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Abstract

We consider the problem of certified robustness for sequence classification against
edit distance perturbations. Naturally occurring inputs of varying lengths (e.g., sen-
tences in natural language processing tasks) present a challenge to current methods
that employ fixed-rate deletion mechanisms and lead to suboptimal performance.
To this end, we introduce AdaptDel methods with adaptable deletion rates that dy-
namically adjust based on input properties. We extend the theoretical framework of
randomized smoothing to variable-rate deletion, ensuring sound certification with
respect to edit distance. We achieve strong empirical results in natural language
tasks, observing up to 30 orders of magnitude improvement to median cardinality
of the certified region, over state-of-the-art certifications.

1 Introduction

Recent advancements in machine learning have led to significant improvements across many domains,
however the fragility of models to benign noise [1]] and adversarial perturbations [2]] continues to
undermine model reliability. While empirical defenses have shown promising results in enhancing
model robustness [3H8]], they often lack guarantees when facing adaptive adversaries capable of
exploiting the model’s defense strategies. Consequently, certified defenses have emerged as a
promising alternative, providing robustness guarantees against arbitrary attacks within a defined threat
model [9-13]]. Among certified defenses, randomized smoothing [14} [15] has gained widespread
recognition for its scalability to large models and strong robustness guarantees.

Sequence prediction tasks, fundamental to natural language processing, bioinformatics, and time
series analysis, present unique challenges for certified robustness. Established threat models, such as
bounded ¢, perturbations, are fundamentally incompatible with variable-length, discrete sequences.
Moreover, the prevailing additive noise-based smoothing mechanisms are ill-defined for discrete data.
To address these challenges, smoothing mechanisms have been proposed that additively perturb and
permute sequences in embedding space [[L6] or delete sequence elements [17]. The deletion-based
mechanism provides certificates under bounded edit distance perturbations, whereas the perturbation/
permutation-based mechanisms provide certificates in embedding space and typically fail to cover
edit distance perturbations of any magnitude [[18, Appendix F]. This focus on variable-length inputs
is a key differentiator from many certified defenses in computer vision, where fixed-size inputs are
the norm and length-dependent adaptation is less critical.

While deletion-based mechanisms have shown promise, one area where existing mechanisms fall
short is their use of a fixed deletion rate for all inputs. This one-size-fits-all approach disregards
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potential variations in sequence length, complexity, or domain-specific characteristics. For instance,
Huang et al. [18] observed that longer text sequences can typically tolerate higher deletion rates
without compromising predictive accuracy. This insight suggests a fixed deletion rate may lead to
suboptimal trade-offs between robustness and performance, particularly for inputs that could benefit
from more nuanced treatment.

The potential of input-dependent smoothing for discrete sequences remains largely unexplored. Prior
work has considered Gaussian smoothing with input-dependent noise for ¢, certification of real-
valued inputs. Other work has taken an ad hoc approach, where Cohen et al.s certificate for uniform
Gaussian noise is corrected iteratively at test time [19,[20]]. However, this results in a model where
each output depends on the chain of previous outputs, which complicates interpretability, may lead
to error propagation and increases computational complexity and memory requirements. A more
rigorous approach was taken by Sukenik et al. [21]], who derived a certificate for input-dependent
Gaussian noise.

In this paper, we extend input-dependent smoothing to discrete sequences, where a new analysis is
required to obtain sound edit distance certificates. We begin by introducing a general framework for
deletion smoothing with input-dependent deletion rates, which provides bounds on the smoothed
model’s confidence scores under perturbations. Building on these bounds, we propose two methods
that support efficient edit distance certification: AdaptDel, which uses a length-dependent deletion
rate, and AdaptDel+, which further optimizes the deletion rate using input binning and empirical
calibration. Our contributions are summarized as follows:

* We develop a theoretical foundation for variable deletion rates, enabling robust smoothing
mechanisms that adapt to input length.

* We propose AdaptDel and AdaptDel+, two novel adaptive smoothing techniques, which
enable computationally efficient certified robustness while maintaining high accuracies.

* We evaluate our methods on four natural language processing tasks with varying input sizes,
demonstrating that AdaptDel and AdaptDel+ achieve stronger robustness on all datasets at
the same certified accuracy, with little to no degradation in clean accuracy: for example, we
observe up to 30 orders of magnitude improvement to median cardinality of the certified
region.

2 Preliminaries

Task Let X = Q* denote the set of finite-length sequences with tokens drawn from vocabulary
Q. For a sequence € X, let the length be denoted by ||, and let the k-th token be denoted by
x. We consider a sequence classification task, where a model f predicts the class y € ) of input
sequence .

Though our methods apply to generic sequence classification, we focus on text for concreteness,
where text is mapped to a sequence using a tokenizer. For instance, in topic classification, the input
text might be a news article and the possible classes are topics like “politics” and “sports™ [22]].

Edit Distance While it is common to consider £,,-based threat models for the image domain, textual
data is subject to more structured perturbations, such as edit-based perturbations [23H25]. Given two
sequences x, & € X, and a subset of edit operations o C {del, ins, sub}, we define the edit distance
disto(x » @) as the minimum number of edits required to transform x into . We note that edit
distance is not symmetric if o contains del without ins or vice versa, which explains our use of » to
emphasize directionality. Although dist, is not necessarily a distance metric, this is not a problem
for our analysis—our results hold regardless.

Edit Distance Robustness Given a classifier f, we consider the problem of certifying its robustness
under bounded edit distance perturbations. Specifically, we are interested in certifying that the
classifier’s prediction is invariant to any input perturbation of magnitude r in edit distance,

V& € B.(x;0): f(x) = f(&), (1)

where B,.(z;0) := {& € X : disto(x » &) < r} denotes the edit distance ball of radius r centered
on .



As is typical for randomized smoothing, we will develop mechanisms that produce a randomized
radius 7 given input sequence @, such that with high probability 1 — «, this radius is a valid certificate
at . We achieve this certification against general edit distance using a smoothing mechanism based
exclusively on deletions, which we introduce and justify in Section[3]

3 Adaptable Deletion Certification

We now present our framework for deletion-based randomized smoothing with a deletion rate that
adapts depending on the input. Our framework generalizes fixed-rate randomized deletion [[17],
achieving edit distance certificates with superior robustness-accuracy trade-offs over a wider range
of inputs. To begin, we review randomized smoothing in Section [3.1]and describe our variable-rate
deletion mechanism in Section[3.2] Next, in Section[3.3]we obtain bounds on the smoothed classifier’s
scores under input perturbations, where we make no assumptions about the deletion rate’s dependence
on the input. Although the adaptive setting makes the analysis significantly more complex, we obtain
bounds that can be evaluated algorithmically by solving a bounded knapsack problem. Finally, in
Section [3.4] we specialize our framework to length-dependent deletion rates, which allows us to
efficiently compute an edit distance certificate.

3.1 Randomized Smoothing

While various techniques have been developed for certified robustness, randomized smoothing [[14]
is a leading approach owing to its scalability to large models and the size of the robust radii it can
achieve. Given a base classifier f, : X — ), and a smoothing mechanism ¢ : X — D(X) that maps
the input to a distribution of perturbed inputs, randomized smoothing defines a smoothed classifier
f: X = Y such that

f(z) = argmaxpy(z; fv, @)
yey

where p, (x; fu, ¢) is the smoothed class probability p,(z; fi, ¢) = Proe@) [fo(z) = y]. The
effectiveness of randomized smoothing heavily relies on the choice of smoothing mechanism. An ideal
mechanism will achieve large robustness certificates in the desired threat model while minimizing the
performance degradation.

3.2 Variable-Rate Deletion

‘We now present a smoothing mechanism that randomly deletes sequence tokens, where the rate of
deletion varies as a function of the input sequence. Our mechanism generalizes the fixed-rate deletion
mechanism proposed by Huang et al. [[17].

We begin by defining notation to express the mechanism symbolically. Let € = (€1, ...,€5) be a
vector of deletion indicator variables for input text & containing |x| tokens, where ¢; = 1 if the i-th
token is to be retained and ¢; = 0 if it is to be deleted. We slightly abuse notation and let || := )" ¢;
denote the number of tokens retained. The space of possible deletion indicators for input text x is
denoted as £(x) = {0,1}/®I. Our variable-rate deletion mechanism is parametrized by a deletion
probability function ¢): X — [0, 1], that maps an input « to a deletion probability shared across tokens.
The probability mass function for € at input @ takes the form g(e|z) = [, ¥ (x)' =% (1 — ¢(x)),
i.e., each deletion indicator is drawn i.i.d. from a Bernoulli distribution with probability i (x). We
write apply (z, €) to denote the resultant sequence after deleting the tokens referenced in € from input
text . The end result of this process is a random subsequence of x, which we denote by ¢, (x),
emphasizing the dependence on .

Using this notation, we can express the smoothed class probability as a sum over the space of deletion
indicator variables:

Py(; fo, dy) = Z sp(e,x) with sy, (€, ) = Q(€|m)1fb(apply(w7e)):yv 2
ecé(x)
where we define 1 4 as the indicator function that returns 1 if the predicate A is true and 0 otherwise.
We conceal the dependence on ¢, and write p, (x; fi,) where evident.

Remark 1 (On Smoothing vs. Certified Edits). Our smoothing mechanism uses only deletions, while
our edit distance certificate (derived in the following sections) provides robustness against a broader



set of edits, including insertions and substitutions. This distinction is valid because the primary
role of a smoothing mechanism is to ensure that nearby sequences under the certificate’s distance
measure produce statistically similar distributions of perturbed outputs. Since an edit distance ball
contains sequences of varying lengths, the smoothing mechanism must be able to change the input’s
dimensionality. Deletion is a simple and effective operator for this purpose; by randomly removing
tokens, it maps different source sequences to a common, lower-dimensional subsequence. While
a mechanism incorporating insertions or substitutions could also be designed, deletion alone is
sufficient to create the statistical overlap necessary for certification.

