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Abstract

We present XLand-MiniGrid, a suite of tools and grid-world environments for
meta-reinforcement learning research inspired by the diversity and depth of XLand
and the simplicity and minimalism of MiniGrid. XLand-Minigrid is written in JAX,
designed to be highly scalable, and can potentially run on GPU or TPU accelerators,
democratizing large-scale experimentation with limited resources. To demonstrate
the generality of our library, we have implemented some well-known single-task
environments as well as new meta-learning environments capable of generating
108 distinct tasks. We have empirically shown that the proposed environments can
scale up to 213 parallel instances on the GPU, reaching tens of millions of steps
per second.

Figure 1: A visualization of how the production rules in XLand-MiniGrid work, exemplified by a few
steps in the environment. On the first steps the agent picks up the blue pyramid, then places it next to
the purple square. The NEAR production rule is then triggered, which transforms both objects into a
new red circle. See Section 2.1 for a detailed description.

1 Introduction

Reinforcement learning is known to be extremely sample inefficient and prone to overfitting, some-
times failing to generalize to even subtle variations in environmental dynamics or goals [Rajeswaran
et al., 2017, Zhang et al., 2018, Henderson et al., 2018]. One way to address these shortcomings
can be a meta-RL approach, where adaptive agents are pre-trained on diverse task distributions to
significantly increase the sampling efficiency on new problems [Wang et al., 2016, Duan et al., 2016].
With sufficient scaling and task diversity, this can lead to astonishing results, reducing the adaptation
time on new problems to the human level and beyond [Team et al., 2021, 2023].

At the same time, meta-RL introduces a trade-off, significantly increasing the pre-training require-
ments at the expense of faster adaptation during inference, as the agent should experience thousands
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of different tasks for generalization. For example, a single training of the Ada agent [Team et al.,
2023] requires five weeks, which is out of reach for most academic labs and practitioners. And even
if they had the resources, the XLand environment is not publicly available. It seems to us, and has
been pointed out by Wang et al. [2021], that such high requirements are the reason why most of the
recent work on adaptive agents [Laskin et al., 2022, Lee et al., 2023, Lu et al., 2023, Norman and
Clune, 2023] uses rather simplistic environments.

While simple environments are affordable and convenient for theoretical analysis, they do not allow
researchers to discover the limits and scaling properties of proposed algorithms in practice. To make
this possible, we continue the successful efforts [Bonnet et al., 2023, Koyamada et al., 2023, Freeman
et al., 2021, Lu et al., 2022] at accelerating environments through JAX [Bradbury et al., 2018] and
introduce XLand-MiniGrid, a library of grid world environments for meta-RL research. It does not
compromise on task complexity in favour of affordability, democratizing large scale experimentation
with limited resources.

2 XLand-MiniGrid

We present an initial release of XLand-MiniGrid (v0.0.1), a suit of tools and grid world environments
for meta-RL research, inspired by the diversity and depth of XLand [Team et al., 2023, 2021] and by
the simplicity and minimalism of MiniGrid [Chevalier-Boisvert et al., 2023].

Similar to XLand, we introduce a system of extendable rules and goals that can be combined in arbi-
trary ways to produce diverse distributions of dynamics and tasks (see Figure 1 for a demonstration).
Similar to MiniGrid, we focus on a goal-oriented grid world environments and use a visual theme
already well known in the community. However, despite the similarity, XLand-MiniGrid is written
in the JAX framework from scratch and can therefore run directly on GPU or TPU accelerators,
reaching millions of steps per second with a simple jax.vmap transformation. This makes it possible
to use the Anakin architecture [Hessel et al., 2021] with the possibility to scale up to thousands of
TPU cores.

This section provides a high-level overview of the library, describing the API, observation and action
spaces, system of rules and goals. Examples of already implemented environments are also presented.

2.1 Rules and Goals

Figure 2: Visualization of a sampled PutNear en-
vironment rule set. This environment can generate
at least 108 distinct tasks (see Appendix B.3). Ad-
ditionaly, we highlight the optimal path to solve
this particular environment. Agent should take
blue pyramid and put it near the purple square to
transform both objects into red circle. To complete
the goal, red circle should be placed near green
circle. See Figure 1 for additional details.

In XLand-MiniGrid, the system of rules and
goals is the cornerstone of the emergent com-
plexity and diversity. In the original MiniGrid
[Chevalier-Boisvert et al., 2023] some environ-
ments have dynamic goals, but the dynamics
are never changed. To train and evaluate highly
adaptive agents, we need to be able to change
the dynamics in non-trivial ways [Team et al.,
2023].

