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ABSTRACT

Recently, empowered with the powerful capabilities of neural networks, reinforce-
ment learning (RL) has successfully tackled numerous challenging tasks. How-
ever, while these models demonstrate enhanced decision-making abilities, they
are increasingly prone to overfitting. For instance, a trained RL model often
fails to generalize to even minor variations of the same task, such as a change in
background color or other minor semantic differences. To address this issue, we
propose a dual-agent adversarial policy learning framework, which allows agents
to spontaneously learn the underlying semantics without introducing any human
prior knowledge. Specifically, our framework involves a game process between
two agents: each agent seeks to maximize the impact of perturbing on the op-
ponent’s policy by producing representation differences for the same state, while
maintaining its own stability against such perturbations. This interaction encour-
ages agents to learn generalizable policies, capable of handling irrelevant fea-
tures from the high-dimensional observations. Extensive experimental results on
the Procgen benchmark demonstrate that the adversarial process significantly im-
proves the generalization performance of both agents, while also being applied to
various RL algorithms, e.g., Proximal Policy Optimization (PPO). With the adver-
sarial framework, the RL agent outperforms the baseline methods by a significant
margin, especially in hard-level tasks, marking a significant step forward in the
generalization capabilities of deep reinforcement learning.
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PPO PPO + Adversarial loss (Agent 1) PPO + Adversarial loss (Agent 2)

Figure 1: Comparisons of the generalization capability of different RL agents. By applying our
adversarial approach to PPO, the two adversarial PPO agents demonstrate significant improvements
in train performance (left) and test performance (right) across eight environments in the hard-level
Procgen benchmark. In this context, higher scores indicate better generalization capabilities.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful paradigm for solving complex decision-
making problems, leveraging an agent’s ability to learn from interactions with an environment
through trial and error (Sutton, 2018). However, generalization between tasks remains difficult for
state-of-the-art deep reinforcement learning algorithms. Although trained agents can solve complex
tasks, they often struggle to transfer their experience to new environments. For instance, an agent
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Figure 2: Overview of the adversarial process. Our method involves a game process between two
homogeneous agents, as shown in the figure. The training samples are simultaneously input into the
encoders of both agents, resulting in differing representations for the same observation. By adjusting
the parameters of the two encoders, both agents aim to ensure that their own policy networks are
robust to such differences while maximizing the influence of these differences on the other agent’s
policy network as much as possible. This minimax game process will eventually allow robust policy
learning, preventing agents from overfitting to irrelevant features in high-dimensional observations,
thereby enhancing generalization performance.

trained in a specific environment struggles to perform effectively in another, even when the only
difference between environments is a subtle alteration, such as the change of colors in the scene
(Cobbe et al., 2019; 2020). This limitation underscores the challenges of transferring knowledge
across different contexts, emphasizing the importance of developing robust generalization strategies
for RL applications in dynamic and variable real-world scenarios (Korkmaz, 2024).

One approach to enhancing generalization in RL focuses on data augmentation techniques (Lee
et al., 2019; Laskin et al., 2020; Zhang & Guo, 2021), which increase the diversity of training data
by modifying input observations or environmental conditions. While this provides a straightfor-
ward solution, it can introduce biases that do not align with RL objectives and often neglect the
nuances of the RL process, potentially limiting effectiveness. Another approach involves regulariz-
ing the learned functions, drawing from traditional techniques used in deep neural networks, such as
batch normalization (Liu et al., 2019), contrastive learning (Agarwal et al., 2021), and loss function
regularization (Amit et al., 2020). However, these methods can not adequately address the unique
challenges of RL, as they often focus on static representations rather than the dynamic nature of
agent-environment interactions. Consequently, both data augmentation and traditional regulariza-
tion methods have limitations that hinder their ability to facilitate effective generalization in RL.

Adversarial learning (Pinto et al., 2017; Zhang et al., 2020; Oikarinen et al., 2021; Li et al., 2021;
Rahman & Xue, 2023) presents a promising direction for enhancing generalization in RL by learning
robust representations of irrelevant features through an adversarial process. This framework facili-
tates the development of agents capable of adapting to new environments by emphasizing the distinc-
tion between relevant and irrelevant information. While adversarial learning frameworks integrate
the RL process, existing methods often rely on introducing generator and discriminator networks
(Goodfellow et al., 2014) or seek to modify fundamental parameters of the simulation environments.
Such heterogeneous adversarial processes introduce additional hyperparameters and training costs,
necessitating carefully designed architectures. These complexities make it challenging to establish
a unified framework for generalization tasks across diverse domains.

To address the generalization problem in RL, in this paper, we propose a novel adversarial learn-
ing framework, which involves a game process between two homogeneous agents (in Figure 2).
This framework offers three key advantages: 1). First, this general framework can integrate well
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with existing policy learning algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017). 2). Second, the adversarial process allows agents to spontaneously learn the un-
derlying semantics without necessitating additional human prior knowledge, thus fostering robust
generalization performance. 3). Lastly, our approach introduces minimal additional hyperparam-
eters, highlighting its potential for widespread applicability across various RL models. Extensive
experiments demonstrate that our adversarial framework significantly improves generalization per-
formance in Procgen (Cobbe et al., 2020), particularly in hard-level environments (in Figure 1).
This framework marks a significant advancement in addressing generalization challenges in deep
reinforcement learning.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to theoretically prove that minimizing the
policy’s robustness to irrelevant features helps improve generalization performance.