3.3 Analysis for Variable-Rate Deletion

We now turn our attention to deriving a certificate for randomized smoothing with variable-rate
deletion, where we make no assumption about the functional form of the deletion rate 1. Our key
results are lower and upper bounds on the smoothed class probability p, (Z; f,) at a neighboring
input &, that depend solely on the smoothed class probability at the original input « and the size of
the longest common subsequence between « and . These bounds can be used to perform brute force
certification, or to derive more certificates under simplifying assumptions on the functional form of
the deletion rate ¢ (discussed in the next section).

The first step in our analysis is to identify a correspondence between deletions for neighboring inputs.
Let

C={(g¢€)€&(x)xE):Vie >¢}.
be a partial order on the space of deletion indicators £(x). We can then write € C €’ if € can be
obtained from € by deleting additional tokens.
This allows us to define a set of deletions building on e€:
E(x,e) ={ c€&(x): eC€},

which represents all possible deletions that extend the base deletion € under the space of deletion
indicators £. We further define the subset of deletions that result in subsequences of a specific length:

EF(x,e*) = {e € E(x, €*) | || = k},

which represents the set of all equivalent edits achieving the same length k& by summing the deletion
indicators.

The following result adapted from [17, Lemma 4] identifies a relationship between terms in Equation[Z]
for a pair of inputs «, € based on their longest common subsequence.

Lemma 2 (17). Let z* be a longest common subsequence [26] of & and x, and let €* € £(x)
and € € E(x) be any deletions such that apply(x, €*) = apply(x, €*) = z*. Then there exists
a bijection m: E(x,€*) — E(x, €*) such that apply(&,€) = apply(x,€) for any € J € and
€ = m(€). Furthermore, we have

where we define 1) = (), 1 = (&) and p(ap, ) = 38:5; for conciseness.

We can decompose the sum over edits in Equation [2|into two parts: a sum over edits in the set
&(x, €*) building on €* and a sum over the remaining edits not in this set. After invoking Lemma
we obtain the following relation between the smoothed class probability at & and x:
CTIEE I SRR EN TS B SN P C)
y\Ls 1/"“3‘ ) fo € fo\6

ecé(x,e*) ec&(x)\E(xe,e%)

From here, we obtain a lower bound on the right-hand side of () by dropping the sum over £(&) \
E(x, €*) and deriving a lower bound on the sum over £(«, €*) that is the solution to a bounded
knapsack problem. Later, we use this pairwise lower bound to obtain an edit distance certificate by
considering the worst case & within a bounded edit distance from x.



Lemma 3. Let x,x € X be a pair of inputs with a longest common subsequence (LCS) z* and let
w = py(x; fv). Define

I — mil’lh:zé;o Bi(lz*‘,w)zu_l_’_w\m\_\zﬂ h, 1/) Z 1/_)7

WAX), 1) B (|2 ) 2t pplel -1 o V<
as a threshold on the number of tokens retained when editing x, where By (n, p) = (z) (1 —p)kpn—F
is the Binomial pmf for n trials with success probability 1 — p. Then there exists a lower bound
Ib(p, x, &, ) < py(Z; fr) such that:

Jlal-1="] (1=1)(H* —1)+1|2*| )
Ib(p, , ) = W( Z Bi(|z*|, )
i=l(H*+1)
* 7 C(N7$|,|Z*|v¢7H*)J
+B (|27, { )
G b = P
where
(1= (H*—=1)+1|z"|
clp, 2], [2*], 9, H) = p = L+ === 37 By(|27], ),
i=L(H*+1)

l =1,y is a binary indicator and |-, := | ; |v is a gridded flooring operation.

Proof sketch. We consider the case where 1) > 1), as the opposite case follows similar logic. Dropping
the last term in Equation 3] we obtain the bound:

Since all factors are non-negative, we focus on lower bounding the sum over £(x, €*), which we
denote by o(Z; fi,). We lower bound o (&; f1,) by replacing the base model fi, by a worst-case
plausible model

o(@ fo) > ——min Y p(t, 1) ss(e, )

ecE(x,e*)

where the set of plausible models satisfying the constraint in Lemma [3]is

7= f’ Z S.f(evw)Zu—1+¢\w\—\z*\:W
Eeg(m,e*)

The minimization problem can now be viewed as a bounded knapsack problem [27]], where each
€ is treated as an item of size i = |e|, with weight w(¢) and value v(4). So for size 7 at most (]Z)

items are available. We choose multiplicities h(i) < (];' ) to minimize Zﬁio v(i)h(i) subject to
ZiI\LO w(i)h(i) > W. Since the unit-value ratio v(i)/w(i) = p(1,))" increases in 4, the greedy
solution orders by ¢ filling up to a critical H* where the cumulative weight would meet W, then takes
as many items of size H* as possible without meeting the weight requirement. This yields a valid,
though not necessarily tight, lower bound. [

By a similar argument, we also obtain an upper bound on p,(Z; fi,) in Lemma @ (deferred to
Appendix [A] due to space constraints) that is the solution to a maximization problem viewed as a
bounded knapsack problem [28]]. The upper bound is not needed when computing a certificate in the
style of Cohen et al. [[14]. However, it is needed to compute certificates in the style of Lecuyer et al.
[15] or for certification of top-k predictions [29].

We note that the bounds in Lemmas [3|and [6]can be used to compute an edit distance certificate by
exhaustive search for arbitrary deletion functions (see Appendix |B) with a constant factor improve-
ment over querying the smoothed classifier directly. By making further assumptions on the deletion
function, we are able to compute certificates more efficiently, as demonstrated in the next section.



3.4 Certification for Length-Dependent Deletion

We now turn our attention to the class of deletion functions () that depend on the input only via
the length |x|. To emphasize this restricted form of dependence on x, we write ¢(x) = ¥ (|z|) in
this section. For 1) of this form, the lower and upper bounds on p, (Z, f,) in Lemmas and@ depend
only on p, («, fp), the sequence lengths |«| and |Z|, and the length of the LCS |z*|. We can therefore
enumerate over all neighboring sequences & within edit distance r of by enumerating over the
number of edits n, of each type in e € o, such that the total number of edits n4el + Nins + Nsub dO€S
not exceed r. The set containing the possible number of edits of each type at radius r is defined as
follows:

C(o,r) = {(ndelv Tins> Nsub) € NU {0} :

Ndel + Nins + Ndel = 7, Ndel < T]—deleo; Nins < Tlins€07 TNsub < Tlsub60}~

We can now establish Algorithm[I]and Theorem 4]
that certify the top prediction of a smoothed clas-
sifier with length-dependent deletion function ¢ Require: base classifier fi,, input sequence x,

Algorithm 1 CERTIFY

using these insights. It follows the standard Monte predicted class y;, length-dependent dele-
Carlo estimation approach from prior work [[14}/15]. tion probability 1), allowed edit operations
Lines [Tl and Rl estimate a lower confidence bound o, significance level o

for the predicted class y; and an upper confidence Ensure: maximum radius that can be certified
bound for the runner up class y, following the ap- 1. ¢° «— 13231 (@3 fo, by, @)

proach of Lecuyer et al. [15] with a designated o 5. #8  max, sy, PU(a; fo, Gy, @)
confidence bound. We use p,(x; fi,, ¢y, ) with 3. g1 — tg o?éldg

superscript Ib or ub to denote the Clopper-Pearson 4. gor all (Ndel, Mins, Nsub) € C(0,7) do
lower and upper confidence bound for the smoothed 5 |Z| < || + Nins — Ngel

class probability p,. This involves a Bonferroni . A b (tlb T ¢)

correction (dividing « by 2) since a one-sided con- L e

fidence bound is estimated for two-classes using the 7 ?2 _1b<_ u13 Ef2 2.2, 9)

same sample drawn from ¢, (x). We circumvent 8 if £}’ < ¢5’ then

the problem of needing to divide the confidence 9 return r
level by the number of classes by estimating the
top and runner-up using an independent set of samples and output radius of 0 if there is disagreement
between the two batches of samples. The for loop in Line [3|then attempts to verify a certificate at
increasing radii, by checking all neighboring inputs parameterized by the number of edits of each
type (Line[d). If a violation is found—where the classifier’s prediction changes due to the runner-up
probability exceeding the probability for y; within the o confidence bound—the previous best radius
is returned. The proof of Theorem{d]is deferred to Appendix [A]

Theorem 4. Given a smoothed classifier f as described in Algorithm 2| with a length-dependent
deletion function 1,

vz € B,(x;0) : f(x) = f(3)

with confidence level at least 1 — o

We now consider various options for specifying a length-dependent deletion function ).

Fixed-Rate Deletion [17] The most basic option is a fixed-rate deletion mechanism,

V() = peel, 4)
for some constant pqe € [0, 1]. For this specialization, we show in Appendix E]that the Lemma
simplifies approximately to the closed form analytical solutions obtained by Huang et al. [18].
Although this mechanism was shown to be effective for malware detection and some natural language
tasks, it is less suited when there is variation in sequence/text lengths. In particular, one can optimize
the mechanism by setting pqe for best average length input performance, but this may be suboptimal
for inputs that deviate from the average length.

Length Dependent Deletion We propose a mechanism, AdaptDel, where the deletion rate v
smoothly increases as a function of the input sequence length. Specifically, we define

() = max (Plb,p (1 - |]:;|>> ; 5)



where pyp, € [0,1] is a minimum deletion rate, p € [ppw, 1] is the asymptotic deletion rate (as
|&| — 00), and k > 0 is a parameter that scales the deletion rate based on the input length. In
subsequent experiments, we set pi, = pael, p = 1 and k = | (1 — p) E{|2|}| so that the deletion
rate in Equation 5| matches the deletion rate in Equation 4] for a test sequence of average length. This
allows for a fair comparison between fixed-rate deletion and AdaptDel. We note that clipping of the
deletion rate below py, is done to avoid a certified radius of zero for short inputs. While this may
sacrifice some accuracy, it enables non-vacuous certificates for shorter sequences. One intuition is
that longer input sequences are inherently more tolerant to noise, allowing for a more significant
deletion rate to be applied without severely impacting model performance.

