per-Language Modules. To improve the performance of multilingual pre-trained transformers’ on low-
resource languages, a line of works proposed to add language-specific adapters to enable zero-shot or few-shot
crosslingual transfer. Early explorations in NLP community focus on classical NLP tasks such as dependency
parsing and named entity recognition Üstün et al. (2020); Pfeiffer et al. (2020); Artetxe et al. (2020); Pfeiffer
et al. (2021). In the context of IR, Litschko et al. (2022) compared the performance of adapter-based
approaches and Sparse-Finetuning Masks (Ansell et al., 2022) to NMT-based approaches and reported their
efficacy in both performance and training efficiency.

Alignment-Focused and Modern Architectures. Tackling the same challenge of per-language mod-
ules approaches, specialized multilingual retrieval models such as LaREQA, InfoXLM, and LaBSE enforce
tighter alignment between semantically equivalent crosslingual pairs using parallel corpora and contrastive
objectives (Roy et al., 2020; Chi et al., 2021; Feng et al., 2022; Huang et al., 2024b). Notably, these
approaches typically preserve the standard Transformer backbone, focusing architectural innovation on rep-
resentation learning objectives rather than structural redesign. Recent work further refines end-to-end mul-
tilingual retrieval through improved data curation, supervision, and knowledge distillation, continuing the
shift away from multi-stage translation pipelines toward unified models that directly match meaning across
languages (Zhang et al., 2023d; Yang et al., 2024a).

8.1.2 Multimodal Architectures.

From Shallow Fusion to Deep Joint Embeddings. Early multimodal retrieval architectures relied on
modality-specific feature extraction followed by shallow fusion, with text typically represented using bag-
of-words models and images encoded via hand-crafted descriptors such as scale-invariant feature transform
(SIFT) (Lowe, 1999). To enable cross-modal comparison, projection-based methods such as canonical cor-
relation analysis (CCA) (Hotelling, 1992) mapped heterogeneous features into a shared embedding space,
establishing the foundational principle that multimodal retrieval requires learning semantic correspondences
across modalities rather than treating them independently (Rasiwasia et al., 2010; Sharma et al., 2012;

5https://en.wikipedia.org/wiki/Hansard
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Gong et al., 2014; Ranjan et al., 2015). The transition to deep learning replaced manual feature engineering
with end-to-end representation learning, exemplified by early visual–semantic embedding models such as De-
ViSE (Frome et al., 2013; Wang et al., 2016). Sentence encoders incorporating syntactic structure, including
Dependency Tree Recursive Neural Networks (DT-RNNs), further improved alignment by modeling rela-
tional semantics (Socher et al., 2014). Fragment-level architectures extended this paradigm by decomposing
images and sentences into finer-grained units and aligning them with structured max-margin objectives, en-
abling both global and local cross-modal reasoning (Karpathy et al., 2014). Adversarial frameworks such as
ACMR subsequently refined joint embeddings by introducing nonlinear projections and modality-invariant
regularization (Wang et al., 2017). We refer to (Wang et al., 2024b) for a comprehensive survey.

Dual-Encoder Contrastive Models and Controlled Interaction. Large-scale vision–language
datasets enabled a paradigm shift toward bi-encoder architectures trained with contrastive objectives. CLIP
and ALIGN independently encoded images and text and aligned them through contrastive learning on hun-
dreds of millions to billions of image–text pairs, establishing scalable and efficient retrieval backbones (Rad-
ford et al., 2021; Jia et al., 2021; Wei et al., 2025). This architectural separation facilitated efficient indexing
and retrieval and rapidly generalized to additional modalities including video, audio, depth, and sensor
data (Girdhar et al., 2023; Chen et al., 2023b; Kong et al., 2025). Subsequent refinements explored the
efficiency–expressivity tradeoff within this paradigm, most notably through late-interaction architectures
such as ColBERT, which replaced single-vector embeddings with multi-vector representations to enable
token-level matching while preserving much of the efficiency of bi-encoders (Khattab & Zaharia, 2020; Faysse
et al., 2025; Wan et al., 2025). Together, these models established a dominant architectural family centered
on modality-separated encoding with limited but scalable interaction.

Rich Fusion, Hierarchical Interaction, and Unified Architectures. Beyond bi-encoders, multi-
modal retrieval architectures increasingly incorporated sophisticated mechanisms to support complex rea-
soning, particularly in video–text retrieval Chen et al. (2020). Transformer-based and hierarchical models
decomposed alignment into global-to-local or multi-granular stages, combining cross-modal attention with
temporal and semantic structure (Gabeur et al., 2020; Liu et al., 2021; Zhang et al., 2023b; Gorti et al.,
2022). Hybrid designs integrated CLIP-style encoders with cross-modal fusion or temporal alignment mod-
ules, balancing pretrained representations with task-specific interaction (Portillo-Quintero et al., 2021; Fang
et al., 2021). These architectures substantially increase computational cost, often restricting their use to
reranking or small candidate sets

Recent architectures further differentiate between multi-encoder designs that preserve modality-specific en-
coders and single-encoder models employing full cross-attention at higher computational cost (Li et al., 2019;
2022b; Zhai et al., 2023; Kim et al., 2025). At the same time, large multimodal language models (MLLMs)
and multi-agent retrieval frameworks unify retrieval, reasoning, and generation within a single system, while
modality-preserving and any-to-any architectures emphasize flexible interaction without collapsing modality
structure (Liu et al., 2023; Xie et al., 2024a; Liu et al., 2025b; Xu et al., 2025a; Ju et al., 2025).