• We propose a general adversarial learning framework to improve the generalization perfor-
mance of agents, which is compatible with existing policy learning algorithms.

• Extensive results demonstrate that applying the adversarial framework to standard RL base-
lines gains significant improvements in generalization performance.

2 PRELIMINARIES

Markov Decision Process and Generalization Settings. We first consider the formalization of
generalization in RL. Denote a Markov Decision Process (MDP) as m, defined by the tuple

m = (Sm,A, rm,Pm, ρm, γ) , (1)

where m is sampled from the distribution pM(·), Sm represents the state space, A represents the
action space, rm : Sm×A 7→ R is the reward function,Pm : Sm×A×Sm 7→ [0, 1] is the probability
distribution of the state transition function, ρm : Sm 7→ [0, 1] is the probability distribution of the
initial state, and γ ∈ (0, 1] is the discount factor. Typically, during training, the agent is only
allowed to accessMtrain ⊂ M and is then tested for its generalization performance by extending
to the entire distributionM. The agent generates the following trajectory on m:

τm = (sm0 , a
m
0 , r

m
0 , . . . , s

m
t , a

m
t , r

m
t , . . . ) . (2)

Similar to standard RL, the state-value function, value function can be defined as

Qπ
m(smt , a

m
t ) = Esmt+1,a

m
t+1,...

[ ∞∑
k=0

γkrm(smt+k, a
m
t+k)

]
, V π

m(smt ) = Eam
t ∼π(·|smt ) [Q

π
m(smt , a

m
t )] .

(3)
Given Qπ

m and V π
m, the advantage function can be expressed as Aπ

m(smt , a
m
t ) = Qπ

m(smt , a
m
t ) −

V π
m(smt ). We now denote ζ(π) = Em∼pM(·),τm∼π [

∑∞
t=0 γ

trm(smt , a
m
t )] as the generalization ob-

jective given policy π, and denote η(π) = Em∼pMtrain
(·),τm∼π [

∑∞
t=0 γ

trm(smt , a
m
t )] as the train-

ing objective, where the notation Eτm∼π indicates the expected return of the trajectory τm generated
by the agent following policy π, i.e., sm0 ∼ ρm(·), amt ∼ π(·|smt ), rmt ∼ rm(smt , a

m
t ), smt+1 ∼

Pm(·|smt , amt ), where t ∈ N, N is the set of all natural numbers.

For the convenience of subsequent theoretical analysis, we decouple the state smt into ut and ϕm(·),
i.e., smt = ϕm(ut), where ut is independent of m, while ϕm(·) is completely and only determined
by m. For instance, ut implicitly encompasses significant semantic information, which is crucial
for the agent to maximize the expected return. This includes, for example, the relative positional
relationship between the manipulated character and obstacles in its surroundings. On the other hand,
the function ϕm obfuscates these pieces of information, such as the background or rendering style
of the game. This suggests that even two vastly different states may represent identical semantics,
making it seemingly implausible for an agent utilizing a Convolutional Neural Network (CNN) for
feature extraction to maintain robustness against such variations.

Therefore, the generalization of reinforcement learning has been proven to be highly challenging
(Ghosh et al., 2021), as the agent may use the additional information provided by ϕm to “cheat”. In
some extreme cases, the agent can achieve high scores solely by memorizing these additional pieces

3
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of information, while lacking any comprehension of the underlying semantics, which can further
lead to the agent completely failing on unseen m ∼ pM(·).
Hence, we attempt to eliminate the influence of m. We consider a Hidden Markov Decision Process
(HMDP) that consists entirely of useful information (in other words, all variables that can be affected
by m are excluded from consideration), denote it as m∗ = (U ,A, r,P, ρ, γ).

3 THEORETICAL ANALYSIS

In this section, we derive the lower bounds for the training and generalization performance of the
agent. The main conclusion drawn from this is that improving the agent’s robustness to irrelevant
features will help enhance its generalization performance.

Given the probability distribution pM, we first make the following assumption:
Assumption 3.1. When m is sampled fromMtrain ⊂M, i.e., m ∼ pMtrain

(·), we assume that

pMtrain
(m) =

pM(m) · I (m ∈Mtrain)

M
, (4)

where M =
∫
Mtrain

pM(m)dm is the normalized coefficient that represents the probability that m,
sampled from the entire distributionM, belongs toMtrain, while I(·) is the indicator function.

It can be proved that pMtrain(m) is a probability distribution, please refer to Appendix C.1 for
details. Based on Assumption 3.1, we can derive the following generalization theorem:
Theorem 3.2 (Generalization performance lower bound). Given any policy π, the following bound
holds:

ζ(π) ≥ η(π)− 2rmax

1− γ
· (1−M), (5)

where ζ(π) and η(π) denote the generalization objective and training objective, respectively;
rmax = maxm,s,a |rm(s, a)|.