Optimized Length Dependent Deletion We also consider an enhanced optimization based cer-
tification approach, dubbed AdaptDel+, where we bin the inputs by sizes into n bins and find an
optimal expected length after deletion for each bin using golden section based search (Algorithm 5)).

x
where k() is the empirically optimized expected length for bin g(x). We provide more details and
intuition for Algorithm[5]in the Appendix [C|

In particular, let g(x) denote the index of the bin input & belongs to, then we have ¢(x) == 1 —

4 Experiments

To evaluate the effectiveness of AdaptDel and AdaptDel+, we conduct experiments on a diverse
set of natural language processing tasks. These include five-class sentiment analysis on the Yelp
dataset [22]], spam detection using the SpamAssassin dataset [30,31], sentiment analysis on the IMDB
dataset [32]], and unreliable news detection using the LUN dataset [33| 31]]. The varying input sizes
of these datasets allow for a comprehensive assessment of AdaptDel’s overall effectiveness. We also
analyze performance by dividing inputs into quartiles based on their length. Detailed specifications
of these datasets are provided in Table[I]in Appendix [D} The appendices provide further certified
results (Appendix [E), details on computational efficiency (Appendix [F) and a supplementary analysis
of empirical robustness against common text attacks (Appendix [G),

Model and Parameter Setup We use a pre-trained RoBERTa model [34] as a non-smoothed
baseline (NoSmooth) and as a base model for randomized smoothing. We compare our adaptive
deletion rate policies AdaptDel and AdaptDel+ with a fixed deletion rate baseline, that corresponds
to CERT-ED [18]]. All of these methods support certification of edit distance. We note that CERT-ED
has one parameter pqe, AdaptDel has two parameters py, and k. The parameters for AdaptDel+
are determined via an empirical calibration procedure on the training set (see Appendix [C). We
additionally include RanMASK [[13]] as a baseline that supports a more limited Hamming distance
certificate. It uses a masking mechanism, where the fraction of masked tokens pmask is fixed. For
all smoothed models, we apply the same base ROBERTa model, training procedure, and parameter
settings where possible. During inference, we use 1000 samples for prediction and 4000 samples
for certification to ensure stable and reliable results. We refer the reader to Appendix [D|for further
details, including how AdaptDel+ is calibrated.

Performance Measures We report clean accuracy, the accuracy without any robustness guarantee,
as a measure of model performance. To evaluate robustness, we use the certified radius (CR), which
quantifies the largest perturbation radius under which a prediction is provably robust. A larger
CR indicates greater robustness. Following Huang et al. [18]], we also report log-cardinality of the
certified region (log(CC)), the base-10 logarithm of the number of perturbations enclosed by the CR
under the given threat model. For Hamming distance (RanMASK), this is an exact count, whereas
for edit distance (CERT-ED, AdaptDel, AdaptDel+), it serves as a lower bound, underestimating by
at most one order of magnitude. For incorrectly classified inputs, we assign CR = CC = 0. Finally,
we define certified accuracy as the proportion of inputs that are both correctly classified and possess
log-cardinalities exceeding a given threshold c.

4.1 Robustness-Accuracy Trade-off

Figure [I] presents the certified accuracy as a function of the log-cardinality of the certified region
for all datasets. Each curve depicts how the fraction of test instances that remain correct and
certifiably robust changes as the size of the certificate grows (in log-scale). Combined with results in
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Figure 1: Certified accuracy plotted against a lower bound on the log-cardinality of the certified
region. Each point (¢, a) on a curve indicates that a fraction a of the test inputs were correctly
classified with a certified log-cardinality of at least c. While AdaptDel consistently outperforms the
baselines, AdaptDel+ achieves the highest certified accuracy for larger certified regions.

Table [ in Appendix both AdaptDel and AdaptDel+ maintain competitive clean accuracy (0-2%
drop compared to RanMASKand CERT-ED), while significantly enhancing robustness guarantees
compared to RanMASK and CERT-ED. In particular, they improve the mean certified radius by
an average of over 50%, and the median cardinality of the certified region by up to 30 orders of
magnitude. This substantial expansion highlights the effectiveness of adaptive deletion in certifying
robustness against a significantly broader space of perturbations, making it particularly valuable in
adversarial settings where sequence manipulations are common.

We observe that methods based on AdaptDel and AdaptDel+ generally yield higher certified accu-
racy than CERT-ED and RanMASK for larger cardinalities, reflecting the same trend of increased
robustness reported in our mean CR and median CC metrics. These improvements are especially
pronounced for SpamAssassin and LUN datasets which contain more uniform length variations (see
quantile of lengths in Figure [2]and Figure [d)). Our results show improved performance for longer
sequences that deviate from the average length.

4.2 Robustness Scaling with Input Size

Figure [2| shows how certified accuracy scales with respect to both input size (grouped by quartile)
and the log-cardinality of the certified region. Each panel/facet on the left of the figure corresponds
to a quartile, where the range of input sizes can be read from the quantile function on the right.
For the Yelp dataset (left), results within the first two quarters are slightly mixed with AdaptDel
and AdaptDel+ showing moderate advantage over RanMASK and CERT-ED. This is expected, as
AdaptDel is configured to match the fixed deletion rate of CERT-ED for short sequences, with
its advantages becoming more pronounced as sequence length increases. However, for the fourth
quarter where the length variations is concentrated, both AdaptDel and AdaptDel+ achieve substantial
gains in certified accuracy, indicating that as input size grows, our smoothing techniques can certify
robustness against a broader range of adversarial edits. Meanwhile, for the SpamAssassin dataset
(right), a similar pattern emerges, but the benefits are more pronounced. Additionally, we observe
that AdaptDel+ maintains significantly stronger robustness guarantees across all lengths, showing the
effectiveness of our calibration strategy in enhancing certified accuracy for varying input sizes.

Overall, our approach not only preserves clean accuracy but significantly enhances certified robustness,
particularly for longer sequences. Compared to state-of-the-art methods, we achieve an average
improvement in mean certified radius of over 50% and increase the median certified region cardinality
by up to 30 orders of magnitude. This demonstrates superior scalability and highlights the practical
value of tailoring the smoothing rate to input length, a property that can be critical in adversarial
settings where length variations are common.

5 Related Work

In addition to the works mentioned in the introduction, we now describe approaches closest to ours.
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Figure 2: Certified accuracy as a function of the log-cardinality of the certified region, grouped by
quartile of input size. The subfigure on the right displays the quantile by input size, with the dashed
lines indicating the quartiles corresponding to the certified accuracy plots on the left. Each set of axes
(top to bottom) corresponds to a split of the test set on the length-based quartiles (smallest to largest).
For example, the second plot from top to bottom shows the certified accuracies of examples within
Q1 to Q2. The results demonstrate that the methods scale effectively across varying input sizes, with
higher certified accuracy achieved for larger input sizes and higher log-cardinality regions.

Certification for Edit Perturbations There is a growing body of work aimed at extending certifi-
cation to handle edit-based threat models on structured input spaces. In the natural language domain,
randomized smoothing has been applied to certify robustness against synonym and word substitution
attacks [[11413) |35]]. However, their certificates do not cover insertions or deletions of words. To
address this gap, recent work has studied broader threat models that go beyond substitutions. Zhang
et al. [16] provide certificates against permutations and ¢>-bounded perturbations of sequence ele-
ments in embedding space. Rocamora et al. [36] provide edit distance certificates for convolutional
classifiers with bounded Lipschitz constants. While their approach does not require smoothing, it is
limited to convolutional architectures and yields empirical accuracy and robustness guarantees that
are significantly smaller than those of the randomized smoothing approach considered in this paper.

Beyond sequences, edit distance certification has also been explored for sets and graphs. Liu et al.
[37] apply subsampling-based randomized smoothing to certify point cloud classifiers against a
bounded number of point insertions, deletions, and substitutions. Schuchardt et al. [38]] propose
a general framework for group equivariant tasks that provides edit distance certificates for graph
classifiers [39]].

Input-Dependent Smoothing Most applications of randomized smoothing consider additive noise
mechanisms, where the noise level is independent of the input. While this simplifies the robustness
analysis, it is suboptimal and has been shown to result in disparities in class-wise accuracy [40].
Several works have attempted to address this, particularly for input-dependent Gaussian noise. Wang
et al. 3] divide the input space into several “robust regions”, each with a constant calibrated noise-
level, and use the fixed-noise certificate of Cohen et al. [14] within each region. However, their
approach assumes all test samples are available for calibration and it comes with higher train/test
costs. Eiras et al. [19] and Alfarra et al. [20] also use the fixed-noise certificate as a starting point,
but before issuing a new certificate they apply a correction that depends on all previously issued
certificates. By contrast, Stikenik et al. [21]] obtain a tight certificate for input-dependent Gaussian
noise by generalizing the proof technique of Cohen et al. [14]]. They find that the variability of the
noise scale is limited in practice due to the curse of dimensionality. Lyu et al. [41]] propose a general



framework for input-dependent smoothing mechanisms that can potentially consist of multiple steps.
However, in order to obtain a certificate, the mechanism must satisfy functional differential privacy.

While our approach shares some similarities with the above prior work, it differs fundamentally in
two ways. First, the edit distance certificates we consider include inputs with variable dimensions
(sequence lengths), which is not the case for £, certificates where all inputs have the same dimensions.
This makes deriving a sound certificate for dimension-dependent noise more challenging in our case.
We note that Gaussian smoothing with a dimension-dependent noise scale is covered by the standard
fixed-noise certificate of Cohen et al. [14]. |Cohen et al.| observed that higher dimensional images
can tolerate large noise scales while retaining visual information—we enable such noise scaling for
variable-length sequences while ensuring sound certification. Second, our certificate and mechanism
are qualitatively very different—our deletion mechanism cannot be expressed as additive noise, and
edit distance is arguably more challenging to analyze than /,, distance given it is defined as the
solution to a discrete optimization problem.

6 Conclusion

In this work we propose variable rate deletion for sequence classification—extending randomized
smoothing certification to adapt to inputs of varying length. We develop a theoretical framework
for variable rate deletion, which allows the deletion probability to adapt dynamically based on input
properties. Building on this foundation, we propose AdaptDel and AdaptDel+, mechanisms designed
to enhance robustness certification while maintaining competitive performance. The former uses
a length-dependent deletion rate, whereas the latter further optimizes the deletion rate using input
binning and empirical calibration.

