
Distillation of a tractable model from the VQ-VAE

Abstract

Deep generative models with discrete latent space,
such as the Vector-Quantized Variational Autoen-
coder (VQ-VAE), offer excellent data generation
capabilities, but, due to the large size of their latent
space, their probabilistic inference is deemed in-
tractable. We demonstrate that the VQ-VAE can be
distilled into a tractable model by selecting a sub-
set of latent variables with high probabilities. This
simple strategy is particularly efficient, especially
if the VQ-VAE underutilizes its latent space, which
is, indeed, very often the case. We frame the dis-
tilled model as a probabilistic circuit, and show that
it preserves expressiveness of the VQ-VAE while
providing tractable probabilistic inference. Experi-
ments illustrate competitive performance in density
estimation and conditional generation tasks, chal-
lenging the view of the VQ-VAE as an inherently
intractable model.

1 INTRODUCTION

Deep generative models provide a framework for learning
complex patterns across diverse data modalities, such as im-
ages, language, and graphs [Alaniz et al., 2022, Tian et al.,
2024, Bachmann et al., 2024]. They excel at generating new
samples; however, they cannot answer even the most ba-
sic inference tasks without approximations, making them
intractable probabilistic models. This issue arises because
deep neural networks make analytical integration, which is
crucial for many inference tasks, infeasible [Nguyen and
Goulet, 2021, Rezende et al., 2014]. Probabilistic circuits
(PCs)[Choi et al., 2020, Peharz et al., 2020, Vergari et al.,
2015] are tractable probabilistic models that provide closed-
form solutions to a wide range of inference tasks, including
marginalization, conditioning, and expectation. Recent work
has begun exploring hybrid frameworks that combine the
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Figure 1: Cumulative distribution functions (CDFs) of different
prior distributions, p(z), in the VQ-VAE. The CDF is defined as
F (i) =

∑i
j=1 p(z(j)), where z(j) is the j th latent variable in

a decreasing order which is obtained based on p(z) values. The
VQ-VAE’s latent space size is |Z| = 964 ≈ 85M. We repeated
the experiment with five independently trained models. The solid
line is the mean and the shaded area is the ±1 standard deviation.
The blue and green colors correspond to the PixelCNN and the
uniform prior, respectively. The red vertical lines are sizes of the
latent space at which F reaches 90% and 99% of its total mass.
Specifically, these lines correspond to approximately 5% and 25%
of the latent space. This result shows that only a small fraction of
the vast VQ-VAE’s latent space is actually utilized.

efficient inference of PCs with the expressive power of deep
neural networks [Correia et al., 2023, Liu et al., 2023, Sid-
heekh et al., 2023]. This paper extends this line of work by
investigating the tractability of the vector-quantized varia-
tional autoencoder (VQ-VAE).

The VQ-VAE [van den Oord et al., 2017] is a deep genera-
tive model that compresses input data into a discrete latent
representation, while preserving structural patterns (e.g.,
spatial coherence in images [van den Oord et al., 2017],
temporal consistency in audio and video [Dhariwal et al.,
2020, Zeghidour et al., 2021, Yan et al., 2021]). However,
the latent space of the VQ-VAE is exponentially large, mak-
ing probabilistic inference tasks intractable [Correia et al.,
2020, Zhao et al., 2016, Peharz et al., 2016]. Moreover, the
vanilla VQ-VAE is known to suffer from the index collapse
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issue, which manifests as a poor utilization of the latent
space. This underutilization means that only a (relatively)
small collection of latent states contributes to the model
outputs (e.g., its likelihood) [Guo et al., 2024, Huh et al.,
2023]. Various techniques have been explored to mitigate
this problem, namely replacement policies [Zeghidour et al.,
2021, Dhariwal et al., 2020], codebook resets [Łańcucki
et al., 2020, Zeghidour et al., 2021, Dhariwal et al., 2020],
stochastically-quantized VAE [Takida et al., 2022, Roy et al.,
2018], exponential moving average [van den Oord et al.,
2017], and product-quantized VAE [Guo et al., 2024].