The proof is in Appendix C.2. This inspires us that when sampling m from the entireM, with the
increase of M (i.e., the probability of the sampled m ∈ Mtrain), the lower bound of generalization
performance is continuously optimized and tends to be consistent with ζ when M = 1.

According to Theorem 3.2, onceMtrain is determined, the value of M is also fixed, at this point, η
is the only term that we can optimize in the lower bound. Therefore, we now focus on optimizing η.
Before that, we present some important theoretical results in the following:
Theorem 3.3. (Kakade & Langford, 2002) Let P(st = s|π) represents the probability of the
t-th state equals to s in trajectories generated by the agent following policy π, and ρπ(s) =∑∞

t=0 γ
tP(st = s|π) represents the unnormalized discounted visitation frequencies. Given any

two policies, π and π̃, their performance difference can be measured by

η(π̃) = η(π) + Es∼ρπ̃(·),a∼π̃(·|s) [A
π(s, a)] . (6)

Theorem 3.4. (Schulman, 2015) Given any two policies, π and π̃, the following bound holds:

η(π̃) ≥ Lπ(π̃)−
4γmaxs,a |Aπ(s, a)|

(1− γ)2
·Dmax

TV (π, π̃)2, (7)

where Lπ(π̃) = η(π) + Es∼ρπ(·),a∼π̃(·|s) [A
π(s, a)].

The aforementioned theorems only consider standard RL. On this foundation, we further extend
them and derive a lower bound for the training objective:
Theorem 3.5 (Training performance lower bound). Let P(smt = s|m,π) represents the probability
of the t-th state equals to s in trajectories generated by the agent following policy π in MDP m, and
ρmπ (s) =

∑∞
t=0 γ

tP(smt = s|m,π) represents the unnormalized discounted visitation frequencies.
Given any two policies, π and π̃, the following bound holds:

η(π̃) ≥ Lπ(π̃)−
4γAmax

(1− γ)2
·
(√

D1 +
√
D2 +

√
D3

)2

, (8)
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Algorithm 1 Policy iteration algorithm guaranteeing non-decreasing training performance η

1: Initialize: policy π0
2: for i = 0, 1, 2, . . . do
3: Solve the constrained optimization problem through

πi+1 ← argmax
π

Lπi(π)− η(πi)−Mπi(π)

s.t. Lπi
(π)− η(πi) ≥Mπi

(π)

4: end for

where Amax = maxm,s,a |Aπ
m(s, a)|, and

η(π̃) = η(π) + Em∼pMtrain
(·),s∼ρm

π̃ (·),a∼π̃(·|s) [A
π
m(s, a)] ,

Lπ(π̃) = η(π) + Em∼pMtrain
(·),s∼ρm

π (·),a∼π̃(·|s) [A
π
m(s, a)] ,

D1 = Em∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}
,

D2 = Em,m̃∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π(·|ϕm̃(u))]
2
}
,

D3 = Em,m̃∼pMtrain
(·)

{
Dmax

TV [π̃(·|ϕm(u)), π̃(·|ϕm̃(u))]
2
}
,

(9)

where the notation Dmax
TV (·) = maxuDTV(·).

The proof see Appendix C.3. This inspires us that D1 measures the difference between the old and
new policies, while D2 and D3 represent the robustness of the old and new policies to irrelevant
features of the high-dimensional observations, respectively. Thus

η(π̃)− η(π) ≥ Lπ(π̃)− η(π)− C ·
(√

D1 +
√
D2 +

√
D3

)2

, (10)

where C = 4γAmax/(1−γ)2. We now denoteMπ(π̃) = C ·
(√

D1 +
√
D2 +

√
D3

)2
, we can then

derive the following monotonic improvement theorem:

Theorem 3.6 (Monotonic improvement of training performance). Let π0, π1, π2, . . . , πk be the se-
quence of policies generated by Algorithm 1, then

η(πk) ≥ η(πk−1) ≥ · · · ≥ η(π0). (11)

Proof. According to inequality (10) and Algorithm 1, we have

η(πi+1)− η(πi) ≥ Lπi(πi+1)− η(πi)−Mπi(πi+1) ≥ 0, (12)

where i = 0, 1, . . . , k − 1, so that η(πi+1) ≥ η(πi), concluding the proof.

On the other hand, it is evident that

η(πi+1)−
2rmax

1− γ
· (1−M) ≥ η(πi)−

2rmax

1− γ
· (1−M), (13)

which means through the iterative process of Algorithm 1, we optimize the lower bound of gener-
alization performance (5) as well. In fact, if both D2 and D3 are always equal to zero, i.e., given
any m, m̃ ∈ M and u ∈ U , we have πi(·|ϕm(u)) = πi(·|ϕm̃(u)),∀i ∈ N. In this case, the agent
has complete insight into the underlying semantics without any influence from m, thus the agent is
essentially interacting with m∗ = (U ,A, r,P, ρ, γ), Theorem 3.5 degenerates into Theorem 3.4.