Remarks. From a structural perspective, multimodal retrieval architectures can be broadly grouped
into: (i) shallow fusion and projection-based models, (ii) deep joint-embedding architectures with global
or fragment-level alignment, (iii) contrastively trained dual-encoder models emphasizing scalability, (iv)
late-interaction hybrids balancing efficiency and expressivity, and (v) cross-attention and MLLM-centric ar-
chitectures enabling deep fusion and unified multimodal reasoning. This progression reflects a recurring
architectural tension between interaction richness and computational efficiency.

8.2 Performance–Efficiency Tradeoffs and the Role of Architectural Choices

Retrieval systems face a fundamental tradeoff between effectiveness (e.g., recall, MRR, nDCG) and resource
efficiency (latency, throughput, memory footprint, and index/update cost). Architectural choices — how
queries and documents are represented, how similarity is computed, and how candidates are staged and
scored — drive where a method falls on this tradeoff curve. Modern neural retrievers demonstrated that
learned dense embeddings can substantially improve effectiveness over classic lexical baselines, but achieving
that gain requires extra compute and index engineering compared to lightweight lexical methods.
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A common high-performance design is the bi-encoder (single-vector) architecture (Sections 6 and 7): queries
and documents are encoded independently into compact vectors and nearest-neighbor search (ANN) retrieves
candidates quickly. This architecture is attractive for strict latency budgets and large corpora because it
enables highly optimized ANN indexes (e.g., HNSW (Malkov & Yashunin, 2018)) that deliver millisecond-
scale queries at large scale; however, single-vector representations can miss fine-grained token-level matches
that matter for some queries.

To improve effectiveness, researchers have pursued richer interaction patterns. Late-interaction or multi-
vector models (e.g., ColBERT and ColPali (Khattab & Zaharia, 2020; Faysse et al., 2025)) keep token-
granular signals and aggregate local token similarities, which raises effectiveness but increases index size
and per-query compute; compression and residual quantization techniques can reduce the space/latency
penalty but do not eliminate it entirely. Similarly, learned sparse/lexical models (e.g., SPLADE (Formal
et al., 2021b;a)) produce high-dimensional but sparse representations that recover lexical signals and inter-
pretability while trading off somewhat higher compute or indexing complexity versus classical BM25. These
architectural variants illustrate the spectrum: more expressive interactions often translates to better quality,
typically at higher memory and latency cost (unless mitigated by compression).

A pragmatic pattern in production is staged (two- or multi-stage) retrieval: a fast, coarse first-stage (BM25
or compact dense ANN) produces a small candidate set, and a more expensive cross-encoder or interaction-
based reranker refines the top results (Huang et al., 2020; Su et al., 2025). This cascade yields most of
the accuracy of expensive models while preserving throughput, but it requires careful budgeting (how many
candidates to pass) and engineering (batching, caching, and efficient GPU/CPU placement). Indexing and
compression (e.g., product quantization, pruning, residual quantization) and hybrid lexical+dense pipelines
are commonly used levers to move along the tradeoff curve when operational constraints change.

Architectural Design Heuristics. Choose a single-vector dual-encoder with efficient ANN when low
latency, low cost, and frequent updates are the priority; use multi-vector or interaction-heavy models when
highest-quality ranking is required and budget allows; and adopt a two-stage pipeline (coarse retrieval +
specialized reranker) to balance both concerns. In large-scale systems, rely on index compression, hybrid
lexical+dense signals, and careful candidate-set sizing as primary knobs to tune the effectiveness-efficiency
operating point.

8.3 Calibration and Confidence Estimation

Calibration in IR aims to align model scores with true probabilities of relevance, such that confidence
faithfully reflects correctness. Unlike traditional deterministic rankers that output single relevance scores,
calibrated IR models explicitly represent uncertainty, often as a distribution over scores whose mean encodes
relevance belief and whose variance captures uncertainty (Cohen et al., 2021). This distinction is archi-
tecturally significant: uncertainty-aware scoring exposes information that is otherwise hidden in standard
ranking pipelines. The importance of calibration is formalized by the Probability Ranking Principle (PRP),
which guarantees optimal ranking only when relevance probabilities are well calibrated and reported with
certainty (Penha & Hauff, 2021). However, modern neural rankers frequently violate these assumptions,
motivating calibration-aware architectural design.

