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ABSTRACT

Machine learning on graphs has recently found extensive applications across do-
mains. However, the commonly used Message Passing Neural Networks (MPNNs)
suffer from limited expressive power and struggle to capture long-range depen-
dencies. Graph transformers offer a strong alternative due to their global attention
mechanism, but they come with great computational overheads, especially for large
graphs. In recent years, State Space Models (SSMs) have emerged as a compelling
approach to replace full attention in transformers to model sequential data. It blends
the strengths of RNNs and CNNs, offering a) efficient computation, b) the ability
to capture long-range dependencies, and c) good generalization across sequences
of various lengths. However, extending SSMs to graph-structured data presents
unique challenges due to the lack of canonical node ordering in graphs. In this
work, we propose Graph State Space Convolution (GSSC) as a principled extension
of SSMs to graph-structured data. By leveraging global permutation-equivariant
set aggregation and factorizable graph kernels that rely on relative node distances
as the convolution kernels, GSSC preserves all three advantages of SSMs. We
demonstrate the provably stronger expressiveness of GSSC than MPNNs in count-
ing graph substructures and show its effectiveness across 11 real-world, widely
used benchmark datasets. GSSC achieves the best results on 6 out of 11 datasets
with all significant improvements compared to the state-of-the-art baselines and
second-best results on the other 5 datasets. Our findings highlight the potential of
GSSC as a powerful and scalable model for graph machine learning. Our code is
available at https://anonymous.4open.science/r/GSSC-5ED8.

1 INTRODUCTION

Machine learning for graph-structured data has numerous applications in molecular graphs (Duvenaud
et al., 2015; Wang et al., 2021), drug discovery (Xiong et al., 2021; Stokes et al., 2020), and social
networks (Fan et al., 2019; Guo & Wang, 2020). In recent years, Message Passing Neural Networks
(MPNNs) have been arguably the most popular neural architecture for graphs (Kipf & Welling, 2016;
Fung et al., 2021; Veličković et al., 2018; Xu et al., 2018; Corso et al., 2020; Zhou et al., 2020), but
they also suffer from many limitations, including restricted expressive power (Xu et al., 2018; Morris
et al., 2019), over-squashing (Di Giovanni et al., 2023; Topping et al., 2022; Nguyen et al., 2023), and
over-smoothing (Rusch et al., 2023; Chen et al., 2020a; Keriven, 2022). These limitations could harm
the models’ performance. For example, MPNNs cannot capture long-range dependencies (Dwivedi
et al., 2022) or detect subgraphs like cycles that are important in forming ring systems of molecular
graphs (Chen et al., 2020b).

Adapted from the vanilla transformer in sequence modeling (Vaswani et al., 2017), graph transformers
have attracted growing research interests because they may alleviate these fundamental limitations of
MPNNs (Kreuzer et al., 2021; Kim et al., 2022; Rampášek et al., 2022; Chen et al., 2022a; Dwivedi
& Bresson, 2020). By attending to all nodes in the graph, graph transformers are inherently able to
capture long-range dependencies. However, the global attention mechanism ignores graph structures
and thus requires incorporating positional encodings (PEs) of nodes (Rampášek et al., 2022) that
encode graph structural information. For example, the information of relative distance between nodes
has been leveraged in attention computation (Li et al., 2020; Wang et al., 2022; Ying et al., 2021).
Moreover, the full attention computation scales quadratically in terms of the length of the sequence
or the number of nodes in the graph. This computational challenge motivates the study of linear-time
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transformers by incorporating techniques such as low-rank (Katharopoulos et al., 2020; Wang et al.,
2020; Child et al., 2019; Choromanski et al., 2020; Yang et al., 2023), sparse approximations (Indyk
& Motwani, 1998; Kitaev et al., 2020; Daras et al., 2020; Zandieh et al., 2023; Han et al., 2023),
or Taylor expansion (Arora et al., 2024) of the attention matrix. Some specific designs of scalable
transformers for large-scale graphs are also proposed (Wu et al., 2022; Chen et al., 2022b; Shirzad
et al., 2023; Wu et al., 2023; Kong et al., 2023; Wu et al., 2024). Nevertheless, none of these variants
have been proven to be consistently effective across different domains (Miao et al., 2024).

State Space Models (SSMs) (Gu et al., 2021a;b; Gu & Dao, 2023) have recently demonstrated
promising potentials for sequence modeling. Adapted from the classic state space model (Kalman,
1960), SSMs can be seen as a hybrid of recurrent neural networks (RNNs) and convolutional neural
networks (CNNs). It is a temporal convolution that preserves translation invariance and thus allows
good generalization to sequences longer than those used for training. Meanwhile, this class of models
has been shown to capture long-range dependencies both theoretically and empirically (Gu et al.,
2020; Tay et al., 2020; Gu et al., 2021b;a). Finally, it can be efficiently computed in linear or
near-linear time via the recurrence mode or the parallelizable operations. These advantages make
the SSM a strong candidate as an alternative to transformers (Mehta et al., 2022; Ma et al., 2022; Fu
et al., 2022; Wang et al., 2023; Sun et al., 2024).

Given the great potential of SSMs, there is increasing interest in generalizing them for graphs as
an alternative to graph transformers (Wang et al., 2024a; Behrouz & Hashemi, 2024). The main
technical challenge is that SSMs are defined on sequences that are ordered and causal, i.e., have a
linear structure. Yet, graphs have complex topology, and no canonical node ordering can be found.
Naive tokenization (e.g., sorting nodes into a sequence in some ways) breaks the inductive bias -
permutation symmetry - of graphs, which consequently cannot faithfully represent graph topology,
and may suffer from poor generalization.

In this study, we go back to the fundamental question of how to build SSMs for graph data. Instead
of simply tokenizing graphs and directly applying existing SSMs for sequences (which may break
the symmetry), we argue that principled graph SSMs should inherit the advantages of SSMs in
capturing long-range dependencies and being efficient. Simultaneously, they should also preserve the
permutation symmetry of graphs to achieve good generalization. With this goal, in this work:

• We identify that the key components enabling SSMs for sequences to be long-range, efficient, and
well-generalized to longer sequences, is the use of a global, factorizable, and translation-invariant
kernel that depends on relative distances between tokens. This relative-distance kernel can be
factorized into the product of absolute positions, crucial to achieving linear-time complexity.

• This observation motivates us to design Graph State Space Convolution (GSSC) in the following
way: (1) it leverages a global permutation equivariant set aggregation that incorporates all nodes
in the graph; (2) the aggregation weights of set elements rely on relative distances between nodes
on the graph, which can be factorized into the "absolute positions" of the corresponding nodes,
i.e., the PEs of nodes. By design, the resulting GSSC is inherently permutation equivariant,
long-range, and linear-time. Besides, we also demonstrate that GSSC is more powerful than
MPNNs and can provably count at least 4-paths and 4-cycles.

• Empirically, our experiments demonstrate the high expressivity of GSSC via graph substructure
counting and validate its capability of capturing long-range dependencies on Long Range Graph
Benchmark (Dwivedi et al., 2022). Results on 10 real-world, widely used graph machine learning
benchmark datasets (Hu et al., 2020; Dwivedi et al., 2023; 2022) also show the consistently
superior performance of GSSC, where GSSC achieves best results on 7 out of 10 datasets with all
significant improvements compared to the state-of-the-art baselines and second-best results on
the other 3 datasets. Moreover, it has much better scalability than the standard graph transformers
in terms of training and inference time.