However, Algorithm 1 is an idealized approach, we have to adopt some heuristic approximations in
practical solutions. In the following section, we will discuss the specific details of these approxi-
mations and introduce our proposed dual-agent adversarial framework to overcome the difficulty in
optimizing the lower bound (10), which constitutes the core of this paper.
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4 METHODOLOGY

In the previous section, we derived the lower bound of training performance, which inspires us to
optimize the part of the policy that determines robustness. Therefore, in this section, we first analyze
the optimization problem of parameterized policies (Section 4.1), then deconstruct what properties
a generalization agent should have (Section 4.2), and finally propose a dual-agent adversarial frame-
work to solve the generalization problem (Section 4.3).

4.1 OPTIMIZATION OF PARAMETERIZED POLICIES

We first consider the parameterized policies, i.e., πθ, and denote the upstream encoder of the pol-
icy network as ψw, where w and θ represent the parameters of the encoder and policy network,
respectively.

For any given state s = ϕm(u), for brevity, we denote s̄m = ψw(ϕm(u)) as the representation
input into the policy network πθ after passing through the encoder ψw. Similar to TRPO (Schulman,
2015), the total variational distance and KL divergence satisfy Dmax

TV [πθold(·|s̄m), πθ(·|s̄m)]
2 ≤

Dmax
KL [πθold(·|s̄m), πθ(·|s̄m)], where θold represents the policy network parameters before the up-

date, while θ represents the current policy network parameters. Through heuristic approximation,
the maximum KL divergence Dmax

KL is approximated as the average KL divergence E [DKL], and
then Algorithm 1 is approximated as the following constrained optimization problem:

max
θ

J(θ) = Lθold(θ)− η(θold),

s.t.

{
Em∼pMtrain

(·) {DKL [πθold(·|s̄m), πθ(·|s̄m)]} ≤ δ1,
Em,m̃∼pMtrain

(·) {DKL [πθ(·|s̄m), πθ(·|s̄m̃)]} ≤ δ2,
(14)

where m and m̃ are MDPs independently sampled from the distribution pMtrain
. Then, similar to

TRPO, J(θ) can be expressed as

J(θ) = Em,s;a∼πθ(·|s̄m) [A
π
m(s, a)] = Em,s;a∼πθold

(·|s̄m)

[
πθ(a|s̄m)

πθold(a|s̄m)
·Aπ

m(s, a)

]
, (15)

which is called importance sampling, wherem ∼ pMtrain
(·) and s ∼ ρmπθold

(·). Thus, we can further
transform the constrained optimization problem (14) into the following form:

max
θ

J(θ) = Em,s;a∼πθold
(·|s̄m)

[
πθ(a|s̄m)

πθold(a|s̄m)
· Â(s, a)

]
,

s.t.

{
Em∼pMtrain

(·) {DKL [πθold(·|s̄m), πθ(·|s̄m)]} ≤ δ1,
Em,m̃∼pMtrain

(·) {DKL [πθ(·|s̄m), πθ(·|s̄m̃)]} ≤ δ2,

(16)

where Â(s, a) is the estimation of the advantage function, and in this paper, we adopt the GAE
(Schulman et al., 2015) technique. The first constraint of (16) measures the difference between the
old and new policies, where TRPO (Schulman, 2015) and PPO (Schulman et al., 2017) have already
provided corresponding solutions. However, it’s important to note that the second constraint in (16)
can not be approximated, as it involves different states with the same underlying semantics, and
predicting another ϕm̃(u) based on any received state ϕm(u) (m ̸= m̃) is untraceble.

Hence, understanding different states with the same underlying semantics is the most central chal-
lenge in the generalization of deep reinforcement learning. In the following section, we will sys-
tematically discuss the characteristics a sufficiently general agent should possess to achieve good
generalization performance.

4.2 HOW TO ACHIEVE GOOD GENERALIZATION?

As discussed previously, it is unable to solve the optimization problem (16) directly, as the expec-
tation Em,m̃∼pMtrain

(·) {DKL [πθ(·|s̄m), πθ(·|s̄m̃)]} cannot be estimated due to the unknown distri-
bution pMtrain

and function ϕm. In this section, we focus on analyzing the characteristics that a
generalization agent should possess.

6
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GoodBad

(a) The impact of biases on
generalization. Among them,
the areas enclosed by the red
and green curves represent the
space of Mtrain and M, re-
spectively, and the area enclosed
by the pink curve represents the
bias that is beneficial to the gen-
eralization of the model, as it is
more aligned with M. The area
enclosed by the gray curve rep-
resents the bias that may affect
the model’s generalization, as it
is less aligned with M.

start

end

start

end

R(red) = 0R(red) = -1

(b) The impact of reward functions on generalization.
We build a simple maze environment where an agent rep-
resented by a green square starts from the starting point
and can receive a reward by reaching the endpoint. How-
ever, there is a possibility that the agent may enter the
red zone. The reward functions are set as follows: the
agent receives a reward of −1 after entering the red zone
(left), and the agent receives a reward of 0 after entering
the red zone (right). It is evident that in the left environ-
ment, the positional information of the red zone is useful
to the agent, while in the right environment, the positional
information of the red zone can be ignored by the agent.
Thus, the agent should have different representations for
the two environments.