Neural Architectures and Uncertainty Modeling. Calibration properties in IR are strongly depen-
dent on architectural choices, with empirical studies showing mixed calibration behavior across neural model
families (Guo et al., 2017; Minderer et al., 2021). Transformer-based rankers, including BERT variants, are
often poorly calibrated, with calibration quality varying by model scale and design (Dan & Roth, 2021; Li
et al., 2022a). Introducing stochasticity at the architectural level — through stochastic inference or approx-
imate Bayesian formulations — consistently improves calibration compared to deterministic counterparts,
while adding only modest computational overhead (Penha & Hauff, 2021; Cohen et al., 2021). These find-
ings position stochastic and Bayesian architectures as principled mechanisms for embedding uncertainty
directly into relevance estimation.
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Calibration in Multi-Component Retrieval Systems. Calibration challenges are amplified in multi-
stage retrieval architectures, such as the “retrieve-then-rerank” pipeline, where hard top-k retrieval steps
break differentiability and preclude end-to-end calibration. Architectural interventions, including differen-
tiable sampling mechanisms based on Gumbel approximations, restore gradient flow and enable joint calibra-
tion of retriever and reader components (Dhuliawala et al., 2022). Jointly calibrated systems produce more
reliable confidence estimates than calibrating individual modules in isolation, underscoring how calibration
requirements can directly shape architectural design in complex IR pipelines.

Modularity and Calibration-Aware Computation. Beyond end-to-end design, modular architectures
enable calibration to be treated as an attachable component rather than an intrinsic model property. Uni-
versal post-hoc calibrators can be applied across heterogeneous retrieval architectures without modifying
their internals, offering scalable and architecture-agnostic improvements Zhang et al. (2021a). When un-
certainty is explicitly modeled, calibration becomes operational rather than merely diagnostic: confidence
estimates can guide adaptive computation, such as selective reranking or deferred inference for ambiguous
queries, improving both efficiency and robustness (Cohen et al., 2021; Yoon et al., 2025). Recent evidence
further suggests that architectural specialization — e.g., modeling relevance across multiple criteria instead
of a single scalar score — can inherently reduce calibration error, reinforcing calibration as a first-class archi-
tectural consideration in IR system design (Penha & Hauff, 2021; Javdan et al., 2025). To summarize, how
to incorporate calibration into modern retrieval systems is still an open question in the IR community.

8.4 Domain-Specific Applications

General Web Search. General-purpose web search has historically been dominated by the “retrieve-
then-rerank” paradigm, built around inverted indexes and multi-stage cascade ranking to ensure efficiency
at web scale (Shen et al., 2014a; Mitra et al., 2016; Qin et al., 2022; Zhang et al., 2025a). These architectures
decompose retrieval into heterogeneous components for query understanding, candidate generation, ranking,
and re-ranking, each optimized independently (Wang & Na, 2023). As web content diversified, search
engines incorporated additional signals such as anchor text, hyperlinks, and layout-based features to enrich
document representations beyond plain text (Oliveira & Teixeira Lopes, 2023). While highly effective, these
pipelines impose rigid, predefined information flows that limit adaptability. The recent generative retrieval
(Section 7.3) thus explores replacing this modular pipeline with model-centric architectures, where a single
large language model performs indexing, retrieval, and ranking end-to-end.

Domain-Specific and Thematic Retrieval. Domain-specific search engines target focused corpora such
as scientific literature, medicinal chemistry databases, and job postings, leveraging domain knowledge to im-
prove relevance beyond general web search. These applications share architectural challenges arising from
specialized terminology, underspecified expert queries, and narrowly scoped user intents (Wang & Na, 2023;
Kang et al., 2024). Generic pretrained models often fail to capture domain-specific semantics without archi-
tectural support for structured knowledge. Traditional solutions rely on query expansion, lexical analysis,
and large task-specific training sets, but suffer from scalability and complexity limitations (Xu et al., 2025f).
In response, modern architectures increasingly integrate entity- and relation-centric representations to better
align retrieval with domain semantics (Dong et al., 2022a). As a result, domain-specific IR architectures
emphasize knowledge-aware representations and domain adaptation over purely generic pretrained models.

Medical and Legal Information Retrieval. Medical and legal search systems represent high-stakes in-
stantiations of domain-specific retrieval, imposing stricter architectural constraints. Medical IR must operate
over long temporal records that combine unstructured clinical notes with structured diagnoses, laboratory
values, and medications, motivating architectures that integrate information extraction, faceted search, and
structured database querying (Sonntag & Profitlich, 2018). These systems must additionally handle spe-
cialized medical terminology, clinical documentation standards, and stringent privacy requirements. Legal
IR faces analogous challenges due to highly specialized language, complex document structures, and limited
labeled relevance data (Althammer et al., 2020). Despite recent efforts to adapt pretrained language models
such as BERT, neural approaches often fail to consistently outperform strong lexical baselines like BM25,
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reinforcing the continued relevance of hybrid and lexically grounded architectures in legally specialized do-
mains (de Araujo et al., 2014; Althammer et al., 2020).