Rules. Rules are the functions that can change
the environment state in some deterministic way
according to the given conditions. As an exam-
ple, NEAR rule (see Figure 1 for a visualization)
accepts two objects a, b and transforms them
to a new object c if a and b end up on neigh-
bouring tiles. Rules can change between resets.
For efficiency reasons, they are evaluated only
after some actions or events (e.g. NEAR rule is
checked only after put_down action).

Goals. Goals are similar to rules, except they do
not change the state, they only test conditions.
As an example, NEAR goal (see Figure 2 for a visualization) accepts two objects a, b and checks that
they are on neighbouring tiles. Similar to the rules, goals are evaluated only after some actions and
can change between resets.
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To be able to change between resets and still be compatible with JAX both rules and goals are
represented with an array encoding, where the first index states the rule or goal ID and the rest
are arguments with optional padding to the same global length. Thus, every rule and goal should
implement encode and decode methods. Environment state contains only these encodings, not the
actual functions or classes. For the full list of rules and goals see Appendix B.2.

2.2 API

Environment Interface. Similar to Jumanji [Bonnet et al., 2023], XLand-MiniGrid Environment
interface is inspired by the dm_env API [Muldal et al., 2019], which is particularly well suited
for the meta-RL, as it separates episodes from trials by design (see Appendix D.1). Thus, each
environment should provide jit-compatible reset, reset_trial and step methods. During the
episode, reset_trial will be called several times when the trial terminates. For common use cases,
this is handled automatically by the base class. For demonstration of how to instantiate and take
actions in the multiple environments at once see code in Listing 1.

1 import jax
2 import xland_minigrid
3

4 key = jax.random.PRNGKey(0)
5 reset_keys = jax.random.split(key, num=NUM_ENVS)
6 # initialize the environment
7 env = xland_minigrid.envs.meta.PutNear(num_trials=5, trial_max_steps=81)
8 # function to perform single step in the environment
9 def _step_fn(timestep, action):

10 new_timestep = jax.vmap(env.step)(timestep, action)
11 return new_timestep, None
12 # sample actions for the rollout
13 actions = jax.random.randint(key, shape=(TIMESTEPS, NUM_ENVS), maxval=6)
14 # reset NUM_ENVS environments
15 timestep = jax.vmap(env.reset)(key=reset_keys)
16 # vectorized rollout for TIMESTEPS steps
17 last_timestep, _ = jax.lax.scan(_step_fn, timestep, actions)

Listing 1: Sample code demonstrating how to instantiate and perform actions in the multiple environ-
ments at once using jax.vmap transformation. Note that this code can be freely combined with the
jax.jit transformation, but in practice it should be applied to the entire training loop for maximum
performance.

State. The State contains all the necessary information to describe the dynamics of the environment,
such as rules, goals, grid and agent states. This is necessary for step and reset to be compatible
with JAX transformations, since they must not have side effects. State can also contain arbitrary
pytree2 as a carry, to pass information between trials. This can be useful for procedural generation,
for example, as objects sampled at the start of the episode can be stored and only their positions
randomised during trial resets. For sampling, each state contains a pseudorandom number generator
key that can be used during resets.

TimeStep. The TimeStep contains all the information available to the agent, such as observation,
reward, step_type and discount, where the latter two being inherited from the dm_env3 API.
The step type will be FIRST at the beginning of the episode, LAST on the last step and MID on all
others. Discount can be in the range [0, 1] and we set it to 0.0 to indicate the end of the trial.

Observation and Action Space. We tried not to deviate too much from the original MiniGrid.
Observations are four-dimensional arrays, where each position is encoded by tile and color ids. Thus,
observations are not images and should not be treated as such by default. While naively treating them
as images will work in most cases, the correct approach would be to pre-process them via embeddings.
We also support the ability to prohibit an agent from seeing through walls. The actions are discrete,
namely move_forward, turn_left, turn_right, pick_up, put_down, toggle. The agent can
only pick up one item, and only if its pocket is empty.