Notwithstanding that, we advocate that the latent space
underutilization, caused by the index collapse, is actually
beneficial for the tractability of the VQ-VAE, i.e., the limited
use of the latent space makes many inference tasks tractable.
We propose a novel approach to transform the VQ-VAE
into a tractable mixture model (i.e., a PC) by distilling a
subset of the most relevant latent variables. The subset is
identified using two complementary approaches: (i) random
sampling, which requires enumeration of all latent variables,
which is exhaustive and computationally expensive; and (ii)
a beam search, which trades off optimality for computational
efficiency. We demonstrate that the distilled model based on
the beam search delivers a competitive performance to other
tractable probabilistic models in the context of learning a
probability distribution of images.

2 BACKGROUND

Discrete latent variable models. A complete probabilistic
description of a discrete latent variable model is given by
the following marginal probability distribution:

p(x) =
∑
z∈Z

p(x|z)p(z), (1)

where x := {x1, . . . , xS} ∈ X denotes observations with S
elements (e.g., image pixels), and z := {z1, . . . , zM} ∈ Z
are discrete latent variables. The prior p(z) is a probability
mass function over discrete latent variables, describing the
significance of each value of z. The conditional distribution
p(x|z) models x conditionally on a different set of param-
eters depending on z, i.e., p(x|z) := p(x|θz). The latent
space, i.e., the set of all latent variable configurations, is a
finite structured set with exponential complexity [Correia
et al., 2020, Zhao et al., 2016, Peharz et al., 2016].

Probabilistic circuits. A probabilistic circuit is a directed,
acyclic, parametrized computational graph encoding a non-
negative function over observations, p(x) [Vergari et al.,
2019, Choi et al., 2020]. The graph composes of three
types of computational units: input, product, and sum. Sum
and product units receive the outputs of other units as in-
puts. We denote the set of inputs of a unit u as in(u). Each
unit u encodes a function pu over a subset of random vari-
ables xu ⊆ x, referred to as scope. The input unit pu(xu)

computes a pre-defined, parametrized probability distribu-
tion. The sum unit computes the weighted sum of its in-
puts pu(xu) :=

∑
i∈in(u) wipi(xi), where wi ∈ R are the

weight parameters, and the product unit computes the prod-
uct of its inputs, pu(xu) :=

∏
i∈in(n) pi(xi). The scope of

any sum or product unit is the union of its input scopes,
xu =

⋃
i∈in(u) xi [Vergari et al., 2019, Choi et al., 2020].

To achieve tractable inference, the children of each sum unit
have to be defined over the same scopes (smoothness), and
the children of each product unit have to be defined over pair-
wise disjoint scopes (decomposability). Additionally, the
input units have to be tractable probability distributions (e.g.,
a member of an exponential family) [Darwiche and Marquis,
2002]. PCs are an example of the discrete latent variable
model in (1), where the sum units parametrize p(z), and the
input units define p(x|z). Importantly, the decomposability
of the product unit imposes conditional independence in
p(x|z), which is the key to tractable analytical integration
of arbitrary subsets of x in (1).

VQ-VAE. The vector quantized-variational autoencoder
(VQ-VAE) [van den Oord et al., 2017] is a deep probabilis-
tic model for discrete representation learning. The model is
similar to the variational autoencoder [Kingma and Welling,
2022] but differs primarily by its vector quantization block.
This block uses a collection of latent embedding vectors,
{ei}Ki=1 ⊂ RD, and is referred to as the codebook, where
D is the codeword length, and K is the codebook size. The
encoder network E : Rd×h×w → RD×H×W , compresses
x into a continuous latent variable, where M = HW are
dimensions of the latent space. After the compression, the
continuous latent variable is mapped to a discrete latent vari-
able, z ∈ Z , by a nearest-neighbor search in the codebook
using Euclidean distance.

Definition 1. The discrete latent space of a VQ-VAE is
defined as Z := {1, 2, . . . ,K}H×W , yielding a latent space
of an exponential size, |Z| := KHW .

The VQ-VAE’s prior p(z) is learned via an autoregressive
model, such as PixelCNN [van den Oord et al., 2016a,b].
Viewing the discrete latent variable as a sequence of indices,
the prior is modeled as p(z|c) :=

∏HW
i=1 p(zi|z<i, c), where

z<i are all indices before i in the row-major order, and c is
a high-level data description represented as a latent vector
(e.g., a class label in supervised learning). VQ-VAEs are an
example of the discrete latent variable model in (1), where
the PixelCNN prior parametrizes p(z) :=

∑
c p(c)p(z|c),

and the decoder defines p(x|z) using a deep neural network.
For further details on VQ-VAE, refer to Appendix A.

