
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHAT CAN WE LEARN FROM STATE SPACE MODELS
FOR MACHINE LEARNING ON GRAPHS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning on graphs has recently found extensive applications across do-
mains. However, the commonly used Message Passing Neural Networks (MPNNs)
suffer from limited expressive power and struggle to capture long-range depen-
dencies. Graph transformers offer a strong alternative due to their global attention
mechanism, but they come with great computational overheads, especially for large
graphs. In recent years, State Space Models (SSMs) have emerged as a compelling
approach to replace full attention in transformers to model sequential data. It blends
the strengths of RNNs and CNNs, offering a) efficient computation, b) the ability
to capture long-range dependencies, and c) good generalization across sequences
of various lengths. However, extending SSMs to graph-structured data presents
unique challenges due to the lack of canonical node ordering in graphs. In this
work, we propose Graph State Space Convolution (GSSC) as a principled extension
of SSMs to graph-structured data. By leveraging global permutation-equivariant
set aggregation and factorizable graph kernels that rely on relative node distances
as the convolution kernels, GSSC preserves all three advantages of SSMs. We
demonstrate the provably stronger expressiveness of GSSC than MPNNs in count-
ing graph substructures and show its effectiveness across 11 real-world, widely
used benchmark datasets. GSSC achieves the best results on 6 out of 11 datasets
with all significant improvements compared to the state-of-the-art baselines and
second-best results on the other 5 datasets. Our findings highlight the potential of
GSSC as a powerful and scalable model for graph machine learning. Our code is
available at https://anonymous.4open.science/r/GSSC-5ED8.

1 INTRODUCTION

Machine learning for graph-structured data has numerous applications in molecular graphs (Duvenaud
et al., 2015; Wang et al., 2021), drug discovery (Xiong et al., 2021; Stokes et al., 2020), and social
networks (Fan et al., 2019; Guo & Wang, 2020). In recent years, Message Passing Neural Networks
(MPNNs) have been arguably the most popular neural architecture for graphs (Kipf & Welling, 2016;
Fung et al., 2021; Veličković et al., 2018; Xu et al., 2018; Corso et al., 2020; Zhou et al., 2020), but
they also suffer from many limitations, including restricted expressive power (Xu et al., 2018; Morris
et al., 2019), over-squashing (Di Giovanni et al., 2023; Topping et al., 2022; Nguyen et al., 2023), and
over-smoothing (Rusch et al., 2023; Chen et al., 2020a; Keriven, 2022). These limitations could harm
the models’ performance. For example, MPNNs cannot capture long-range dependencies (Dwivedi
et al., 2022) or detect subgraphs like cycles that are important in forming ring systems of molecular
graphs (Chen et al., 2020b).

Adapted from the vanilla transformer in sequence modeling (Vaswani et al., 2017), graph transformers
have attracted growing research interests because they may alleviate these fundamental limitations of
MPNNs (Kreuzer et al., 2021; Kim et al., 2022; Rampášek et al., 2022; Chen et al., 2022a; Dwivedi
& Bresson, 2020). By attending to all nodes in the graph, graph transformers are inherently able to
capture long-range dependencies. However, the global attention mechanism ignores graph structures
and thus requires incorporating positional encodings (PEs) of nodes (Rampášek et al., 2022) that
encode graph structural information. For example, the information of relative distance between nodes
has been leveraged in attention computation (Li et al., 2020; Wang et al., 2022; Ying et al., 2021).
Moreover, the full attention computation scales quadratically in terms of the length of the sequence
or the number of nodes in the graph. This computational challenge motivates the study of linear-time

1

https://anonymous.4open.science/r/GSSC-5ED8

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

transformers by incorporating techniques such as low-rank (Katharopoulos et al., 2020; Wang et al.,
2020; Child et al., 2019; Choromanski et al., 2020; Yang et al., 2023), sparse approximations (Indyk
& Motwani, 1998; Kitaev et al., 2020; Daras et al., 2020; Zandieh et al., 2023; Han et al., 2023),
or Taylor expansion (Arora et al., 2024) of the attention matrix. Some specific designs of scalable
transformers for large-scale graphs are also proposed (Wu et al., 2022; Chen et al., 2022b; Shirzad
et al., 2023; Wu et al., 2023; Kong et al., 2023; Wu et al., 2024). Nevertheless, none of these variants
have been proven to be consistently effective across different domains (Miao et al., 2024).

State Space Models (SSMs) (Gu et al., 2021a;b; Gu & Dao, 2023) have recently demonstrated
promising potentials for sequence modeling. Adapted from the classic state space model (Kalman,
1960), SSMs can be seen as a hybrid of recurrent neural networks (RNNs) and convolutional neural
networks (CNNs). It is a temporal convolution that preserves translation invariance and thus allows
good generalization to sequences longer than those used for training. Meanwhile, this class of models
has been shown to capture long-range dependencies both theoretically and empirically (Gu et al.,
2020; Tay et al., 2020; Gu et al., 2021b;a). Finally, it can be efficiently computed in linear or
near-linear time via the recurrence mode or the parallelizable operations. These advantages make
the SSM a strong candidate as an alternative to transformers (Mehta et al., 2022; Ma et al., 2022; Fu
et al., 2022; Wang et al., 2023; Sun et al., 2024).

Given the great potential of SSMs, there is increasing interest in generalizing them for graphs as
an alternative to graph transformers (Wang et al., 2024a; Behrouz & Hashemi, 2024). The main
technical challenge is that SSMs are defined on sequences that are ordered and causal, i.e., have a
linear structure. Yet, graphs have complex topology, and no canonical node ordering can be found.
Naive tokenization (e.g., sorting nodes into a sequence in some ways) breaks the inductive bias -
permutation symmetry - of graphs, which consequently cannot faithfully represent graph topology,
and may suffer from poor generalization.

In this study, we go back to the fundamental question of how to build SSMs for graph data. Instead
of simply tokenizing graphs and directly applying existing SSMs for sequences (which may break
the symmetry), we argue that principled graph SSMs should inherit the advantages of SSMs in
capturing long-range dependencies and being efficient. Simultaneously, they should also preserve the
permutation symmetry of graphs to achieve good generalization. With this goal, in this work:

• We identify that the key components enabling SSMs for sequences to be long-range, efficient, and
well-generalized to longer sequences, is the use of a global, factorizable, and translation-invariant
kernel that depends on relative distances between tokens. This relative-distance kernel can be
factorized into the product of absolute positions, crucial to achieving linear-time complexity.

• This observation motivates us to design Graph State Space Convolution (GSSC) in the following
way: (1) it leverages a global permutation equivariant set aggregation that incorporates all nodes
in the graph; (2) the aggregation weights of set elements rely on relative distances between nodes
on the graph, which can be factorized into the "absolute positions" of the corresponding nodes,
i.e., the PEs of nodes. By design, the resulting GSSC is inherently permutation equivariant,
long-range, and linear-time. Besides, we also demonstrate that GSSC is more powerful than
MPNNs and can provably count at least 4-paths and 4-cycles.

• Empirically, our experiments demonstrate the high expressivity of GSSC via graph substructure
counting and validate its capability of capturing long-range dependencies on Long Range Graph
Benchmark (Dwivedi et al., 2022). Results on 10 real-world, widely used graph machine learning
benchmark datasets (Hu et al., 2020; Dwivedi et al., 2023; 2022) also show the consistently
superior performance of GSSC, where GSSC achieves best results on 7 out of 10 datasets with all
significant improvements compared to the state-of-the-art baselines and second-best results on
the other 3 datasets. Moreover, it has much better scalability than the standard graph transformers
in terms of training and inference time.

2 PRELIMINARIES

Graphs and Graph Laplacian. Let G = (V, E) be a undirected graph, where V is the node set
and E is the edge set. Suppose G has n nodes. Let A ∈ Rn×n be the adjacency matrix of G
and D = diag([

∑
j A1,j , ...,

∑
j An,j]) be the diagonal degree matrix. The (normalized) graph

Laplacian is defined by L = I −D−1/2AD−1/2 where I is the n by n identity matrix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑗 𝒊…

ℎ𝑖 = σ𝑗=1
𝒊 𝐾 𝑖, 𝑗 𝑥𝑗 (① global causal sum)

𝒖

…
𝑣

ℎ𝑢 = σ𝑣∈𝑉𝐾 𝑢, 𝑣 𝑥𝑣 + 𝐾0 𝑢, 𝑢 𝒙𝒖 (① global equivariant sum)

𝐾 𝑖, 𝑗
= 𝐾(𝑖 + Δ, 𝑗 + Δ) (② translation invariance)

= 𝑝𝑖 ∗ 𝑝𝑗 (③ factorized into absolute positions)

𝐾 𝑢, 𝑣
= 𝐾(𝜎 𝑢 ,𝜎(𝑣)) (② permutation invariance)

= 𝑧𝑢 , 𝑧𝑣 (③ factorized into positional encodings)

𝑗 𝒊…

𝑝𝑗 𝑝𝑖
𝒖

…
𝑣

𝑧𝑢

𝑧𝑣

GraphSequence

Figure 1: Comparison of Sequence State Space Conv. (left) and Graph State Space Conv. (right).

