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WasmGuard: Enhancing Web Security through Robust
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Abstract
WebAssembly (Wasm), a binary instruction format designed for
efficient cross-platform execution, has rapidly become a founda-
tional web standard, widely adopted in browsers, client-side, and
server-side applications. However, its growing popularity has led
to an increase in Wasm-targeted malware, including cryptojackers
and obfuscated malicious scripts, which pose significant threats to
web security. In spite of progress in deep learning based detection
methods for Wasm malware, such as MINOS, these approaches face
substantial performance degradation in adversarial environments.
In our experiments, MINOS’s detection accuracy dropped to 49.90%
under adversarial attacks, revealing critical vulnerabilities. To ad-
dress this, we introduce WasmGuard, a robust malware detection
framework tailored for Wasm. WasmGuard employs FGSM-based
adversarial training with prior-based initialization for perturba-
tion bytes in customized sections, coupled with a novel adversar-
ial contrastive learning objective. Using our large-scale dataset,
WasmMal-15K (publicly available), WasmGuard outperforms six
competing methods, achieving up to 99.20% Robust Accuracy and
99.93% Standard Accuracy under PGD-50 adversarial attacks, while
maintaining low training overhead. Additionally, we have released
WebChecker, a WasmGuard-powered browser plugin, providing
real-time protection against malicious Wasm files.

CCS Concepts
• Information systems→World Wide Web; • Security and
privacy→Web application security.

Keywords
Wasmmalware detection, Adversarial robustness, Contrastive learn-
ing, Perturbation bytes, Web security

1 Introduction
WebAssembly (Wasm) is a binary instruction format and execution
environment designed to provide efficient, portable, and secure
execution for web-based applications. Originally created as a com-
pilation target for high-level languages, Wasm has rapidly become
a cornerstone of the modern web, enabling high-performance exe-
cution across browsers, cloud platforms, and IoT devices [29]. With
support from all major browsers, it has become highly versatile for
various web applications, offering near-native execution speed and
cross-platform compatibility [23].

However, this widespread adoption has introduced significant
security risks. A recent analysis of 12,291 Wasm samples collected
between May 2018 and June 2021 by CrowdStrike found that 75%
were classified as malicious [8]. These Wasm-based malware sam-
ples, often executed within web browsers, originate from languages
such as C++, Rust, and JavaScript. They are commonly employed in
illegal activities like cryptojacking or to conceal malicious scripts,
posing a growing threat to web security [24][19].

Traditional antivirus software and browser extensions detect
Wasmmalware using signature-based or blacklist techniques, which
can be easily circumvented by sophisticated attackers [6, 8]. Recent
advancements have introduced machine learning-based detection
methods, including dynamic and static approaches [13, 24]. Static
detection methods, which analyze Wasm executables without exe-
cuting them, provide faster detection and lower resource consump-
tion compared to dynamic methods. Thus, this paper focuses on
static detection methods. Among these, MINOS [25] represents the
state-of-the-art. MINOS converts Wasm binaries into grayscale im-
ages and employs a convolutional neural network classifier, achiev-
ing an Standard Accuracy (SA) of up to 99.73% on our clean dataset.
Nevertheless, such methods remain vulnerable to adversarial at-
tacks [1, 4]. For instance, in our experiments, MINOS’s Robustness
Accuracy (RA) dropped sharply to 49.9% under adversarial condi-
tions, with an Attack Success Rate (ASR) reaching 49.97%.

Current studies on Wasm malware detection have several limita-
tions: (1) A lack of public datasets, with most studies using small,
self-built datasets [1, 4, 25]; (2) The majority of machine learning-
based techniques rely on feature engineering [2, 14, 15, 30], which
is labor-intensive and less adaptable. Although MINOS, the state-
of-the-art, uses deep learning, it still converts Wasm binaries to
images rather than using raw binaries for end-to-end detection; (3)
Notably, despite many studies on evasion techniques, there is still a
lack of robust detection methods that can effectively defend against
adversarial attacks in the evolving Wasm malware landscape.

To comprehensively address the aforementioned challenges, we
propose WasmGuard, the first robust approach for detecting raw-
binary Wasm malware, and construct WasmMal-15K, a large-scale
dataset for Wasm malware detection research. To train a robust
Wasm malware detector, WasmGuard adopts a single-step adver-
sarial training framework based on FGSM (Fast Gradient Sign
Method), a technique widely used in traditional tasks such as image
recognition and malware detection for Windows and Android pro-
grams. To facilitate this adversarial training, we introduce a novel
perturbation-bytes injection technique for Wasm files. Addition-
ally, we integrate the garbage-code injection strategy to generate
initial adversarial examples. Critically, we take the following mea-
sures to enhance adversarial training: (1) Prior-based initialization
for perturbation-bytes to strengthen the initial adversarial exam-
ples’ attack capability in single steps, and (2) Contrastive learning
involving both clean and adversarial examples to optimize their rep-
resentation space. As our experiments show, WasmGuard achieves
substantially better robustness with RA up to 99.2% and ASR as
low as 0.73%, while retaining higher effectiveness with SA up to
99.93%, compared to six competingmethods, all at the cost of limited
training time.