E-commerce Search. E-commerce search systems operate over structured product catalogs rather than
unstructured web pages, fundamentally shaping their architectures (Wang & Na, 2023; Ren et al., 2024).
The dominant approach employs embedding-based retrieval using the bi-encoder architecture combined with
approximate nearest neighbor search (Nigam et al., 2019; Lin et al., 2024). These systems must address severe
vocabulary mismatch between customer queries and product descriptions, motivating query rewriting and
semantic bridging components, often implemented using large language models trained with contrastive or
instruction-based objectives (Peng et al., 2023b).

Ads Ranking. Ads ranking is another important industrial IR application scenario. Modern advertis-
ing recommendation systems face the fundamental challenge of processing massive candidate sets while
maintaining strict latency requirements and ranking quality. The traditional approach employs multi-stage
cascading architectures that decompose the Ad ranking problem into sequential stages: retrieval, pre-ranking
(or lightweight ranking), ranking (or heavyweight ranking), and auction (Gallagher et al., 2019; Wang et al.,
2023b; Zheng et al., 2024a; Yang et al., 2025c), where the research focus is similar to that of ad hoc retrieval.

In the context of Ads ranking, The XMC formulation we briefed in Section 5 has been shown to improve
ranking quality of tail items/Ads (Jain et al., 2019; Dahiya et al., 2021; Yu et al., 2022a; Dahiya et al., 2023;
Gupta et al., 2024b), which is often critical for revenue maximization. However, it also comes with higher
engineering complexity and often requires retraining of the models when new items/Ads are added.

The recent breakthrough of large language models has catalyzed a paradigm shift toward generative recom-
mendation frameworks that can directly generate personalized item sequences from user interaction histories.
These approaches index items with meaningful IDs using vector quantization algorithms and generate items
from the entire item set for recommendation, conceptualizing online advertising systems as a unified gener-
ative process that eliminates inherent goal conflicts between different pipeline stages (Rajput et al., 2023;
Zheng et al., 2023; Zhai et al., 2024). Given the limited bandwidth, we refer readers to these individual
works for in-depth understanding of this field.

Cross-Application Information Retrieval. Across applications, several architectural trends are reshap-
ing IR system design. Retrieval-augmented generation (RAG) architectures combine dense vector search
with large language models to support search, reasoning, and synthesis over structured and unstructured
data (Asai et al., 2024b). Modular and multi-agent retrieval frameworks further decouple retrieval functions
into interoperable components, enabling dynamic adaptation to application-specific requirements (Chang
et al., 2025; Zhang et al., 2025a). Finally, contextual personalization and the convergence of search and
recommendation architectures reflect a broader shift toward unified representations of users, documents,
and intent (Zamani & Croft, 2018).

Taken together, the diversity of application-driven architectures underscores that modern IR systems are no
longer optimized solely for static relevance ranking, but must increasingly adapt to new roles, constraints,
and integration patterns that give rise to emerging architectural directions and open challenges.

9 Emerging Directions and Challenges

IR systems have become crucial across diverse domains, from retrieval-augmented language modeling (Khan-
delwal et al., 2020; Borgeaud et al., 2022) to applications in agents (Wu et al., 2023a; Wang et al., 2024a),
code generation (Wang et al., 2024c; Zhang et al., 2023a), robotics (Anwar et al., 2024), medicine (Jeong
et al., 2024), and protein research (Jumper et al., 2021), inter alia. These developments present new chal-
lenges for IR research. Drawing from the evolution of IR architectures (Sections 3 to 8), we examine emerging
trends, open problems, and potential research directions. We structure our discussion around three key ar-
eas: advancing the core components of IR models, adapting to the new paradigm of retrieval for AI, and
tackling the pragmatic challenges of real-world deployment.

28



Under review as submission to TMLR

9.1 Advancing the Core Components of IR Models

At the heart of any IR system are the models that extract features and estimate relevance. As IR moves
toward more compute-intensive practices, we identify key areas for improving these fundamental components.

More Powerful and Efficient Foundation Models. Scaling has been a winning recipe for modern
neural networks (Kaplan et al., 2020; Hoffmann et al., 2022; Dehghani et al., 2023; Fang et al., 2024; Shao
et al., 2024, inter alia). However, for IR to leverage this trend sustainably, several challenges in model design
and training must be addressed:

• Data and training efficiency. Current transformer-based IR models demand extensive training
data (Fang et al., 2024), making them impractical for many real-world applications. Developing
architectures that can learn effectively from limited data or in a few-shot/zero-shot setting remains
crucial. Additionally, models should support parallel processing and low-precision training to reduce
costs and accelerate convergence (Nvidia, 2021; Fishman et al., 2024; Liu et al., 2024a).