Figure 3: The impacts of biases and reward functions on generalization

Although estimating different states with the same semantics during training is challenging, one ef-
fective approach to explicitly learn the underlying semantics is to introduce the adversarial method.
For instance, Rahman & Xue (2023) aims to maximize expected return while minimizing the in-
terference from adversarial examples generated by its own generator, StarGAN (Choi et al., 2018).
This process ultimately facilitates robust policy learning and helps prevent the agent from overfit-
ting irrelevant features in high-dimensional observations, inspiring us to incorporate an adversarial
framework into our approach (Section 4.3).

However, StarGAN does not entirely eliminate the biases introduced by human prior knowledge.
Specifically, the domain of the original input image is clustered using a Gaussian Mixture Model
(GMM), which inherently introduces biases from the GMM. Furthermore, the number of clusters is
often determined empirically, adding another layer of human influence.

Therefore, firstly, a sufficiently general agent should spontaneously learn robust representations for
irrelevant features, rather than relying on biases introduced by human prior knowledge. Figure 3 (a)
shows the potential impact of introducing biases into the model. Secondly, the entire pipeline for
learning generalization must integrate the RL process, as the identification of irrelevant features is
closely linked to the objectives of RL, particularly the configuration of the reward function. Figure
3 (b) demonstrates how different reward functions influence the agent’s recognition of irrelevant
information within a simple maze environment.

In summary, we conclude that a sufficiently general agent should possess two characteristics:

(1) The agent is able to spontaneously learn robust representations for high-dimensional input
without introducing any bias that benefits from human prior knowledge.

(2) The agent should adaptively adjust its representation of underlying semantics in response
to changes in the reward function, demonstrating the ability to identify the semantics corre-
sponding to specific objectives.

Given these two points, we will introduce a dual-agent adversarial framework in the following sec-
tion, which empowers agents with enhanced generalization capabilities.

4.3 ADVERSARIAL POLICY LEARNING FRAMEWORK

In the previous analysis, we summarized the core challenges in the generalization of RL (Section 4.1)
and the characteristics a general agent should possess (Section 4.2). However, generating adversarial

7
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Algorithm 2 Dual-agent adversarial policy learning

1: Initialize: Agent 1’s encoder and policy ψ1, π1, agent 2’s encoder and policy ψ2, π2
2: Initialize: Reinforcement learning algorithm A
3: Initialize: Gradient descent optimizer O
4: while training do
5: for i = 1, 2 do
6: Collect data Di using agent i
7: Calculate RL loss for agent i: LRL ← A(Di)
8: Calculate KL loss for agent i: LKL ← Down

KL −Dother
KL according to Equation (19)

9: Calculate total loss for agent i: L ← LRL + αLKL

10: Update ψi, πi, ψ3−i ← O(L, ψi, πi, ψ3−i)
11: end for
12: end while

samples through generative models introduces additional hyperparameters and training costs, and
relies on carefully designed model architecture.

To address these issues, a viable solution is to attack the agent’s encoder instead of directly gener-
ating adversarial samples. In this section, we introduce a dual-agent adversarial framework, which
involves a game process between two homogeneous agents, as shown in Figure 4.

EncoderEncoder

Figure 4: Adversarial policy
learning framework. ψ1 and
π1 represent the encoder and
policy network of agent 1, while
ψ2 and π2 represent the encoder
and policy network of agent 2.
s1 and s2 represent the training
data for agent 1 and agent 2, re-
spectively. Moreover, the solid
lines indicate that the train-
ing data of each agent is input
into its corresponding encoder,
while dashed lines indicate that
the training data of each agent is
input into the other’s encoder.

In particular, two symmetric agents are introduced in this frame-
work, both agents have the capability to utilize their respective
training data and update the other agent’s encoder through back-
propagation, which empowers them to perform adversarial at-
tacks on each other. Since the two agents are equivalent in status,
we take the perspective of agent 1 as an example. Agent 1 inputs
its training data s1 into both its own encoder and the other agent’s
encoder, obtaining ψ1(s1) and ψ2(s1), resulting in different rep-
resentations of the same state s1. The adversarial framework con-
sists of two processes:

Adversarial Attack on Opponent Agent. To prevent the oppo-
nent agent from producing good actions, agent 1 attempts to alter
the parameters of both encoders to influence agent 2’s decision-
making, where the KL divergence is used to quantify this distri-
butional perturbation:

Dother
KL = DKL [π2(·|ψ2(s1)), π2(·|ψ1(s1))] . (17)

Robust Defense Against Adversarial Threats. Meanwhile,
agent 1 itself attempts to remain robust to this influence, which
can be expressed as

Down
KL = DKL [π1(·|ψ1(s1)), π1(·|ψ2(s1))] . (18)

It should be noted that when agent 1 is performing adversarial at-
tacks on agent 2’s encoder ψ2, the parameters of agent 2’s policy
network π2 are frozen during this stage, thus do not participate in
gradient updates.