In summary, this paper contributes the following:
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• We propose WasmGuard: the first robust raw-binary Wasm
malware detection approach, utilizing FGSM-based adver-
sarial training enhanced with prior-based perturbation ini-
tialization and contrastive learning involving both adversar-
ial and clean examples. It also introduces a novel adversar-
ial sample generation method, injecting perturbation bytes
into 14 newly added custom sections, along with garbage
code injection.

• We introduce WasmMal-15K1: a new large-scale dataset
consisting of 7512 malicious and 7512 benign Wasm sam-
ples, serving as a valuable resource for research in Wasm
malware detection.

• We conduct extensive experiments: to demonstrate that
WasmGuard has significantly superior robustness under
high-effort adversarial attacks and higher performance un-
der clean conditions, both compared to six competing meth-
ods.

• We develop and release WebChecker2: a novel browser
plugin using the WasmGuard technique to provide real-
time alerts for malicious Wasm files on webpages.

The rest of this paper is organized as follows: Section 2 outlines
the related work. Section 3 details our WasmGuard approach. In
Section 4, we discuss the experiments and results. Finally, Section
6 concludes the paper.

2 Background
2.1 Wasm Malware Detection Techniques
Most existing Wasm malware detection techniques employ dy-
namic analysis methods, collecting runtime information such as
CPU cache events [17], instruction and control flow features [2],
[30], and memory and network characteristics [14]. However, these
methods increase computational overhead and resource consump-
tion, affecting user experience, and can be bypassed by attackers
detecting the analysis environments. Static methods, which do
not require program execution, can overcome these drawbacks.
Recently, an effective static Wasm malware detection approach,
MINOS, has emerged. MINOS converts each Wasm executable into
a 100×100 grayscale image, and utilizes a convolutional neural
network to create the detection model, achieving state-of-the-art
detection performance under clean conditions. However, none of
the above approaches produce adversarially robust detection model.

2.2 Gradient-based Generation of Adversarial
Malware

There are numerous gradient-based techniques for generating ad-
versarial examples for traditional PE (Portable Executable) malware
[20, 22]. One efficient and widely used technique is the Fast Gra-
dient Sign Method (FGSM), which perturbs the input data in the
direction of the loss function gradient to generate PE adversarial
examples [9]. For example, Suciu et al. [31] apply FGSM to craft
perturbation bytes by injecting the adversarial payload into the
slack space between sections and at the end of the PE file. However,
these byte-based FGSM methods for PE malware cannot be directly

1https://github.com/Q8201/WasmMal
2https://github.com/Q8201/WasmGuard

applied toWasmmalware due to their distinct file formats. To gener-
ate adversarial examples for Wasm malware, Madvex [21] proposes
an image-based gradient method using code-grayscale-images and
performs semantic-preserving transformations on instruction con-
stants. Nevertheness, this method requires maintaining the map-
ping between code-image pixels and code binaries, resulting in high
computational complexity and additional runtime overhead.

2.3 Wasm Binary Rewriting
Binary rewriting techniques generate functionally equivalent vari-
ants of binary code by applying rewriting rules, commonly used
in malware evasion, code optimization, and other binary-level
transformations [12]. Current techniques for rewriting Wasm bi-
naries include BREWasm[5], WASMixer[6], and Wasm-Mutate[3].
BREWasm[5] provides a comprehensive framework for static bi-
nary rewriting, offering fine-grained APIs to modify and re-encode
Wasm objects into valid binaries. WASMixer[6] focuses on obfusca-
tion techniques, such as memory encryption, control flow flattening,
and opaque predicates, to enhance code security. Wasm-Mutate[3]
is a Wasm-specific diversification engine that utilizes lazy parsing
to generate diverse variants rapidly, producing thousands of effi-
cient variants in minutes with minimal execution overhead and
mitigation of side-channel attacks. In this work, we utilize Wasm-
Mutate to generate Wasm malware variants and use BREWasm to
inject binary bytes for rewriting the malware binaries.

2.4 Wasm File Structure
As shown in Fig. 1, each Wasm file consists of Magic Code, Ver-
sion Number fields, and 13 distinct sections [34]. Optional Custom
Sections, which always contain non-essential data like debugging
information and third-party plugins, can be customized and placed
between sections or as the head or tail section. The other 12 sec-
tions include: the Type Section and Function Section for defining
function types and detailing function parameters; the Import Sec-
tion and Export Section for listing required module imports and
accessible module exports; the Table Section and Memory Section
for defining tables and memory types; the Global Section for global
variables; the Start Section for initializing the module state; the El-
ement Section for table subranges; the Code Section for containing
function code; and the Data Section and Data Count Section for
initializing and quantifying memory ranges.