State Space Models. State space model is a continuous system that maps a input function x(t) to
output h(t) by the following first-order differential equation: d

dth(t) = Ah(t) +Bx(t). This system
can be discretized by applying a discretization rule (e.g., bilinear method (Tustin, 1947), zero-order
hold (Gu & Dao, 2023)) with time step ∆. Suppose hi := h(i ·∆) and xi := x(i ·∆). The discrete
state space model becomes a recurrence process:

hi = Āhi−1 + B̄xi, (1)
where Ā = fA(∆, A) and B̄ = fB(∆, B) depend on the specific discretization rule. The recurrence
Eq. (1) can be computed equivalently by a global convolution:

hi =

i∑
j=1

Āi−jB̄xj . (2)

In the remaining of this paper, we call convolution Eq. (2) state space convolution (SSC). Notably,
the state space model enjoys three key advantages simultaneously:

• Translation equivariance. A translation to input xi → xi+δ yields the same translation to output
hi → hi+δ .

• Long-range dependencies. The feature hi of i-th token depends on all preceding tokens’ features
x1, x2, ..., xi−1. With a properly chosen structured matrix Ā, e.g., HiPPO (Gu et al., 2020), low-
rank (Gu et al., 2021a) or diagonal matrices (Gupta et al., 2022), the gradient norm ∥∂hi/∂xi−j∥
does not decay as j goes large. This is different to the fixed-size receptive field in CNNs (LeCun
et al., 1998; Krizhevsky et al., 2012) and the vanishing gradient norm in RNNs (Pascanu, 2013).

• Computational efficiency and parallelism. To computing h1, h2, ..., hn, it adopts either recurrence
(Eq. 1) or convolution (Eq. 2). Near-linear-time algorithms are introduced to provide parallelism
for efficient training, e.g., FFT (Gu et al., 2021a; Karami & Ghodsi, 2024), block-decomposition
matrix multiplication (Dao & Gu, 2024) for convolution, and parallel scan (Gu & Dao, 2023) for
recurrence.

Notation. Suppose x, y are two vectors of dimension n. Denote ⟨x, y⟩ =
∑n

i=1 xiyi as the inner
product, x ⊙ y = (x1y1, x2y2, ...) be the element-wise product. We generally denote the hidden
dimension by m, and the dimension of positional encodings by d.

3 GRAPH STATE SPACE CONVOLUTION

3.1 GENERALIZING STATE SPACE CONVOLUTION TO GRAPHS

Like standard SSC (Eq. 2), the desired graph SSC should keep the good capturing of long-range
dependencies as well as linear-time complexity and parallelizability. Meanwhile, permutation
equivariance as a strong inductive bias of graph-structured data should be preserved by the model as
well to improve generalization.

Our key observations of SSC start with the fact that the convolution kernel Āi−j encoding the relative
distance i− j between token i and j allows for a natural factorization:

hi =

i∑
j=1

Āi−jB̄xj = Āi
i∑

j=1

Ā−jB̄xj . (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Generally,
∑

j K(i, j)xj with a generic kernel K(i, j) requires quadratic-time computation and may
not capture translation invariant patterns for variable-length generalization. For SSC (Eq. 3), however,
it captures translation invariant patterns by adopting a translation-invariant kernelK(i−j) that only
depends on the relative distance i− j, which gives the generalization power to sequences even longer
than those used for training (Giles & Maxwell, 1987; Kazemnejad et al., 2024). Moreover, SSC attains
computational efficiency by leveraging the factorability of its particular choice of the relative distance
kernelK(i−j) = Āi−j = Āi ·Ā−j , where the factors only depend on the absolute positions of token
i and j respectively. To compute h, one construct [

∑1
j=1 Ā

−jB̄xj , ...,
∑n

j=1 Ā
−jB̄xj] using prefix

sum with complexity O(n), and then readout hi by multiplying Āi for all i = 1, 2, ..., n in parallel
with complexity O(n). Finally, the global causal sum

∑
j≤i helps capture global dependencies.

Overall, the advantages of SSC are attributed to these three aspects.

Inspired by these insights, a natural generalization of SSC to graphs, written generally as hv =∑
u∈V K(v, u)xu, is expected to adopt a permutation-invariant kernelK(v, u), v, u ∈ V to capture

the inductive bias of graphs. The kernel should be factorizable K(v, u) = z⊤v zu with certain notion
of node absolute position for computational efficiency, and the convolution should perform global
pooling across the entire graph to capture global dependencies. Note that causal sum

∑
j≤i is

replaced by global pooling
∑

u∈V due to the lack of causality in the order of nodes.

Fortunately, a systematic strategy can be adopted to design such kernels. First, the kernel K(v, u)
should depend on some notions of relative distance between nodes to capture graph topology and
preserve permutation invariance. The choices include but are not limited to shortest-path distance,
random walk landing probability (Li et al., 2019) (such as PageRank (Page et al., 1999)), heat
(diffusion) distance (Chung, 2007), resistance distance (Xiao & Gutman, 2003; Palacios, 2001), etc.
Many of them have been widely adopted as edge features for existing models, e.g., GNNs (You et al.,
2021; Li et al., 2020; Zhang & Li, 2021; Chien et al., 2021; Velingker et al., 2024; Nikolentzos &
Vazirgiannis, 2020) and graph transformers (Kreuzer et al., 2021; Rampášek et al., 2022; Ma et al.,
2023; Mialon et al., 2021). More importantly, all these kernels can be factorized into some weighted
inner product of Laplacian eigenvectors (Belkin & Niyogi, 2003). Here, Laplacian eigenvectors,
also known as Laplacian positional encodings (LPE) (Wang et al., 2022; Dwivedi et al., 2023; Lim
et al., 2022), play the role of the absolute positions of nodes in the graph. Formally, consider the
eigendecomposition L = V ΛV ⊤ and let pu = [Vu,:]

⊤ be the LPE for node u. Then a relative-
distance kernel K(u, v) can be generally factorized into K(u, v) = p⊤u (ϕ(Λ) ⊙ pv) for certain
functions ϕ. For instance, diffusion kernel satisfies [ϕ(Λ)]k = exp(−tλk) for some time parameter t.

Graph State Space Convolution (GSSC). Given the above observations, we are ready to present
GSSC as follows. Given the input node features xu ∈ Rm, the d-dim Laplacian positional encodings
pu = [Vu,1:d]

⊤ ∈ Rd, and the corresponding d eigenvalues Λd = [λ1, ..., λd]
⊤, the output node

representations hu ∈ Rm follow

hu =
∑
v∈V

⟨zuWq, zvWk⟩ ⊙Woxv + ⟨zuWsq, zuWsk⟩ ⊙Wsxu, (4)

= ⟨zuWq,
∑
v∈V

zvWk ⊙Woxv⟩+ ⟨zuWsq, zuWsk ⊙Wsxu⟩. (5)

Here zu = [ϕ1(Λd)⊙pu, ..., ϕm(Λd)⊙pu] ∈ Rd×m represents the eigenvalue-augmented PEs from
raw d-dim PEs pu and ϕℓ : Rd → Rd are learnable permutation equivariant functions w.r.t. d-dim
axis (i.e., equivariant to permutation of eigenvalues). All W ∈ Rm×m with different subscripts are
learnable weight matrices. The inner product ⟨zuWq, zvWk⟩ ∈ Rm only sums over the first d-dim
axis. The term zuWsk ⊙Wsxu in Eq.5 should be interpreted as first broadcasting Wsxu from Rm

to Rd×m and then performing element-wise products. Note that GSSC is a generalization of SSC
(Eq. 3) in the sense that:

• Absolute position: absolute position Āi is replaced by positional encodings zu;
• factorizable kernel: the kernel ĀiĀ−j in terms of the product of absolute positions is replaced by

the inner product of graph positional encodings ⟨zuWq, zvWk⟩.

• global sum: casual sum
∑i

j=1 Ā
−jB̄xj is replaced by an equivariant global pooling. As graphs

are not causal, which means a node u only distinguishes itself (node u) from other nodes, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝟏
𝟐

𝟑

𝒏

Eigenvalue-augmented PE 𝒛

GSSC layer

𝑥: node feature
𝑝: positional encodings 𝑥1 𝑝1

𝒖

𝑥𝑢 𝑧𝑢

= concat[𝜙1 Λ ⊙ , …, 𝜙𝑚 Λ ⊙]

Input graph

for every node 𝑢
𝑧𝑢 𝑝𝑢 𝑝𝑢

𝒖

𝑥𝑢 𝑧𝑢

1. for every node 𝑢

𝜙1, … , 𝜙𝑚are permutation equivariant

𝑧𝑢𝑊𝑘

⊙

bc(𝑊𝑜𝑥𝑢)

𝑧𝑢𝑊𝑠𝑘

⊙

bc(𝑊𝑠𝑥𝑢)

2. global pooling
(linear complexity) ത𝑎 = ෍

𝑢∈𝑉

𝑎𝑢

𝑎𝑢 =

𝑏𝑢 =

3. update node representation

𝒖

𝑥𝑢
′

B
R

D
C

ST
B

R
D

C
ST relative PE between 𝑢, 𝑣 for all 𝑣 ∈ 𝑉

(optional) further combined with 𝑥𝑢 (selective mechanism Eq.(6))

= 𝑧𝑢𝑊𝑠𝑞 , ത𝑎 1𝑠𝑡−𝑎𝑥𝑖𝑠
+ 𝑧𝑢𝑊𝑠𝑞 , 𝑏𝑢 1𝑠𝑡−𝑎𝑥𝑖𝑠

Figure 2: Illustration of Graph State Space Convolution (GSSC).

adopt permutation equivariant global pooling consists of the term zuWsk ⊙Wsxu denoting node
u itself, and (

∑
v∈V zvWk)⊙Woxv denoting all nodes in the graph.