2 PRELIMINARIES

Graphs and Graph Laplacian. Let G = (V, E) be a undirected graph, where V is the node set
and E is the edge set. Suppose G has n nodes. Let A ∈ Rn×n be the adjacency matrix of G
and D = diag([

∑
j A1,j , ...,

∑
j An,j ]) be the diagonal degree matrix. The (normalized) graph

Laplacian is defined by L = I −D−1/2AD−1/2 where I is the n by n identity matrix.
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𝑗 𝒊…

ℎ𝑖 = σ𝑗=1
𝒊 𝐾 𝑖, 𝑗 𝑥𝑗  (① global causal sum)

𝒖

…
𝑣

ℎ𝑢 = σ𝑣∈𝑉𝐾 𝑢, 𝑣 𝑥𝑣 + 𝐾0 𝑢, 𝑢 𝒙𝒖 (① global equivariant sum)

𝐾 𝑖, 𝑗
= 𝐾(𝑖 + Δ, 𝑗 + Δ) (② translation invariance)

= 𝑝𝑖 ∗ 𝑝𝑗 (③ factorized into absolute positions) 

𝐾 𝑢, 𝑣
= 𝐾(𝜎 𝑢 ,𝜎(𝑣)) (② permutation invariance)

= 𝑧𝑢 , 𝑧𝑣 (③ factorized into positional encodings)

𝑗 𝒊…

𝑝𝑗 𝑝𝑖
𝒖

…
𝑣

𝑧𝑢

𝑧𝑣

GraphSequence

Figure 1: Comparison of Sequence State Space Conv. (left) and Graph State Space Conv. (right).

State Space Models. State space model is a continuous system that maps a input function x(t) to
output h(t) by the following first-order differential equation: d

dth(t) = Ah(t) +Bx(t). This system
can be discretized by applying a discretization rule (e.g., bilinear method (Tustin, 1947), zero-order
hold (Gu & Dao, 2023)) with time step ∆. Suppose hi := h(i ·∆) and xi := x(i ·∆). The discrete
state space model becomes a recurrence process:

hi = Āhi−1 + B̄xi, (1)
where Ā = fA(∆, A) and B̄ = fB(∆, B) depend on the specific discretization rule. The recurrence
Eq. (1) can be computed equivalently by a global convolution:

hi =

i∑
j=1

Āi−jB̄xj . (2)

In the remaining of this paper, we call convolution Eq. (2) state space convolution (SSC). Notably,
the state space model enjoys three key advantages simultaneously:

• Translation equivariance. A translation to input xi → xi+δ yields the same translation to output
hi → hi+δ .

• Long-range dependencies. The feature hi of i-th token depends on all preceding tokens’ features
x1, x2, ..., xi−1. With a properly chosen structured matrix Ā, e.g., HiPPO (Gu et al., 2020), low-
rank (Gu et al., 2021a) or diagonal matrices (Gupta et al., 2022), the gradient norm ∥∂hi/∂xi−j∥
does not decay as j goes large. This is different to the fixed-size receptive field in CNNs (LeCun
et al., 1998; Krizhevsky et al., 2012) and the vanishing gradient norm in RNNs (Pascanu, 2013).

• Computational efficiency and parallelism. To computing h1, h2, ..., hn, it adopts either recurrence
(Eq. 1) or convolution (Eq. 2). Near-linear-time algorithms are introduced to provide parallelism
for efficient training, e.g., FFT (Gu et al., 2021a; Karami & Ghodsi, 2024), block-decomposition
matrix multiplication (Dao & Gu, 2024) for convolution, and parallel scan (Gu & Dao, 2023) for
recurrence.

Notation. Suppose x, y are two vectors of dimension n. Denote ⟨x, y⟩ =
∑n

i=1 xiyi as the inner
product, x ⊙ y = (x1y1, x2y2, ...) be the element-wise product. We generally denote the hidden
dimension by m, and the dimension of positional encodings by d.

3 GRAPH STATE SPACE CONVOLUTION

3.1 GENERALIZING STATE SPACE CONVOLUTION TO GRAPHS

Like standard SSC (Eq. 2), the desired graph SSC should keep the good capturing of long-range
dependencies as well as linear-time complexity and parallelizability. Meanwhile, permutation
equivariance as a strong inductive bias of graph-structured data should be preserved by the model as
well to improve generalization.

Our key observations of SSC start with the fact that the convolution kernel Āi−j encoding the relative
distance i− j between token i and j allows for a natural factorization:

hi =

i∑
j=1

Āi−jB̄xj = Āi
i∑

j=1

Ā−jB̄xj . (3)
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Generally,
∑

j K(i, j)xj with a generic kernel K(i, j) requires quadratic-time computation and may
not capture translation invariant patterns for variable-length generalization. For SSC (Eq. 3), however,
it captures translation invariant patterns by adopting a translation-invariant kernelK(i−j) that only
depends on the relative distance i− j, which gives the generalization power to sequences even longer
than those used for training (Giles & Maxwell, 1987; Kazemnejad et al., 2024). Moreover, SSC attains
computational efficiency by leveraging the factorability of its particular choice of the relative distance
kernelK(i−j) = Āi−j = Āi ·Ā−j , where the factors only depend on the absolute positions of token
i and j respectively. To compute h, one construct [

∑1
j=1 Ā

−jB̄xj , ...,
∑n

j=1 Ā
−jB̄xj ] using prefix

sum with complexity O(n), and then readout hi by multiplying Āi for all i = 1, 2, ..., n in parallel
with complexity O(n). Finally, the global causal sum

∑
j≤i helps capture global dependencies.

Overall, the advantages of SSC are attributed to these three aspects.

Inspired by these insights, a natural generalization of SSC to graphs, written generally as hv =∑
u∈V K(v, u)xu, is expected to adopt a permutation-invariant kernelK(v, u), v, u ∈ V to capture

the inductive bias of graphs. The kernel should be factorizable K(v, u) = z⊤v zu with certain notion
of node absolute position for computational efficiency, and the convolution should perform global
pooling across the entire graph to capture global dependencies. Note that causal sum

∑
j≤i is

replaced by global pooling
∑

u∈V due to the lack of causality in the order of nodes.

Fortunately, a systematic strategy can be adopted to design such kernels. First, the kernel K(v, u)
should depend on some notions of relative distance between nodes to capture graph topology and
preserve permutation invariance. The choices include but are not limited to shortest-path distance,
random walk landing probability (Li et al., 2019) (such as PageRank (Page et al., 1999)), heat
(diffusion) distance (Chung, 2007), resistance distance (Xiao & Gutman, 2003; Palacios, 2001), etc.
Many of them have been widely adopted as edge features for existing models, e.g., GNNs (You et al.,
2021; Li et al., 2020; Zhang & Li, 2021; Chien et al., 2021; Velingker et al., 2024; Nikolentzos &
Vazirgiannis, 2020) and graph transformers (Kreuzer et al., 2021; Rampášek et al., 2022; Ma et al.,
2023; Mialon et al., 2021). More importantly, all these kernels can be factorized into some weighted
inner product of Laplacian eigenvectors (Belkin & Niyogi, 2003). Here, Laplacian eigenvectors,
also known as Laplacian positional encodings (LPE) (Wang et al., 2022; Dwivedi et al., 2023; Lim
et al., 2022), play the role of the absolute positions of nodes in the graph. Formally, consider the
eigendecomposition L = V ΛV ⊤ and let pu = [Vu,:]

⊤ be the LPE for node u. Then a relative-
distance kernel K(u, v) can be generally factorized into K(u, v) = p⊤u (ϕ(Λ) ⊙ pv) for certain
functions ϕ. For instance, diffusion kernel satisfies [ϕ(Λ)]k = exp(−tλk) for some time parameter t.