3 Proposed Method
In this section, we propose our WasmGuard approach, which builds
a robust and effective Wasm malware detection model using adver-
sarial training. We first define the notations for the detection and
threat model, and then detail the WasmGuard approach.

3.1 Notation and Threat Model
3.1.1 Notation. To formulate a binary Wasm malware detection
task with an underlying data distribution 𝐷 , we denote the input
space and label space as 𝑋 ⊂ {0, 1, ..., 255}∗ and 𝑌 = {0, 1}, respec-
tively. For ∀ (x,y) ∈ D, the input Wasm sample 𝑥 is a variable-length
binary string, and the output label 𝑦 indicates whether it is mal-
ware. The task is to find is to find the optimal parameters 𝜃 of the
classification model 𝐹 (𝜃 ) : 𝑋 → 𝑌 that minimize the loss function

2
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𝐿(𝜃, 𝑥,𝑦), such as the CE (Cross Entropy) loss function, as shown
in the following formula:

min
𝜃

𝐸 (𝑥,𝑦)∼𝐷 [𝐿 (𝜃, 𝑥,𝑦)] (1)

3.1.2 Threat Model. Our WasmGuad aims to develop a robust
Wasmmalware detection model resilient against adversarial attacks.
Adopting the standard threat modeling framework from prior work
[26], we outline our assumptions about the attacker’s goals, knowl-
edge, capabilities, and methods as follows: (1) The attacker tries
to cause integrity violations by inducing the detection model to
misclassify malicious Wasm executables as benign and benign ones
as malicious. (2) The attacker possesses complete knowledge of the
malware classifier (whitebox) and can manipulate any bytes in the
input binary using functionality-preserving transformations. (3)
The attacker is unable to modify or influence the trained model
directly, except through changes to the input. (4) The attacker can
use a multi-step iterative approach, rather than a single-step one,
thus enhancing the attack’s intensity.

3.2 WasmGuard Overview
Fig. 1 provides an overview of our WasmGuard approach, illustrat-
ing the primary modules and adversarial training procedure aimed
at achieving a robust and effective Wasm malware detection model.
As shown in the figure, the trained detection model, based on the
MalConv-GCG [27] architecture, consists of three light-blue mod-
ules: (1) a word embedding module for converting Wasm files into
word embedding vectors (e.g., 𝑥 → 𝑒); (2) a representation module
for extracting vector features (e.g., 𝑒 → ℎ); (3) a classification head
for producing the predicted probability output (e.g., ℎ → 𝑝).

To craft adversarial examples for adversarial training, Wasm-
Guard introduces a novel transformation module. It generates the
initial adversarial example 𝑥𝑎𝑑𝑣 for each input clean sample 𝑥 by
injecting two types of perturbations, then updates it with FGSM
based on the adversarial CE loss 𝐿𝐴𝑑𝑣𝐶𝐸 of 𝑥𝑎𝑑𝑣 . Additionally, Was-
mGuard incorporates a projection head that consists of a fully
connected layer to produce projected eigenvectors from the feature
vectors (e.g., ℎ → 𝑧). It also designs an adversarial contrastive learn-
ing loss, ACLoss, which involves the eigenvectors of both clean and
adversarial examples (e.g., 𝑥 , 𝑥𝑎𝑑𝑣 ) to optimize the representation
space. During adversarial training, the Total Loss, which integrates
ACLoss with the basic adversarial training loss, ATLoss, is propa-
gated backward to update the detection model’s parameters 𝜃 and
the projection head’s parameters 𝜃 𝑗 .

The adversarial training procedure of WasmGuard can be for-
mulated as the following min-max optimization problem:

min
𝜃,𝜃 𝑗

𝐸 (𝑥,𝑦)∼𝐷

[
max
𝛿∈𝜉

𝐿𝐴𝑑𝑣𝐶𝐸 (𝜃, 𝑥 + 𝛿,𝑦)
]

(2)

The inner maximization seeks the optimal adversarial perturbation
𝛿 that amplifies the CE loss of the model 𝜃 when applied to the
perturbed sample 𝑥+𝛿 . Here, 𝜉 = {𝛿 : ∥𝛿 ∥ ≤ 𝜀} represents the threat
bound with the maximum perturbation strength 𝜀. Conversely, the
outer minimization aims to refine the model 𝜃 and the module 𝜃 𝑗
to minimize the Total Loss.

Projection

Head
Classification Head

Representation Module

Word Embedding Module

Injecting
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Updating

bytes

ACLoss
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Figure 1: Overview of WasmGuard approach.

3.3 Generation of Adversarial Wasm Samples
To facilitate adversarial training, we propose an adversarial-example
generation algorithm for Wasm samples, depicted in Algorithm 1.
This algorithm crafts initial adversarial samples by injecting both
garbage code and perturbation bytes without altering the file’s
functionality. As the first work to utilize adversarial bytes to per-
turb Wasm files, it creates 14 custom sections as injection locations
shown in Fig. 2 and updates the perturbation bytes using FGSM.
To implement the semantic-preserving injection of garbage code
and perturbation bytes, we utilize BREWasm [5], a general Wasm
binary rewriting tool.