Proposition 3.1 suggests that GSSC with learnable ϕ can capture long-range dependencies.
Proposition 3.1. There exists ϕ such that for GSSC Eq. 4, the gradient norm ∥∂hu/∂xv∥ does not
decay as spd(u, v) grows, where spd denotes the shortest path distance.

To sum up, the design of GSSC leads to the following key properties as desired.
Remark 3.1. GSSC (Eq. 4) is (1) permutation equivariant: a permutation of node indices reorders
hu correspondingly; (2) long-range: as suggested by Proposition 3.1; (3) linear-time: the complexity
of computing h1, ..., hn from x1, ..., xn is O(nmd), where n is the number of nodes and m, d are
hidden and positional encoding dimension; (4) stable: perturbation to graph Laplacian yields a
controllable change of GSSC model output, because permutation equivariance and smoothness of
ϕℓ ensure the stability of inner product ⟨zuWq, zvWk⟩ and model output, as shown in Wang et al.
(2022); Huang et al. (2024). Stability is an enhanced concept of permutation equivariance and is
crucial for out-of-distribution generalization (Huang et al., 2024).

3.2 EXTENSIONS AND DISCUSSIONS

Incorporating Edge Features. SSMs (and the proposed GSSC) do not have a natural way to
incorporate token-pairwise (edge) features. To address this inherent limitation, SSMs (and their graph
extension GSSC) need to be paired with modules that can incorporate token-pairwise (edge) features,
such as MPNNs adopted in previous graph Mambas (Wang et al., 2024a; Behrouz & Hashemi, 2024)
and graph transformers (Rampášek et al., 2022; Chen et al., 2022a). SSMs and MPNNs complement
either side by capturing global dependence via SSMs and edge features via MPNNs. This can be
validated by the significant performance boost compared with using either module alone in practice.

Selection Mechanism in SSMs. It is known that SSMs lack of selection mechanism, i.e., the kernel
Āi−j is only a function of positions i, j and does not rely on the feature of tokens (Gu & Dao,
2023). To improve the content-aware ability of SSMs, Gu & Dao (Gu & Dao, 2023) proposed
to make coefficients Ā, B̄ in Eq.1 data-dependent, i.e., replacing Ā by Āi := Ā(xi) and B̄ by
B̄i := B̄(xi). This leads to a data-dependent convolution: hi =

∑i
j=1 Āi−1Āi−2...ĀjB̄jxj . Again,

this convolution can be factorized into hi = Ãi(
∑i

j=1 Ã
−1
j B̄jxj), where Ãi := Āi−1Āi−2...Ā1 can

be interpreted as a data-dependent absolute position of token i, depending on features and positions
of all preceding tokens. We can generalize this “data-dependent position” idea to GSSC, defining a
data-dependent positional encodings z̃ as follows:

z̃u =
∑
v∈V

⟨zuWdq, zvWdk⟩(zv ⊙ xv)Wdv, (6)

where zu ⊙ xu should be interpreted as first broadcasting xu from Rm to Rr×m and then doing
the element-wise product with zu. Note that the new positional encodings z̃u rely on the features
and positional encodings of all nodes, which reflects permutation equivariance. To achieve a se-
lection mechanism, we can replace every zu in Eq. 4 by z̃u. Thanks to the factorizable kernel
⟨zuWdq, zvWdk⟩, computing z̃u can still be done in O(nmd2), linear w.r.t. graph size.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Compared to Graph Spectral Convolution (GSC). GSSC may also look similar to graph
spectral convolution, which is usually in the form of H = V ψ(Λ)V ⊤XW , where H =
[h⊤1 ; ...;h

⊤
n]

⊤ ∈ Rn×m and X = [x⊤1 ; ...;x
⊤
n]

⊤ ∈ Rn×m are a row-wise concatenation of fea-
tures, ψ(Λ) = diag([ψ(λ1), ..., ψ(λn)]) is the spectrum-domain filtering with ψ : R → R being an
element-wise function. Equivalently, it can be written as hu =

∑
v∈V⟨pu, ψ(Λ)⊙ pv⟩Wxv . There

are several differences between GSSC (Eq. 4) and graph spectral convolution: (1) ψ : R → R is
an element-wise filters, while ϕ : Rm → Rm is a general permutation equivariant function that
considers the mutual interactions between frequencies; (2) GSSC distinguishes a node itself (weight
Wsq,Wsk,Wso) and other nodes (weight Wq,Wk,Wo), while GSC treats all nodes using the same
weight W . The former turns out to be helpful to express the diagonal element extraction (diag(Ak))
in cycle counting. In comparison, GSC with non-distinguishable node features cannot be more
powerful than 1-WL test (Wang & Zhang, 2022), while GSSC, is more powerful as shown later.

Super-linear Computation of Laplacian Eigendecomposition. GSSC requires the computation of
Laplacian eigendecomposition as preprocessing. Although finding all eigenvectors and eigenvalues
can be costly, (1) in real experiments, such preprocessing can be done efficiently, which may only
occupy less than 10% wall-clock time of the entire training process (see Sec. 5.3 for quantitative
results on real-world datasets); (2) we only need top-d eigenvectors and eigenvalues, which can be
efficiently found by Lanczos methods (Paige, 1972; Lanczos, 1950) with complexity O(Ed) (E is
the number of edges) or similarly by LOBPCG methods (Knyazev, 2001); (3) one can also adopt
random Fourier feature-based approaches to fast approximate those kernels’ factorization (Smola &
Kondor, 2003; Choromanski, 2023; Reid et al., 2024) without precisely computing the eigenvectors.

3.3 EXPRESSIVE POWER

We measure the expressivity of GSSC via graph distinguishing ability compared to WL test hierarchy.
Proposition 3.2. GSSC is strictly more powerful than WL test and not more powerful than 3-WL test.

We can also characterize the expressivity of GSSC via the ability to count graph substructures.
Proposition 3.3 states that GSSC can count at least 3-paths and 3-cycles, which is strictly stronger
than the counting power of MPNNs and GSC (both cannot count cycles (Chen et al., 2020b; Wang &
Zhang, 2022)). Furthermore, if we introduce the selection mechanism Eq. 6, it can provably count at
least 4-paths and 4-cycles.
Proposition 3.3 (Counting paths and cycles). Graph state space convolution Eq. 4 can at least count
number of 3-paths and 3-cycles. With selection mechanism Eq. 6, it can at least count number of
4-paths and 4-cycles. Here “counting” means a node representation can express the number of paths
starting at the node or the number of cycles involving the node.

4 RELATED WORKS

Linear Graph Transformers. Graph transformers leverage attention mechanism (Vaswani et al.,
2017; Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Kim et al., 2022; Chen et al., 2022a) that
can attend to all nodes in a graph, but yield quadratic complexity w.r.t. graph size. To reduce the
complexity, Rampášek et al. (2022); Wu et al. (2022; 2023) adopt linear attention techniques, i.e.,
factorizing the attention kernel into products of Random Positive Features (Choromanski et al., 2020).
Wu et al. (2024); Deng et al. (2024) replaces attention by inner products of learnable features, which do
not leverage any positional encodings but use extra message passing layers to encode graph topology.
For comparison, GSSC (Eq. 4) derived from SSMs is based on a factorization of convolution kernels,
which shares some similar spirits. In fact, a recent work points out some equivalences between linear
transformers and SSMs (Dao & Gu, 2024). However, GSSC is technically different from linear
graph transformers. The latter uses random features to approximate the specific attention kernel
(softmax+inner product), and generally the node features and positional encodings are both used in
constructing the random features. In contrast, GSSC adopts positional encodings exclusively (may
also includes node features if using selective mechanism Eq. 6) to construct convolution kernels in a
learnable and stable way, and it is not restricted to the attention kernel. Finally, there are other works
that use methods other than attention factorization: Shirzad et al. (2023) leverages virtual global
nodes and expander graphs to perform sparse attention; Kong et al. (2023) applies a projection matrix
to reduce the graph size factor n to a lower dimension k. Both are very different from GSSC.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Benchmark on GNN Benchmark & Long Range Graph Benchmark. Bold†, Bold‡, and Bold
denote the first, second, and third best results, respectively. Results are reported as mean±std.