Overall, the goal of the agent is to maximize the perturbation
Dother

KL while minimizing the self-inferenceDown
KL , resulting in the

loss function of the form:
LKL = Down

KL −Dother
KL . (19)

Since the adversarial process is coupled with the RL training process, the total loss is defined as

L = LRL + αLKL, (20)

where LRL is the loss function using a specific RL algorithm, α is the only additional hyperpa-
rameter. As the two agents are equivalent, the training processes for both agents are completely
symmetrical. The pseudo-code of the adversarial policy learning process is shown in Algorithm 2.

8
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The overall loss comprises two components: the reinforcement learning loss term LRL and the
adversarial loss term LKL. The adversarial loss facilitates a competitive interaction among agents
and functions similarly to a form of regularization, effectively preventing agents from overfitting to
irrelevant features in high-dimensional observations. With the alternate updating of the two agents,
they will have to consider the truly useful underlying semantics, leading to better generalization
performance, or mathematically speaking, a lower Em,m̃∼pMtrain

(·) {DKL [πθ(·|s̄m), πθ(·|s̄m̃)]} in
constrained optimization problem (16).

In summary, our proposed adversarial policy learning framework is well in line with the two char-
acteristics proposed in Section 4.2:

(1) First, the framework does not introduce any additional biases, allowing the agents to learn
the underlying semantics spontaneously.

(2) Second, the adversarial process and the reinforcement learning process are highly coupled,
which means that the dependency between the reward signal and the corresponding represen-
tation can be modeled well.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Benchmark. Procgen (Cobbe et al., 2020) is an environment library specifically designed for rein-
forcement learning research, developed by OpenAI. It provides a diverse and procedurally generated
set of platform games, allowing researchers to test the generalization capabilities of agents across
different tasks and scenarios.

Baselines. We verify the performance of our proposed method compared with PPO (Schulman et al.,
2017) and DAAC (Raileanu & Fergus, 2021) as the baselines for our comparative experiments.

Training Settings. In all experiments, we use the hyperparameters provided in the Appendix B
unless otherwise specified. We referred to the original paper for hyperparameters specific to the
algorithm. Following the recommendations of Cobbe et al. (2020), we run these methods on hard-
level generalization tasks, training on eight environments of 500 levels and evaluating generalization
performance on the full distribution of levels. We interact for 50M steps to consider running time.
This is sufficient to assess the performance differences between our method and other baselines.
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Figure 5: Test performance curves of each method on eight hard-level Procgen games. Each
agent is trained on 500 training levels for 50M environment steps and evaluated on the full distribu-
tion of levels. The mean and standard deviation is shown across three random seeds.
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Table 1: Average test performance of PPO, DAAC and PPO with our adversarial loss on eight
hard-level Procgen games. The average return is shown across three random seeds.

Env. \ Method PPO DAAC PPO + Adv. (Agent 1) PPO + Adv. (Agent 2)
bigfish 0.485 1.193 7.904 8.117

bossfight 6.196 4.655 7.957 7.970
caveflyer 3.162 1.852 2.768 2.731

chaser 2.634 1.955 4.215 4.270
climber 3.233 3.299 4.473 4.520
coinrun 4.592 6.735 6.710 6.803

dodgeball 1.587 1.380 1.554 1.593
fruitbot 1.037 -0.860 8.027 8.050

Average Score 2.866 2.526 5.451 5.507

5.2 EXPERIMENT RESULTS

Our experimental results are illustrated in Figure 5 and Table 1. The data clearly demonstrate that
directly integrating our adversarial framework with the Proximal Policy Optimization (PPO) algo-
rithm leads to substantial performance enhancements across various environments. In particular,
our PPO + Adv. methods consistently outperform the DAAC algorithm, which relies on carefully
crafted model architectures and additional hyperparameters. For instance, in the chaser task, our
agent achieves a score of 4.270, surpassing DAAC’s score of 1.955. This highlights not only the
strength of our framework but also its potential to simplify model design while enhancing perfor-
mance. In addition, the performance of our approach achieves an impressive score of 8.117 in
bigfish, representing a remarkable increase of 1573% compared to the baseline PPO score of 0.485.
Similarly, in the fruitbot environment, our method records a score of 8.050, a significant improve-
ment of 676% over the PPO score of 1.037. These examples underscore the effectiveness of our
adversarial approach in facilitating robust learning and adaptation in complex scenarios.

Overall, the average scores reveal that our methods yield an average score of 5.507, compared to
2.866 for the standard PPO and 2.526 for DAAC. This improvement reflects a strong generaliza-
tion capability, indicating that our framework enables agents to perform better across a range of
environments, thereby enhancing their adaptability and resilience to variations in task conditions.

6 RELATED WORK

Generalizable RL Methods. Data augmentation methods are considered as effective solutions for
enhancing the generalization of agents. Directly integrating existing data augmentation methods
with RL algorithms can yield improvements (Laskin et al., 2020; Kostrikov et al., 2020; Zhang
& Guo, 2021; Raileanu et al., 2021). Domain randomization techniques (Tobin et al., 2017; Yue
et al., 2019; Slaoui et al., 2019; Lee et al., 2019; Mehta et al., 2020; Li et al., 2021) inject random
disturbances representing variations in the simulated environment during the training process of RL,
effectively enhancing the adaptability of RL agents to unknown environments.