Next, we will detail the three key steps of Algorithm 1:

3.3.1 Injecting garbage code. Garbage code refers to extrane-
ous, non-functional code inserted into a program to obfuscate its
structure without altering its intended behavior or violating its
syntactical correctness. For each Wasm sample 𝑥 , we insert three
groups of garbage code into the file’s six sections, as indicated by
the striped bars in Figure 2:

• Inserting implementation of functions: First, we create 𝑓 𝑐
extraneous function signatures with random arguments
and return values in the file’s Type and Function sections.
Next, in the Code section, we insert garbage instructions

3
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Figure 2: Wasm file structure and Injection locations for
perturbation-bytes and garbage-code.

such as NOP and idle loops as the body of each newly-added
function, as well as at the head and tail of each existing
function.

• Inserting import and export functions: The aforementioned
𝑓 𝑐 new functions are exported to the file’s the Export sec-
tion. To enhance the resultant file’s obfuscation, we insert
the names of 𝑖𝑚 extraneous import functions into the Im-
port section using the following naming strategies: For be-
nign samples, the inserted function names are strings such
as ’ransomware’ and ’encrypt’ to imply malicious intent;
for malware, the inserted function names mimic those com-
monly used in benign Wasm files, such as ’clock_time_get’
and ’fd_write’.

• Inserting global variables: We insert 𝑔 new global variables
initialized with random values into the Global section. Here,
𝑓 𝑐 , 𝑖𝑚 and 𝑔𝑙 are adjustable hyperparameters.

3.3.2 Injecting initial perturbation bytes. For each Wasm sam-
ple, at the start of adversarial training, we create 14 new custom
sections as injection locations for perturbation bytes. These sections
are positioned between the existing sections, before the first section,
and after the last section, as illustrated by the bluish rectangular
bars in Fig. 2. During each training epoch, we insert the prior per-
turbation bytes from the previous training epoch into these custom
sections, as lines 2-3 show in Algorithm 1. The prior perturbation
bytes of the input sample, denoted by the global variable 𝐵𝑝 in this
algorithm, are randomly initialized at the beginning of training and
updated with the generation of the sample’s perturbation bytes in
each epoch.

Given 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛_𝑏𝑢𝑑𝑔𝑒𝑡 , the ratio of inserted perturbation
bytes to the sample’s file size, we can calculate and control the
average length of the perturbation bytes injected into each cus-
tom section, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 , using the following equation, where

𝑓 𝑖𝑙𝑒_𝑠𝑖𝑧𝑒 is the Wasm sample’s file size, and 𝑐𝑢𝑠𝑡𝑜𝑚_𝑛𝑢𝑚 is the
number of custom sections inserted:

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 =
𝑓 𝑖𝑙𝑒_𝑠𝑖𝑧𝑒 × 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛_𝑏𝑢𝑑𝑔𝑒𝑡

𝑐𝑢𝑠𝑡𝑜𝑚_𝑛𝑢𝑚
(3)

Algorithm 1Generating AdversarialWasm Sample:𝐺𝑒𝑛𝐴𝑑𝑣𝑊𝑎𝑠𝑚

(𝑥,𝑦, 𝜃,𝑀, 𝜀).
Input: Original Wasm sample 𝑥 and its label 𝑦, detection model’s

parameters 𝜃 , word embedding matrix𝑀 , maximum perturba-
tion strength 𝜀.

Output: Perturbed Wasm sample 𝑥𝑎𝑑𝑣 .
Global: Prior perturbation bytes 𝐵𝑝 with random initialization.
1: Inject garbage code into 𝑥 to get 𝑥𝑎𝑑𝑣

2: Get locations 𝐿𝑝 in 𝑥𝑎𝑑𝑣 for injecting perturbation bytes
3: 𝑥𝑎𝑑𝑣 [𝐿𝑝 ] ← 𝐵𝑝 [𝐿𝑝 ] //Inject prior perturbation bytes
4: 𝑦𝑎𝑑𝑣 ←𝑚𝑜𝑑𝑒𝑙 .𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝜃, 𝑥𝑎𝑑𝑣)
5: if 𝑦𝑎𝑑𝑣 ≠ 𝑦 then
6: return 𝑥𝑎𝑑𝑣 .