MNIST CIFAR10 PATTERN CLUSTER MalNet-Tiny PascalVOC-SP Peptides-func Peptides-struct

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ F1 score↑ AP ↑ MAE ↓
GCN 90.705±0.218 55.710±0.381 71.892±0.334 68.498±0.976 81.0 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013

GIN 96.485±0.252 55.255±1.527 85.387±0.136 64.716±1.553 88.98±0.56 0.1265±0.0076 0.5498±0.0079 0.3547±0.0045

GAT 95.535±0.205 64.223±0.455 78.271±0.186 70.587±0.447 92.10±0.24 − − −
GatedGCN 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326 92.23±0.65 0.2873±0.0219 0.5864±0.0077 0.3420±0.0013

SAN − − 86.581±0.037 76.691±0.650 − 0.3216±0.0027 0.6439±0.0075 0.2545±0.0012

GraphGPS 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180 93.50±0.41 0.3748±0.0109 0.6535±0.0041 0.2500±0.0005

Exphormer 98.550†
±0.039 74.690±0.125 86.740±0.015 78.070±0.037 94.02‡

±0.21 0.3975±0.0037 0.6527±0.0043 0.2481±0.0007

Grit 98.108±0.111 76.468±0.881 87.196‡
±0.076 80.026†

±0.277 − − 0.6988±0.0082 0.2460±0.0012

GRED 98.383±0.012 76.853‡
±0.185 86.759±0.020 78.495±0.103 − − 0.7133†

±0.0011 0.2455†
±0.0013

Graph-Mamba-I 98.420±0.080 73.700±0.340 86.710±0.050 76.800±0.360 93.40±0.27 0.4191‡
±0.0126 0.6739±0.0087 0.2478±0.0016

GSSC 98.492‡
±0.051 77.642†

±0.456 87.510†
±0.082 79.156‡

±0.152 94.06†
±0.64 0.4561†

±0.0039 0.7081‡
±0.0062 0.2459‡

±0.0020

State Space Models (SSMs). Classic SSMs (Kalman, 1960; Hyndman et al., 2008; Durbin &
Koopman, 2012) describe the evolution of state variables over time using first-order differential
equations or difference equations, providing a unified framework for time series modeling. Similar
to RNNs (Pascanu, 2013; Graves, 2013; Sutskever et al., 2014), SSMs may also suffer from poor
memorization of long contexts and long-range dependencies. To address this issue, Structural SSMs
(S4) with a structural matrix Ā are introduced to capture long-range dependencies, e.g., HiPPO (Gu
et al., 2020; 2021a) and diagonal matrices (Gupta et al., 2022; Gu et al., 2022). Many variants of
SSMs (Gu & Dao, 2023; Mehta et al., 2022; Ma et al., 2022; Fu et al., 2022) are also proposed.
See Wang et al. (2024b) for a comprehensive survey. Note that GSSC Eq. 4 does not reply on
a structural matrix Ā to achieve long-range dependencies. This is because Ā serves to describe
the casual (recurrence) relation Eq. 1 for sequences, while there is not such causality for graphs.
Instead, GSSC is generalized from the SSM convolution Eq. 2 and its behavior relies on the design
of convolution kernel, i.e., the inner product of learnable graph positional encodings. The long-range
property can be achieved by choosing ϕ functions, as evidenced by Proposition 3.1.

State Space Models for Graphs. There are some efforts to replace the attention mechanism in graph
transformers with SSMs. They mainly focus on tokenizing graphs and apply the existing SSM such as
Mamba (Gu & Dao, 2023). Graph-Mamba-I (Wang et al., 2024a) sorts nodes into sequences by node
degrees and applies Mamba. As node degrees could have multiplicity, this approach requires random
permutation of sequences during training, and the resulting model is not permutation equivariant to
node indices reordering. Graph-Mamba-II (Behrouz & Hashemi, 2024) extracts the 1, 2, ...,K-hop
subgraphs of a root node, treats each k-hop subgraph as a token. Each subgraph is assigned a
representation using GNNs, and these subgraphs form a sequence for the root node. It then applies
Mamba to this sequence to aggregate the representation of the root node and further applies Mamba
to a sequence of root nodes to get graph representations, but the latter operation breaks permutation
invariance. Ding et al. (2024) also treated k-hop neighbors with different k’s as a sequence while
using Deepsets encoders (Zaheer et al., 2017) instead of GNNs. These approaches incur significant
computational overhead as they require applying GNNs/DeepSets to encode every subgraph token
first. Pan et al. (2024) focuses on heterogeneous graph scenarios, sorting and tokenizing rooted
subgraphs based on the metapaths and applying Mamba to the sequentialized subgraphs. Zhao
et al. (2024) aims at the design of graph spectral convolutions, applying SSMs to naturally ordered
frequencies to build a graph filter. Compared to these methods, GSSC does not adopt any graph
sequentialization but instead generalizes the causal state space convolution to graphs, preserving
permutation equivariance and maintaining linear complexity.

5 EXPERIMENTS

We evaluate the effectiveness of GSSC on 13 datasets against various baselines. Particularly, we
focus on answering the following questions:

• Q1: How expressive is GSSC in terms of counting graph substructures?
• Q2: How effectively does GSSC capture long-range dependencies?
• Q3: How does GSSC perform on general graph benchmarks compared to other baselines?
• Q4: How does the computational time/space of GSSC scale with graph size?

Below we briefly introduce the model implementation, included datasets and baselines, and a more
detailed description can be found in Appendix B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Datasets. To answer Q1, we use the graph substructure counting datasets from (Chen et al., 2020b;
Zhao et al., 2021; Huang et al., 2022). Each of the synthetic datasets contains 5k graphs generated
from different distributions (see Chen et al. (2020b) Appendix M.2.1), and the task is to predict the
number of cycles as node-level regression. To answer Q2, we evaluate GSSC on Long Range Graph
Benchmark (Dwivedi et al., 2022), which requires long-range interaction reasoning to achieve strong
performance. Specifically, we adopt Peptides-func (graph-level classification with 10 functional
labels of peptides), Peptides-struct (graph-level regression of 11 structural properties of molecules),
and PascalVOC-SP (classify superpixels of image graphs into corresponding object classes). To
answer Q3, molecular graph datasets (ZINC (Dwivedi et al., 2023) and ogbg-molhiv (Hu et al.,
2020)), image graph datasets (MNIST, CIFAR10 (Dwivedi et al., 2023)), synthetic graph datasets
(PATTERN, CLUSTER (Dwivedi et al., 2023)), and function call graphs (MalNet-Tiny) (Freitas
et al., 2020), are used to evaluate the performance of GSSC. ZINC is a molecular property prediction
(graph regression) task containing two partitions of dataset, ZINC-12K (12k samples) and ZINC-full
(250k samples). Ogbg-molhiv consists of 41k molecular graphs for graph classification. CIFAR10
and MNIST are 8-nearest neighbor graph of superpixels constructed from images for classification.
PATTERN and CLUSTER are synthetic graphs generated by the Stochastic Block Model (SBM) to
perform node-level community classification. Finally, to answer Q4, we construct a synthetic dataset
with graph sizes from 1k to 60k to evaluate how GSSC scales.

GSSC Implementation. We implement deep models consisting of GSSC blocks Eq. 4, where ϕ is
DeepSets Zaheer et al. (2017). Each layer includes one MPNN (to incorporate edge features) and
one GSSC block, followed by a nonlinear readout to merge the outputs of MPNN and GSSC. The
resulting deep model can be seen as a GraphGPS (Rampášek et al., 2022) with the vanilla transformer
replaced by GSSC. Selective mechanism is only introduced to cycle-counting tasks, because we find
the GSSC w/o selective mechanism is already powerful and yields excellent results in real-world
tasks. In our experiments, GSSC utilizes the smallest d = 32 eigenvalues and their eigenvectors for
all datasets except molecular ones, which employ d = 16. See Appendix B for full details of model
hyperparameters.

Baselines. We consider various baselines that can be mainly categorized into: (1) MPNNs: GCN (Kipf
& Welling, 2016), GIN (Xu et al., 2018), GAT (Veličković et al., 2018), Gated GCN (Bresson &
Laurent, 2017) and PNA (Corso et al., 2020); (2) Subgraph GNNs: NGNN (Zhang & Li, 2021),
ID-GNN (You et al., 2021), GIN-AK+ (Zhao et al., 2021), I2-GNN (Huang et al., 2022); (3) Graph
transformers: Graphormer (Ying et al., 2021), SAN (Kreuzer et al., 2021), GraphGPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), Grit (Ma et al., 2023); (4) Others: SUN (Frasca
et al., 2022), Specformer (Bo et al., 2022), GRED (Ding et al., 2024), Graph-Mamba-I (Wang et al.,
2024a), SignNet (Lim et al., 2022), SPE (Huang et al., 2024). Note that we also compare the baseline
Graph-Mamba-II (Behrouz & Hashemi, 2024), and GSSC outperforms it on all included datasets, but
we put their results in Appendix C as we cannot reproduce their results due to the lack of code.