3 DISTILLING MIXTURE MODELS

VQ-VAE intractability. Computing p(x|z) for all z ∈ Z
is very expensive since p(x|z) is typically parametrized by
a large neural network and the size of the latent space is
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exponentially high (Definition 1). Consequently, the training
of the VQ-VAE via the exact likelihood (1) and the ELBO
[Kingma and Welling, 2022] objectives is infeasible. To
deal with this problem, the training is done by a heuristic
loss function [van den Oord et al., 2017], see Appendix A.
This also implies that computing any probabilistic inference
queries with (1) is intractable.

Model distillation. We propose to address this intractabil-
ity issue by distilling the VQ-VAE model into a mixture of
tractable distributions. We refer to this model as a distilled
model (DM). The main motivation behind this idea is that
index collapse results in a substantial underutilization of the
latent space, as shown in Figure 1. Therefore, we create a
subset of most representative latent variables Z̄ ⊂ Z and
construct the DM as follows:

p̂(x) :=
∑
z∈Z̄

1

|Z̄|
p(x|z). (2)

We discuss two ways to construct Z̄ , but, first, we state
assumptions that ensure tractability of the DM.

Assumption 1. x is conditionally independent given z, i.e.,
p(x|z) :=

∏S
i=1 p(xi|z), and each p(xi|z) is a tractable

distributions (e.g., Gaussian, categorical).

Under the conditional-independence (Assumption 1), the
discrete latent variable model (1) reveals the connection
between VQ-VAEs and PCs. Indeed, there can be many
equivalent representation between these two models, de-
pending on a specific architecture of a PC. However, the
simplest one is that the decoder p(x|z) can be seen as a
product unit whose children are input units, and that the
PixelCNN prior p(z) represents the weights of a sum unit.
To make the resulting DM tractable, we also have to satisfy
the following assumption.

Assumption 2. The number of components in (2) is kept
computationally feasible, i.e., N ≪ KHW . 1

Random sampling. One way to construct the latent set
Z̄ is to enumerate p(z) for all z ∈ Z , and then sample a
distinct set of latent variables from the class-conditioned
VQ-VAE prior, Z̄ = {zi|ci ∼ U(C), zi ∼ p(z|ci)}Ni=1.
The DM built from randomly sampled latent variables is
called a DM via Random Sampling (DMRS). However, the
exhaustive enumeration is impractical due to the large latent
space (Definition 1).

Beam search. To overcome the drawbacks of DMRS, Z̄
can be constructed by a guided search through the latent
space. This traversal of Z identifies the most probable, infor-
mative regions without the exhaustive enumeration. Viewing

1The original model in (1) is recovered for N = KHW .

the H×W latent grid as a row-major sequence of HW to-
kens over a vocabulary of size K, allows the application
of sequence search techniques, such as beam search. Beam
search (BS) is commonly employed to maintain tractabil-
ity in large search spaces by trading off completeness and
optimality [Xu et al., 2009]. The latent space of VQ-VAE
(Definition 1) is one such example where BS can be applied
due to its size. The class-conditioned stochastic BS [Shao
et al., 2017], (Algorithm 1), discovers latent variables for
distillation, resulting in the DM via Beam Search (DMBS).
DMBS requires O(NHWK) operations, i.e., dramatically
fewer than O(KHW ) needed for the exhaustive enumera-
tion. This trade-off manifests in reduced expressivity, but,
as we demonstrate in (Section 4), its effects are modest.

Algorithm 1 Class-Conditioned Beam Search
See the BeamSearch implementation in Appendix D for details.
Input: N sequences, s initial samples, class set C
Output: Candidate set Z̄
Z̄ ← ∅
for c ∈ C do

for i← 1 to s do
z = {0}H×W

z ∼ p(z1 | c)
z1 = z

Z̄ ← Z̄∪BeamSearch
(
z, p, {c}, H,W, B ← N

s|C| , i1 ← 2
)

return Z̄

4 EXPERIMENTAL RESULTS

We demonstrate the tractability of our DMs on two core
probabilistic-inference tasks: density estimation and image
inpainting. The goal is to exhibit that the DMs can, quickly
and accurately, answer complex probabilistic queries, yield-
ing answers that approach state-of-the-art models. Evalua-
tions are conducted on MNIST [Lecun et al., 1998], mod-
eling the pixels by the Gaussian distribution. We refer the
reader to Appendix B for details about data pre-processing.