7: end if
/* Update perturbation bytes: 8-12 */

8: 𝑒𝑎𝑑𝑣 ←𝑚𝑜𝑑𝑒𝑙 .𝐸𝑚𝑏𝑒𝑑 (𝜃, 𝑥𝑎𝑑𝑣)
9: 𝑝𝑎𝑑𝑣 ←𝑚𝑜𝑑𝑒𝑙 .𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝜃, 𝑒𝑎𝑑𝑣)
10: 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ← 𝑠𝑖𝑔𝑛(∇𝑒𝑎𝑑𝑣𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝𝑎𝑑𝑣, 𝑦))
11: Update 𝑒𝑎𝑑𝑣 [𝐿𝑝 ] using 𝜀 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 [𝐿𝑝 ]
12: Reconstruct 𝑥𝑎𝑑𝑣 using 𝑒𝑎𝑑𝑣 via Eq. (4)
13: 𝐵𝑝 [𝐿𝑝 ] ← 𝑥𝑎𝑑𝑣 [𝐿𝑝 ] //Set prior perturbation bytes
14: return 𝑥𝑎𝑑𝑣 .

3.3.3 Updating perturbation bytes: After obtaining the initial
adversarial sample 𝑥𝑎𝑑𝑣 using the two types of injections, we up-
date its perturbation bytes using FGSM. This updating procedure,
illustrated by the purple lines in Fig. 1 and lines 8-12 in Algorithm
1, involves the following steps: First, 𝑥𝑎𝑑𝑣 is sent to the word em-
bedding module to obtain its embedding vector 𝑒𝑎𝑑𝑣 , which is then
forward propagated to produce the predicted probability output
𝑝𝑎𝑑𝑣 . Next, the cross-entropy loss between 𝑝𝑎𝑑𝑣 and the label 𝑦 is
calculated. Subsequently, backpropagation is used to differentiate
the word embedding vector, yielding the corresponding gradient.
Finally, the gradient information is added as noise to the perturbed
counterpart in 𝑒𝑎𝑑𝑣 , and it is reconstructed into the sample 𝑥𝑎𝑑𝑣

using Eq. (4). Here, 𝐿𝑝 denotes the offset addresses in the 𝑥𝑎𝑑𝑣 file
for injecting perturbation bytes,𝑀𝑗 represents the jth row of the
word embedding matrix.

𝑥𝑎𝑑𝑣 [𝐿𝑝 ] = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗∈0· · ·255 (∥𝑒𝑎𝑑𝑣 [𝐿𝑝 ] −𝑀𝑗 ∥2) (4)

3.4 Loss Function
During adversarial training, to optimize the representation space
of both clean and adversarial Wasm samples, WasmGuard employs
a novel adversarial contrastive loss (ACLoss) to regulate the basic
adversarial training loss (ATLoss). The total loss is calculated as
shown in Eq. (5), where 𝜆 ∈ [0, 1] is the weight factor for the
regularization term.

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐴𝑇𝐿𝑜𝑠𝑠 + 𝜆 ∗𝐴𝐶𝐿𝑜𝑠𝑠 (5)
4
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3.4.1 Basic adversarial training loss (ATLoss). To balance ro-
bustness and accuracy, both the cross-entropy loss of the clean
sample 𝑥 and that of the adversarial sample 𝑥𝑎𝑑𝑣 are included in
the basic adversarial training loss, calculated as shown in Eq. (6).
Here, 𝑁 denotes the number of samples in a batch, 𝑦𝑖 denotes the
label of sample 𝑥𝑖 , and 𝑝𝑖 and 𝑝𝑎𝑑𝑣 denote the probabilities that
clean sample 𝑥𝑖 and adversarial sample 𝑥𝑎𝑑𝑣 are predicted to be 𝑦𝑖 ,
respectively. By minimizing the ATLoss, the model learns from both
clean and adversarial samples, helping to classify them correctly
within the decision boundary.

𝐴𝑇𝐿𝑜𝑠𝑠 = 𝐿𝐴𝑑𝑣𝐶𝐸 + 𝐿𝐶𝑙𝑒𝑎𝑛𝐶𝐸

= − 1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 log(𝑝𝑖 · 𝑝𝑎𝑑𝑣𝑖 ) + (1 − 𝑦𝑖 ) log( (1 − 𝑝𝑖 ) (1 − 𝑝𝑎𝑑𝑣𝑖 ) ) )

(6)

3.4.2 Adversarial contrastive loss (ACLoss). For each input
batch of 𝑁 clean Wasm samples, WasmGuard crafts 𝑁 adversar-
ial Wasm samples as described in the previous subsection. Next,
WasmGuard send both clean samples (e.g., 𝑥 ) and adversarial sam-
ples (e.g., 𝑥𝑎𝑑𝑣 ) sequentially through the word embedding module,
the representation module, and the projection head. This process
produces a representation batch of 2𝑁 normalized representation
vectors of Wasm samples, comprising 𝑁 clean sample vectors (e.g.,
𝑧) and 𝑁 adversarial sample vectors (e.g., 𝑧𝑎𝑑𝑣 ), as illustrated in
Figure 1. Because each adversarial sample is derived through a
semantic-preserving injection into a clean sample, its label remains
the same as that of the original clean sample. To optimize the Wasm
sample representation space, we introduce supervised adversarial
contrastive learning, leveraging both clean and adversarial samples
with their labels, and design the contrastive loss function as follows:

𝐴𝐶𝐿𝑜𝑠𝑠 =
1
2𝑁

2𝑁∑︁
𝑖=1

−1
|𝑃𝐶 (𝑖) | + |𝑃𝐴(𝑖) | 𝐿𝑖 , 𝑤ℎ𝑒𝑟𝑒

𝐿𝑖 =
∑︁

𝑝∈𝑃𝐶 (𝑖 )∪𝑃𝐴(𝑖 )
log

𝑒 (𝑧𝑖 ·𝑧𝑝/𝜏 )

𝑒 (𝑧𝑖 ·𝑧𝑝/𝜏 ) + ∑
𝑗∈𝑁𝐶 (𝑖 )∪𝑁𝐴(𝑖 )

𝑒 (𝑧𝑖 ·𝑧 𝑗 /𝜏 )

(7)

Here, for each anchor sample vector 𝑧𝑖 in a representation batch:
(1) Positive samples are all samples with the same label in the batch.
These consist of consists of two subsets: 𝑃𝐶 (𝑖), including all clean
samples with the same label except 𝑧𝑖 , and 𝑃𝐴(𝑖), including all
adversarial samples with the same label. (2) Negative samples are
all samples with different labels in the batch. These consists of
two subsets: 𝑁𝐶 (𝑖) and 𝑁𝐴(𝑖), including all clean and adversarial
samples with different labels, respectively.

Unlike existing supervised contrastive learningmethods like Sup-
Con [16, 36], which only use label information from clean samples,
our adversarial contrastive learning approach introduces adversar-
ial samples and leverages labels from both clean and adversarial
samples. This inclusion provides a greater number and variety of
harder positives and negatives, benefiting the model’s generaliza-
tion, robustness, and decision boundary clarity. Additionally, for
each anchor-positive pair (e.g. 𝑧𝑖 -𝑧𝑝 ), the denominator in 𝐿𝑖 of
Eq. (7), only includes the numerator, rather than including terms
from other positive samples, as a normalization term to alleviate
intra-class repulsion.

4 Experiments
4.1 Experimental Setup
4.1.1 Dataset. Lacking public datasets for Wasm malware detec-
tion, we construct and release a large-scale dataset calledWasmMal-
15K. Initially, we collected 8631 Wasm binary files from a GitHub
repository [11], followed by filtering out duplicates and non-compliant
files. Using VirusTotal [33] , we labeled the remaining files, obtain-
ing 7512 benign and 62 malicious samples. To balance the dataset,
we employed the mutation tool wasm-mutate [3] to generate 7450
functionality-preserving variants of the 62 malicious samples. This
resulted in the WasmMal-15K dataset, comprising 7512 benign and
7512 malicious Wasm files. In our experiments, the dataset was split
into training and testing sets in a ratio of 8 : 2.

4.1.2 Evaluation metrics. In our experiments, we evaluate each
Wasmmalware detectionmodel’s effectiveness under non-adversarial
conditions and robustness under adversarial conditions. We assess
model effectiveness on original clean samples using three standard
classification metrics: SA (Standard Accuracy), FNR (False Negative
Rate), and FPR (False Positive Rate). For instance, SA denotes the
effectiveness on all test samples without attacks, calculated as

𝑆𝐴 =
Number of correctly predicted clean samples

Total number of clean samples
(8)

We evaluate model robustness on generated adversarial samples
using four metrics: RA (Robust Accuracy), ASR (Attack Success
Rate), R-FNR (Robust False Negative Rate), and R-FPR (Robust False
Positive Rate). Here, RA and ASR are widely-used robustness met-
rics, with RA measuring accuracy under attacks and ASR indicating
the proportion of samples misclassified after attacks, calculated as

𝑅𝐴 =
Number of correctly predicted adversarial samples

Total number of adversarial samples
(9)

𝐴𝑆𝑅 =
Number of samples misclassified after attack

Number of correctly classified samples before attack
(10)

R-FNR is the proportion of adversarial malicious samples that are
incorrectly classified as benign, while R-FPR is the proportion of
adversarial benign samples that are incorrectly classified as mali-
cious.

4.1.3 Compared methods. As the first column of Table 1 shows,
we compare WasmGuard with six advanced binary-based Wasm
malware detection methods. (1) MINOS [25]: a state-of-the-art
Wasmmalware detection technique using grayscale images from bi-
naries as input. (2) MalConv and (3) AvastNet: two Wasm malware
detection methods implemented via transfer learning from the state-
of-the-artMalConv-GCG [27] and thewell-knownAvastNet [18] PE
models. (4) MalConv+SupCon: the MalConv-GCG model enhanced
with the SupCon contrastive learning loss [16]. (5) slack-FGSM:
an adversarial-training-based method implemented via transfer
learning from the robust slack-FGSM [31] technique for PE files,
combining its adversarial training applied to MalConv with our
Wasm-specific perturbation-bytes instrumentation. (6) FGSM-RS:
an adversarial-training-based method implemented via transfer
learning from the robust FGSM-RS [35] technique for images, inte-
grating its adversarial training applied to MalConv with our Wasm-
specific adversarial example generation algorithm.
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Table 1: Detection performance (%) of WasmGuard and competitors, ‘TL’ denoting ‘Transfer Learning’, ‘Clean Test’ for ‘Test on
clean examples without attacks’, ‘Adv. Test’ for ‘Test under adversarial attacks’, ‘Adv. Training’ for ‘Adersarial Training’.