5.1 GRAPH SUBSTRUCTURE COUNTING

Table 2: Benchmark on graph substruc-
ture counting (normalized MAE ↓). Se-
lective mechanism is applied for GSSC.

3-Cycle 4-Cycle 5-Cycle

GIN 0.3515 0.2742 0.2088
ID-GIN 0.0006 0.0022 0.0490
NGNN 0.0003 0.0013 0.0402
GIN-AK+ 0.0004 0.0041 0.0133
I2-GNN 0.0003 0.0016 0.0028
Exphormer 0.0006 0.0468 0.0827
graph-Mamba-I 0.0014 0.0113 0.0301
GraphGPS (Transformer) 0.0007 0.0125 0.0297
graphGPS (Performer) 0.0011 0.0131 0.0301

GSSC 0.0002 0.0013 0.0113

Table 2 shows the normalized MAE results (MAE di-
vided by the standard deviation of targets). We adopt GIN
backbone for all baseline subgraph models (Huang et al.,
2022). In terms of predicting 3-cycles and 4-cycles, GSSC
achieves the best results compared to subgraph GNNs and
I2-GNNs (models that can provably count 3, 4-cycles) val-
idating Theorem 3.3. For the prediction of 5-cycles, GSSC
greatly outperforms the MPNN and ID-GNN (models that
cannot predict 5-cycles) reducing normalized MAE by
94.6% and 71.9%, respectively. Besides, GSSC achieves
constantly better performance than GNNAK+, a subgraph
GNN model that is strictly stronger than ID-GNN and NGNN (Huang et al., 2022). These results
demonstrate the empirically strong function-fitting ability of GSSC.

5.2 GRAPH LEARNING BENCHMARKS

Table 1 and Table 3 evaluate the performance of GSSC on multiple widely used graph learning
benchmarks. GSSC achieves excellent performance on all benchmark datasets, and the result of each
benchmark is discussed below.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Long Range Graph Benchmark (Dwivedi et al., 2022). We test the ability to model long-range
interaction on PascalVOC-SP, Peptides-func, and Peptides-struct, as shown in Table 1. Remarkably,
GSSC achieves state-of-the-art performance on PascalVOC-SP and delivers second-best results on
the other two datasets, coming extremely close to the leading benchmarks. These results underscore
GSSC’s robust ability to capture long-range dependencies.

Molecular Graph Benchmark (Dwivedi et al., 2023; Hu et al., 2020). Table 3 shows the results
on molecular graph datasets. GSSC achieves the best results on ZINC-Full and ogbg-molhiv and
is comparable to the state-of-the-art model on ZINC-12k, which could be attributed to its great
expressive power and stable positional encodings.

Table 3: Benchmark on molecular datasets.
Bold†, Bold‡, and Bold denote the first, sec-
ond, and third best results, respectively.

ZINC-12k ZINC-Full ogbg-molhiv

MAE ↓ MAE ↓ AUROC ↑
GCN 0.367±0.011 0.113±0.002 75.99±1.19

GIN 0.526±0.051 0.088±0.002 77.07±1.49

GAT 0.384±0.007 0.111±0.002 −
PNA 0.188±0.004 − 79.05±1.32

NGNN 0.111±0.003 0.029±0.001 78.34±1.86

GIN-AK+ 0.080±0.001 − 79.61±1.19

I2-GNN 0.083±0.001 0.023±0.001 78.68±0.93

SUN 0.083±0.003 0.024±0.003 80.03‡
±0.55

Graphormer 0.122±0.006 0.052±0.005 −
SAN 0.139±0.006 − 77.85±2.47

GraphGPS 0.070±0.004 − 78.80±1.01

GraphGPS (Performer) 0.072±0.002 − 77.79±1.25

Exphormer 0.111±0.007 − 78.79±1.31

Specformer 0.066±0.003 − 78.89±1.24

SPE 0.070±0.004 − −
SignNet 0.084±0.006 0.024±0.003 −
Grit 0.059†

±0.002 0.023±0.001 −
GRED 0.077±0.002 − −
Graph-Mamba-I 0.067±0.002 − 78.23±1.21

GSSC 0.064‡
±0.002 0.019†

±0.001 80.35†
±1.42

GNN Benchmark (Dwivedi et al., 2023) & MalNet-
Tiny (Freitas et al., 2020). Table 1 (MNIST to
CLUSTER) presents the results on the GNN Bench-
mark datasets and MalNet-Tiny. GSSC achieves
state-of-the-art performance on CIFAR10, PAT-
TERN, and MalNet-Tiny, and ranks second-best on
MNIST and CLUSTER, demonstrating its superior
capability on general graph-structured data.

Ablation study. The comparison to GraphGPS and
MPNNs naturally serves as an ablation study: the
proposed GSSC is replaced by a vanilla transformer
or removed while other modules are identical. GSSC
consistently outperforms MPNNs and GraphGPS on
all tasks, validating the effectiveness of GSSC as an
alternative to full attention in graph transformers.

5.3 COMPUTATIONAL COSTS COMPARISON

The computational costs of graph learning methods can be divided into two main components: 1)
preprocessing, which includes operations such as calculating positional encoding, and 2) model
training and inference. To demonstrate the efficiency of GSSC, we benchmark its computational
costs for both components against 4 recent state-of-the-art methods, including GraphGPS (Rampášek
et al., 2022), Grit (Ma et al., 2023), Exphormer (Shirzad et al., 2023), and Graph-Mamba-I (Wang
et al., 2024a). Notably, Exphormer, Graph-Mamba-I, and GSSC are designed with linear complexity
with respect to the number of nodes n, whereas Grit and GraphGPS exhibit quadratic complexity
by design. According to our results below, GSSC is one of the most efficient models (even for large
graphs) that can capture long-range dependencies. However, in practice, one must carefully consider
whether the module that explicitly captures global dependencies is necessary for very large graphs.

Figure 3: Preprocessing costs per graph.

Benchmark Setup. To accurately assess
the scalability of the evaluated methods, we
generate random graphs with node counts
ranging from 1k to 60k. To simulate the
typical sparsity of graph-structured data, we
introduce n2 × 1% edges for graphs con-
taining fewer than 10k nodes, and n2 ×
0.1% edges for graphs with more than 10k
nodes. For computations performed on GPUs,
we utilize torch.utils.benchmark.Timer and
torch. cuda.max_memory_allocated to measure time and space usage; for those performed on
CPUs, time. time is employed. Results are averaged over more than 100 runs to ensure reliability.
All methods are implemented using author-provided code and all experiments are conducted on a
server equipped with Nvidia RTX 6000 Ada GPUs (48 GB) and AMD EPYC 7763 CPUs.

Preprocessing Costs. As all baseline methods implement preprocessing on CPUs, we first focus
on CPU time usage to assess scalability, as illustrated in Fig. 3 (left). Grit computes RRWP (Ma
et al., 2023), which notably requires more time due to its repeated multiplications between pairs
of n × n matrices. Other methods, e.g., Exphormer, GraphGPS, Graph-Mamba-I, and GSSC,
may use Laplacian eigendecomposition for graph positional encoding. For these, we follow the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Model training and inference costs per graph.

implementation of baselines and perform full eigendecomposition on CPUs (limited to 16 cores),
depicted by the green line in the figure. Exphormer additionally constructs expander graphs (EG),
slightly increasing its preprocessing time (the red line). Clearly, full eigendecomposition is costly
for large graphs; however, GSSC requires only the smallest d eigenvalues and their eigenvectors.
Thus, for large graphs, we can bypass full eigendecomposition and leverage iterative methods on
GPUs, such as torch. lobpcg (Knyazev, 2001), to obtain the top-d results, which is both fast and
GPU memory-efficient (linear in n), shown by the orange lines (LapPE GPU-topEigen) in the figures
with d = 32. Nonetheless, for small graphs, full eigendecomposition on CPUs remains efficient,
aligning with practices in prior studies.

Model Training/Inference Costs. Fig. 4 benchmarks model training (forward + backward passes)
and inference (forward pass only) costs in an inductive node classification setting. All methods are
ensured to have the same number of layers and roughly 500k parameters. Methods marked "OOM"
indicate out-of-memory errors on a GPU with 48 GB memory when the number of nodes further
increases by 5k. GSSC and Graph-Mamba-I emerge as the two most efficient methods. Although
Graph-Mamba-I shows slightly better performance during training, this advantage can be attributed to
its direct integration with the highly optimized Mamba API (Gu & Dao, 2023), and GSSC’s efficiency
may also be further improved with hardware-aware optimization in the low-level implementation.

Table 4: Computational costs of GSSC
on real-world datasets.