Our results demonstrate that AdaptDel and AdaptDel+ consistently outperform existing state-of-the-
art methods, such as CERT-ED and RanMASK, across diverse NLP tasks with varying input lengths.
Our methods achieve a superior trade-off, offering significant gains in certified robustness while
maintaining competitive clean accuracy. This highlights their effectiveness in real-world scenarios
(e.g. LLMs) where input sequences can vary significantly in length. Our contributions pave the way
for more adaptable and robust approaches to certifying sequence classifiers.

Limitations

Our work focuses on the problem of certified robustness for sequence classification against edit
distance perturbations. While edit distance offers a more appropriate threat model than ¢,,-bounded
attacks, this choice is still a syntactic surrogate for attacks that preserve semantic similarity. And
while our contributions permit length-dependent deletion rates, it is conceivable that more general
input-dependent deletion rates could yield improved certified robustness.
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A Proofs and Additional Results

This appendix provides proofs for the results in Sections [3.3]and [3.4] For the proof of Lemma [2]
we refer the reader Lemma 4 of Huang et al. [17]. We also provide an additional result (Lemma|7)
showing that our certificate for variable rate deletion recovers the certificate of Huang et al. [[17] for
fixed rate deletion, with only a negligible difference.

Before proving Lemma 3] we obtain bounds on the sums that appear in the decomposition of the
smoothed class probability p, (Z; f,) presented in Equation

Lemma 5.
S splex) <1yl ©)
ecE(x)\E(x,€e*)
> splem) > py(m;fp) — 14 pl=7= (7
ec&(x,e*)

Proof. First, observe that

Z sf,(e,) =1— Z sy, (€ @)

ecE(x)\E(x,e%) ec&(xw,e*)
<1- ) qlem)
ecE(x,e*)
D
ec&(x,e*)
<1 glel-l="1,

Then it is straightforward to decompose the smoothed class probability as

py(x; fo) = Z sf,(€,@) + Z sr, (€ x)

ccé(w,er) €€ (@)\E(,e¥)

and obtain the lower bound

Z sp,(€,@) = py(@; fo) — Z sy, (€, )

e€E(x,e*) ecE(@)\E(x,e%)
> py(a; fo) — 1+ y@I71=70
O

Our proof strategy for Lemma [3] restated below, is inspired by the analysis of Lee et al. [42]]
for continuous-space smoothing. However, several key adaptations are necessary for the discrete,
variable-length setting. First, their analysis relies on partitioning the space of perturbed inputs and
ordering the parts by increasing likelihood. This is not possible in our case as this likelihood is not
tractable due to the fact that multiple paths can lead to the same perturbed input. Second, discrete
space requires careful treatment of rounding to ensure validity of the bound.

Lemma 3. Let x, & € X be a pair of inputs with a longest common subsequence (LCS) z* and let
1= py(x; fo). Define

H* _ {minhzzéz=0 Bi(lz*‘7,¢)21L_1+w\w\*\z*l h7 1/) Z 1/)7

maXh:ZLi*h‘ Bi(|2*|,0) > 14l =l = 12" hy <,

as a threshold on the number of tokens retained when editing x, where By, (n,p) = (Z) (1—p)kpn—F
is the Binomial pmf for n trials with success probability 1 — p. Then there exists a lower bound
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Ib(p, z, &, ) < py(&; fi,) such that:

Jlel-1=*) (1—1)(H*—1)+1|2"| )

Ib(p,z, 2,9) = W( Z Bi(|z"], %)
i=L(H*+1)
*| A7 C(M>w|7|z*|7w7H*)J
+B |2 |, { )
H (‘ | QZ}) BH*(|Z*|,¢) (lél‘)_l
where

(1= (H*—=1)+1|z"|

clps @], 2|0, HY) = p— 1= = N B2, 0),

i=l(H*+1)

l =1,y is a binary indicator and |-|,, .= | ; |v is a gridded flooring operation.

Proof. We will prove the case where 1) > 1), the proof for the opposite case follows a similar logic.
By dropping the second sum in Equation[3] we obtain the following lower bound:

_. '(Z}lj‘ 7\ €]
py(mvfb) 2 W Z p(w7w) Sfb(E,EE).
ec&(x,e*)
o (Z;fv)
. slzl . . . . _
Since % is a non-negative constant, we focus on lower bounding the summation term o (; fi,) and

reinstate the constant later.

Let F = {f | py(z; f) = p} be the set of base classifiers that are consistent with the observed value
of the smoothed class probability u = p, (x; f,). We seek a lower bound on o (Z, fi,) that does not
depend on the functional form of the base classifier, so we consider the worst case in the set F:

o(® fo) >min Y p(h, ) sp(e, ). ®)
Je ecé(xw,e*)

We can rewrite the sum over £(x, €*) as a double sum over the number of retained elements i,
followed by a sum over edits in the set &;(x, €*) = {€ € E(x, €*) | |€| = i}. Hence we have

|z

RHS of @) = ;1161;1212(@0, DY sile,x)

i=0 €€&;(m,e*)
Eall
= minz Q/J‘z lw_i(l — ) Z Lf(apply(a.e)=y> ©)
fer i=0 ec&;(x,e*)

where the second equality follows from the definitions of s 7(e, z) and p(3, ) in Lemma and the
i.i.d. Bernoulli specification of ¢g(e|x).

Let [n] = {0, ..., n} denote the set of non-negative integers up to n. We can rewrite the minimization
problem in Equation [9]as a minimization problem over the set of functions H from [N] to [M] where

N = |z*[and M = U,y (™). Specifically, we have

%

N
min ;U(z)h(z)
s.t. h(i) = Z 1f(apply(a,e))=y and ferF (10)

ec&;(xz,e*)

where we have defined v(i) := 9N ~%(1 — )*. Next, we continue to lower bound the solution to
the above problem by relaxing the constraints. First, we replace F by a superset (invoking Lemma 5):

N
Fl=qFf ‘ Zw(z) Z L (apply(@en=y =W ¢
i=0

ec&;(x,e*)
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where we have defined w(i) == (1 — )"y =" and W := p — 1 + !®I=N_ The new constraint on h
(replacing Equation [I0) is then

h(i) = Z 1 (apply(z,e))=y and Z y>W and feX — ).
ec&;(x,e*)

Second, we relax the constraint further, by allowing h(¢) to be any integer in the set [(];7 ).

The resulting relaxed minimization problem is a bounded knapsack problem:

N

min ;v(i)h(i) (11)
N

st. Y w(i)h(i)>W and h(i)g(jj). (12)
=0

Noting that the value per unit weight v (i) /w(i) = p(1), 1) is increasing in i for ¢» > v, we propose
the following greedy “solution”, which slightly violates the constraint:

(), i< B
B (i) = LW_ %ﬁ;@‘“‘ﬂj, i=n
0, otherwise,

where H* = minH:Zfio (Nw(i)=w H.

We now show that 1* yields a valid lower bound on Equation First, observe that
N

> w(i)h* (i) < W, (13)
i=0
which means the constraint in Equation [T2]is not necessarily satisfied by h*. Now suppose there
exists a solution i’ to Equation [11] that yields a tighter lower bound than h*. Define A(i) =
w(i)(h*(i) — h'(4)) and observe that A(i) > 0 when i < H* and A(i) < 0 when i > H*. By
combining Equation(for h*) and Equation (for h'), we have Zﬁvzo A(i) < 0. Together, these
results imply

prw i) <p(eh, )" ZA

The first inequality holds because we are increasing the magnitude of posmve terms (1 < H*) and
decreasing the magnitude of negative terms (i > H*), noting that p(¢, )" is increasing in ¢. This
then implies (by expanding the definition of A(7)):

N N o N o N
> vk (i) = p(w, ) w(i)h* (i) <Y p(e, ) w(i)h (i) =Y v(i)h (i),
=0 =0 =0 1=0

which is a contradiction, thereby confirming that 4* yields a valid lower bound.

Substituting h* in the objective yields the following lower bound:

N
o(®; fo) > Y v(i)h* (i)
1=0
_ w ‘z*‘ ! . * 7
_ (w) { > B
N VR R D Sy H(E R
+BH*(Z 7¢)\‘ BH*(Z*|,1/1) J(}z;l)l}
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Finally, we multiple both sides of the above inequality by i:“‘: to obtain the desired lower bound on
Py (@ fo ) .
O

We use the same proof strategy to obtain an upper bound on the smoothed probability below. The
upper bound can be used to derive a robustness certificate for in the style of Lecuyer et al. [15].

Lemma 6. Let x, & € X be a pair of inputs with a longest common subsequence (LCS) z* and
11 = py(@; fi). Define

7 — minH:Za Bi(|z*|,0)>n H7 ¢ S 1?7
MAX 1281 g (24 ,46)> H7 Y >,

as a threshold on the number of tokens retained when editing x, where By, (n,p) = (Z) (1—p)kpn—F
is the Binomial pmf for n trials with with success probability 1 — p. Then there exists an upper bound
ub(p, ¢, &, ) > py(Z; fv) such that:

77Z]|@|,|z* (1-g)(H"=1)+g|z"| ~
i=g(H*+1)
| T C(H’|z*|7¢,H*)—‘ & —|2*|
+ By« (|27, 2 +1—®=I= 0
w10 [ S ) 710
where
(1-g)(H"~1)+glz"|
C(M7|Z*|7¢aH*):M— Z Bj(|Z*|ﬂ/}),

i=g(H*+1)

g = 1, is a binary indicator and [-], := [ |v is a gridded ceiling operation.

Proof. We will prove the case where 1) < 1. By combining Equations [3| and E], we obtain the
following upper bound:

|=| o
|] Z p(¥, 1/}) Sfb(e x)+ (1_w\m\—\z \).

ec&(x,e*)

<

py(@; fr) <

@

o (®; fv)

I:and

We focus on upper bounding the summation term o (&; f},) and reinstate the constant factor ol

term in parentheses later.