Models. We choose two tractable probabilistic models as
baselines: continuous mixtures (CMs)[Correia et al., 2023]
and Einsum networks (EiNets)[Peharz et al., 2020]. CMs ap-
proximate p(x) as an uncountable mixture of p(x|z) compo-
nents integrated over a continuous latent variable, z ∈ RD.
Approximating the integral with a finite set of points com-
piles the model into a PC, aligning its structure with that
of the DMs. EiNets are tensorised PCs optimised for par-
allel computing on contemporary GPUs, facilitating a sim-
ple design of deep and tractable generative models. CMs
and EiNets represent cutting-edge baselines in density es-
timation and image inpainting, demonstrating strong per-
formance across benchmarks [Correia et al., 2023, Peharz
et al., 2020]. The exact model (ExM), which exhaustively
enumerates the latent space Z to compute the exact likeli-
hood in (1), serves as a principled performance baseline for
evaluating the DMs, instantiations of (2), and highlights the
performance gap relative to exact evaluations of p(x).
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Figure 2: BPD performance vs model size for different tractable
models. Lower is better. Distilled model is denoted with hollow
squares, while EiNets have filled markers, as they are trained PCs.
Dotted vertical lines indicate the sizes of the source VQ-VAEs
for the distilled model. For the continuous mixtures, it shows the
decoder size. The number labels express the VQ-VAE codebook
sizes, K, for the exact models. All results are averaged over 5 runs
with different random seeds.

Settings. The DMs, DM2×2, DM4×4, and DM7×7, use la-
tent grids of 1×2×2 with 96 codewords, 128×4×4 with 512
codewords, and 128×7×7 with 1024 codewords, respec-
tively. The exact models, ExM2×2, share a latent size 1×2×
2 varying only in codebook size K ∈ {1, 4, 16, 32, 64, 96}.
With up to 964 components, this is the largest configuration
for which exact p(x) is still feasible given the exponential
latent space growth (see Definition 1); beyond this, full enu-
meration is impractical despite further MNIST performance
gains. The DMBS model sampled s = 10 starting z1,1 val-
ues. The CM latent space of dimension is 16×1×1, with 214

integration points, used in Correia et al. [2023]. The EiNets
adopt a single-layer design, using the Poon–Domingos struc-
ture [Poon and Domingos, 2012] for decomposition. We
refer the reader to Appendix C for details about the training.

Density estimation. Figure 2 compares all the aforemen-
tioned models in terms of bits per dimension (BPD). We can
see that the ExM2×2 model sets an exact performance bound
which is quickly approached by the DMRS2×2 model, indi-
cating that even the randomized distillation captures critical
information encoded by the VQ-VAE. Importantly, we can
see that the DMBS4×4 model closely follows the DMRS4×4
model, which demonstrates that the beam search has the
ability to select important parts of the latent space with-
out the exhaustive enumeration necessary for the random
sampling. The CM model outperforms all the DM models;
however, as shown in Appendix E (and also Figure 3), its
sample quality is lower (see Appendix C for architecture
details). We conjecture that this is attributed to the smaller
size of the CM’s decoder (the red dashed line), from which
the model is compiled. The performance of all the DMs
plateaus, which shows that distilling more of the same or
similar latent variables does not bring additional informa-
tion into the resulting DMs. Interestingly, the EiNet model

DMRS7×7 DMBS7×7

Continuous Mixtures EiNet

Figure 3: Image inpainting by tractable probabilistic models. The
unobserved xu and observed xo parts are highlighted by the red
and blue colors, respectively.

outperforms all the other models for all parameter counts;
however, its sample quality seems lower (Figure 3). We offer
additional experiments in Appendix F.

Tractable inference. We demonstrate the tractability of
the DMs through the image inpainting, which corresponds
to the conditional inference task p(xu|xo), where xu and xo

are unobserved and observed image parts, respectively. Un-
like VQ-VAEs solely specialized for inpainting [Peng et al.,
2021], the DM supports diverse inference tasks, including
marginalization, expectation, and maximum a posteriori esti-
mation. Figure 3 compares inpainting of MNIST images for
different models. It can be seen that all models successfully
infill missing parts to form correct digits. Importantly, the
image quality of the reconstructions done by DMs is mostly
better.