ZINC-12k PascalVOC-SP

Avg. # nodes 23.2 479.4
graphs 12,000 11,355
epochs 2,000 300

Training time per epoch 10.9s 13.9s
Total training time 6.1h 1.2h
Total preprocessing time 20.6s 334.8s
Total preprocessing time

Total training time 0.1% 7.6%

Computational Costs of GSSC on Real-World Datasets.
The above benchmark evaluates graph (linear) transform-
ers on very large graphs to thoroughly test their scalability.
However, as in practice graph transformers are generally
applied to smaller graphs (Rampášek et al., 2022), where
capturing global dependencies can be more beneficial,
here we also report the computational costs for two repre-
sentative and widely used real-world benchmark datasets.
The results are presented in Table 4, where ZINC-12k and
PascalVOC-SP are included as examples of real-world datasets with the smallest and largest graph
sizes, respectively, for evaluating graph transformers. Preprocessing is done on CPUs per graph
following previous works due to the relatively small graph sizes, and the number of training epochs
used is also the same as prior studies (Rampášek et al., 2022; Ma et al., 2023; Shirzad et al., 2023).
We find that the total preprocessing time is negligible for datasets with small graphs (e.g., ZINC-12k),
comparable to the duration of a single training epoch (typically the number of training epochs is
larger than 100, meaning a ratio < 1%). For datasets with larger graphs (e.g., PascalVOC-SP), pre-
processing remains reasonably efficient, consuming less than 10% of the total training time. Notably,
the preprocessing time could be further reduced by computing eigendecomposition on GPUs with
batched graphs.

6 CONCLUSION AND LIMITATIONS

In this work, we study the extension of State Space Models (SSMs) to graphs. We propose Graph
State Space Convolution (GSSC) that leverages global permutation-equivariant aggregation and
factorizable graph kernels depending on relative graph distances. These operations naturally inherit
the advantages of SSMs on sequential data: (1) efficient computation; (2) capability of capturing long-
range dependencies; (3) good generalization for various sequence lengths (graph sizes). Numerical
experiments demonstrate the superior performance and efficiency of GSSC.

One potential limitation of our work is that precisely computing full eigenvectors could be expensive
for large graphs. See discussions in Sec. 3.2 and our empirical evaluation in Sec. 5.3 that shows good
scalability even for large graphs with 60k nodes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.
Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282, 2012.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. arXiv preprint arXiv:2402.08678, 2024.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020a.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022a.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2022b.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. ArXiv, abs/1904.10509, 2019. URL https://api.semanticscholar.org/
CorpusID:129945531.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Krzysztof Marcin Choromanski. Taming graph kernels with random features. In International
Conference on Machine Learning, pp. 5964–5977. PMLR, 2023.

Fan Chung. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of
Sciences, 104(50):19735–19740, 2007.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476–6489,
2020.

11

https://api.semanticscholar.org/CorpusID:129945531
https://api.semanticscholar.org/CorpusID:129945531

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. arXiv preprint arXiv:2403.01232, 2024.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for
graph representation learning. In Forty-first International Conference on Machine Learning, 2024.

James Durbin and Siem Jan Koopman. Time series analysis by state space methods, volume 38. OUP
Oxford, 2012.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
ArXiv, abs/2012.09699, 2020. URL https://api.semanticscholar.org/CorpusID:
229298019.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision, 88:303–338,
2010.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and ex-
tending subgraph gnns by rethinking their symmetries. Advances in Neural Information Processing
Systems, 35:31376–31390, 2022.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph
representation learning. arXiv preprint arXiv:2011.07682, 2020.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2022.

Victor Fung, Jiaxin Zhang, Eric Juarez, and Bobby G Sumpter. Benchmarking graph neural networks
for materials chemistry. npj Computational Materials, 7(1):84, 2021.

C Lee Giles and Tom Maxwell. Learning, invariance, and generalization in high-order neural
networks. Applied optics, 26(23):4972–4978, 1987.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021a.

12

https://api.semanticscholar.org/CorpusID:229298019
https://api.semanticscholar.org/CorpusID:229298019

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Zhiwei Guo and Heng Wang. A deep graph neural network-based mechanism for social recommen-
dations. IEEE Transactions on Industrial Informatics, 17(4):2776–2783, 2020.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Conference
on Learning Representations, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with i2-gnns. In The Eleventh International Conference on Learning
Representations, 2022.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graph neural networks. In The Twelfth
International Conference on Learning Representations, 2024.

Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential
smoothing: the state space approach. Springer Science & Business Media, 2008.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Mahdi Karami and Ali Ghodsi. Orchid: Flexible and data-dependent convolution for sequence
modeling. arXiv preprint arXiv:2402.18508, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/katharopoulos20a.html.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, 35:2268–2281, 2022.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

13

https://proceedings.mlr.press/v119/katharopoulos20a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM journal on scientific computing, 23(2):517–541,
2001.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375–17390. PMLR, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differen-
tial and integral operators. 1950.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Pan Li, I Chien, and Olgica Milenkovic. Optimizing generalized pagerank methods for seed-expansion
community detection. Advances in Neural Information Processing Systems, 32, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
The Eleventh International Conference on Learning Representations, 2022.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The Eleventh
International Conference on Learning Representations, 2022.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling
via gated state spaces. In The Eleventh International Conference on Learning Representations,
2022.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Siqi Miao, Zhiyuan Lu, Mia Liu, Javier Duarte, and Pan Li. Locality-sensitive hashing-based efficient
point transformer with applications in high-energy physics. International Conference on Machine
Learning, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International
Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. Advances in
Neural Information Processing Systems, 33:16211–16222, 2020.

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, et al. The pagerank citation ranking:
Bringing order to the web. 1999.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Christopher C Paige. Computational variants of the lanczos method for the eigenproblem. IMA
Journal of Applied Mathematics, 10(3):373–381, 1972.

José Luis Palacios. Resistance distance in graphs and random walks. International Journal of
Quantum Chemistry, 81(1):29–33, 2001.

Zhenyu Pan, Yoonsung Jeong, Xiaoda Liu, and Han Liu. Hetegraph-mamba: Heterogeneous graph
learning via selective state space model. arXiv preprint arXiv:2405.13915, 2024.

R Pascanu. On the difficulty of training recurrent neural networks. arXiv preprint arXiv:1211.5063,
2013.

SN Perepechko and AN Voropaev. The number of fixed length cycles in an undirected graph.
explicit formulae in case of small lengths. Mathematical Modeling and Computational Physics
(MMCP2009), 148, 2009.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Isaac Reid, Adrian Weller, and Krzysztof M Choromanski. Quasi-monte carlo graph random features.
Advances in Neural Information Processing Systems, 36, 2024.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023.

Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah
Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajendra PS
Raghava. Satpdb: a database of structurally annotated therapeutic peptides. Nucleic acids research,
44(D1):D1119–D1126, 2016.

Alexander J Smola and Risi Kondor. Kernels and regularization on graphs. In Learning Theory
and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings, pp. 144–158.
Springer, 2003.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A
deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2024. URL
https://openreview.net/forum?id=UU9Icwbhin.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=7UmjRGzp-A.

Arnold Tustin. A method of analysing the behaviour of linear systems in terms of time series. Journal
of the Institution of Electrical Engineers-Part IIA: Automatic Regulators and Servo Mechanisms,
94(1):130–142, 1947.

15

https://openreview.net/forum?id=UU9Icwbhin
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Ameya Velingker, Ali Sinop, Ira Ktena, Petar Veličković, and Sreenivas Gollapudi. Affinity-aware
graph networks. Advances in Neural Information Processing Systems, 36, 2024.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024a.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
more powerful graph neural networks. In International Conference on Learning Representations,
2022.

Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay Hamid. Se-
lective structured state-spaces for long-form video understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6387–6397, 2023.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-Attention
with Linear Complexity. arXiv e-prints, art. arXiv:2006.04768, June 2020. doi: 10.48550/arXiv.
2006.04768.

Xiao Wang, Shiao Wang, Yuhe Ding, Yuehang Li, Wentao Wu, Yao Rong, Weizhe Kong, Ju Huang,
Shihao Li, Haoxiang Yang, et al. State space model for new-generation network alternative to
transformers: A survey. arXiv preprint arXiv:2404.09516, 2024b.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341–23362. PMLR, 2022.

Yingheng Wang, Yaosen Min, Erzhuo Shao, and Ji Wu. Molecular graph contrastive learning with pa-
rameterized explainable augmentations. In 2021 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 1558–1563. IEEE, 2021.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2024.

Yi Wu, Yanyang Xu, Wenhao Zhu, Guojie Song, Zhouchen Lin, Liang Wang, and Shaoguo Liu.
Kdlgt: a linear graph transformer framework via kernel decomposition approach. In Proceedings of
the Thirty-Second International Joint Conference on Artificial Intelligence, pp. 2370–2378, 2023.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Wenjun Xiao and Ivan Gutman. Resistance distance and laplacian spectrum. Theoretical chemistry
accounts, 110:284–289, 2003.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural
networks for automated de novo drug design. Drug discovery today, 26(6):1382–1393, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In International Conference on Machine Learning, pp. 40605–40623.
PMLR, 2023.

Bohang Zhang, Lingxiao Zhao, and Haggai Maron. On the expressive power of spectral invariant
graph neural networks. arXiv preprint arXiv:2406.04336, 2024.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

Gongpei Zhao, Tao Wang, Yi Jin, Congyan Lang, Yidong Li, and Haibin Ling. Grassnet: State space
model meets graph neural network. arXiv preprint arXiv:2408.08583, 2024.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. In International Conference on Learning Representations, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A DEFERRED PROOFS

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. There exists ϕ such that for GSSC Eq. 4, the gradient norm ∥∂hu/∂xv∥ does not
decay as spd(u, v) grows, where spd denotes shortest path distance.