• Inference optimization. Real-time applications like conversational search (Mo et al., 2024b)
and agent-based systems (Yao et al., 2023) require efficient handling of variable-length queries,
necessitating advanced compression and optimization techniques for both retriever backbones and
index structures (Dettmers & Zettlemoyer, 2023; Kumar et al., 2024; Warner et al., 2024; Bruch
et al., 2024; Xu et al., 2025b, inter alia).

• Better lite foundation models. IR models need to process queries in real time, and using
compact-sized foundation models is often a practical solution. Warner et al. (2024) presented an
interesting study on wide-and-shallow versus deep-and-narrow architecture in the context of training
a “modern” BERT model. Works such as (Günther et al., 2024; Fu et al., 2023; Portes et al., 2023)
studied training efficient BERT model that supports longer context length, while Nussbaum &
Duderstadt (2025) investigated the efficacy of a mixture-of-expert BERT-style encoder model. The
best recipe for lite foundational models for IR applications remains an open question.

• Transformer alternatives. While transformers have dominated recent IR research, their quadratic
complexity in attention computation remains a significant bottleneck. Recent advances in linear
RNNs (Peng et al., 2023a; 2024; Qin et al., 2024c), state space models (Gu & Dao, 2024; Dao & Gu,
2024), and linear attention (Katharopoulos et al., 2020; Yang et al., 2024b) offer alternatives with
theoretical linear complexity. Although preliminary studies (Xu, 2024; Zhang et al., 2024; Xu et al.,
2025e;d) show limited gains compared to optimized transformers, developing efficient alternatives
architectures for transformers could revolutionize large-scale information retrieval.

Ultimately, strong foundation models have proven crucial for IR performance (Neelakantan et al., 2022; Ma
et al., 2024b, inter alia). As IR applications expand, developing foundation models that balance computa-
tional efficiency with robust performance across tasks and modalities emerges as a key research priority.

Flexible and Scalable Relevance Estimators. As discussed in Section 6, cross-encoders provide com-
plex non-linear relevance estimation but are computationally expensive. In contrast, bi-encoder architectures
used in dense and sparse retrieval rely on linear similarity functions (e.g., inner product) to enable fast re-
trieval through nearest neighbor search and inverted indexing. Balancing complex relevance matching and
scalable retrieval remains challenging. ColBERT (Khattab & Zaharia, 2020) addresses this by using docu-
ment representation matrices with MaxSim operations, while recent work (Killingback et al., 2025) explores
Hypernetworks (Ha et al., 2022) to generate query-specific neural networks for relevance estimation. The
design of flexible yet scalable relevance estimators remains an active research direction.

9.2 The Shifting Paradigm: From Search for Humans to Retrieval for AI

The integration of IR systems into other research domains presents new challenges. We discuss key implica-
tions for future IR modeling research as the primary “user” of retrieval shifts from humans to AI models.
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The End “User” of Retrieval. While traditional IR systems focus on providing search results to humans,
retrieval is increasingly used to support ML models, particularly LLMs, in tasks such as generation (Gao
et al., 2023), reasoning (Yao et al., 2024; Islam et al., 2024), tool usage (Schick et al., 2023; Patil et al.,
2024b; Qin et al., 2024a; Patil et al., 2024a) and planning (Song et al., 2023). This shifting paradigm raises
fundamental questions about task formulation, evaluation, and system optimization:

• Current IR research is grounded in human information-seeking behavior (Wilson, 2000; Marchionini,
2006; White & Roth, 2009, inter alia). When the end user becomes another ML model, we must
reconsider how to define and assess relevance. For example, a document might be irrelevant to a
human but contain a key factual nugget that an LLM needs to answer a question. This suggests a
need for flexible, data-efficient models that are adaptable to various downstream tasks.

• Traditional IR metrics, which are designed for human-centric evaluation, may not align with down-
stream task performance in retrieval-augmented systems (Lewis et al., 2020b; Petroni et al., 2021;
Asai et al., 2024b). Future IR models should support end-to-end system optimization rather than
focusing solely on ranking metrics (OpenAI, 2025; Huang et al., 2025).

Retrieval Augmented Generation. Retrieval Augmented Generation (RAG) refers to architectures that
combine an external retrieval module with a generative model, enabling the system to access and condition
on external knowledge before producing output. Early RAG formulations separate retrieval and generation
as distinct components: a dense or sparse retriever extracts relevant passages for a given input, and a
generator (usually an LLM) conditions on those retrieved results to produce text (Lewis et al., 2020b; Ram
et al., 2023b; Mallen et al., 2023; Asai et al., 2024b). This architectural decoupling allows retrieval to be
optimized independently from generation, which is useful for modularity and scalability. A typical RAG
pipeline comprises:

• Corpus embedding and indexing (vector stores or sparse indices) for fast retrieval;

• Retriever model (dense vectors or hybrid techniques) that returns top-k relevant items;

• Fusion mechanism that combines retrieved content with the query (e.g., concatenation or cross-
attention) before passing it to the generator;

• Generator that produces the final answer based on fused context.