Method Clean Test Adv. Test Adv. Training

SA FNR FPR RA R-FNR R-FPR ASR Time

MINOS 99.73 0.33 0.20 49.90 50.08 50.15 49.97 N/A
AvastNet (TL) 99.83 0.20 0.13 37.89 59.46 66.82 62.05 N/A
MalConv (TL) 99.87 0.07 0.20 54.12 46.63 44.69 45.80 N/A

MalConv+SupCon (TL) 98.57 2.79 0.08 53.95 21.16 58.95 39.18 N/A
slack-FGSM (TL+Ours) 99.83 0.20 0.13 65.37 37.24 30.69 34.52 1076 min
FGSM-RS (TL+Ours) 99.77 0.27 0.20 69.69 31.48 28.98 30.14 1089 min
WasmGuard (Ours) 99.93 0.07 0.07 99.20 1.25 0.34 0.73 930 min

Table 2: Ablation study on detection performance (%), ‘w/o’ denoting ‘without’, ‘Prior init.’ for ‘Prior-based initialization’.

Method Clean Test Adv. Test

SA FNR FPR RA R-FNR R-FPR ASR

WasmGuard (Ours) 99.93 0.07 0.07 99.20 1.25 0.34 0.73
w/o ACLoss 99.83 0.20 0.13 97.27 3.77 1.63 2.57

w/o Prior init. 99.83 0.20 0.13 96.47 4.19 2.84 3.37
w/o both 99.77 0.27 0.20 69.69 33.54 25.50 30.14

4.1.4 Implementation detail. We implemented our models us-
ing Pytorch-Lightning 1.5.10 and BREWasm 1.0.5 [5], and ran all
models on a GPU server with 2*RTX 4090 (24GB) cards and Ubuntu
18.04.6 LTS. In all experiments, each detection model is trained
for 50 epochs with a batch size of 32, using the Adam optimizer
with a learning rate of 0.0001. The performance results are aver-
aged over three test runs. For our WasmGuard model, the loss
weight 𝜆 is set to 0.3, which is the best choice obtained after many
experiments. The hyperparameters fc, im, and gl, which control
the injection process of garbage code are all set to 100. During
adversarial training, each model undergoes a low-effort FGSM at-
tack with a 10% 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛_𝑏𝑢𝑑𝑔𝑒𝑡 . For adversarial robustness
testing, each model faces a high-effort PGD-50 attack with a 20%
𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛_𝑏𝑢𝑑𝑔𝑒𝑡 .

4.2 Performance Evaluation Without Attack
We demonstrate the detection performance of WasmGuard and
compared models in Table I. The columns of ‘Clean Test’ show
the natural performance of each model on the clean test set with-
out attacks. Among all these models, our WasmGuard achieves
the highest performance in terms of SA, FNR, and FPR. Although
the state-of-the-art gray-image-based MINOS exhibits high stan-
dard accuracy, five other raw-binary-based models outperform it,
possibly due to retaining longer Wasm binaries. Compared to the
adversarially-trained models slack-FGSM and FGSM-RS, the non-
adversarially-trained MalConv model shows better performance
on the clean test. This is because the adversarial training process,
while improving robustness, can sometimes compromise the natu-
ral performance on clean samples, as reported in existing studies

[7, 28]. However, our WasmGuard, while using adversarial train-
ing to enhance robustness, also manages to improve the natural
performance of the model under non-adversarial conditions.

The column of ‘Time’ shows the adversarial training time of the
three adversarially-trained models. It reveals that our WasmGuard
requires the least training time. This is because, unlike the other
two models that use traditional randomly initialized perturbations,
WasmGuard adopts prior-guided initialization of perturbation bytes,
which accelerates the adversarial training process.

4.3 Performance Evaluation Under Attack
We present the detection robustness of WasmGuard and six com-
peting models in Table I. The columns of ‘Adv. Test’ illustrate the
robustness results of each model on the adversarial test set under
PGD-50 attacks with a 20% perturbation budget. As seen from these
columns, when facing attacks, ourWasmGuard significantly outper-
forms all the competing models in all robustness metrics, including
RA, R-FNR, R-FPR, and ASR. Notably, the performance of the four
non-adversarially-trained models drops significantly. For instance,
MINOS’s accuracy drops by approximately half, with FNR and FPR
rising almost 50 times, and ASR reaching up to 49.97%. Compared
to these models, the two adversarially-trained models (Slack-FGSM
and FGSM-RS) show some improvement but still have considerable
room for enhancement, with SA below 70%, and ASR, R-FNR, and
R-FPR around 30%. In contrast, our WasmGuard demonstrates out-
standing robustness, achieving up to 99.2% SA, ASR as low as 0.73%,
R-FPR at only 0.34%, and R-FNR at only 1.25%.
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Figure 3: Visualized feature-vector distribution of Wasm samples in different methods.