2https://jax.readthedocs.io/en/latest/pytrees.html
3https://github.com/google-deepmind/dm_env/blob/master/docs/index.md
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2.3 Supported environments

Single-task environments. Due to the generality of rules and goals most of the non-language based
tasks from MiniGrid can be easily implemented in XLand-MiniGrid. To demonstrate this, we have
ported several popular environments (see Figure 6) such as Empty, FourRooms, UnlockPickUp,
DoorKey. For example, Empty and FourRooms are specified with AgentOnEntityTile goal, where
target tile is green goal. UnlockPickUp is specified with AgentHold goal with the target object to
pick up.

Meta-learning environments. In the initial release we implemented four meta-learning environments,
namely DarkRoom, FourGoals, PickUp, PutNear. For brevity we will describe only PutNear here
(see Figure 2). The goal of this environment is to put near two objects, one of which is not present
in initial grid and must be produced using NEAR rule. However, there is another NEAR rule with this
object, which will transition environment to the unsolvable state. Thus, agent should learn to avoid it
during trials. Positions of objects are randomized between trials, while objects itself are randomized
between episodes. This environment can generate at least 108 distinct tasks (see Appendix B.3). Such
large number of tasks is important for studying scaling and generalization [Team et al., 2023]. For
future planned meta-RL environments see Section 4.

3 Experiments

In this section we demonstrate the XLand-Minigrid ability to scale to thousands of parallel environ-
ments, dozens of rules and various grid sizes. All the measurements were done on a single A100
GPU. For PPO hyperparameters see Appendix C.

Simulation throughput. We compare simulation throughput for single-task (see Figure 3) and meta-
learning environments (see Figure 4a). For single-tasks environments we consider random policy and
PPO. As can be seen, compared to the commonly used MiniGrid [Chevalier-Boisvert et al., 2023]
environments with gymnasium [Towers et al., 2023] asynchronous vectorization, XLand-Minigrid
achieves at least 10x faster throughput reaching tens of millions of steps per second. This result also
holds for PPO training, showing that we can achieve a significant reduction in total training time for
a fixed number of transitions. However, saturation is observed for PPO after 2048 environments, so
further scaling is probably not beneficial due to the diminishing returns (at least on a single GPU).
Testing on the TPU as well as on multiple GPUs is left for future work.
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Figure 3: Simulation throughput for XLand-MiniGrid and MiniGrid.

Scaling grid size. While most of the grid world environments from MiniGrid Chevalier-Boisvert et al.
[2023] use small grid sizes, it is still of interest to test XLand-MiniGrid scaling properties among
this dimension. As can be seen on the Figure 4b, PutNear throughput can degrade significantly with
the increased grid size, also showing earlier signs of the saturation. The explanation for this is that
many game loop operations, such as conditional branching during action selection, do not fit well into
the parallelism principles underlying JAX framework. Similar results we observed in the previous
work on JAX-based environments [Bonnet et al., 2023, Koyamada et al., 2023]. Nevertheless, the
throughput remains competitive even at large sizes. Furthermore, small grid sizes can still be a
significant challenge for existing algorithms [Zhang et al., 2020].

Scaling number of rules. Full-scale XLand environment can use more than five rules according to
the Team et al. [2023]. To test XLand-MiniGrid in similar conditions we report simulation throughput
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Figure 4: Simulation throughput for meta-learning environments, as well as for different grid sizes
and different numbers of rules.

varying number of rules. For testing purposes we just replicated same NEAR rule multiple times in
the PutNear environment. As can be seen in Figure 4c, throughput monotonically decreases. As a
result, the number of parallel environments has to be increased in order to maintain the same level of
throughput. However, in contrast to the increase in grid size, there is no apparent saturation even for
24 rules.

4 Limitations and Future Work

There are several notable limitations to our work, some of which we expect to address in future
releases of our library.

Compared to the full-scale XLand [Team et al., 2021, 2023], we do not currently support multi-agent
simulations, procedural generation of complex worlds, rules with multiple output entities, or goal
composition. Our initial environments use simple multi-room grid worlds and small sets of predefined
rules (see Section 2.3). However, we plan to release a benchmark that approximates the procedural
generation of XLand-v2.0 rule sets (see Appendix A.2 in Team et al. [2023]) as well as the procedural
generation of different maze layouts.

Compared to the MiniGrid [Chevalier-Boisvert et al., 2023], we do not yet support all tiles such as lava
or moving obstacles. Also, as our focus is on meta-RL, we do not provide explicit natural language
encoding of rules and goals, although this can easily be done. For a language focused learning
environment, we refer the reader to the recent HomeGrid [Lin et al., 2023] environment. Although
we do not support all existing MiniGrid environments in the initial release, we provide enough tools
to make it easy to implement them if needed (and have demonstrated this in the Section 2.3).