This simple architecture improves factual accuracy and reduces hallucination by grounding generation on
external context. However, it also introduces key engineering and modeling considerations:

• Retriever-Generator coupling: The architectural choice of where and how to combine retrieval
results can affect quality and efficiency. Early approaches rely on simple concatenation of text
passages into the generator’s context window (Lewis et al., 2020b; Ram et al., 2023b), which do not
alter the architecture of the generator. More advanced designs use cross-attention layers or rerankers
to improve precision (Izacard & Grave, 2021b; Park et al., 2023; An et al., 2025b).

• Multi-modal and structured retrieval: Recent work explores RAG variants that extend beyond
plain text. For example, GraphRAG and related graph-enhanced frameworks integrate structured
knowledge sources, enabling retrieval of relational paths not easily captured by vector similarity
alone (Edge et al., 2025; Li et al., 2025a). These architectures introduce additional components
like graph encoders and reasoning layers, allowing the system to extract multi-hop or entity-centric
context before generation.

• Adaptive retrieval: Newer RAG pipelines incorporate reasoning capabilities into the generator,
to dynamically decide whether to retrieval or to generate answer (Trivedi et al., 2023; Jiang et al.,
2023b; Asai et al., 2024a).
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These architectural choices have direct implications: strong retrieval can reduce generation errors but may
increase pipeline complexity and latency; graph-aware models can support structured reasoning at the cost of
larger indexes and additional components; adaptive retrieval strategies can improve effectiveness but require
careful task planning and retrieval coordination.

Overall, RAG architectures represent a spectrum from simple retrieval-plus-generation pipelines to complex
multi-component systems that integrate heterogeneous knowledge representations and adaptive retrieval
planning to improve both relevance and reasoning capability. We refer readers to (Gao et al., 2023; Li et al.,
2025e; Mei et al., 2025) for more comprehensive reviews of this topic.

The Rise of Autonomous Search Agents. Complex tasks often require retrieving long-tail knowledge
using lengthy, complex queries (Soudani et al., 2024; Su et al., 2024), demanding retrieval models capable of
instruction following (Weller et al., 2024a; Ravfogel et al., 2024) and reasoning (Su et al., 2024; Shao et al.,
2025; Liang et al., 2025). This has spurred the development of autonomous search agents. Existing attempts
can be divided into two main directions. One line of work focuses on training more capable retrievers
and rerankers. This involves creating new data pipelines to synthesize instruction-following and reasoning-
focused training data (Oh et al., 2024; Weller et al., 2024b; Shao et al., 2025, inter alia) and leveraging strong
backbone language models such as the proprietary GPT-4 family models (OpenAI, 2023) and open-weight
Qwen (Yang et al., 2025a) to imbue the retriever with reasoning capabilities.

Another line of work treats the search/retrieval system as a static tool and focuses on improving a large
reasoning model’s (LRM) ability to use it. In this setup, the LRM decides when, where, and how to conduct a
search, and the results subsequently influence its further reasoning and decision-making (Nakano et al., 2021;
He et al., 2025). This line of work, commonly referred to as Deep Research Agents, represents a paradigm
shift from retrieval as the end goal to retrieval as tools for LLMs. Formally, we use the definition from Huang
et al. (2025): deep research agents refer to AI agents powered by LLMs, integrating dynamic reasoning,
adaptive planning, multi-iteration external data retrieval and tool use, and comprehensive analytical report
generation for informational research tasks.

From the retrieval perspective, the retrieval usage of deep research agents can be broadly categorized into
two types: (1) API-based search engines which interact with structured data sources, such as search engine
APIs or scientific database APIs; (2) browser-based search engines, which simulate human-like interactions
with web pages and enable real-time extraction of dynamic or unstructured content leveraging LLMs’ long-
context, code understanding and multimodality capabilities.

Both formulations have strengths and weaknesses. API-based retrieval, in line with traditional information
retrieval literature, is a fast, efficient, structured and scalable method to enable deep research agents’ access
to external knowledge (Schütze et al., 2008; Singh et al., 2025b). Browser-based retrieval (Nakano et al.,
2021; OpenAI, 2025) has strengths of simulating real-time, interactive information seeking behaviors, in
principle similar to human users’ information seeking, but incur additional latency, token consumption and
introduces extra complexity encountered in the web-browsing environment. Given the current landscape of
retrieval’s integration with deep research agents, an open question stands out as designing a hybrid retrieval
architecture the combine the efficacy of both methods to achieve a better performance-efficiency tradeoff.