4.4 Ablation Study
Our WasmGuard method implements two key components to en-
hance FGSM-based adversarial training: (1) ACLoss, employing ad-
versarial contrastive learning to optimize the representation space
of Wasm examples; (2) Prior-based perturbation initialization, uti-
lizing prior perturbation bytes to initialize adversarial examples.
Ablation study results for removing these two components are
shown in Table 2, under both clean and adversarial conditions.

As shown in the ’clean Test’ columns, under clean conditions,
removing either ACLoss or prior-based initialization results in a
noticeable performance drop across all metrics. This effect is even
more pronounced under adversarial conditions, as illustrated in the
’Adv. Test’ columns. Thus, both ACloss and Prior-based initializa-
tion are crucial for maintaining high detection effectiveness and
robustness. The most significant degradation occurs when both
ACloss and Prior-based initialization are removed. In this case, SA
drops by 0.16%, and FNR and FPR increase by 0.20% and 0.13%, re-
spectively. More critically, RA plummets by 29.51%, with R-FNR and

R-FPR increasing dramatically by 32.29% and 25.16%, respectively,
and ASR rising by 29.41%. These results underscore the importance
of combining two components to achieve optimal detection results.

4.5 Visual Analysis
To visually compare the detection performance ofWasmGuard with
existing methods, we used t-SNE [32] to visualize the Wasm sample
data in two dimensions. We selected 100 benign and 100 malicious
samples from the Wasm-Mal15K dataset and generated correspond-
ing adversarial samples, resulting in a total of 400 samples for visual
analysis. Fig. 3a-3d show the distribution of sample feature vectors
extracted by MINOS, AvastNet, MalConv, and WasmGuard, respec-
tively. In the figures, benign clean samples are denoted as squares,
malicious clean samples as triangles, benign adversarial samples as
plus-signs, and malicious adversarial samples as cross-marks.

The following observations can be made from the figures: (1)
The decision boundary between benign and malicious samples in
Fig. 3d is significantly clearer than in Fig. 3a-3c. (2) The proximity
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Figure 4: Example of WebChecker alert.

between benign adversarial and benign clean samples, as well as
that between malicious adversarial and malicious clean samples, is
much greater in Fig. 3d than in Fig. 3a-3c. Thus, it is evident that
WasmGuard not only optimizes the decision boundary but also
significantly improves intra-class compactness with adversarial
examples involved. A clearer decision boundary leads to better de-
tection performance, while the closer intra-class proximity between
adversarial and clean samples enhances robustness. This explains
whyWasmGuard significantly improves detection robustness under
adversarial attacks and maintains high effectiveness in the absence
of attacks.

5 WebChecker Plugin
We developed WebChecker, a WasmGuard-based browser plugin
designed to provide real-time alerts for webpages containing mali-
cious Wasm files. WebChecker is built on the vue-chrome-extension-
quickstart framework [10], an extensible base for Chrome exten-
sions.

The plugin’s technical architecture consists of a back-end and
a front-end. The back-end, built using the Flask framework, is re-
sponsible for malware detection using the WasmGuard model and
provides a reliable detection service interface to the front-end. The
front-end collects Wasm files from webpages, displays detection
results, and triggers malware alerts via a graphical user interface
(GUI). As illustrated in Fig. 4, when a user accesses a webpage con-
taining a malicious Wasm file, a popup window appears, displaying
the webpage’s URL, the name of the malicious Wasm file, its SHA-
256 hash value, and the probability of the file being malware. The
source code, executable plugin, and detailed usage instructions for We-
bChecker are accessible at https://github.com/Q8201/WasmGuard.

6 Conclusion
This work thoroughly investigates the robust detection of malicious
WebAssembly (Wasm) binaries. We introduced WasmGuard, a re-
silient and efficient method for detecting WebAssembly malware,
leveraging advanced adversarial example generation and adversar-
ial contrastive learning. It integrates two types of perturbations and
prior-based initialization to train a model that not only withstands
strong adversarial attacks but also optimizes representation for

both clean and adversarial samples with low training overhead. We
developed the WasmMal-15K dataset, which we used to thoroughly
validate WasmGuard’s performance against six competing meth-
ods. Furthermore, we implemented WebChecker, a WasmGuard-
powered browser plugin capable of detectingWasmmalware in real
time, providing practical protection for web users. The WasmMal-
15K dataset and the source code of WebChecker have been made
publicly available.
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