Let F = {f | py(z; f) = u} be the set of base classifiers that are consistent with the observed value
of the smoothed class probability ;& = p, (x; fi,). We seek an upper bound on o (Z, f1,) that does not
depend on the functional form of the base classifier, so we consider the worst case in the set F:

o(®; fo) < max > p(,9) s (e, @). (14)

ecE(x,e*)

Rewriting the sum over &(z, e*ias a double sum over the number of retained elements ¢ and edits in
3)

Ei(x, €*) (see proof of Lemma [3)), we find:
z*|
RHS of (T4) = mapr(% )’ Z sp(e )
fer =0 ec&;(x,e*)
|z
a r;lea}-{z PP — )’ Z L f(apply (@) =y- (15)
ec&;(x,er)
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Let [n] = {0, ..., n} denote the set of non-negative integers up to n. We can rewrite the maximization
problem in Equation [15|as a maximization problem over the set of functions H from [N] to [M]

where N = |z*[ and M = {J;¢ (J:]) Specifically, we have

N
h
max ;v(z) (4)
StRD = Y Lfapply@ey=y ad [EF, (16)

ec&i(x,e)

where we have defined v (i) := N1 ~%(1 — )’. Next, we continue to lower bound the solution to
the above problem by relaxing the constraints. First, we replace F by a superset:

F =<7F ‘ Z Lf(apply(@,e))=y = H (>
665 ( €*)

where we have defined w(i) := (1 — )%™ ~%. The new constraint on h (replacing Equation is
then

h(i) = Z 1 (apply(@,e))=y and Zw )<up and feXx — .
eci(xz,er)
Second, we relax the constraint further, by allowing h(¢) to be any integer in the set [(Zj ).

The resulting relaxed maximization problem is a bounded knapsack problem:

N

max ;v(i)h(n (17)
N

st Y w(ih(i) < p and h(i)g(lj). (18)
=0

Noting that the value per unit weight v(4) /w(i) = p(1, 1)) is decreasing in i for ) < 1, we propose
the following greedy “solution”, which slightly violates the constraint:

(), i<t

.y = (M@ | e

i) = | ()i
0, otherwise,

where H* = minH;fozo (Nwi)>p H.

We now show that ~A* yields a valid upper bound on Equation First, observe that
N

> w(i)h* (i) > p, (19)

i=0
which means the constraint in Equation [18]is not necessarily satisfied by h*. Now suppose there
exists a solution i’ to Equation that yields a tighter upper bound than h*. Define A(i) =
w(i)(h*(i) — h'(4)) and observe that A(é) > 0 when ¢ < H* and A(i) < 0 when i > H*. B
combining Equation(for h*) and Equation (for h'), we have Ziv:o A(7) > 0. Together, these
results imply

pr i) >p(, )" ZA

The first inequality holds because we are decreasing the magnltude of positive terms (7 < H*) and
increasing the magnitude of negative terms (i > H™*), noting that p(v, 1) is decreasing in i. This
then implies (by expanding the definition of A(3)):

N N

g pr >pr W (i) = vl (i),

=0 1=0 1=0
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which is a contradiction, thereby confirming that A* yields a valid upper bound.

Substituting h* in the objective yields the following upper bound:

N
o(®; o) < Y _v(i)h*(i)
i=0
* H*—1 H*—1 *
ap)'z | . Sl 2= Billz*]¥)
=\ = Bi Z*a¢ +BH* Z*7¢ .
¢ S Bl )+ B (=) |
i (%)

Finally, we multiple both sides of the above inequality by i:i: to obtain the desired upper bound on
py(:a fb) O

Theorem 4. Given a smoothed classifier f as described in Algorithm 2| with a length-dependent
deletion function 1,

V& € B.(x;0): f(x) = f(&)

with confidence level at least 1 — o

Proof. By the definition of the smoothed classifier f, the prediction is determined by the probability
distribution induced by ¢y,(,). Let ¢ and 4 be the Clopper-Pearson lower and upper confidence
bounds, respectively, for the probabilities of the top class y; and the runner-up class y2. By Algo-
rithm[T] these are estimated such that, with confidence at least 1 — a,

Py (5 fo, Gyay) 2 17 and 15 > py, (5 fo, Gu(a))-
For any perturbation & € B,.(x;0), Algorithm and Lemma ensures that
b
> >ty >t
By transitivity, it follows that

Py, (%5 fo, yp(@)) > Py (T5 for D))

with probability at least 1 — «. Hence, the predicted class remains y; for all perturbations within
B,.(x;0), completing the proof. O

Lemma 7. By setting the deletion probability as a fixed constant, i.e., () = pgel for all x, Lemma
recovers Theorem 5 of Huang et al. [17] with only a negligible difference.

Specifically, let x,& € X be a pair of inputs with longest common subsequence (LCS) z* and
i = py(x, fv). Under this assumption, the probability p, (&; fv,) satisfies the lower bound

i L s * 2t |—H*
py(®; fo) > ply ! (# —1tpg = = (1= pea) Py ) '

Here, H* represents the minimal number of retained tokens required to satisfy

H*
ZBz‘(|z*|,pdel) >u—1 +pljf’:l|—|z )
i=0

where By (n,p) := () (1 — p)*p"~" is the Binomial pmf for n trials with with success probability
1—p.
The difference from Theorem 5 of Huang et al. [I7] is solely due to the term (1 —

pde|)H*po||_|w|+‘z*l_H*, which is typically less than 1077, negligible compared to the other terms.
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Proof. As ¢ = 1) = Pgel,

Jlal-la*] (A=D1t i
py(w f)f w|w| |z*|{ Z Bz(|Z*|7¢)
i=L(H*—1)
4 By (|21, 9) p— Ll T I By (124, v)
(1271 Bur- (=1, 9) o
-
- H*—1
:pdtl_m{ Z Bi(|z*], paer)
1=0
|| —|2*] H*—1 *
* =1+ pyg =i Bj(|z*|, paer)
+BH*(Z 7pde|)\‘ BH*(Z*‘7pdel) (|z*\)—1

\m\ m{ Z |z |, Pael)

=0

x| —|z* H*—1 -1
Z*‘ Dd I) p—1 +plie|| = Zi:() Bj("Z*‘vpdel) o |Z*|
e B (|2*], pder) H*

N I
—p(‘fj w{’u 1+p|w\ |z I} — (1= paen)® pogll ||+|2"]|

The first equality holds because I evaluates to 0. The last inequality holds because |a] > a — 1,
which applies to the gridded flooring operation.

+BH*(

This result closely matches Theorem 5 of Huang et al. [17], differing only by the term (1 —
Pael ) plﬁl @l +1="1=H" " which is typically less than 10~7, negligible compared to the other
terms. O

B Certification for Arbitrary Deletion Probability Functions

In Lemmas [3] and [} we obtained bounds on the smoothed class probabilities at a neighboring
input & to some query input . These bounds can be used directly for edit distance certification,
by exhaustively enumerating over all neighboring inputs & that are within edit distance r from x.
Algorithm 2] details how this can be done. We note that this algorithm provides a significant advantage
over naively certifying the smoothed model. A naive approach would require running a full Monte
Carlo estimation for every neighbor @, whereas our algorithm performs the costly estimation only
once for the original input x. The certification check for each neighbor then relies on the analytical
bounds, which are computationally inexpensive.

Algorithm 2 CERTIFYGENERAL

Require: fi,: base classifier, x: input sequence, y;: predicted class, 1/: length-dependent deletion
probability function, o: allowed edit operations, a: significance level
Ensure: r: maximum radius that can be certified
1: tllb %ﬁgl(m;fb7¢wva)
2: 50 < maxyzy, ﬁ;b(sc; fos Gy, @)
3: for r = 0 to co do
4: forallz € B, (x;0) do
5 <« bt x, 2, )
6: £ < ub(t8, =, &, )
7: if £ < #5° then
8 return r
9 end if
0: end for
1: end for
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C AdaptDel+ Details and Intuition

In this section, we provide details and intuition behind the optimization process for AdaptDel+. The
core idea is to calibrate the deletion mechanism by finding optimal expected lengths for each input
bin, ensuring that certified robustness is maximized while maintaining a minimum certified accuracy
threshold.

Create Equal Width Bins Algorithm [3|is used to create bins based on the lengths of the input
sequences, ensuring that each bin contains at least a minimum number of samples. The algorithm first
computes the lengths of all sequences in the dataset and trims extreme outliers based on a specified
percentage. It then iteratively reduces the target number of bins, recalculating a new set of equally
spaced boundaries in each step, until all bins contain at least the minimum number of samples. The
result is a set of bin boundaries that divides the dataset into equal-width intervals, tailored to the data
distribution while avoiding sparsity issues. We use these crude bin boundaries with some manual
calibration. We report the exact bin boundaries used in Appendix

Algorithm 3 CREATEDYNAMICEQUALWIDTHBINS

Require: Dataset D, Threshold C, Outlier percentage « (default: 1%)
Ensure: Bin boundaries B
1: Compute input lengths for all samples in D
2: Trim lengths outside o and 100 — « percentiles
3: Initialize k < estimated number of bins, By < equally spaced boundaries
4: while True do
5:  Assign data to bins defined by By
6.
7
8

if all bins have at least C' samples then
Break
¢ endif
90 k< k-1
10:  Update B < equally spaced boundaries for k bins
11:  if £ < 1 then
12: Raise error: Cannot satisfy threshold
13:  endif
14: end while
15: Return By,

Optimizing Certified Radius Algorithm [ describes the process of determining the maximum
certified radius () that meets a specific certified accuracy threshold (7). This is achieved by iteratively
calculating the certified accuracy for each radius using the dataset and checking whether it satisfies the
threshold. The objective is to return the largest  and the corresponding certified accuracy (CertAcc,.)
for that level of robustness. However, due to the discrete nature of the objective, the optimization
surface is non-smooth, making direct optimization challenging. To address this, we also calculate the
certified accuracy, which provides a smoother metric helpful for hyperparameter tuning.