5 CONCLUSIONS

We have proposed a novel framework for distilling tractable
mixtures from otherwise intractable VQ-VAEs. Our model
is able to answer a broad range of probabilistic infer-
ence tasks—the same as with the conventional PCs—while
closely retaining the expressive power of VQ-VAEs. We
have investigated two strategies for identifying informative
latent space regions: the random sampling and the beam
search. Though the random sampling has proven efficient,
its key disadvantage is the full enumeration of the latent
space, making it impractical for scaling to state-of-the-art
VQ-VAEs. Importantly, the beam search delivers almost
identical performance, while avoiding this exhaustive enu-
meration. In future work, we plan to design data-driven
exploration strategies of the latent space that will allow us
to further improve the performance of our distilled model.
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Distillation of a tractable model from the VQ-VAE
(Supplementary Material)

A VQ-VAE

For completeness, an extended description of the VQ-VAE, introduced in Section 2, is provided, including its encoder E,
decoder D and vector quantizer block VQ. The encoder is a deep neural network E : Rd×h×w → RD×H×W , compresses x
into a continuous latent variable E(x). Here, H and W define the spatial dimensions of the latent grid and D is the size
of each codeword. The vector quantizer then discretizes the continuous to a discrete latent variable z ∈ Z by performing
a nearest-neighbor search in the learned codebook {ei}Ki=1 ⊂ RD. The vector quantizer assigns each latent position
(i, j) to the nearest codebook embedding ek according to Euclidean distance, VQ : RD×H×W → [K]H×W , where
[K] := {1, 2, . . . ,K}. This induces a categorical posterior distribution with one-hot probabilities over the discrete latent
variables, where for each (i, j) ∈ [H]×[W ] the posterior is given by

q
(
zi,j = k | x

)
=

1, if k = argmin
l∈[K]

||E(x):,i,j−el||2,

0, otherwise.
(3)

This quantization process can be divided into the following steps: (i) pass x through the encoder network to obtain the
prequantized latent representation E(x), (ii) compare E(x) to all latent embeddings ej in the codebook, and (iii) assign
zi,j = k as the embedding index ek with the smallest Euclidean distance to E(x):,i,j . The decoder D : RD×H×W →
Rd×h×w is a deep neural network that reconstructs the input x, producing x̂, by decompressing the discrete latent variable z.
This process is split into the following two steps: (i) mapping of each discrete index in z into its corresponding embedding
codeword ek forming the post-quantized continuous latent variable, and (ii) decoding the post-quantized continuous latent
variable to produce the reconstruction x̂. The decoder distribution is given by

p(x|z = ek), where k = argmin
j∈[K]

||E(x)−ej ||2, (4)

and models the conditional likelihood of the observed data given the latent code. Decoder parameterizes p(x|z) and its
specific form depends on the modality of x, such as Bernoulli for binary data or Gaussian distribution for continuous-valued
observations. The Variational Autoencoder, which the VQ-VAE parallels, is typically trained by maximising the Evidence
Lower Bound objective

log p(x) ≥ Eq(z|x)[log p(x|z)]−DKL(q(z|x)||p(z)), (5)

which is a tractable surrogate to the intractable exact likelihood. However, due to the combinatorial complexity of the
latent space (see Definition 1), the KL divergence term in (5) renders the objective intractable for the VQ-VAE model. This
problem is circumvented in van den Oord et al. [2017] by introduction of the following tractable heuristic loss function

L(x) = ∥x−x̂∥22︸ ︷︷ ︸
reconstruction

+ ∥sg[E(x)]−e∥22︸ ︷︷ ︸
codebook loss

+β ∥E(x)−sg[e]∥22︸ ︷︷ ︸
commitment loss

. (6)

This objective comprises three components: (i) a reconstruction loss, which measures how well the decoder reconstructs
x from z, (ii) a codebook loss, encouraging codebook embeddings e to move toward the encoder output (codebook

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.



learning), and (iii) a commitment loss, which forces the encoder outputs to commit to specific codebook entries. Here, sg[·]
denotes the stop-gradient operator, which blocks gradients during backpropagation to ensure stability in training and β is a
hyperparameter balancing the commitment loss.