In general, while JAX is much more high-level than CUDA or Triton [Tillet et al., 2019], it is
still much more restrictive than PyTorch [Paszke et al., 2019], can be difficult to debug, and is
poorly suited to the heterogeneous computations or conditional branching that are common when
implementing environments. However, as we show in our work, when used correctly it can provide
excellent scalability opportunities.
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A Related Work

Meta-learning environments. Historically, benchmarks for meta-reinforcement learning have
focused on tasks with simple distributions, such as bandits, 2D navigation [Wang et al., 2016, Duan
et al., 2016, Finn et al., 2017], or few-shot adaptation of control policies (e.g. MuJoCo [Zintgraf et al.,
2019] or MetaWorld [Yu et al., 2020]), where the latent component is reduced to a few parameters
that control goal location or changes in robot morphology. The recent wave of research on in-context
reinforcement learning [Laskin et al., 2022, Lee et al., 2023] also uses simple environments for
evaluation, such as the navigational DarkRoom, KeyToDoor, or MuJoCo with random projections of
observations [Lu et al., 2023]. Some notable exceptions are XLand [Team et al., 2021, 2023] and
Alchemy [Wang et al., 2021], but XLand is not open source and Alchemy is built on top of Unity
(www.unity.com) and runs at 30 FPS, which is not ideal.

We hypothesize that the popularity of such simple benchmarks is attributed to their affordability, as
meta-training can require an order of magnitude more environmental transitions than single-task RL.
However, this prevents researchers from uncovering the limits and scaling properties of the proposed
methods. We believe that the solution is an environment that does not compromise interestingness
and task complexity for the sake of affordability. This is why we designed XLand-MiniGrid to take
the best of the XLand and Alchemy environments without sacrificing speed and scalability thanks to
the JAX ecosystem.

Grid world environments. Grid world environments have a long history in RL research Sutton
and Barto [2018] as they possess a number of attractive properties. They are typically easy to
implement, do not require large computational resources, have simple observation spaces, and
yet pose a significant challenge even to modern RL methods, allowing the testing of exploration
[Zhang et al., 2020], language understanding and generalization [Zholus et al., 2022, Lin et al., 2023,
Chevalier-Boisvert et al., 2023, Hanjie et al., 2021], or memory [Paischer et al., 2022].

Despite the greater benefits variety of the existing grid world benchmarks, to our knowledge only
the KrazyWorld [Stadie et al., 2018] focuses on meta-learning, and unfortunately it is no longer
maintained. Other libraries, such as the popular MiniGrid [Chevalier-Boisvert et al., 2023] and
Griddly [Bamford et al., 2020], are not scalable and extensible enough to cover meta-learning needs.
In this work, we have attempted to address these needs with new grid world environments in the
minimalist style of MiniGrid. However, XLand-MiniGrid is completely written in JAX, which allows
it to scale to millions of steps per second on the single GPU.

Large-batch RL. Large batches are known to be beneficial in deep learning [You et al., 2019] and
deep reinforcement learning is no exception. It is known to be extremely sample inefficient and large
batches can increase experience throughput accelerating convergence and improving training stability.
For example, many of the early breakthroughs on the Atari benchmark were driven by more efficient
distributed experience collection [Horgan et al., 2018, Espeholt et al., 2018, Kapturowski et al., 2018],
eventually decreasing training time to only a few minutes [Stooke and Abbeel, 2018, Adamski et al.,
2018] per game. Increasing the mini-batch size can also be beneficial in the offline RL [Nikulin et al.,
2022, Tarasov et al., 2023].

However, not all algorithms scale equally well, and off-policy methods have been lagging behind
until recently [Li et al., 2023], whereas on-policy methods, while generally less sample efficient, can
scale to enormous batch sizes of millions [Berner et al., 2019, Petrenko et al., 2020], completing
training much faster [Stooke and Abbeel, 2018, Shacklett et al., 2021] in wall clock time. While we
do not introduce novel algorithmic improvements in our work, we hope that the proposed highly
scalable XLand-MiniGrid environments will help practitioners conduct meta-reinforcement learning
experiments at scale faster and with fewer resources.