Algorithm 4 MAXCERTRADIUS

Require: fi,: Base model, k: Expected lengths after deletion, ID: Dataset, 7: Certified accuracy
threshold, o: allowed edit operations
Ensure: Maximum certified radius r, Certified accuracy CertAcc,
1: Define deletion function ¢ (x) =1 — %
: fCR(m) = CERTIFY(fba Z, 1/17 O)
: forr =0toocodo

w N

4:  CertAcc, + Z(m,y)em —1f(m):yi1§fR(m)zr
5:  if CertAcc, < 7 then

6: return r — 1, CertAcc,_

7:  endif

8: end for
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Finding Optimal Expected Lengths The AdaptDel+ mechanism employs Algorithm [5]to optimize
the expected lengths for each input bin. The input data is divided into bins based on sequence lengths,
and for each bin, we identify the expected length after deletion that maximizes the certified radius and
accuracy while adhering to the minimum accuracy threshold. The relationship between the expected
length and the optimization objectives is approximately unimodal, allowing the use of efficient search
methods.

We adopt golden section search to minimize the number of queries required for optimization. This
choice is particularly advantageous as computing certified radii and accuracies involves expensive
stochastic sampling from randomized smoothed models. Golden section search strikes a balance be-
tween accuracy and computational efficiency, making it well-suited for this problem. The asymptotic
complexity of this calibration process is linear in both the number of bins, n, and the sample size per
bin, m. This results from the main loop iterating through each of the n bins, while the optimization
search performed within each bin has a cost that is linear in the m samples being evaluated.

Algorithm 5 OPTIMIZEEXPECTEDLENGTH

Require: fi,: base model, D: training dataset, {go, g1, - - ., gn }* bin intervals, 7: certified accuracy
threshold, tol: search tolerance, m: sample size per bin, o: allowed edit operations
Ensure: Optimized expected lengths K
1: Initialize K « [0, ..., 0]
2: forie{1,...,n—1} do
3:  Sample m data points from the interval
D, « { | la| € [g:r gis1)}
4 low < 0.01 - g;4+1, high <~ 0.3 - g;
5 while high — low > tol do
6: my < low + (3 — v/5)/2 - (high — low)
7 my < high — (3 —+/5)/2 - (high — low)
8: r1, CA; + MAXCERTRADIUS( f,,m1,D, 7, 0)
9: r9, CAg < MAXCERTRADIUS(fp,, m2, D, 7, 0)

10: if (ry > ro) or (r; = ro and CA; > CA») then
11: high < mao

12: else

13: low < mq

14: end if

15:  end while

16:  KJi] < (high + low)/2

17: end for

18: return Optimized expected lengths K

Stochastic Challenges Despite its efficiency, the optimization process can be sensitive to the
stochastic nature of randomized smoothing models and potential biases in binned data. This occasion-
ally results in optimized expected lengths (k) that are not strictly increasing with bin lengths, which
can slightly affect the smoothness of the calibration. To mitigate this, additional regularization or
smoothing steps may be considered during the optimization process.

The resulting optimized expected lengths (K) are then used to parameterize the deletion function

(), as defined in Section 3}
Ky(a)
||

(x) =1~

where g(x) is the index of the bin corresponding to the input @. This adaptive approach ensures
robust performance across varying input lengths and scenarios.

D Evaluation Setup

We describe the detailed evaluation setup in this section.
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Number of Instances

Dataset Avg. Words Train Valid Test™
Yelp 134.1 585000 65000 10000
SpamAssassin 228.2 2152 239 2378
IMDB 2312 22500 2500 25000
LUN 269.9 13416 1490 6454

Table 1: Summary of datasets. “Avg. Words” denotes the average number of words per instance in
the dataset.

*The full test set is used for evaluation for all datasets except for Yelp, where we sample 10 000
instances from the available 50 000 instances.

D.1 Dataset Specification

We collect all data from HuggingFace Datasetsﬂ and the AdvBench repositoryE] [I311].

D.2 Parameter Settings

Parameter Values

Base model Model AutoModelForSequenceClassification("roberta-base")
Tokenizer AutoTokenizer ("roberta-base")

Scheduler Python command transformers.get_linear_schedule_with_warmup
Warmup epochs 10
Python class torch.optim.AdamW

Optimizer Learning rate 2.0E-5

P Weight decay 1.0E-6
Gradient clipping  clip_grad_norm_(model.parameters(), 1.0)
Batch size 32
Trainin. Max. epoch 200
g Early stopping No improvement in validation loss after 25 epochs

Table 2: Parameter settings for ROBERTa, the optimizer and training procedure. Parameter settings
are consistent across all models (NoSmooth, CERT-ED, RanMASK, AdaptDel, AdaptDel+) except
where specified.

For all randomized smoothing mechanisms, perturbations are applied at the word level. Specifically,
an input text is first split into a sequence of words using white-space tokenization. The smoothing
mechanism then deletes words from this sequence. The resulting sequence of words is joined back
into a string, which is then passed to the base RoOBERTa model’s tokenizer for processing into subword
tokens. We fine-tune the base ROBERTa model on these perturbed inputs using the respective training
split for each dataset. The default parameter configurations for our experiments are provided in
Table 2] We avoid individually calibrating the optimizer or training schedule for each model, as the
default settings demonstrate robust performance across all datasets. To approximate the smoothed
models (RanMASK, CERT-ED, AdaptDel, AdaptDel+), we rely on Monte Carlo sampling with 1000
perturbed inputs for prediction and 4000 for certification, using a significance level of 0.05.

D.3 AdaptDel+ Setup

To train and calibrate AdaptDel+, we use the parameter settings provided in Table 3] Since the
optimized expected lengths are not available during training, we use a random deletion probability
ranging from 70% to 99%. Empirically, this strategy proved effective in producing a stable smoothed
classifier. The certified accuracy threshold (7) is set to 40% for the Yelp dataset and 75% for the

"https://github.com/huggingface/datasets
https://github.com/thunlp/Advbench

23


https://github.com/huggingface/datasets
https://github.com/thunlp/Advbench

Dataset

Parameter

Values

Yelp

Bin boundaries B

[0, 28, 82, 135, 189, 243, 296, 350, 404,
457,511, 565,619, 672, 726, 780, 887, 0]

Threshold T 0.40
Sample size per bin 200
Bin boundaries B [0,72,133,194, 256, 318, 379, 440, 502,
IMDB 564, 625, 686, 748, 810, 871, 932, o]
Threshold 7 0.75
Sample size per bin 200
Bin boundaries B [0,137,230, 324, <]
SpamAssassin ~ Threshold 7 0.75
Sample size per bin 50
Bin boundaries B [0, 85,150, 216, 282, 347, o]
LUN Threshold 7 0.75
Sample size per bin 200

Table 3: Parameters used in optimizing AdaptDel+.

IMDB, SpamAssassin, and LUN datasets. Bins are created using the entire training set (excluding
validation samples), and manual deletion of boundaries are made if the number of bins is excessive.
For optimizing the expected lengths, we use Monte Carlo sampling with a prediction size of 32 and a
certification size of 256. The specific number of samples per bin used for optimization is outlined in
Table 3] Finally, we do not retrain the base model after determining the optimal deletion rates.

E Additional Experimental Results

We provide additional experimental results and details in this section. We first present the values of
Y(x) and ky(g) for AdaptDel and AdaptDel+ in Appendix We then provide additional certified
accuracy results, the quantile certified accuracy results for the IMDB and LUN datasets, and certified
accuracy as a function of the certified radius for all datasets in Appendix[E.2 We also include an
ablation study on the pges values for AdaptDel and AdaptDel+ in Appendix [E.3| Finally, we conclude
with a discussion on the computation complexity and cost of our methods in Appendix

E.1 Parameters for AdaptDel and AdaptDel+

We present the values of ¢(x) and k5 for AdaptDel and AdaptDel+ in Figure 3| Unlike Adapt-
Del, AdaptDel+ does not enforce a strictly monotonically increasing (). Instead, AdaptDel+
dynamically adjusts 1(x) according to the characteristics of the dataset. Future work could further
investigate richer classes of ¢ (), potentially including regularization methods. Our framework is
specifically designed to allow such flexibility.

E.2 Other Certified Accuracy Results

As illustrated in Table ] both AdaptDel and AdaptDel+ maintain competitive clean accuracy while
significantly enhancing robustness guarantees compared to RanMASK and CERT-ED. In particular,
they improved the mean certified radius by an average of over 50%, and the median cardinality
of the certified region by up to 30 orders of magnitude. This substantial expansion highlights the
effectiveness of adaptive deletion in certifying robustness against a significantly broader space of
perturbations, making it particularly valuable in adversarial settings where sequence manipulations
are common.

We report standard deviation (normalised as standard error) in Table [4] but note that it does not
directly imply statistical significance due to input length being a key variable. Instead, we report
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Figure 3: Plots of the deletion rate () for AdaptDel and AdaptDel+ and the retention length k)
for AdaptDel+. The top left plot shows the deletion rates (x) for AdaptDel as a function of input
length. The top right plot shows the deletion rates ¢)(x) for AdaptDel+ as a function of input length.
The bottom left plot shows the retention rates k() for AdaptDel+ as a function of input length. The
plots demonstrate that AdaptDel and AdaptDel+ adaptively adjust their deletion rates based on the
input length.
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Dataset Model Clean Acc. Mean CR  Wass. Dist.  Agg. log(CC)

NoSmooth 69.25 — — —
RanMASK, 90% 57.15 0.61 +0.013 0.31 0.00
Yelp CERT-ED, 90% 58.57 0.75 £0.013 0.26 7.16
AdaptDel, 90% 56.98 0.99 +0.023 0.28 6.89
AdaptDel+ 56.22 0.77 £ 0.016 0.24 6.78
NoSmooth 93.48 — — —
RanMASK, 90% 86.87 2.33 +0.012 0.43 14.02
SpamAssassin  CERT-ED, 90% 88.26 2.35 +£0.012 0.42 14.49
AdaptDel, 90% 87.99 2.86 +0.018 0.20 14.77
AdaptDel+ 88.06 2.77 £ 0.016 0.24 14.01
NoSmooth 98.02 — — —
RanMASK, 90% 97.65 5.09 +0.031 0.58 37.49
Yelp CERT-ED, 90% 97.81 5.03 4 0.031 0.57 38.66
AdaptDel, 90% 97.73 6.25 +0.053 0.30 38.79
AdaptDel+ 96.93 12.35 +0.152 0.14 72.74
NoSmooth 99.16 — — —
RanMASK, 90% 97.91 4.83 +0.022 0.31 34.51
LUN CERT-ED, 90% 98.20 4.94 4+ 0.019 0.34 37.68
AdaptDel, 90% 97.88 5.65 4 0.028 0.30 38.90
AdaptDel+ 95.09 10.69 + 0.088 0.24 66.90