Adversarial Learning. Adversarial learning has been proven to be a powerful learning framework
(Goodfellow et al., 2014; Jiang et al., 2020; Dong et al., 2020). For instance, combining adversarial
learning with randomization to enhance the generalization performance of agents (Pinto et al., 2017;
Li et al., 2021; Rahman & Xue, 2023). In addition, adversarial attacks are also used to improve the
robustness and generalization performance of agents (Gleave et al., 2019; Oikarinen et al., 2021).

7 CONCLUSION

This paper introduces a dual-agent adversarial framework designed to tackle the challenges of gen-
eralization in reinforcement learning. By incorporating a competitive process between two agents,
our framework leverages adversarial loss to enable both agents to spontaneously learn effective rep-
resentations of high-dimensional observations, resulting in robust policies that effectively handle
irrelevant features. Extensive experimental results demonstrate that this framework significantly en-
hances both the training and generalization performance of baseline RL algorithms. Our findings
indicate that the adversarial approach not only improves the resilience of RL agents but also repre-
sents a meaningful advancement in the quest for generalizable reinforcement learning solutions.
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A TRAINING RESULTS
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Figure 6: Train performance curves of each method on eight hard-level Procgen games.

B HYPERPARAMETER SETTINGS

Table 2: Detailed hyperparameters in Procgen.

Hyperparameters PPO (Schulman et al., 2017) DAAC (Raileanu & Fergus, 2021) PPO with adversarial loss (ours)

Environments per worker 64 64 64
Workers 4 4 4
Horizon 256 256 256

Learning rate 5 × 10−4 5 × 10−4 5 × 10−4

Learning rate decay No No No
Optimizer Adam Adam Adam
Total steps 50M 50M 50M
Batch size 16384 16384 16384

Update epochs 3 - 3
Mini-batches 8 8 8

Mini-batch size 2048 2048 2048
GAE parameter λ 0.95 0.95 0.95
Discount factor γ 0.999 0.999 0.999

Value loss coefficient c1 0.5 - 0.5
Entropy loss coefficient c2 0.01 0.01 0.01

Probability ratio parameter ϵ 0.2 0.2 0.2
KL loss coefficient α - - 1.0

Advantage loss coefficient αa - 0.25 -
Policy update epochs Eπ - 1 -
Value update epochs EV - 9 -

Value updates after a policy update Nπ - 1 -

C PROOFS

C.1 PROOF OF ASSUMPTION 3.1

We now prove that pMtrain(m) is a probability distribution, by integrating it, we obtain∫
Mtrain

pMtrain
(m)dm =

∫
Mtrain

pM(m) · I (m ∈Mtrain)

M
dm

=
1

M

∫
Mtrain

pM(m) · I (m ∈Mtrain) dm

=
1

M

∫
Mtrain

pM(m)dm

=1,

(21)

concluding the proof.
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C.2 PROOF OF THEOREM 3.2

We are trying to measure the difference between ζ(π) and η(π), which is

|ζ(π)− η(π)|

=

∣∣∣∣∣Em∼pM(·),τm∼π

[ ∞∑
t=0

γtrm(smt , a
m
t )

]
− Em∼pMtrain

(·),τm∼π

[ ∞∑
t=0

γtrm(smt , a
m
t )

]∣∣∣∣∣
=

∣∣∣∣∣Em∼pM(·)

{
Eτm∼π

[ ∞∑
t=0

γtrm(smt , a
m
t )

]}
− Em∼pMtrain

(·)

{
Eτm∼π

[ ∞∑
t=0

γtrm(smt , a
m
t )

]}∣∣∣∣∣ .
(22)

First, we denote Eτm∼π [
∑∞

t=0 γ
trm(smt , a

m
t )] as gm(π), then

|gm(π)| =

∣∣∣∣∣Eτm∼π

[ ∞∑
t=0

γtrm(smt , a
m
t )

]∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

∑
s

P(smt = s|m,π)
∑
a

π(a|s) · γtrm(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

γt
∑
s

P(smt = s|m,π)
∑
a

π(a|s) · rm(s, a)

∣∣∣∣∣
≤

∞∑
t=0

γt · max
m,s,a

|rm(s, a)|

=
rmax

1− γ
.