Graph State Space Convolution (GSSC). Given the above observations, we are ready to present
GSSC as follows. Given the input node features xu ∈ Rm, the d-dim Laplacian positional encodings
pu = [Vu,1:d]

⊤ ∈ Rd, and the corresponding d eigenvalues Λd = [λ1, ..., λd]
⊤, the output node

representations hu ∈ Rm follow

hu =
∑
v∈V

⟨zuWq, zvWk⟩ ⊙Woxv + ⟨zuWsq, zuWsk⟩ ⊙Wsxu, (4)

= ⟨zuWq,
∑
v∈V

zvWk ⊙Woxv⟩+ ⟨zuWsq, zuWsk ⊙Wsxu⟩. (5)

Here zu = [ϕ1(Λd)⊙pu, ..., ϕm(Λd)⊙pu] ∈ Rd×m represents the eigenvalue-augmented PEs from
raw d-dim PEs pu and ϕℓ : Rd → Rd are learnable permutation equivariant functions w.r.t. d-dim
axis (i.e., equivariant to permutation of eigenvalues). All W ∈ Rm×m with different subscripts are
learnable weight matrices. The inner product ⟨zuWq, zvWk⟩ ∈ Rm only sums over the first d-dim
axis. The term zuWsk ⊙Wsxu in Eq.5 should be interpreted as first broadcasting Wsxu from Rm

to Rd×m and then performing element-wise products. Note that GSSC is a generalization of SSC
(Eq. 3) in the sense that:

• Absolute position: absolute position Āi is replaced by positional encodings zu;
• factorizable kernel: the kernel ĀiĀ−j in terms of the product of absolute positions is replaced by

the inner product of graph positional encodings ⟨zuWq, zvWk⟩.

• global sum: casual sum
∑i

j=1 Ā
−jB̄xj is replaced by an equivariant global pooling. As graphs

are not causal, which means a node u only distinguishes itself (node u) from other nodes, we

4
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Figure 2: Illustration of Graph State Space Convolution (GSSC).

adopt permutation equivariant global pooling consists of the term zuWsk ⊙Wsxu denoting node
u itself, and (

∑
v∈V zvWk)⊙Woxv denoting all nodes in the graph.

Proposition 3.1 suggests that GSSC with learnable ϕ can capture long-range dependencies.
Proposition 3.1. There exists ϕ such that for GSSC Eq. 4, the gradient norm ∥∂hu/∂xv∥ does not
decay as spd(u, v) grows, where spd denotes the shortest path distance.

To sum up, the design of GSSC leads to the following key properties as desired.
Remark 3.1. GSSC (Eq. 4) is (1) permutation equivariant: a permutation of node indices reorders
hu correspondingly; (2) long-range: as suggested by Proposition 3.1; (3) linear-time: the complexity
of computing h1, ..., hn from x1, ..., xn is O(nmd), where n is the number of nodes and m, d are
hidden and positional encoding dimension; (4) stable: perturbation to graph Laplacian yields a
controllable change of GSSC model output, because permutation equivariance and smoothness of
ϕℓ ensure the stability of inner product ⟨zuWq, zvWk⟩ and model output, as shown in Wang et al.
(2022); Huang et al. (2024). Stability is an enhanced concept of permutation equivariance and is
crucial for out-of-distribution generalization (Huang et al., 2024).

3.2 EXTENSIONS AND DISCUSSIONS

Incorporating Edge Features. SSMs (and the proposed GSSC) do not have a natural way to
incorporate token-pairwise (edge) features. To address this inherent limitation, SSMs (and their graph
extension GSSC) need to be paired with modules that can incorporate token-pairwise (edge) features,
such as MPNNs adopted in previous graph Mambas (Wang et al., 2024a; Behrouz & Hashemi, 2024)
and graph transformers (Rampášek et al., 2022; Chen et al., 2022a). SSMs and MPNNs complement
either side by capturing global dependence via SSMs and edge features via MPNNs. This can be
validated by the significant performance boost compared with using either module alone in practice.

Selection Mechanism in SSMs. It is known that SSMs lack of selection mechanism, i.e., the kernel
Āi−j is only a function of positions i, j and does not rely on the feature of tokens (Gu & Dao,
2023). To improve the content-aware ability of SSMs, Gu & Dao (Gu & Dao, 2023) proposed
to make coefficients Ā, B̄ in Eq.1 data-dependent, i.e., replacing Ā by Āi := Ā(xi) and B̄ by
B̄i := B̄(xi). This leads to a data-dependent convolution: hi =

∑i
j=1 Āi−1Āi−2...ĀjB̄jxj . Again,

this convolution can be factorized into hi = Ãi(
∑i

j=1 Ã
−1
j B̄jxj), where Ãi := Āi−1Āi−2...Ā1 can

be interpreted as a data-dependent absolute position of token i, depending on features and positions
of all preceding tokens. We can generalize this “data-dependent position” idea to GSSC, defining a
data-dependent positional encodings z̃ as follows:

z̃u =
∑
v∈V

⟨zuWdq, zvWdk⟩(zv ⊙ xv)Wdv, (6)

where zu ⊙ xu should be interpreted as first broadcasting xu from Rm to Rr×m and then doing
the element-wise product with zu. Note that the new positional encodings z̃u rely on the features
and positional encodings of all nodes, which reflects permutation equivariance. To achieve a se-
lection mechanism, we can replace every zu in Eq. 4 by z̃u. Thanks to the factorizable kernel
⟨zuWdq, zvWdk⟩, computing z̃u can still be done in O(nmd2), linear w.r.t. graph size.
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Compared to Graph Spectral Convolution (GSC). GSSC may also look similar to graph
spectral convolution, which is usually in the form of H = V ψ(Λ)V ⊤XW , where H =
[h⊤1 ; ...;h

⊤
n ]

⊤ ∈ Rn×m and X = [x⊤1 ; ...;x
⊤
n ]

⊤ ∈ Rn×m are a row-wise concatenation of fea-
tures, ψ(Λ) = diag([ψ(λ1), ..., ψ(λn)]) is the spectrum-domain filtering with ψ : R → R being an
element-wise function. Equivalently, it can be written as hu =

∑
v∈V⟨pu, ψ(Λ)⊙ pv⟩Wxv . There

are several differences between GSSC (Eq. 4) and graph spectral convolution: (1) ψ : R → R is
an element-wise filters, while ϕ : Rm → Rm is a general permutation equivariant function that
considers the mutual interactions between frequencies; (2) GSSC distinguishes a node itself (weight
Wsq,Wsk,Wso) and other nodes (weight Wq,Wk,Wo), while GSC treats all nodes using the same
weight W . The former turns out to be helpful to express the diagonal element extraction (diag(Ak))
in cycle counting. In comparison, GSC with non-distinguishable node features cannot be more
powerful than 1-WL test (Wang & Zhang, 2022), while GSSC, is more powerful as shown later.

Super-linear Computation of Laplacian Eigendecomposition. GSSC requires the computation of
Laplacian eigendecomposition as preprocessing. Although finding all eigenvectors and eigenvalues
can be costly, (1) in real experiments, such preprocessing can be done efficiently, which may only
occupy less than 10% wall-clock time of the entire training process (see Sec. 5.3 for quantitative
results on real-world datasets); (2) we only need top-d eigenvectors and eigenvalues, which can be
efficiently found by Lanczos methods (Paige, 1972; Lanczos, 1950) with complexity O(Ed) (E is
the number of edges) or similarly by LOBPCG methods (Knyazev, 2001); (3) one can also adopt
random Fourier feature-based approaches to fast approximate those kernels’ factorization (Smola &
Kondor, 2003; Choromanski, 2023; Reid et al., 2024) without precisely computing the eigenvectors.

3.3 EXPRESSIVE POWER

We measure the expressivity of GSSC via graph distinguishing ability compared to WL test hierarchy.
Proposition 3.2. GSSC is strictly more powerful than WL test and not more powerful than 3-WL test.

We can also characterize the expressivity of GSSC via the ability to count graph substructures.
Proposition 3.3 states that GSSC can count at least 3-paths and 3-cycles, which is strictly stronger
than the counting power of MPNNs and GSC (both cannot count cycles (Chen et al., 2020b; Wang &
Zhang, 2022)). Furthermore, if we introduce the selection mechanism Eq. 6, it can provably count at
least 4-paths and 4-cycles.
Proposition 3.3 (Counting paths and cycles). Graph state space convolution Eq. 4 can at least count
number of 3-paths and 3-cycles. With selection mechanism Eq. 6, it can at least count number of
4-paths and 4-cycles. Here “counting” means a node representation can express the number of paths
starting at the node or the number of cycles involving the node.