Table 4: Comparison of robustness certificates across models and datasets. All metrics are computed
on the full test set. “Mean CR” refers to the mean certified radius, reported with standard error. A
larger standard error indicates greater variability in certified radii across examples. We report the
Wasserstein distance (“Wass. Dist.”) between the standardized distributions of certified radius and
input length as a measure of how well each method adapts to variations in input length (smaller is
better). The right-most column reports the median log-cardinality of the certified region. For the
Yelp dataset, the first quartile (Q1) of log(CC) is reported instead, since the median certified region
cardinality is zero. Despite slight degradation in clean accuracy, both AdaptDel and AdaptDel+
significantly outperform RanMASK and CERT-ED in terms of both median and mean robustness.

the Wasserstein distance to capture how well each method adapts to variations in input length. Our
adaptive methods achieve a lower Wasserstein distance, indicating a stronger alignment between
the distribution of certified radii and the distribution of input lengths. This successful adaptation is
also reflected in a higher variability (SE) of the certified radius, as the method appropriately assigns
different radii to inputs of different lengths.

Figure ] extends our analysis to the IMDB and LUN datasets, reinforcing the trends observed in Fig-
ure[2] In both datasets, certified accuracy improves with input size and log-cardinality, with adaptive
deletion methods (AdaptDel, AdaptDel+) outperforming RanMASK and CERT-ED, especially for
longer sequences. For IMDB, since more than 50% of the length variation is concentrated in the last
quartile, we observe a significant improvement in robustness in this region. In contrast, performance
in the other three quartiles is more mixed, aligning with our previous observations on the Yelp dataset
in Figure 2| For the LUN dataset, interestingly, AdaptDel+ underperforms in the first quartile, which
may be due to the instability of the AdaptDel+ optimization procedure, as discussed in Appendix [C|
This suggests potential areas for improvement in AdaptDel+. However, its performance improves
gradually with increasing input length, similar to the trend observed in SpamAssassin, where both
AdaptDel and AdaptDel+ achieve significantly stronger robustness for longer sequences. These
results further confirm the scalability of our approach across varying text distributions and input sizes.

Certified accuracy cannot be summarized by a single number without losing critical information about
robustness under varying radii. To address this, we provide Figure[5] which plots certified accuracy
as a function of the certification radius, as per convention. Note that this comparison disadvantages
AdaptDel, AdaptDel+, and CERT-ED, as RanMASK operates under the more constrained Hamming
distance threat model. Despite this, our methods consistently outperform others, following a similar
pattern to the certified accuracy vs. log-cardinality plot. This further supports our use of log-
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Figure 4: Certified accuracy as a function of the log-cardinality of the certified region, grouped by
quartile of input size. The subfigure on the right displays the quantile by input size, with the dashed
lines indicating the quartiles corresponding to the certified accuracy plots on the left. Each set of axes
(top to bottom) corresponds to a split of the test set on the length-based quartiles (smallest to largest).
For example, the second plot from top to bottom shows the certified accuracies of examples with in
Q1 to Q2. The results demonstrate that the methods scale effectively across varying input sizes, with
higher certified accuracy achieved for larger input sizes and higher log-cardinality regions.

cardinality certified accuracy as a balanced summary metric that does not unfairly favor any specific
method.

E.3 Ablation Study on Deletion Rate Lower Bound for AdaptDel

As shown in Table [5} increasing the lower bound py, (and reducing the retention count k£ = [ (1 —
piv) E{|x|}]) in AdaptDel consistently improves the certified robustness across all datasets, albeit
at a modest cost to clean accuracy. For instance, on the IMDB dataset, raising py, from 50% to
95% enhances the mean certified radius from 0.34 to 4.26, with a corresponding increase in the
aggregated log-cardinality from 0.00 to 20.87. Similar trends are observed on the SpamAssassin and
LUN datasets, where higher py, values lead to significant gains in both the mean certified radius and
certified region size. This demonstrates that enforcing more aggressive deletion rates amplifies the
certifiability of AdaptDel, especially on longer-input datasets. Furthermore, the Wasserstein distance
between certified radius and input length steadily decreases with higher py,, suggesting that the
certified radius becomes more input-length-aware as deletion strengthens. These results underscore
the critical role of tuning deletion rates in balancing clean accuracy and robustness guarantees,
enabling AdaptDel to scale effectively with input complexity.

F Analysis of Computational Efficiency

In this appendix, we document the computational requirements for training and certifying the
models used in our study. We begin by benchmarking certification time for each method on the
SpamAssassin dataset. Next, we report the compute costs of our remaining experiments (both
training and certification) as presented in the main paper. Overall, we demonstrate that AdaptDel
and AdaptDel+ match or exceed the efficiency of CERT-ED and RanMASK in both training and
certification.
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Figure 5: Certified accuracy for all methods as a function of the certified radius. While AdaptDel
consistently outperforms RanMASK and CERT-ED across all radii, AdaptDel+ achieves the highest
certified accuracy for larger certified regions. Note that, CERT-ED, AdaptDel, and AdaptDel+ certifies
Leveshtein distance perturbations, while RanMASK only certifies Hamming distance perturbations.
Thus, the actual robustness of RanMASK at the same radii is lower than that of CERT-ED, AdaptDel
and AdaptDel+.

All experiments in this paper are conducted using a private cluster with Intel(R) Xeon(R) Gold 6326
CPU at 2.90GHz and NVIDIA A100 GPUs. Unless otherwise specified, we use a single GPU for all
experiments.

F.1 Standardized Cost Comparison for Certification

The certification process consists of two key stages: Monte Carlo estimation and the certification
logic. In the first stage, we estimate the smoothed classifier’s output probabilities for the input « by
making Npreq = 1000 and Neery = 4000 forward calls to the base model, as shown in Lines [TH2 of
Algorithm|T] This stage dominates the overall runtime. In the second stage, the certification logic
(Lines 3-9) uses these estimated probabilities to find the largest certified radius. A loose bound on
the asymptotic complexity of this second step is O(r?) for certified radius 7. This follows since
Algorithm I] (Lines 3-9) performs a linear search for the radius r (Line[3)), contributing a factor of
O(r). Within this loop, it iterates through all edit combinations C(o, r) in Line d] of which there are

O(r?). The inner bound calculations (Lines |§| and are approximately linear in the number of edits,
o(r).

Despite this asymptotic complexity, standardized empirical tests show AdaptDel runs 20% and 372%
faster than CERT-ED and RanMASK, respectively (Figure[f). Notably, we evaluate runtime efficiency
using the SpamAssassin dataset—chosen specifically as the most challenging scenario due to its
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Dataset Pib k Clean Acc. Mean CR Wass. Dist.  Median log(CC)

50% 65 67.89 0.16 =+ 0.006 0.44 0.00
60% 52 66.84 0.32 £ 0.007 0.34 0.00
Yelp 70% 39 65.33 0.41 = 0.009 0.31 6.32
80% 26 63.13 0.61 £ o0.013 0.27 6.60
90% 13 56.98 0.99 £ 0.023 0.28 6.89
95% 6 48.40 1.41 £ 0.037 0.32 6.92
50% 115 94.64 0.34 £ 0.005 0.29 0.00
60% 92 93.15 0.86 £ 0.005 0.39 6.83
IMDB 70% 69 91.29 1.01 £ 0.007 0.29 6.83
80% 46 90.59 1.61 £ 0.010 0.25 12.51
90% 23 87.99 2.86 £ 0.018 0.20 14.77
95% 11 85.25 4.26 £ 0.028 0.16 20.87
50% 115 98.15 0.53 £ 0.013 0.45 0.00
60% 92 98.19 1.25 £ 0.011 0.45 7.02
SpamAssassin 70% 69 97.98 1.61 £ 0.019 0.34 7.02
80% 46 97.98 3.20 £ 0.024 0.36 20.22
90% 23 97.73 6.25 £ 0.053 0.30 38.79
95% 11 97.69 11.58 £o.111 0.24 69.84
50% 135 99.32 0.53 £ 0.006 0.34 7.18
60% 108 99.36 1.25 £ 0.006 0.67 7.18
LUN 70% 81 99.10 1.55 £ 0.009 0.42 7.30
80% 54 98.74 2.96 £ 0.012 0.36 20.51
0% 27 97.88 5.65 £ 0.028 0.30 38.90
95% 13 96.19 9.64 £ 0.061 0.21 65.74

Table 5: Ablation study on the deletion probability lower bound py, for AdaptDel, with k = | (1 —
piv) E{|z|}]. All metrics are computed on the full test set. “Mean CR” refers to the mean certified
radius, reported with standard error. A larger standard error indicates greater variability in certified
radii across examples. We report the Wasserstein distance (“Wass. Dist.”) between the standardized
distributions of certified radius and input length, as a measure of how well each method adapts
to variations in input length (smaller is better). The right-most column contains the median log-
cardinality (log(CC)) of the certified region. For the Yelp dataset, the first quartile (Q1) of log(CC)
is reported instead, since the median certified region cardinality is zero.

RanMASK CERT-ED AdaptDel
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Figure 6: From left to right are the histogram of computation cost for forward operation and computing
certified radius for RanMASK, CERT-ED and AdaptDel, respectively. For this experiment, we set
the batch size to 256 and the number of samples for certification to be 4096. As a result, a total
of 16 batches are required to compute the certified radius. The histogram shows the distribution of
the computation cost for each method. The total cost of AdaptDel is lower compared to all other
methods despite the increased complexity in compute time. This is because the adaptive deletion rate
provides shorter smoothed input size for longer inputs, significantly reducing the cost of the forward
computation.
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Table 6: Training time statistics for each dataset and model. The number of epochs varies due to early
stopping.