B DATASET

The MNIST dataset consists of grayscale images with discrete pixel intensities x ∈ {0, 1, . . . , 255}28×28. Following prior
work Theis et al. [2016], Correia et al. [2023], we apply uniform jittering and scaling to map pixel values to the continuous
range X := [0, 1]28×28. We evaluate generative models using the bits per dimension (BPD) metric, which quantifies the
average number of bits required to encode each pixel in an image. Because the pixel values are rescaled to [0, 1], we adjust
the BPD computation accordingly:

BPD({x(i)}ni=1) =
1

n

n∑
i=1

(
−
log2 p

(
x(i)
)

S
+8

)
, (7)

where S = 784 is the total number of pixels in x.

C MODEL AND TRAINING SETTINGS

The EiNets use a single-layer Poon–Domingos image decomposition structure. We use Poon–Domingos piece sizes
{{2}, {4}, {7}}, with the number of input distributions per patch set to I ∈ 1, 5, 10, 20, 30, 40.

VQ-VAE and PixelCNN models were implemented in PyTorch [Paszke et al., 2019] and trained for up to 100 epochs, with
the Adam optimizer [Kingma and Ba, 2015], employing early stopping on validation loss with a maximum of 15 epochs.

The VQ-VAE models use a convolutional encoder-decoder architecture. The encoder consists of convolutional layers with
stride for downsampling, followed by batch normalization and ReLU activations. Residual blocks are used at the latent
level. The decoder mirrors the encoder, using residual blocks followed by transposed convolutions for upsampling, again
with batch normalization and ReLU. A final activation is applied based on the data modality: for Gaussian modeling, two
output channels represent the mean (with sigmoid activation) and log-variance (clamped to ensure standard deviation lies in
[10−3, 1]); for discrete pixels, a softmax outputs class probabilities. The encoder-decoder architecture used in our VQ-VAE
models differs from the one used in CMs [Correia et al., 2023], as the latent space used by CMs is not sufficient to effectively
fit a VQ-VAE. VQ-VAEs benefit from using larger spatial latent shapes, such as 4×4 or 7×7, compared to 1×1 used by
CMs, to compensate for the limitations introduced by the discrete latent space and vector quantization.

D BEAM SEARCH

Algorithm 2 outlines a beam search procedure for generating high-probability sequences of discrete latent variables z, as
defined by the probabilistic model p(z). The search maintains a beam, a collection of the top-B candidate sequences, ranked
by their marginal likelihood scores over the class set C. A key feature of this beam search implementation is its flexibility: it
can run as a standard beam search from the beginning of the sequence or resume from any intermediate position. In the latter
case, the initial segment of the sequence must be pre-initialized, and the search continues from the index i1, completing the
remaining latent grid. This enables conditional sampling or constrained generation, where parts of the latent representation
are fixed, e.g., from observed data or previous decisions, and the algorithm completes the rest in a manner consistent with
the beam search and likelihood scores given by p. Each candidate sequence in the beam is extended, element by element, in
row-major order across the H×W grid, scored, and pruned to retain only the top B sequences at each step. The final beam
BHW contains the top-scoring complete sequences, which form the set Z̄
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Algorithm 2 Beam Search
Input: Discrete latent variable z; Prior model p(z); Set of target classes C; Latent grid dimensions H×W ; Beam width B; Starting position index i1
Output: Set of latent variables Z̄
hc = p

(
zi1

= k | z<i1
, c

)
, ∀c ∈ C

m = 0
B1 =

{ (
z, h,m

)}
for i = i1, . . . , HW do
B̃i ← ∅
foreach (z, h,m) ∈ Bi−1 do

for k = 1, . . . , K do
h′
c = hcp

(
z′
i = k | z′

<i, c
)
, ∀c ∈ C

m′ =
∑

c∈C p(c)h′
c

z′
i = k

B̃i ← B̃i ∪ {(z′, h′,m′)}

Bi =
{
(z(t), h(t),m(t))

}B

t=1
, s.t.m(1) ≥ m(2) ≥ · · · ≥ m(|B̃i|)

return
{
(z(t))

}B

t=1
s.t. m(1) ≥ m(2) ≥ · · · ≥ m(|BHW |)

E SAMPLE QUALITY

Figure 4 presents example images generated by the four evaluated tractable models. All models are capable of producing
digit-like images to varying degrees. EiNets yield the highest-quality samples, while the randomly sampled DMRS model
also generates visually plausible digits. CMs perform the worst in terms of sample fidelity, while the DM models, both
DMBS and DMRS provide decent samples. The quality of generated data was evaluated extrinsically using a simple

DMRS7×7 DMBS7×7

Continuous Mixtures EiNet

Figure 4: Image sample by tractable probabilistic models.