Proof. For simplicity, let us assumem = 1, i.e., hidden dimension is one, which makes hu, xu scalars.
Now let weights Wq = Wk = Wo = 1 and Wsq = Wsk = Ws = 0. Let ϕ(λ) =

∑n
k=1 ckλ

k,
where ck > 0 are arbitrary positive constants that do not decay to zero as n, k → ∞. Then the
derivative ∂hu/∂xv becomes

∂hu
∂xv

=
∂

∂xv

n∑
k=1

Ak
u,v

∑
v∈V

xv =

n∑
k=1

ck#(walks from u to v) ≥ cspd(u,v). (7)

Therefore, ∥∂hu/∂xv∥ ≥ |cspd(u,v)|.

A.2 PROOF OF PROPOSITION 3.2

Proposition 3.2. GSSC is strictly more powerful than WL test and not more powerful than 3-WL test.

Proof. Let us show that GSSC is more powerful than WL test. Note that WL test has the same
power as message passing GNNs (Xu et al., 2018), so it is sufficient to show that GSSC is more
powerful than message passing GNNs. first, by letting ϕ(Λ) = Λ and weights Wq = Wk = I , the
convolution kernel ⟨zuWq, zvWk⟩ becomes Au,v, i.e., the entry of Adjacency matrix. Thus GSSC
can mimic message passing GNNs. Besides, if we consider two nonisomorphic graphs: one consists
of two triangles and one is a hexagon, clearly message passing GNNs cannot distinguish them while
GSSC can with proper ϕ and weights. Therefore we claim that GSSC is more powerful than message
passing GNNs and WL test as well.

Let us show that GSSC is not more powerful than 3-WL test. According to (Zhang et al., 2024),
Corollary 4.5, any eigenspace projection GNNs, i.e., GNNs whose node-pair features are augmented
by a basis invariant function of the PE of the node pairs, is not more powerful than 3-WL test. As
GSSC leverages a basis invariant and stable function of PE as convolution kernel, it can be seen as an
eigenspace projection GNN and thus is not more powerful than 3-WL.

A.3 PROOF OF PROPOSITION 3.3

Proposition 3.3 (Counting paths and cycles). Graph state space convolution Eq. 4 can at least count
number of 3-paths and 3-cycles. With selection mechanism Eq. equation 6, it can at least count
number of 4-paths and 4-cycles. Here “counting” means the node representations can express the
number of paths starting at the node or number of cycles involving the node.

Proof. The number of cycles and paths can be expressed in terms of polynomials of adjacency matrix
A, as shown in (Perepechko & Voropaev, 2009). Specifically, let [Pm]u,v be number of length-m
paths starting at node u and ending at node v, and [Cm]u be number of length-m cycles involving
node u, then

P2 = A2, (8)

C3 = diag(A3), (9)

P3 = A3 +A−Adiag(A2)− diag(A2)A, (10)

C4 = diag(A4) + diag(A2)− diag(A2diag(A2))− diag(Adiag(A2)A), (11)

P4 = A4 +A2 + 3A⊙A2 − diag(A3)A− diag(A2)A2 −Adiag(A3)−A2diag(A2)

−Adiag(A2)A (12)

Here diag(·) means taking the diagonal of the matrix.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now we are going to show that all these terms can be expressed by the GSSC kernel with specific
choices of weights.

2-paths and 3-cycles. It is clear that GSSC Eq.4 can compute number of length-2 paths starting
at node u, using

∑
v[P2]u,v =

∑
v[A

2]u,v =
∑

v⟨Λ ⊙ pu,Λ ⊙ pv⟩. On other hand, number of
3-cycles [C3]u = [A3]u,u = ⟨Λ3/2 ⊙ pu,Λ

3/2pu⟩ can also be implemented by Eq.equation 4 by
setting Ws = 1 and Wo = 0.

3-paths. A3 and A can be expressed by the similar argument above. Note that
∑

v[Adiag(A2)]u,v =∑
v Au,v[A

2]v,v . The term [A2]v,v can be represented by the node feature after one layer of GSSC,
as argued in counting [C3]u. Therefore

∑
v Au,v[A

2]v,v =
∑

v⟨Λ1/2 ⊙ pu,Λ
1/2pv⟩[A2]v,v can

be expressed by a two-layer GSSC. Finally, the term
∑

v[diag(A2)A]u,v = [A2]u,u ·
∑

v⟨Λ1/2 ⊙
pu,Λ

1/2 ⊙ pv⟩ can be computed a one-layer GSSC, by first computing [A2]u,u and
∑

v⟨Λ1/2 ⊙
pu,Λ

1/2 ⊙ pv⟩ separately and use a intermediate nonlinear MLPs to multiply them.

4-cycles. The term [diag(A4)]u = A4
u,u = ⟨Λ2pu,Λ

2pu⟩ can be implemented by one-layer GSSC by
letting Ws = 1,Wo = 0. Same for [diag(A2)]u. The term [diag(A2diag(A2))]u = [A2]u,u[A

2]u,u
can be implemented by one-layer GSSC with a multiplication nonlinear operation. Finally, note that
the last term

[diag(Adiag(A2)A)]u =
∑
v

Au,vA
2
v,vAv,u =

∑
v

Au,vAu,vA
2
v,v. (13)

We know that xv := A2
v,v can be encoded into node feature after one-layer GSSC. Now the whole

term
∑

v Au,vAu,vxv can be transformed into∑
v

Au,vAu,vxv =
∑
v

⟨Λ1/2pu,Λ
1/2pv⟩⟨Λ1/2pu,Λ

1/2pv⟩xv

= ⟨Λ1/2pu
∑
v

, ⟨Λ1/2pu,Λ
1/2pv⟩pv ⊙ xv⟩ = ⟨Λ1/2pu, z̃u⟩,

(14)

where z̃u is a node-feature-dependent PE, which can be implemented by Eq.6. The readout
⟨Λ1/2pu, z̃u⟩, again, can be implemented by letting Wo = 0 and Ws = 1.

4-paths. All terms can be expressed by the same argument in counting 3-paths, except A ⊙ A2

and Adiag(A2)A. To compute
∑

v[A⊙A2]u,v =
∑

v Au,vA
2
u,v, note that this follows the same

argument as in Eq.14, with xv replaced by 1 and the second Au,v replaced by A2
u,v. To compute∑

v[Adiag(A2)A]u,v , note that∑
v

[Adiag(A2)A]u,v =
∑
w

Au,wA
2
w,w

∑
v

Aw,v. (15)

Therefore, we can first use one-layer GSSC to encode A2
w,w and

∑
v Aw,v into node features,

multiply them together to get xw = A2
w,w ·

∑
v Aw,v , and then apply another GSSC layer with kernel

Au,w to get desired output
∑

w Au,wxw.

B EXPERIMENTAL DETAILS

B.1 DATASETS DESCRIPTION

Graph Substructure Counting (Chen et al., 2020b; Zhao et al., 2021; Huang et al., 2022) is a
synthetic dataset containing 5k graphs generated from different distributions (Erdős-Rényi random
graphs, random regular graphs, etc. see (Chen et al., 2020b) Appendix M.2.1). Each node is labeled
by the number of 3, 4, 5, 6-cycles that involves the node. The task is to predict the number of cycles
as node-level regression. The training/validation/test set is randomly split by 3:2:5.

ZINC (Dwivedi et al., 2023) (MIT License) has two versions of datasets with different splits. ZINC-
subset contains 12k molecular graphs from the ZINC database of commercially available chemical
compounds. These represent small molecules with the number of atoms between 9 and 37. Each node
represents a heavy atom (28 atom types) and each edge represents a chemical bond (3 types). The

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Dataset statistics used in the experiments.
Dataset # Graphs Avg. # nodes Avg. # edges Prediction level Prediction task

Cycle-counting 5,000 18.8 31.3 node regression

ZINC-subset 12,000 23.2 24.9 graph regression
ZINC-full 249,456 23.1 24.9 graph regression
ogbg-molhiv 41,127 25.5 27.5 graph binary classif.

MNIST 70,000 70.6 564.5 graph 10-class classif.
CIFAR10 60,000 117.6 941.1 graph 10-class classif.
PATTERN 14,000 118.9 3,039.3 node binary classifi.
CLUSTER 12,000 117.2 2,150.9 node 6-class classif.

MalNet-Tiny 5,000 1,410.3 2,859.9 graph 5-class classif.

Peptides-func 15,535 150.9 307.3 graph 10-class classif.
Peptides-struct 15,535 150.9 307.3 graph regression
PascalVOC-SP 11,355 479.4 2,710.5 node 21-class classif.

task is to do graph-level regression on the constrained solubility (logP) of the molecule. The dataset
comes with a predefined 10K/1K/1K train/validation/test split. ZINC-full is similar to ZINC-subset
but with 250k molecular graphs instead.

ogbg-molhiv (Hu et al., 2020) (MIT License) are molecular property prediction datasets adopted by
OGB from MoleculeNet (Wu et al., 2018). These datasets use a common node (atom) and edge (bond)
featurization that represent chemophysical properties. The task is a binary graph-level classification
of the molecule’s fitness to inhibit HIV replication. The dataset split is predefined as in (Hu et al.,
2020).