4 RELATED WORKS

Linear Graph Transformers. Graph transformers leverage attention mechanism (Vaswani et al.,
2017; Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Kim et al., 2022; Chen et al., 2022a) that
can attend to all nodes in a graph, but yield quadratic complexity w.r.t. graph size. To reduce the
complexity, Rampášek et al. (2022); Wu et al. (2022; 2023) adopt linear attention techniques, i.e.,
factorizing the attention kernel into products of Random Positive Features (Choromanski et al., 2020).
Wu et al. (2024); Deng et al. (2024) replaces attention by inner products of learnable features, which do
not leverage any positional encodings but use extra message passing layers to encode graph topology.
For comparison, GSSC (Eq. 4) derived from SSMs is based on a factorization of convolution kernels,
which shares some similar spirits. In fact, a recent work points out some equivalences between linear
transformers and SSMs (Dao & Gu, 2024). However, GSSC is technically different from linear
graph transformers. The latter uses random features to approximate the specific attention kernel
(softmax+inner product), and generally the node features and positional encodings are both used in
constructing the random features. In contrast, GSSC adopts positional encodings exclusively (may
also includes node features if using selective mechanism Eq. 6) to construct convolution kernels in a
learnable and stable way, and it is not restricted to the attention kernel. Finally, there are other works
that use methods other than attention factorization: Shirzad et al. (2023) leverages virtual global
nodes and expander graphs to perform sparse attention; Kong et al. (2023) applies a projection matrix
to reduce the graph size factor n to a lower dimension k. Both are very different from GSSC.
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Table 1: Benchmark on GNN Benchmark & Long Range Graph Benchmark. Bold†, Bold‡, and Bold
denote the first, second, and third best results, respectively. Results are reported as mean±std.

MNIST CIFAR10 PATTERN CLUSTER MalNet-Tiny PascalVOC-SP Peptides-func Peptides-struct

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ F1 score↑ AP ↑ MAE ↓
GCN 90.705±0.218 55.710±0.381 71.892±0.334 68.498±0.976 81.0 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013

GIN 96.485±0.252 55.255±1.527 85.387±0.136 64.716±1.553 88.98±0.56 0.1265±0.0076 0.5498±0.0079 0.3547±0.0045

GAT 95.535±0.205 64.223±0.455 78.271±0.186 70.587±0.447 92.10±0.24 − − −
GatedGCN 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326 92.23±0.65 0.2873±0.0219 0.5864±0.0077 0.3420±0.0013

SAN − − 86.581±0.037 76.691±0.650 − 0.3216±0.0027 0.6439±0.0075 0.2545±0.0012

GraphGPS 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180 93.50±0.41 0.3748±0.0109 0.6535±0.0041 0.2500±0.0005

Exphormer 98.550†
±0.039 74.690±0.125 86.740±0.015 78.070±0.037 94.02‡

±0.21 0.3975±0.0037 0.6527±0.0043 0.2481±0.0007

Grit 98.108±0.111 76.468±0.881 87.196‡
±0.076 80.026†

±0.277 − − 0.6988±0.0082 0.2460±0.0012

GRED 98.383±0.012 76.853‡
±0.185 86.759±0.020 78.495±0.103 − − 0.7133†

±0.0011 0.2455†
±0.0013

Graph-Mamba-I 98.420±0.080 73.700±0.340 86.710±0.050 76.800±0.360 93.40±0.27 0.4191‡
±0.0126 0.6739±0.0087 0.2478±0.0016

GSSC 98.492‡
±0.051 77.642†

±0.456 87.510†
±0.082 79.156‡

±0.152 94.06†
±0.64 0.4561†

±0.0039 0.7081‡
±0.0062 0.2459‡

±0.0020

State Space Models (SSMs). Classic SSMs (Kalman, 1960; Hyndman et al., 2008; Durbin &
Koopman, 2012) describe the evolution of state variables over time using first-order differential
equations or difference equations, providing a unified framework for time series modeling. Similar
to RNNs (Pascanu, 2013; Graves, 2013; Sutskever et al., 2014), SSMs may also suffer from poor
memorization of long contexts and long-range dependencies. To address this issue, Structural SSMs
(S4) with a structural matrix Ā are introduced to capture long-range dependencies, e.g., HiPPO (Gu
et al., 2020; 2021a) and diagonal matrices (Gupta et al., 2022; Gu et al., 2022). Many variants of
SSMs (Gu & Dao, 2023; Mehta et al., 2022; Ma et al., 2022; Fu et al., 2022) are also proposed.
See Wang et al. (2024b) for a comprehensive survey. Note that GSSC Eq. 4 does not reply on
a structural matrix Ā to achieve long-range dependencies. This is because Ā serves to describe
the casual (recurrence) relation Eq. 1 for sequences, while there is not such causality for graphs.
Instead, GSSC is generalized from the SSM convolution Eq. 2 and its behavior relies on the design
of convolution kernel, i.e., the inner product of learnable graph positional encodings. The long-range
property can be achieved by choosing ϕ functions, as evidenced by Proposition 3.1.

State Space Models for Graphs. There are some efforts to replace the attention mechanism in graph
transformers with SSMs. They mainly focus on tokenizing graphs and apply the existing SSM such as
Mamba (Gu & Dao, 2023). Graph-Mamba-I (Wang et al., 2024a) sorts nodes into sequences by node
degrees and applies Mamba. As node degrees could have multiplicity, this approach requires random
permutation of sequences during training, and the resulting model is not permutation equivariant to
node indices reordering. Graph-Mamba-II (Behrouz & Hashemi, 2024) extracts the 1, 2, ...,K-hop
subgraphs of a root node, treats each k-hop subgraph as a token. Each subgraph is assigned a
representation using GNNs, and these subgraphs form a sequence for the root node. It then applies
Mamba to this sequence to aggregate the representation of the root node and further applies Mamba
to a sequence of root nodes to get graph representations, but the latter operation breaks permutation
invariance. Ding et al. (2024) also treated k-hop neighbors with different k’s as a sequence while
using Deepsets encoders (Zaheer et al., 2017) instead of GNNs. These approaches incur significant
computational overhead as they require applying GNNs/DeepSets to encode every subgraph token
first. Pan et al. (2024) focuses on heterogeneous graph scenarios, sorting and tokenizing rooted
subgraphs based on the metapaths and applying Mamba to the sequentialized subgraphs. Zhao
et al. (2024) aims at the design of graph spectral convolutions, applying SSMs to naturally ordered
frequencies to build a graph filter. Compared to these methods, GSSC does not adopt any graph
sequentialization but instead generalizes the causal state space convolution to graphs, preserving
permutation equivariance and maintaining linear complexity.

5 EXPERIMENTS

We evaluate the effectiveness of GSSC on 13 datasets against various baselines. Particularly, we
focus on answering the following questions:

• Q1: How expressive is GSSC in terms of counting graph substructures?
• Q2: How effectively does GSSC capture long-range dependencies?
• Q3: How does GSSC perform on general graph benchmarks compared to other baselines?
• Q4: How does the computational time/space of GSSC scale with graph size?