MNIST classifier. Each model produced 10 000 samples, which were subsequently classified to assess how closely the
resulting class distributions aligned with the classifier’s predictions on the MNIST dataset. Since the true MNIST distribution
is approximately uniform, an ideal generative model should produce a similarly uniform class distribution, otherwise it
indicates systematic biases in the generation process. The classification results are summarized in Figure 5, which includes
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Figure 5: Histogram of label distributions of generated MNIST samples. Generated samples were classified by a pre-trained MNIST
classifier, with bars grouped by class label. The blue bars represent the MNIST dataset distribution, while the red bars show the baseline
classifier performance on MNIST data, demonstrating close alignment that validates the classifier’s reliability. Subsequent bars display
results for generated samples: brown corresponds to Continuous Mixture (CM), gray to EiNet, purple to DMRS, green to DMBS. The
x-axis indicates MNIST digit classes and the y-axis shows sample counts in log scale.

the baseline class distribution from the MNIST dataset for reference. Interestingly, all generative models exhibit comparable
trends, with the exception being DMBS model. Notably, the DMRS model achieves the closest match to the uniform baseline,
indicating high-quality and balanced sample generation. In contrast, the CM model exhibits a noticeable deviation, with a
pronounced bias toward generating the digit eight at the expense of other digits, as illustrated in Figure 4.

F LATENT CORRELATION

Distilling a mixture model from the set of candidate latent variables Z̄ by selecting latent variables solely based on their
highest p(z) values results in highly correlated latent variables. High correlation among mixture components impairs density
estimation, as it tends to favor modes that capture dominant patterns, reinforcing similarity among components. Ideally,
mixture components should specialize in different regions of the data space. To analyze the correlation of latent likelihoods
across components, we consider a setup with 4 mixture components. For each component, we compute the joint likelihoods
p(x, z) over 500 test samples, resulting in a total of 4×500 likelihood values. We visualize these values using corner plots,
in Figure 6, to examine how likelihoods are distributed across components and whether strong correlations emerge. This
analysis helps assess the diversity and independence of the mixture components. The left plots reveal distinct modes and
diverse density regions, indicating that components specialize in different parts of the input space and contribute more evenly
to the mixture. In contrast, the right plots exhibit limited dispersion and overlap across components, reflecting reduced
diversity and weaker mixture modeling capacity.

G CATEGORICAL DATA

This appendix presents additional results of DMs applied to categorical MNIST, where pixel intensities are modeled as
discrete values. We evaluate the tractable models—CMs, EiNets, and DMs—on two tasks: density estimation and image
inpainting. Figure 7 shows the bits-per-dimension (BPD) performance across models, while Figure 8 illustrates qualitative
inpainting examples, highlighting the capacity of each model to infer missing image regions from partial observations.
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Diverse latents via sampling from p(z|c) Top latents selected by highest p(z) scores

Figure 6: Corner plots illustrating latent correlations in DM models. Left: Corner plots of the DMRS2×2 model, where latent samples
z ∼ p(z|c) are drawn randomly. The contour shapes here are less aligned and more scattered. This suggests that the selected components
respond more independently to the data, indicating lower correlation among latents. Right: Corner plots of the DM2×2 model, where the
top 4 latent codes are selected based on the highest values of p(z). The elongated contours along the diagonals in each subplot suggest
that the log-likelihoods of different components are highly correlated. This indicates redundancy in the selected components, meaning
they often respond similarly to the same inputs. Both models share the same VQ-VAE architecture and PixelCNN prior model.
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Figure 7: BPD performance vs model size for different tractable models for categorical data. Lower is better. All distilled models are
denoted with hollow, while EiNets have filled markers, as they are trained rather than distilled PCs. Dotted vertical lines indicate the
sizes of the source VQ-VAEs for distilled models. For the continuous mixtures, it shows the decoder size. The number labels express the
VQ-VAE codebook sizes, K, for the exact models.
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DMRS7×7 DMBS7×7

Continuous Mixtures EiNet

Figure 8: Image inpainting by tractable probabilistic models for categorical data. The unobserved xu and observed xo parts are highlighted
by the red and blue colors, respectively.
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