Dataset/Number of samples

Model Statistic Yelp/585000  SpamAssassin/2 152 IMDB/22500 LUN/13416

epochs 30 40 30 55

NoSmooth sec/epoch 6269 27 258 143

epochs 60 50 60 65

RanMASK, 90%  (_ /epoch 6252 35 341 258

epochs 60 40 65 60

CERT-ED, 90% sec/epoch 2334 13 128 55

epochs 155 55 85 70

AdaptDel, 90% . /epoch 989 6 50 41

epochs 90 65 140 75

AdaptDel+ seclepoch 3146 14 73 83

Dataset/Number of samples

Model Yelp/10000 IMDB/25000 SpamAssassin/2378  LUN/6454
RanMASK, 90% 9313 13331 13899 14641
CERT-ED, 90% 2633 3311 3319 4819
AdaptDel, 90% 2129 2 896 4090 3174
AdaptDel+ 2469 1812 1857 2235

Table 7: Certification time in milliseconds per sample on the test set for each dataset, including
overheads. We use 1000 Monte Carlo samples for prediction and 4000 samples for estimating certified
radii.

longer certified radii and shorter sequence lengths. Since the efficiency gains of AdaptDel are most
pronounced on longer inputs where it can apply a higher deletion rate, benchmarking on a dataset
with shorter sequences provides a more conservative estimate of its performance advantage. The
observed efficiency improvement is primarily due to reduced forward-pass times resulting from
adaptive deletion rates. In practice, computing the certified radius itself accounts for less than 5% of
the total runtime.

F.2 Train

Table [6]shows the number of epochs used to train each model/dataset (with early stopping) and the
training time per epoch. While AdaptDel is the fastest in training, AdaptDel+ takes similar time to
train compared to CERT-ED, which is 2-3 times faster than the non-smoothed baseline, and 2-5 times
faster to train than RanMASK. The total computation used across all datasets for certification is
estimated to be 300 hours A100 GPU time.

In addition to the training times reported in Table[6] the AdaptDel+ method requires a one-time, offline
calibration step to determine the optimal expected lengths for each bin, as detailed in Appendix [C]
This process is performed after the base model is trained and does not add to the online certification
time. On a single NVIDIA A100 GPU, the total calibration times were: Yelp (9.5 hrs), IMDB (12 hrs),
SpamAssassin (8 hrs), and LUN (12 hrs).

F.3 Certification

Table|/|shows the average certification time per test instance, including overheads. Our approaches
are upto 2 and 10 times faster than CERT-ED and RanMASK. The total computation used across all
datasets for certification is estimated to be 240 hours A100 GPU time.
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G Empirical Robustness Against Text Attacks

While the primary focus of our work is on certified robustness, we also evaluate the empirical
robustness of our methods against several common text-based adversarial attacks. This analysis
provides a more practical perspective on model resilience against existing attack heuristics.

Experimental Setup Our experimental setup largely follows the methodology of Huang et al. [18]].
We evaluate all models on a randomly selected subsample of 200 instances from each dataset’s test
set. For the smoothing-based defenses (AdaptDel, CERT-ED, and RanMASK), we use a Monte Carlo
estimation with 100 samples to approximate the smoothed classifier’s prediction. This is a smaller
sample size than used for certification, a necessary compromise to make the computational cost of
attacking these models feasible. To ensure all attacks terminate within a reasonable timeframe, we
enforce a query budget of 3000 calls to the target model and a time budget of 2 hours per instance.

Attack Outcomes Each attack on a given instance can result in one of four outcomes:

* Success: The attack successfully finds an adversarial example that changes the model’s
correct prediction to an incorrect one.

 Failure: The attack terminates without finding an adversarial example. This occurs if
the attack exhausts its search space or reaches the predefined query limit of 3000 model
evaluations.

» Skipped: The original input is misclassified by the model, so no attack is initiated.
* Timeout: The attack exceeds the time limit of 7200 seconds before terminating.

Metrics and Baselines We measure performance using robust accuracy, defined as the fraction of
non-skipped instances for which the attack outcome was either ‘Failure’ or “Timeout’. This metric
captures the percentage of initially correct predictions that remain correct after the attack.

We evaluate AdaptDel against several baselines: the smoothing-based methods CERT-ED [18] and
RanMASK [13]], and the adversarial training method FreeLLB [6]]. These models are tested against
five representative attacks using the TextAttack framework [43], which cover a diverse range of
perturbation strategies:

* General Edit Distance Attacks: Clare [25] and BAE-I [24]] search for adversarial examples
by applying a combination of word insertions, deletions, and substitutions.

* Word Substitution Attacks: BERT-Attack [8] and TextFooler [44] craft attacks by replacing
important words with semantically similar substitutes.

* Character-level Attack: DeepWordBug [23]] perturbs the input by applying small character-
level edits (e.g., swaps, deletions) to words.

Results and Discussion The robust accuracy of each model against five widely-used attacks is
summarized in Table [§] We observe that AdaptDel achieves a robust accuracy that is broadly
comparable to the CERT-ED baseline across most attacks, with differences often falling within the
margin of statistical error for the given sample size.

This result is consistent with the primary contribution of our work. The main advantage of AdaptDel
is its ability to provide stronger certified robustness guarantees, particularly for longer sequences,
by adapting the deletion rate. This adaptation is optimized for the worst-case analysis required for
certification, which does not necessarily translate to a direct advantage against the specific heuristics
employed by these empirical attacks. Therefore, while AdaptDel demonstrates strong empirical
resilience on par with existing methods, its key benefit remains in the domain of provable security,
where it significantly expands the size of the certified region.

H Impact Statement

Where adversarial examples present an important threat to the integrity of learned models, randomized
smoothing reflects a well-documented defense, while certifications offer a reliable measurement of
robustness. Together, this research offers potential societal benefit from more resilient Al systems, and
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Figure 7: Robust accuracy of AdaptDel compared to baseline defenses against five common adversar-
ial text attacks. Error bars indicate 95% bootstrap confidence intervals. Across the three datasets,
AdaptDel demonstrates empirical robustness that is statistically comparable to the CERT-ED baseline.
All smoothing-based methods are highly robust on the LUN and SpamAssassin datasets, while the
adversarial training method FreeLB shows vulnerability to specific word-substitution attacks.

Attack
Model BAE-I BERT-Attack CLARE DeepWordBug  TextFooler
Dataset: IMDB

AdaptDel 0.860/0.660 0.865/0.575 0.890/0.665 0.885/0.540 0.860/0.485
CERT-ED  0.885/0.690 0.860/0.580 0.880/0.675 0.880/0.540 0.880/0.530
FreeLB 0.940/0.730 0.940/0.060 0.940/0.735 0.940/0.485 0.940/0.100
RanMASK 0.875/0.680 0.885/0.535 0.880/0.680 0.880/0.495 0.880/0.430

Dataset: LUN

AdaptDel 0.980/0.960 0.980/0.930 0.980/0.955 0.985/0.920 0.985/0.955
CERT-ED  0.995/0.955 0.995/0.960 0.995/0.955 0.990/0.960 1.000/0.960
FreeLB 0.995/0.990 0.995/0.870  0.995/0.975 0.995/0.900 0.995 70.900
RanMASK 0.980/0.915 0.980/0.900 0.975/0915 0.970/0.910 0.970/0.920

Dataset: SpamAssassin

AdaptDel 0.975/0.945 0.970/0.940 0.970/0.935 0.970/0.945 0.960/0.940
CERT-ED  0.965/0.950 0.965/0.945 0.965/0.950 0.970/0.945 0.970/0.950
FreeLB 0.970/0.960 0.970/0.575 0.970/0.960 0.970/0.795 0.970/0.510
RanMASK  0.965/0.945 0.965/0.935 0.955/0.945 0.965/0.930 0.965/0.930

Table 8: Empirical robustness results of different models against various attacks on three datasets.
Each cell shows the accuracy before and after the attack (e.g., 0.860 / 0.660 means 86.0% accuracy
before the attack and 66.0% accuracy after the attack).
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better transparency of limitations of robustness. Our work furthers the study of more realistic threat
models than £,-bounded perturbations found in vision, with edit distance and sequence classifiers
more suitable to NLP. With longer sequences offering greater margin for smoothing by deletion
without sacrificing accuracy, we are able to better balance utility and certification.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We accurately describe the main claims made in the abstract and introduction,
which reflect the paper’s contributions and scope. The paper presents a novel approach to
randomized smoothing for sequence classifiers, demonstrating its effectiveness in achieving
certified robustness.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work, including assumptions made and their
potential impact on the results in a dedicated “Limitations” section at the end of the paper’s
body.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a complete set of assumptions and proofs for each theoretical
result in the paper. We put details of these proofs in Appendix [Al

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the necessary information to reproduce the main experimental
results in Appendix @ including details about the datasets, models, and evaluation metrics.
Additionally, we provide the code and data used in the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments are based on publicly available datasets, and we provide the
code and data as supplementary material. The instructions for reproducing the results are
included in the README file.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all training and test details in Section 4] and Appendix D] including
data splits, hyperparameters, and optimizer types in the appendix and also in the provided
configuration files.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: While we provide standard error for the certified radius, we do not provide
error bars for the results as randomized smoothing is expensive and we only run each
experiment once.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the compute resources needed to reproduce the ex-
periments, including the type of compute workers, memory, and time of execution in

Appendix [F}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics, and we have taken
all necessary precautions to ensure that our work is ethical and responsible.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss potential societal impacts in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is not applicable to our work as we do not release any data or models that
have a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: We credit the creators/owners of the datasets and baselines used in the paper
(see Sectiond)). We also provide proper attribution in our code.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code with instructions for reproducing our results in the supple-
mentary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable as our research does not involve crowdsourcing or human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable as our research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We used LLMs while implementing scaffolding codes and when making
minor adjustments to code. We reviewed any LLM-generated code and made necessary
adjustments to ensure correctness. However, the core methods of this research do not involve
LLMs as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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