Below we briefly introduce the model implementation, included datasets and baselines, and a more
detailed description can be found in Appendix B.
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Datasets. To answer Q1, we use the graph substructure counting datasets from (Chen et al., 2020b;
Zhao et al., 2021; Huang et al., 2022). Each of the synthetic datasets contains 5k graphs generated
from different distributions (see Chen et al. (2020b) Appendix M.2.1), and the task is to predict the
number of cycles as node-level regression. To answer Q2, we evaluate GSSC on Long Range Graph
Benchmark (Dwivedi et al., 2022), which requires long-range interaction reasoning to achieve strong
performance. Specifically, we adopt Peptides-func (graph-level classification with 10 functional
labels of peptides), Peptides-struct (graph-level regression of 11 structural properties of molecules),
and PascalVOC-SP (classify superpixels of image graphs into corresponding object classes). To
answer Q3, molecular graph datasets (ZINC (Dwivedi et al., 2023) and ogbg-molhiv (Hu et al.,
2020)), image graph datasets (MNIST, CIFAR10 (Dwivedi et al., 2023)), synthetic graph datasets
(PATTERN, CLUSTER (Dwivedi et al., 2023)), and function call graphs (MalNet-Tiny) (Freitas
et al., 2020), are used to evaluate the performance of GSSC. ZINC is a molecular property prediction
(graph regression) task containing two partitions of dataset, ZINC-12K (12k samples) and ZINC-full
(250k samples). Ogbg-molhiv consists of 41k molecular graphs for graph classification. CIFAR10
and MNIST are 8-nearest neighbor graph of superpixels constructed from images for classification.
PATTERN and CLUSTER are synthetic graphs generated by the Stochastic Block Model (SBM) to
perform node-level community classification. Finally, to answer Q4, we construct a synthetic dataset
with graph sizes from 1k to 60k to evaluate how GSSC scales.

GSSC Implementation. We implement deep models consisting of GSSC blocks Eq. 4, where ϕ is
DeepSets Zaheer et al. (2017). Each layer includes one MPNN (to incorporate edge features) and
one GSSC block, followed by a nonlinear readout to merge the outputs of MPNN and GSSC. The
resulting deep model can be seen as a GraphGPS (Rampášek et al., 2022) with the vanilla transformer
replaced by GSSC. Selective mechanism is only introduced to cycle-counting tasks, because we find
the GSSC w/o selective mechanism is already powerful and yields excellent results in real-world
tasks. In our experiments, GSSC utilizes the smallest d = 32 eigenvalues and their eigenvectors for
all datasets except molecular ones, which employ d = 16. See Appendix B for full details of model
hyperparameters.

Baselines. We consider various baselines that can be mainly categorized into: (1) MPNNs: GCN (Kipf
& Welling, 2016), GIN (Xu et al., 2018), GAT (Veličković et al., 2018), Gated GCN (Bresson &
Laurent, 2017) and PNA (Corso et al., 2020); (2) Subgraph GNNs: NGNN (Zhang & Li, 2021),
ID-GNN (You et al., 2021), GIN-AK+ (Zhao et al., 2021), I2-GNN (Huang et al., 2022); (3) Graph
transformers: Graphormer (Ying et al., 2021), SAN (Kreuzer et al., 2021), GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), Grit (Ma et al., 2023); (4) Others: SUN (Frasca
et al., 2022), Specformer (Bo et al., 2022), GRED (Ding et al., 2024), Graph-Mamba-I (Wang et al.,
2024a), SignNet (Lim et al., 2022), SPE (Huang et al., 2024). Note that we also compare the baseline
Graph-Mamba-II (Behrouz & Hashemi, 2024), and GSSC outperforms it on all included datasets, but
we put their results in Appendix C as we cannot reproduce their results due to the lack of code.

5.1 GRAPH SUBSTRUCTURE COUNTING

Table 2: Benchmark on graph substruc-
ture counting (normalized MAE ↓ ). Se-
lective mechanism is applied for GSSC.

3-Cycle 4-Cycle 5-Cycle

GIN 0.3515 0.2742 0.2088
ID-GIN 0.0006 0.0022 0.0490
NGNN 0.0003 0.0013 0.0402
GIN-AK+ 0.0004 0.0041 0.0133
I2-GNN 0.0003 0.0016 0.0028
Exphormer 0.0006 0.0468 0.0827
graph-Mamba-I 0.0014 0.0113 0.0301
GraphGPS (Transformer) 0.0007 0.0125 0.0297
graphGPS (Performer) 0.0011 0.0131 0.0301

GSSC 0.0002 0.0013 0.0113

Table 2 shows the normalized MAE results (MAE di-
vided by the standard deviation of targets). We adopt GIN
backbone for all baseline subgraph models (Huang et al.,
2022). In terms of predicting 3-cycles and 4-cycles, GSSC
achieves the best results compared to subgraph GNNs and
I2-GNNs (models that can provably count 3, 4-cycles) val-
idating Theorem 3.3. For the prediction of 5-cycles, GSSC
greatly outperforms the MPNN and ID-GNN (models that
cannot predict 5-cycles) reducing normalized MAE by
94.6% and 71.9%, respectively. Besides, GSSC achieves
constantly better performance than GNNAK+, a subgraph
GNN model that is strictly stronger than ID-GNN and NGNN (Huang et al., 2022). These results
demonstrate the empirically strong function-fitting ability of GSSC.

5.2 GRAPH LEARNING BENCHMARKS

Table 1 and Table 3 evaluate the performance of GSSC on multiple widely used graph learning
benchmarks. GSSC achieves excellent performance on all benchmark datasets, and the result of each
benchmark is discussed below.
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Long Range Graph Benchmark (Dwivedi et al., 2022). We test the ability to model long-range
interaction on PascalVOC-SP, Peptides-func, and Peptides-struct, as shown in Table 1. Remarkably,
GSSC achieves state-of-the-art performance on PascalVOC-SP and delivers second-best results on
the other two datasets, coming extremely close to the leading benchmarks. These results underscore
GSSC’s robust ability to capture long-range dependencies.

Molecular Graph Benchmark (Dwivedi et al., 2023; Hu et al., 2020). Table 3 shows the results
on molecular graph datasets. GSSC achieves the best results on ZINC-Full and ogbg-molhiv and
is comparable to the state-of-the-art model on ZINC-12k, which could be attributed to its great
expressive power and stable positional encodings.

Table 3: Benchmark on molecular datasets.
Bold†, Bold‡, and Bold denote the first, sec-
ond, and third best results, respectively.

ZINC-12k ZINC-Full ogbg-molhiv

MAE ↓ MAE ↓ AUROC ↑
GCN 0.367±0.011 0.113±0.002 75.99±1.19

GIN 0.526±0.051 0.088±0.002 77.07±1.49

GAT 0.384±0.007 0.111±0.002 −
PNA 0.188±0.004 − 79.05±1.32

NGNN 0.111±0.003 0.029±0.001 78.34±1.86

GIN-AK+ 0.080±0.001 − 79.61±1.19

I2-GNN 0.083±0.001 0.023±0.001 78.68±0.93

SUN 0.083±0.003 0.024±0.003 80.03‡
±0.55

Graphormer 0.122±0.006 0.052±0.005 −
SAN 0.139±0.006 − 77.85±2.47

GraphGPS 0.070±0.004 − 78.80±1.01

GraphGPS (Performer) 0.072±0.002 − 77.79±1.25

Exphormer 0.111±0.007 − 78.79±1.31

Specformer 0.066±0.003 − 78.89±1.24

SPE 0.070±0.004 − −
SignNet 0.084±0.006 0.024±0.003 −
Grit 0.059†

±0.002 0.023±0.001 −
GRED 0.077±0.002 − −
Graph-Mamba-I 0.067±0.002 − 78.23±1.21

GSSC 0.064‡
±0.002 0.019†

±0.001 80.35†
±1.42

GNN Benchmark (Dwivedi et al., 2023) & MalNet-
Tiny (Freitas et al., 2020). Table 1 (MNIST to
CLUSTER) presents the results on the GNN Bench-
mark datasets and MalNet-Tiny. GSSC achieves
state-of-the-art performance on CIFAR10, PAT-
TERN, and MalNet-Tiny, and ranks second-best on
MNIST and CLUSTER, demonstrating its superior
capability on general graph-structured data.

Ablation study. The comparison to GraphGPS and
MPNNs naturally serves as an ablation study: the
proposed GSSC is replaced by a vanilla transformer
or removed while other modules are identical. GSSC
consistently outperforms MPNNs and GraphGPS on
all tasks, validating the effectiveness of GSSC as an
alternative to full attention in graph transformers.