Hardware-accelerated environments. There are several approaches to increasing the throughput of
environment experience. The most general approach would be to write environment logic in low-level
languages (to bypass Python GIL) for asynchronous collection, as EnvPool Weng et al. [2022] does.
However, it does not eliminate the bottleneck of data transfer between CPU and GPU/TPU on every
iteration, and debugging asynchronous systems is difficult. Porting the entire environment to the
GPU (like Isaac Gym [Makoviychuk et al., 2021], Megaverse [Petrenko et al., 2021] or Madrona
[Shacklett et al., 2023]) can drastically increase training time by removing the bottleneck, but has the
disadvantage of being GPU-only.
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Recently, new environments written entirely in JAX Bradbury et al. [2018] have appeared, taking
advantage of the GPU or TPU and the ability to just-in-time compile the entire training loop, further
reducing the total training time. However, most of them focus on single-task environments for
robotics [Freeman et al., 2021], board games [Koyamada et al., 2023] or combinatorial optimization
[Bonnet et al., 2023]. The proposed XLand-MiniGrid continues this path by adding the JAX-based
environments for meta-reinforcement learning, which are currently missing.
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B Environments Details

B.1 Tiles and Colors

(a) Supported Tiles.

Tile ID

END_OF_MAP 0
UNSEEN 1
EMPTY 2
FLOOR 3
WALL 4
BALL 5
SQUARE 6
PYRAMID 7
GOAL 8
KEY 9
DOOR_LOCKED 10
DOOR_CLOSED 11
DOOR_OPEN 12

(b) Supported Colors.

Color ID

END_OF_MAP 0
UNSEEN 1
EMPTY 2
RED 3
GREEN 4
BLUE 5
PURPLE 6
YELLOW 7
GREY 8
BLACK 9
ORANGE 10
WHITE 11

B.2 Rules and Goals

For efficiency, we separate rules and goals with the same meaning that apply only to entities or to the
agent, since internally the agent is not considered a valid entity. For example, the rules AgentNear
and EntityNear are separated.

Table 2: Supported Goals.
Rule Meaning ID

Empty Placeholder goal, returns False 0
AgentHold(a) Whether agent holds a 1
AgentOnTile(a) Whether agent is on tile a 2
AgentNear(a) Whether agent and a are on neighboring tiles 3
EntityNear(a, b) Whether a and b are on neighboring tiles 4
AgentOnPosition(x, y) Whether agent is on (x, y) position 5
EntityOnPosition(x, y) Whether entity is on (x, y) position 6

Table 3: Supported Rules.

Rule Meaning ID

Empty Placeholder rule, does not change anything 0
AgentHold(a) → c If agent hold a replaces it with c 1
AgentNear(a) → c If agent is on neighboring tile with a replaces it with c 2
EntityNear(a, b) → c If a and b are on neighboring tiles, replaces one with c and removes the other 3

B.3 Number of PutNear Possible Tasks

Here we describe our reasoning for estimating the total number of unique tasks possible in the
PutNear environment (see Figure 2 and Section 2.3). For this environment there are 7 valid colors
and 4 entities, for a total of 28 valid objects. We sample 6 out of 28 without repetition (5 to place on
the grid, 1 for the goal as it is not initially present on the grid). Next, we have to sample 2 out of 6 to
determine the target (the order is important here). Then we sample 2 more from the remaining 4 to
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determine the first NEAR rule, and 1 from the last 2 objects to determine the last NEAR rule. In total
we get (

28

6

)(
6

2

)
2!

(
4

2

)(
2

1

)
= 376740 · 15 · 2 · 6 · 2 = 135, 626, 400

which is order of 108 and without taking into account starting positions randomization.
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C Hyperparameters

Table 4: PPO hyperparameters used in the Section 3 experiments. We adapted our PPO implementa-
tion from PureJaxRL library [Lu et al., 2022].

Parameter Value
num envs See Section 3
num steps 64
num epochs 4
num minibatches 4
total timesteps 20000000
learning rate 2.5e-4
clip eps 0.2
gamma 0.99
gae lambda 0.95
entropy coef 0.001
value function coef 0.5
max grad norm 0.5
optimizer Adam
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D Additional Figures

D.1 Meta-RL Process

Figure 5: Agent-environment interaction during meta-reinforcement learning. At the beginning
of each episode new task is sampled and the agent is given M trials to solve it. Notably, for
memory-based agents [Wang et al., 2016, Duan et al., 2016], memory is reset only at the end of the
episodes.

D.2 MiniGrid Environments

(a) Empty (b) DoorKey (c) FourRooms

Figure 6: Visualisation of several environments ported from MiniGrid.
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