From the model training perspective, recent efforts have abstracted away the details of retrieval models,
treating retrieval as static tools and instead focusing on improving the capabilities of LLM-based search
agents. For example, many recent efforts aim to train LRMs to use search tools more effectively via rein-
forcement learning or specialized fine-tuning (Li et al., 2025b; Jin et al., 2025; Li et al., 2025c; Chen et al.,
2025; Wu et al., 2025b;a, inter alia). This approach is central to agentic frameworks that orchestrate tool
use for complex task completion (Wu et al., 2023a; Shinn et al., 2023; Asai et al., 2024a). Despite this
exciting progress, key limitations remain. To enable retrievers’ reasoning capability often requires strong
backbone models (e.g., 7B scale), which can be infeasible for production systems. Even larger models (e.g.,
32B scale) augmented with retrieval and trained via expensive reinforcement learning (Jin et al., 2025; Chen
et al., 2025) still sometimes underperform simpler baselines with query decomposition and chain-of-thought
prompting (Khot et al., 2023; Trivedi et al., 2023). A key open question is how to endow retrievers with
strong reasoning capabilities using lightweight, scalable models. Another challenge lies in the joint opti-
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mization of retrievers and language models within a unified, reasoning-aware framework. Lastly, the human
factors of applying such autonomous search agents remain to be studied. We refer readers to (Singh et al.,
2025a; Liang et al., 2025; Xi et al., 2025; Lin et al., 2025) for more comprehensive reviews of this topic.

9.3 Retrieval beyond Simple Relevance: Instruction-Following and Reasoning-Aware Retrieval

Instruction-Following Retrieval. Instruction-following retrieval extends the standard query-document
formulation by conditioning the retriever on a natural-language instruction. Architecturally, this is typi-
cally implemented by jointly encoding the instruction and the query in a shared bi-encoder, for example
through simple concatenation or lightweight attention layers, so that the query representation adapts to
task intent (Weller et al., 2024a; Oh et al., 2024). Training objectives often use contrastive learning with
instruction-conditioned positives and hard negatives, allowing the model to capture fine-grained task seman-
tics without large cross-encoder computations (Weller et al., 2024b). Instruction-aware retrievers benefit from
curated or synthetic datasets pairing instructions, queries, and relevant passages, which improves robustness
to paraphrasing and query phrasing variations. These design choices preserve scalability while improving
performance on instruction-heavy tasks. Hybrid pipelines may further combine instruction-conditioned re-
trieval with downstream rerankers or fusion mechanisms, ensuring that retrieved evidence aligns with the
specific needs of generation or reasoning tasks (Shao et al., 2024; Weller et al., 2025).

Reasoning-Aware Retrieval. Reasoning-aware retrieval aims to retrieve evidence that supports multi-
step inference and complex reasoning (Su et al., 2024). One line of work uses graph-based architectures,
where the retriever constructs and encodes relational graphs or multi-hop chains of passages. These compo-
nents — graph construction, encoding, path selection, and ranking — allow the retriever to return connected
evidence that reflects reasoning dependencies (Liu et al., 2025a; Edge et al., 2025). While effective for
compositional queries, these approaches increase system complexity, latency, and index size.

A different line of work, exemplified by ReasonIR (Shao et al., 2025) and RankR1 (Zhuang et al., 2025),
improves reasoning capability through data curation and task-aligned training rather than altering the un-
derlying “retrieve-then-rerank” pipeline. By generating multi-step reasoning datasets or instruction-guided
examples, these methods teach standard retrievers and rerankers to prioritize evidence that is useful for down-
stream reasoning, achieving stronger performance without introducing graph-based components. From an
evaluation perspective, reasoning-aware retrieval highlights the need for task-centered metrics that measure
downstream reasoning success, emphasizing the tight connection between architectural or training choices
and reasoning effectiveness.

9.4 Deployment, Robustness, and Trustworthiness

As modern IR systems become more powerful and integrated into high-stakes applications, ensuring their
practical deployability and reliability is paramount.

The Efficiency-Effectiveness Tradeoff at Scale. Traditional retrieval systems face significant chal-
lenges when scaling to web-scale document corpus, and deploying such systems requires a blend of science
and engineering expertise (Dean et al., 2009; Huang et al., 2020; Li et al., 2021). In recent years, retrieval-
augmented generation, conversational search, and agentic systems with memory have been widely adopted
for information access (Guu et al., 2020; Lewis et al., 2020c; Google, 2019; OpenAI, 2024; Google, 2024, inter
alia). These applications often require multiple rounds of retrieval and operate on dynamic corpuses, urg-
ing for efficient and effective retrieval. Mainstream inference optimization frameworks such as vLLM (Kwon
et al., 2023) and SGLang (Zheng et al., 2024b) have provided support for embedding models. From the mod-
eling perspective, an open question is to design and pre-train models explicitly for retrieval purposes (Warner
et al., 2024; Nussbaum et al., 2025; Günther et al., 2024).

Ensuring Robustness in a Noisy and Adversarial World. We discuss a few challenges in IR models’
deployment in noisy environments, especially when used in retrieval-augmented generation systems. We
should note that while these challenges have been studied by prior works, it remains an open question on
how to mitigate these challenges from the perspective of IR modeling and architectures.
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• Robustness to AI-generated content. With the advent of LLMs, the amount of AI-generated
content is also increasing. Dai et al. (2024) show that neural retrievers are biased towards AI-
generated documents. Xu et al. (2024a) show that similar problems persist in text-image retrieval
models. Future IR modeling research should also consider the robustness of models to AI-generated
content.