5.3 COMPUTATIONAL COSTS COMPARISON

The computational costs of graph learning methods can be divided into two main components: 1)
preprocessing, which includes operations such as calculating positional encoding, and 2) model
training and inference. To demonstrate the efficiency of GSSC, we benchmark its computational
costs for both components against 4 recent state-of-the-art methods, including GraphGPS (Rampášek
et al., 2022), Grit (Ma et al., 2023), Exphormer (Shirzad et al., 2023), and Graph-Mamba-I (Wang
et al., 2024a). Notably, Exphormer, Graph-Mamba-I, and GSSC are designed with linear complexity
with respect to the number of nodes n, whereas Grit and GraphGPS exhibit quadratic complexity
by design. According to our results below, GSSC is one of the most efficient models (even for large
graphs) that can capture long-range dependencies. However, in practice, one must carefully consider
whether the module that explicitly captures global dependencies is necessary for very large graphs.

Figure 3: Preprocessing costs per graph.

Benchmark Setup. To accurately assess
the scalability of the evaluated methods, we
generate random graphs with node counts
ranging from 1k to 60k. To simulate the
typical sparsity of graph-structured data, we
introduce n2 × 1% edges for graphs con-
taining fewer than 10k nodes, and n2 ×
0.1% edges for graphs with more than 10k
nodes. For computations performed on GPUs,
we utilize torch.utils.benchmark.Timer and
torch. cuda.max_memory_allocated to measure time and space usage; for those performed on
CPUs, time. time is employed. Results are averaged over more than 100 runs to ensure reliability.
All methods are implemented using author-provided code and all experiments are conducted on a
server equipped with Nvidia RTX 6000 Ada GPUs (48 GB) and AMD EPYC 7763 CPUs.

Preprocessing Costs. As all baseline methods implement preprocessing on CPUs, we first focus
on CPU time usage to assess scalability, as illustrated in Fig. 3 (left). Grit computes RRWP (Ma
et al., 2023), which notably requires more time due to its repeated multiplications between pairs
of n × n matrices. Other methods, e.g., Exphormer, GraphGPS, Graph-Mamba-I, and GSSC,
may use Laplacian eigendecomposition for graph positional encoding. For these, we follow the
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Figure 4: Model training and inference costs per graph.

implementation of baselines and perform full eigendecomposition on CPUs (limited to 16 cores),
depicted by the green line in the figure. Exphormer additionally constructs expander graphs (EG),
slightly increasing its preprocessing time (the red line). Clearly, full eigendecomposition is costly
for large graphs; however, GSSC requires only the smallest d eigenvalues and their eigenvectors.
Thus, for large graphs, we can bypass full eigendecomposition and leverage iterative methods on
GPUs, such as torch. lobpcg (Knyazev, 2001), to obtain the top-d results, which is both fast and
GPU memory-efficient (linear in n), shown by the orange lines (LapPE GPU-topEigen) in the figures
with d = 32. Nonetheless, for small graphs, full eigendecomposition on CPUs remains efficient,
aligning with practices in prior studies.

Model Training/Inference Costs. Fig. 4 benchmarks model training (forward + backward passes)
and inference (forward pass only) costs in an inductive node classification setting. All methods are
ensured to have the same number of layers and roughly 500k parameters. Methods marked "OOM"
indicate out-of-memory errors on a GPU with 48 GB memory when the number of nodes further
increases by 5k. GSSC and Graph-Mamba-I emerge as the two most efficient methods. Although
Graph-Mamba-I shows slightly better performance during training, this advantage can be attributed to
its direct integration with the highly optimized Mamba API (Gu & Dao, 2023), and GSSC’s efficiency
may also be further improved with hardware-aware optimization in the low-level implementation.

Table 4: Computational costs of GSSC
on real-world datasets.

ZINC-12k PascalVOC-SP

Avg. # nodes 23.2 479.4
# graphs 12,000 11,355
# epochs 2,000 300

Training time per epoch 10.9s 13.9s
Total training time 6.1h 1.2h
Total preprocessing time 20.6s 334.8s
Total preprocessing time

Total training time 0.1% 7.6%

Computational Costs of GSSC on Real-World Datasets.
The above benchmark evaluates graph (linear) transform-
ers on very large graphs to thoroughly test their scalability.
However, as in practice graph transformers are generally
applied to smaller graphs (Rampášek et al., 2022), where
capturing global dependencies can be more beneficial,
here we also report the computational costs for two repre-
sentative and widely used real-world benchmark datasets.
The results are presented in Table 4, where ZINC-12k and
PascalVOC-SP are included as examples of real-world datasets with the smallest and largest graph
sizes, respectively, for evaluating graph transformers. Preprocessing is done on CPUs per graph
following previous works due to the relatively small graph sizes, and the number of training epochs
used is also the same as prior studies (Rampášek et al., 2022; Ma et al., 2023; Shirzad et al., 2023).
We find that the total preprocessing time is negligible for datasets with small graphs (e.g., ZINC-12k),
comparable to the duration of a single training epoch (typically the number of training epochs is
larger than 100, meaning a ratio < 1%). For datasets with larger graphs (e.g., PascalVOC-SP), pre-
processing remains reasonably efficient, consuming less than 10% of the total training time. Notably,
the preprocessing time could be further reduced by computing eigendecomposition on GPUs with
batched graphs.

6 CONCLUSION AND LIMITATIONS

In this work, we study the extension of State Space Models (SSMs) to graphs. We propose Graph
State Space Convolution (GSSC) that leverages global permutation-equivariant aggregation and
factorizable graph kernels depending on relative graph distances. These operations naturally inherit
the advantages of SSMs on sequential data: (1) efficient computation; (2) capability of capturing long-
range dependencies; (3) good generalization for various sequence lengths (graph sizes). Numerical
experiments demonstrate the superior performance and efficiency of GSSC.

One potential limitation of our work is that precisely computing full eigenvectors could be expensive
for large graphs. See discussions in Sec. 3.2 and our empirical evaluation in Sec. 5.3 that shows good
scalability even for large graphs with 60k nodes.
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A DEFERRED PROOFS

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. There exists ϕ such that for GSSC Eq. 4, the gradient norm ∥∂hu/∂xv∥ does not
decay as spd(u, v) grows, where spd denotes shortest path distance.

Proof. For simplicity, let us assumem = 1, i.e., hidden dimension is one, which makes hu, xu scalars.
Now let weights Wq = Wk = Wo = 1 and Wsq = Wsk = Ws = 0. Let ϕ(λ) =

∑n
k=1 ckλ

k,
where ck > 0 are arbitrary positive constants that do not decay to zero as n, k → ∞. Then the
derivative ∂hu/∂xv becomes

∂hu
∂xv

=
∂

∂xv

n∑
k=1

Ak
u,v

∑
v∈V

xv =

n∑
k=1

ck#(walks from u to v) ≥ cspd(u,v). (7)

Therefore, ∥∂hu/∂xv∥ ≥ |cspd(u,v)|.

A.2 PROOF OF PROPOSITION 3.2

Proposition 3.2. GSSC is strictly more powerful than WL test and not more powerful than 3-WL test.

Proof. Let us show that GSSC is more powerful than WL test. Note that WL test has the same
power as message passing GNNs (Xu et al., 2018), so it is sufficient to show that GSSC is more
powerful than message passing GNNs. first, by letting ϕ(Λ) = Λ and weights Wq = Wk = I , the
convolution kernel ⟨zuWq, zvWk⟩ becomes Au,v, i.e., the entry of Adjacency matrix. Thus GSSC
can mimic message passing GNNs. Besides, if we consider two nonisomorphic graphs: one consists
of two triangles and one is a hexagon, clearly message passing GNNs cannot distinguish them while
GSSC can with proper ϕ and weights. Therefore we claim that GSSC is more powerful than message
passing GNNs and WL test as well.