MNIST and CIFAR10 (Dwivedi et al., 2023) (CC BY-SA 3.0 and MIT License) are derived from
image classification datasets, where each image graph is constructed by the 8 nearest-neighbor graph
of SLIC superpixels for each image. The task is a 10-class graph-level classification and standard
dataset splits follow the original image classification datasets, i.e., for MNIST 55K/5K/10K and for
CIFAR10 45K/5K/10K train/validation/test graphs.

PATTERN and CLUSTER (Dwivedi et al., 2023) (MIT License) are synthetic datasets of commu-
nity structures, sampled from the Stochastic Block Model. Both tasks are an inductive node-level
classification. PATTERN is to detect nodes in a graph into one of 100 possible sub-graph patterns
that are randomly generated with different SBM parameters than the rest of the graph. In CLUSTER,
every graph is composed of 6 SBM-generated clusters, and there is a corresponding test node in each
cluster containing a unique cluster ID. The task is to predict the cluster ID of these 6 test nodes.

MalNet-Tiny (Freitas et al., 2020) (CC-BY license) is a subset of the larger MalNet dataset,
consisting of function call graphs extracted from Android APKs. It includes 5,000 graphs, each with
up to 5,000 nodes, representing either benign software or four categories of malware. In this subset,
all original node and edge attributes have been removed, and the goal is to classify the software type
solely based on the graph structure.

Peptides-func and Peptides-struct (Dwivedi et al., 2022) (MIT License) are derived from 15k
peptides retrieved from SATPdb (Singh et al., 2016). Both datasets use the same set of graphs but the
prediction tasks are different. Peptides-func is a graph-level classification task with 10 functional
labels associated with peptide functions. Peptides-struct is a graph-level regression task to predict 11
structural properties of the molecules.

PascalVOC-SP (Dwivedi et al., 2022) (MIT License) is a node classification dataset based on the
Pascal VOC 2011 image dataset (Everingham et al., 2010). Superpixel nodes are extracted using the
SLIC algorithm (Achanta et al., 2012) and a rag-boundary graph that interconnects these nodes are
constructed. The task is to classify the node into corresponding object classes, which is analogous to
the semantic segmentation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.2 RANDOM SEEDS AND DATASET SPLITS

All included datasets have standard training/validation/test splits. We follow previous works reporting
the test results according to the best validation performance, and the results of every dataset are
evaluated and averaged over five different random seeds (Rampášek et al., 2022; Ma et al., 2023;
Shirzad et al., 2023). Due to the extremely long running time of ZINC-Full (which requires over 80
hours to train one seed on an Nvidia RTX 6000 Ada since it uses 2k epochs for training following
previous works (Rampášek et al., 2022; Ma et al., 2023)), its results are averaged over three random
seeds.

B.3 HYPERPARAMETERS

Table 6, 7, 8, and 9 detail the hyperparameters used for experiments in Sec. 5. We generally follow
configurations from prior works (Rampášek et al., 2022; Shirzad et al., 2023). Notably, the selective
mechanism (i.e., Eq. 6) is only employed for graph substructure counting tasks, and GSSC utilizes
the smallest d = 32 eigenvalues and their eigenvectors for all datasets except molecular ones, which
use d = 16. Consistent with previous research (Rampášek et al., 2022; Ma et al., 2023), we also
maintain the number of model parameters at around 500k for the ZINC, PATTERN, CLUSTER, and
LRGB datasets, and approximately 100k for the MNIST and CIFAR10 datasets.

Since our implementation is based on the framework of GraphGPS (Rampášek et al., 2022), which
combines the learned node representations from the MPNN and the global module (GSSC in our case)
in each layer, dropout is applied for regularization to the outputs from both modules, as indicated by
MPNN-dropout and GSSC-dropout in the hyperparameter tables.

Table 6: Model hyperparameters for graph substructure counting datasets.
Hyperparameter 3-Cycle 4-Cycle 5-Cycle

Layers 4 4 4
Hidden dim 96 96 96
MPNN GatedGCN GatedGCN GatedGCN
Lap dim d 16 16 16
Selective True True True

Batch size 256 256 256
Learning Rate 0.001 0.001 0.001
Weight decay 1e-5 1e-5 1e-5
MPNN-dropout 0.3 0.3 0.3
GSSC-dropout 0.3 0.3 0.3

Parameters 926k 926k 926k

Table 7: Model hyperparameters for molecular property prediction datasets.
Hyperparameter ZINC-12k ZINC-Full ogbg-molhiv

Layers 10 10 6
Hidden dim 64 64 64
MPNN GINE GINE GatedGCN
Lap dim d 16 16 16
Selective False False False

Batch size 32 128 32
Learning Rate 0.001 0.002 0.002
Weight decay 1e-5 0.001 0.001
MPNN-dropout 0 0.1 0.3
GSSC-dropout 0.6 0 0

Parameters 436k 436k 351k

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Model hyperparameters for datasets from Long Range Graph Benchmark (LRGB) (Dwivedi
et al., 2022).

Hyperparameter PascalVOC-SP Peptides-func Peptides-struct

Layers 4 4 4
Hidden dim 96 96 96
MPNN GatedGCN GatedGCN GatedGCN
Lap dim d 32 32 32
Selective False False False

Batch size 32 128 128
Learning Rate 0.002 0.003 0.001
Weight decay 0.1 0.1 0.1
MPNN-dropout 0 0.1 0.1
GSSC-dropout 0.5 0.1 0.3

Parameters 375k 410k 410k

Table 9: Model hyperparameters for datasets from GNN Benchmark (Dwivedi et al., 2023) and
MalNet-Tiny (Freitas et al., 2020).

Hyperparameter MNIST CIFAR10 PATTERN CLUSTER MalNet-Tiny

Layers 3 3 24 24 5
Hidden dim 52 52 36 36 64
MPNN GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN
Lap dim d 32 32 32 32 32
Selective False False False False False

Batch size 16 16 32 16 16
Learning Rate 0.005 0.005 0.001 0.001 0.0015
Weight decay 0.01 0.01 0.1 0.1 0.001
MPNN-dropout 0.1 0.1 0.1 0.3 0.1
GSSC-dropout 0.1 0.1 0.5 0.3 0.3

Parameters 133k 131k 539k 539k 299k

Table 10: Comparing with previous graph mamba works. Bold† denotes the best results. Results are
reported as mean±std.

ZINC-12k MNIST CIFAR10 PATTERN CLUSTER PascalVOC-SP Peptides-func Peptides-struct

MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ F1 score↑ AP ↑ MAE ↓
Graph-Mamba-I NaN 98.420±0.080 73.700±0.340 86.710±0.050 76.800±0.360 0.4191±0.0126 0.6739±0.0087 0.2478±0.0016

Graph-Mamba-II N/A 98.390±0.180 75.760±0.420 87.140±0.120 N/A 0.4393±0.0112 0.7071±0.0083 0.2473±0.0025

GSSC 0.064†
±0.002 98.492†

±0.051 77.642†
±0.456 87.510†

±0.082 79.156†
±0.152 0.4561†

±0.0039 0.7081†
±0.0062 0.2459†

±0.0020

C SUPPLEMENTARY EXPERIMENTS

In this section, we present supplementary experiments comparing GSSC with previous graph mamba
works, i.e., Graph-Mamba-I (Wang et al., 2024a) and Graph-Mamba-II (?). As shown in Table 10,
GSSC significantly outperforms both models on all datasets. We attempted to evaluate these works
on additional datasets included in our experiments, such as ZINC-12k, but encountered challenges.
Specifically, Graph-Mamba-II has only an empty GitHub repository available, and Graph-Mamba-I
raises persistent NaN (Not a Number) errors when evaluated on other datasets. Our investigation
suggests that these errors of Graph-Mamba-I stem from fundamental issues in their architecture and
implementation, and there is no easy way to fix them, i.e., they are not caused by any easy-to-find
risky operations such as log(small negative numbers) or 1

0 . Consequently, Graph-Mamba-I (and
Graph-Mamba-II) may potentially exhibit severe numerical instability and cannot be applied to
some datasets. Prior to encountering the NaN error, the best observed MAE for Graph-Mamba-I on
ZINC-12k was ∼ 0.10.

22

	Introduction
	Preliminaries
	Graph State Space Convolution
	Generalizing State Space Convolution to Graphs
	 Extensions and Discussions
	Expressive Power

	Related Works
	Experiments
	Graph Substructure Counting
	Graph Learning Benchmarks
	Computational Costs Comparison

	Conclusion and Limitations
	Deferred Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3

	Experimental Details
	Datasets Description
	Random Seeds and Dataset Splits
	Hyperparameters

	Supplementary Experiments