• Robustness to adversarial attacks. Recent works on ad hoc retrieval and RAG LLM safety
have discussed BERT-based models’ brittleness to adversarial attacks (Wang et al., 2022b), as well
as the threat of corpus poisoning where injected harmful documents lead to unsafe RAG system
outputs (Zhong et al., 2023; Xiang et al., 2024a; Deng et al., 2024, inter alia). This topic is also
relevant to the safety of LLM agents using tools (Deng et al., 2025; Tian et al., 2023; Xiang et al.,
2024b), noting the importance of IR models being robust to adversarial attacks for downstream
applications.

• Robustness to bias and toxicity. As noted by a recent work (An et al., 2025a), documents
that contain biases and toxic materials can potentially jailbreak aligned LLMs. This observation
highlights the importance for IR models to be robust to bias and toxic content.

• Robustness to imperfect retrieval results. Different works have pointed out that existing
RAG systems show performance degradation when the retrieval results contain irrelevant docu-
ments (Yoran et al., 2024; Chang et al., 2025; Yu et al., 2024c, inter alia). Therefore, the RAG
paradigm demands more precise results from the retrieval models.

• Robustness to out-of-distribution input. Given the fact that modern neural retrieval models are
trained with data-driven approaches, perhaps it is not surprising to find their performance may vary
with different linguistic properties of the queries and documents, i.e., out-of-distribution input from
the training data. Several works have reported cross-encoder rerankers’ performance drops on out-
of-domain datasets (Mokrii et al., 2021; Thakur et al., 2021). In the context of retrieval-augmented
generation, Cao et al. (2025) conduct a rigorous benchmarking, and finds that formality, readability,
politeness and grammatical correctness — fundamental aspects of real-world user-LLM queries — can
lead to significant performance variances of retrievers and RAG systems. This observation highlights
the importance of retrieval models’ robustness to OOD input (Gupta et al., 2024a).

We refer readers for more detailed discussions on IR models’ robustness to dedicated surveys (Asai et al.,
2024b; Liu et al., 2025c; Zhou et al., 2024). Addressing these robustness issues at the model architecture
level is a critical and underexplored direction for future research.

10 Conclusions and Closing Thoughts

The journey of information retrieval model architectures, as we have charted, is a story of escalating abstrac-
tion and semantic depth. Beginning with the foundational principles of term-based matching in Boolean,
vector space, and probabilistic models, the field systematically evolved. Learning-to-Rank introduced the
power of machine learning to combine diverse statistical features, but it was the advent of neural networks
that marked the first major leap toward semantic understanding. These neural ranking models, with their
ability to learn representations directly from text, began to bridge the lexical gap that had long constrained
traditional methods. The arrival of pre-trained transformers like BERT then catalyzed a paradigm shift,
providing a powerful, universal foundation for both highly-effective cross-encoder rerankers and efficient bi-
encoder retrievers. Most recently, the ascent of Large Language Models has not only scaled up these existing
architectures but has also introduced entirely new paradigms, such as generative retrieval and zero-shot
listwise reranking, fundamentally reshaping what a retrieval system can do.

Throughout this evolution, a core architectural tension has persisted: the tradeoff between effectiveness and
efficiency. This is the fundamental conflict between deep, fine-grained interaction models (like interaction-
based neural rankers and cross-encoders) that offer high accuracy, and scalable representation-based models
(like vector space models, dense retrievers) that enable fast, pre-computable search over massive collections.
The enduring “retrieve-then-rerank” pipeline is a direct architectural answer to this tradeoff. Innovations
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like multi-vector models (e.g., ColBERT) and hybrid sparse-dense systems represent sophisticated attempts
to find a better balance on this spectrum, pushing the Pareto frontier of what is possible.

Today, we stand at another inflection point. The primary “user” of information retrieval is shifting from
a human at a search bar to an AI model within a larger system. IR is no longer just a tool for finding
documents; it is becoming a critical cognitive component for retrieval-augmented generation, autonomous
agents, and complex reasoning systems. This shift, as outlined in Section 9, forces us to re-evaluate our core
assumptions. Relevance is no longer solely about satisfying human information needs but about providing
the precise factual or contextual information an AI needs to complete a downstream task. This demands
new model architectures that are not only powerful and efficient but also instruction-aware, contextually
flexible, and seamlessly integrable into end-to-end differentiable systems.

Looking ahead, the future of IR model architecture will be defined by its ability to meet these new demands.
The grand challenges lie in building foundation models that are multimodal, multilingual, and computation-
ally sustainable; in designing systems that are robust, trustworthy, and resistant to adversarial manipulation;
and in developing autonomous search agents that can reason, plan, and interact with the world’s information
on our behalf. As IR becomes ever more deeply embedded in the fabric of artificial intelligence, its continued
evolution will be crucial, not just for the future of search, but for the future of intelligent systems themselves.
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