Let us show that GSSC is not more powerful than 3-WL test. According to (Zhang et al., 2024),
Corollary 4.5, any eigenspace projection GNNs, i.e., GNNs whose node-pair features are augmented
by a basis invariant function of the PE of the node pairs, is not more powerful than 3-WL test. As
GSSC leverages a basis invariant and stable function of PE as convolution kernel, it can be seen as an
eigenspace projection GNN and thus is not more powerful than 3-WL.

A.3 PROOF OF PROPOSITION 3.3

Proposition 3.3 (Counting paths and cycles). Graph state space convolution Eq. 4 can at least count
number of 3-paths and 3-cycles. With selection mechanism Eq. equation 6, it can at least count
number of 4-paths and 4-cycles. Here “counting” means the node representations can express the
number of paths starting at the node or number of cycles involving the node.

Proof. The number of cycles and paths can be expressed in terms of polynomials of adjacency matrix
A, as shown in (Perepechko & Voropaev, 2009). Specifically, let [Pm]u,v be number of length-m
paths starting at node u and ending at node v, and [Cm]u be number of length-m cycles involving
node u, then

P2 = A2, (8)

C3 = diag(A3), (9)

P3 = A3 +A−Adiag(A2)− diag(A2)A, (10)

C4 = diag(A4) + diag(A2)− diag(A2diag(A2))− diag(Adiag(A2)A), (11)

P4 = A4 +A2 + 3A⊙A2 − diag(A3)A− diag(A2)A2 −Adiag(A3)−A2diag(A2)

−Adiag(A2)A (12)

Here diag(·) means taking the diagonal of the matrix.
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Now we are going to show that all these terms can be expressed by the GSSC kernel with specific
choices of weights.

2-paths and 3-cycles. It is clear that GSSC Eq.4 can compute number of length-2 paths starting
at node u, using

∑
v[P2]u,v =

∑
v[A

2]u,v =
∑

v⟨Λ ⊙ pu,Λ ⊙ pv⟩. On other hand, number of
3-cycles [C3]u = [A3]u,u = ⟨Λ3/2 ⊙ pu,Λ

3/2pu⟩ can also be implemented by Eq.equation 4 by
setting Ws = 1 and Wo = 0.

3-paths. A3 and A can be expressed by the similar argument above. Note that
∑

v[Adiag(A2)]u,v =∑
v Au,v[A

2]v,v . The term [A2]v,v can be represented by the node feature after one layer of GSSC,
as argued in counting [C3]u. Therefore

∑
v Au,v[A

2]v,v =
∑

v⟨Λ1/2 ⊙ pu,Λ
1/2pv⟩[A2]v,v can

be expressed by a two-layer GSSC. Finally, the term
∑

v[diag(A2)A]u,v = [A2]u,u ·
∑

v⟨Λ1/2 ⊙
pu,Λ

1/2 ⊙ pv⟩ can be computed a one-layer GSSC, by first computing [A2]u,u and
∑

v⟨Λ1/2 ⊙
pu,Λ

1/2 ⊙ pv⟩ separately and use a intermediate nonlinear MLPs to multiply them.

4-cycles. The term [diag(A4)]u = A4
u,u = ⟨Λ2pu,Λ

2pu⟩ can be implemented by one-layer GSSC by
letting Ws = 1,Wo = 0. Same for [diag(A2)]u. The term [diag(A2diag(A2))]u = [A2]u,u[A

2]u,u
can be implemented by one-layer GSSC with a multiplication nonlinear operation. Finally, note that
the last term

[diag(Adiag(A2)A)]u =
∑
v

Au,vA
2
v,vAv,u =

∑
v

Au,vAu,vA
2
v,v. (13)

We know that xv := A2
v,v can be encoded into node feature after one-layer GSSC. Now the whole

term
∑

v Au,vAu,vxv can be transformed into∑
v

Au,vAu,vxv =
∑
v

⟨Λ1/2pu,Λ
1/2pv⟩⟨Λ1/2pu,Λ

1/2pv⟩xv

= ⟨Λ1/2pu
∑
v

, ⟨Λ1/2pu,Λ
1/2pv⟩pv ⊙ xv⟩ = ⟨Λ1/2pu, z̃u⟩,

(14)

where z̃u is a node-feature-dependent PE, which can be implemented by Eq.6. The readout
⟨Λ1/2pu, z̃u⟩, again, can be implemented by letting Wo = 0 and Ws = 1.

4-paths. All terms can be expressed by the same argument in counting 3-paths, except A ⊙ A2

and Adiag(A2)A. To compute
∑

v[A⊙A2]u,v =
∑

v Au,vA
2
u,v, note that this follows the same

argument as in Eq.14, with xv replaced by 1 and the second Au,v replaced by A2
u,v. To compute∑

v[Adiag(A2)A]u,v , note that∑
v

[Adiag(A2)A]u,v =
∑
w

Au,wA
2
w,w

∑
v

Aw,v. (15)

Therefore, we can first use one-layer GSSC to encode A2
w,w and

∑
v Aw,v into node features,

multiply them together to get xw = A2
w,w ·

∑
v Aw,v , and then apply another GSSC layer with kernel

Au,w to get desired output
∑

w Au,wxw.

B EXPERIMENTAL DETAILS

B.1 DATASETS DESCRIPTION

Graph Substructure Counting (Chen et al., 2020b; Zhao et al., 2021; Huang et al., 2022) is a
synthetic dataset containing 5k graphs generated from different distributions (Erdős-Rényi random
graphs, random regular graphs, etc. see (Chen et al., 2020b) Appendix M.2.1). Each node is labeled
by the number of 3, 4, 5, 6-cycles that involves the node. The task is to predict the number of cycles
as node-level regression. The training/validation/test set is randomly split by 3:2:5.

ZINC (Dwivedi et al., 2023) (MIT License) has two versions of datasets with different splits. ZINC-
subset contains 12k molecular graphs from the ZINC database of commercially available chemical
compounds. These represent small molecules with the number of atoms between 9 and 37. Each node
represents a heavy atom (28 atom types) and each edge represents a chemical bond (3 types). The
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Table 5: Dataset statistics used in the experiments.
Dataset # Graphs Avg. # nodes Avg. # edges Prediction level Prediction task

Cycle-counting 5,000 18.8 31.3 node regression

ZINC-subset 12,000 23.2 24.9 graph regression
ZINC-full 249,456 23.1 24.9 graph regression
ogbg-molhiv 41,127 25.5 27.5 graph binary classif.

MNIST 70,000 70.6 564.5 graph 10-class classif.
CIFAR10 60,000 117.6 941.1 graph 10-class classif.
PATTERN 14,000 118.9 3,039.3 node binary classifi.
CLUSTER 12,000 117.2 2,150.9 node 6-class classif.

MalNet-Tiny 5,000 1,410.3 2,859.9 graph 5-class classif.

Peptides-func 15,535 150.9 307.3 graph 10-class classif.
Peptides-struct 15,535 150.9 307.3 graph regression
PascalVOC-SP 11,355 479.4 2,710.5 node 21-class classif.

task is to do graph-level regression on the constrained solubility (logP) of the molecule. The dataset
comes with a predefined 10K/1K/1K train/validation/test split. ZINC-full is similar to ZINC-subset
but with 250k molecular graphs instead.

ogbg-molhiv (Hu et al., 2020) (MIT License) are molecular property prediction datasets adopted by
OGB from MoleculeNet (Wu et al., 2018). These datasets use a common node (atom) and edge (bond)
featurization that represent chemophysical properties. The task is a binary graph-level classification
of the molecule’s fitness to inhibit HIV replication. The dataset split is predefined as in (Hu et al.,
2020).

MNIST and CIFAR10 (Dwivedi et al., 2023) (CC BY-SA 3.0 and MIT License) are derived from
image classification datasets, where each image graph is constructed by the 8 nearest-neighbor graph
of SLIC superpixels for each image. The task is a 10-class graph-level classification and standard
dataset splits follow the original image classification datasets, i.e., for MNIST 55K/5K/10K and for
CIFAR10 45K/5K/10K train/validation/test graphs.

PATTERN and CLUSTER (Dwivedi et al., 2023) (MIT License) are synthetic datasets of commu-
nity structures, sampled from the Stochastic Block Model. Both tasks are an inductive node-level
classification. PATTERN is to detect nodes in a graph into one of 100 possible sub-graph patterns
that are randomly generated with different SBM parameters than the rest of the graph. In CLUSTER,
every graph is composed of 6 SBM-generated clusters, and there is a corresponding test node in each
cluster containing a unique cluster ID. The task is to predict the cluster ID of these 6 test nodes.

MalNet-Tiny (Freitas et al., 2020) (CC-BY license) is a subset of the larger MalNet dataset,
consisting of function call graphs extracted from Android APKs. It includes 5,000 graphs, each with
up to 5,000 nodes, representing either benign software or four categories of malware. In this subset,
all original node and edge attributes have been removed, and the goal is to classify the software type
solely based on the graph structure.

Peptides-func and Peptides-struct (Dwivedi et al., 2022) (MIT License) are derived from 15k
peptides retrieved from SATPdb (Singh et al., 2016). Both datasets use the same set of graphs but the
prediction tasks are different. Peptides-func is a graph-level classification task with 10 functional
labels associated with peptide functions. Peptides-struct is a graph-level regression task to predict 11
structural properties of the molecules.

PascalVOC-SP (Dwivedi et al., 2022) (MIT License) is a node classification dataset based on the
Pascal VOC 2011 image dataset (Everingham et al., 2010). Superpixel nodes are extracted using the
SLIC algorithm (Achanta et al., 2012) and a rag-boundary graph that interconnects these nodes are
constructed. The task is to classify the node into corresponding object classes, which is analogous to
the semantic segmentation.
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B.2 RANDOM SEEDS AND DATASET SPLITS

All included datasets have standard training/validation/test splits. We follow previous works reporting
the test results according to the best validation performance, and the results of every dataset are
evaluated and averaged over five different random seeds (Rampášek et al., 2022; Ma et al., 2023;
Shirzad et al., 2023). Due to the extremely long running time of ZINC-Full (which requires over 80
hours to train one seed on an Nvidia RTX 6000 Ada since it uses 2k epochs for training following
previous works (Rampášek et al., 2022; Ma et al., 2023)), its results are averaged over three random
seeds.

B.3 HYPERPARAMETERS

Table 6, 7, 8, and 9 detail the hyperparameters used for experiments in Sec. 5. We generally follow
configurations from prior works (Rampášek et al., 2022; Shirzad et al., 2023). Notably, the selective
mechanism (i.e., Eq. 6) is only employed for graph substructure counting tasks, and GSSC utilizes
the smallest d = 32 eigenvalues and their eigenvectors for all datasets except molecular ones, which
use d = 16. Consistent with previous research (Rampášek et al., 2022; Ma et al., 2023), we also
maintain the number of model parameters at around 500k for the ZINC, PATTERN, CLUSTER, and
LRGB datasets, and approximately 100k for the MNIST and CIFAR10 datasets.

Since our implementation is based on the framework of GraphGPS (Rampášek et al., 2022), which
combines the learned node representations from the MPNN and the global module (GSSC in our case)
in each layer, dropout is applied for regularization to the outputs from both modules, as indicated by
MPNN-dropout and GSSC-dropout in the hyperparameter tables.

Table 6: Model hyperparameters for graph substructure counting datasets.
Hyperparameter 3-Cycle 4-Cycle 5-Cycle

# Layers 4 4 4
Hidden dim 96 96 96
MPNN GatedGCN GatedGCN GatedGCN
Lap dim d 16 16 16
Selective True True True

Batch size 256 256 256
Learning Rate 0.001 0.001 0.001
Weight decay 1e-5 1e-5 1e-5
MPNN-dropout 0.3 0.3 0.3
GSSC-dropout 0.3 0.3 0.3

# Parameters 926k 926k 926k

Table 7: Model hyperparameters for molecular property prediction datasets.
Hyperparameter ZINC-12k ZINC-Full ogbg-molhiv

# Layers 10 10 6
Hidden dim 64 64 64
MPNN GINE GINE GatedGCN
Lap dim d 16 16 16
Selective False False False

Batch size 32 128 32
Learning Rate 0.001 0.002 0.002
Weight decay 1e-5 0.001 0.001
MPNN-dropout 0 0.1 0.3
GSSC-dropout 0.6 0 0

# Parameters 436k 436k 351k
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Table 8: Model hyperparameters for datasets from Long Range Graph Benchmark (LRGB) (Dwivedi
et al., 2022).

Hyperparameter PascalVOC-SP Peptides-func Peptides-struct

# Layers 4 4 4
Hidden dim 96 96 96
MPNN GatedGCN GatedGCN GatedGCN
Lap dim d 32 32 32
Selective False False False

Batch size 32 128 128
Learning Rate 0.002 0.003 0.001
Weight decay 0.1 0.1 0.1
MPNN-dropout 0 0.1 0.1
GSSC-dropout 0.5 0.1 0.3

# Parameters 375k 410k 410k

Table 9: Model hyperparameters for datasets from GNN Benchmark (Dwivedi et al., 2023) and
MalNet-Tiny (Freitas et al., 2020).

Hyperparameter MNIST CIFAR10 PATTERN CLUSTER MalNet-Tiny

# Layers 3 3 24 24 5
Hidden dim 52 52 36 36 64
MPNN GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN
Lap dim d 32 32 32 32 32
Selective False False False False False

Batch size 16 16 32 16 16
Learning Rate 0.005 0.005 0.001 0.001 0.0015
Weight decay 0.01 0.01 0.1 0.1 0.001
MPNN-dropout 0.1 0.1 0.1 0.3 0.1
GSSC-dropout 0.1 0.1 0.5 0.3 0.3

# Parameters 133k 131k 539k 539k 299k

Table 10: Comparing with previous graph mamba works. Bold† denotes the best results. Results are
reported as mean±std.

ZINC-12k MNIST CIFAR10 PATTERN CLUSTER PascalVOC-SP Peptides-func Peptides-struct

MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ F1 score↑ AP ↑ MAE ↓
Graph-Mamba-I NaN 98.420±0.080 73.700±0.340 86.710±0.050 76.800±0.360 0.4191±0.0126 0.6739±0.0087 0.2478±0.0016

Graph-Mamba-II N/A 98.390±0.180 75.760±0.420 87.140±0.120 N/A 0.4393±0.0112 0.7071±0.0083 0.2473±0.0025

GSSC 0.064†
±0.002 98.492†

±0.051 77.642†
±0.456 87.510†

±0.082 79.156†
±0.152 0.4561†

±0.0039 0.7081†
±0.0062 0.2459†

±0.0020

C SUPPLEMENTARY EXPERIMENTS

In this section, we present supplementary experiments comparing GSSC with previous graph mamba
works, i.e., Graph-Mamba-I (Wang et al., 2024a) and Graph-Mamba-II (?). As shown in Table 10,
GSSC significantly outperforms both models on all datasets. We attempted to evaluate these works
on additional datasets included in our experiments, such as ZINC-12k, but encountered challenges.
Specifically, Graph-Mamba-II has only an empty GitHub repository available, and Graph-Mamba-I
raises persistent NaN (Not a Number) errors when evaluated on other datasets. Our investigation
suggests that these errors of Graph-Mamba-I stem from fundamental issues in their architecture and
implementation, and there is no easy way to fix them, i.e., they are not caused by any easy-to-find
risky operations such as log(small negative numbers) or 1

0 . Consequently, Graph-Mamba-I (and
Graph-Mamba-II) may potentially exhibit severe numerical instability and cannot be applied to
some datasets. Prior to encountering the NaN error, the best observed MAE for Graph-Mamba-I on
ZINC-12k was ∼ 0.10.
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