(23)

Second, according to Assumption 3.1, we have

|ζ(π)− η(π)|

=
∣∣∣Em∼pM(·) [gm(π)]− Em∼pMtrain

(·) [gm(π)]
∣∣∣

=

∣∣∣∣∫
M
pM(m)gm(π)dm−

∫
Mtrain

pMtrain
(m)gm(π)dm

∣∣∣∣
=

∣∣∣∣∫
Mtrain

pM(m)gm(π)dm−
∫
Mtrain

pMtrain
(m)gm(π)dm+

∫
M−Mtrain

pM(m)gm(π)dm

∣∣∣∣
=

∣∣∣∣(1− 1

M

)∫
Mtrain

pM(m)gm(π)dm+

∫
M−Mtrain

pM(m)gm(π)dm

∣∣∣∣
≤
∣∣∣∣(1− 1

M

)∫
Mtrain

pM(m)gm(π)dm

∣∣∣∣+ ∣∣∣∣∫
M−Mtrain

pM(m)gm(π)dm

∣∣∣∣
≤
(

1

M
− 1

)
· rmax

1− γ
·
∫
Mtrain

pM(m)dm+
rmax

1− γ
·
∫
M−Mtrain

pM(m)dm

=

(
1

M
− 1

)
· rmax

1− γ
·M +

rmax

1− γ
· (1−M)

=
2rmax

1− γ
· (1−M).

(24)

Theorem 3.2 follows.
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C.3 PROOF OF THEOREM 3.5

Let’s start with Theorem 3.4 (Schulman, 2015), through a simple extension, by adding expectation
Em∼pMtrain

(·) to the left and right sides of Theorem 3.4, we can derive the following lemma:

Lemma C.1. Let m ∼ pMtrain(·), given any two policies, π and π̃, the following bound holds:

η(π̃) ≥ Lπ(π̃)−
4γAmax

(1− γ)2
· Em∼pMtrain

(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}
, (25)

where Amax = maxm,s,a |Aπ
m(s, a)| and

η(π̃) = η(π) + Em∼pMtrain
(·),s∼ρm

π̃ (·),a∼π̃(·|s) [A
π
m(s, a)] ,

Lπ(π̃) = η(π) + Em∼pMtrain
(·),s∼ρm

π (·),a∼π̃(·|s) [A
π
m(s, a)] .

(26)

Proof. According to Theorem 3.4, given any m, we have∣∣Es∼ρm
π̃ (·),a∼π̃(·|s) [A

π
m(s, a)]− Es∼ρm

π (·),a∼π̃(·|s) [A
π
m(s, a)]

∣∣
≤ 4γmaxs,a |Aπ

m(s, a)|
(1− γ)2

·Dmax
TV [π(·|ϕm(u)), π̃(·|ϕm(u))]

2
,

(27)

where the notation Dmax
TV (·) = maxuDTV(·). Then

|η(π̃)− Lπ(π̃)|

=
∣∣∣Em∼pMtrain

(·),s∼ρm
π̃ (·),a∼π̃(·|s) [A

π
m(s, a)]− Em∼pMtrain

(·),s∼ρm
π (·),a∼π̃(·|s) [A

π
m(s, a)]

∣∣∣
=
∣∣∣Em∼pMtrain

(·)
{
Es∼ρm

π̃ (·),a∼π̃(·|s) [A
π
m(s, a)]− Es∼ρm

π (·),a∼π̃(·|s) [A
π
m(s, a)]

}∣∣∣
≤Em∼pMtrain

(·)
{∣∣Es∼ρm

π̃ (·),a∼π̃(·|s) [A
π
m(s, a)]− Es∼ρm

π (·),a∼π̃(·|s) [A
π
m(s, a)]

∣∣}
≤Em∼pMtrain

(·)

{
4γmaxs,a |Aπ

m(s, a)|
(1− γ)2

·Dmax
TV [π(·|ϕm(u)), π̃(·|ϕm(u))]

2

}
≤ 4γAmax

(1− γ)2
· Em∼pMtrain

(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}
,

(28)

Lemma C.1 follows.

Since the expectation of any constant is still this constant, i.e., E [c] = c , we have

Em∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}

=Em̃∼pMtrain
(·)

{
Em∼pMtrain

(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}}

=Em,m̃∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}
,

(29)

thus

η(π̃) ≥ Lπ(π̃)−
4γAmax

(1− γ)2
· Em,m̃∼pMtrain

(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}
. (30)

Now, denote u∗ = argmaxuDTV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2, and based on the triangle inequality

for total variation distance, we have

Em,m̃∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}

=Em,m̃∼pMtrain
(·)

{
DTV [π(·|ϕm(u∗)), π̃(·|ϕm(u∗))]

2
}

≤Em,m̃∼pMtrain
(·)

{(
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))] +DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))] +

+DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]
)2}

,

(31)
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so that

Em,m̃∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}

≤Em,m̃∼pMtrain
(·)

{
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))]

2
}

+Em,m̃∼pMtrain
(·)

{
DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))]

2
}

+Em,m̃∼pMtrain
(·)

{
DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]

2
}

+2Em,m̃∼pMtrain
(·)

{
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))] ·DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))]

}
+2Em,m̃∼pMtrain

(·)

{
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))] ·DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]

}
+2Em,m̃∼pMtrain

(·)

{
DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))] ·DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]

}
.

(32)

Next, according to the Cauchy-Schwarz inequality, i.e., X and Y are two positive random variables,
then E [XY ] ≤

√
E [X2] · E [Y 2], we obtain

Em,m̃∼pMtrain
(·)

{
Dmax

TV [π(·|ϕm(u)), π̃(·|ϕm(u))]
2
}

≤Em,m̃∼pMtrain
(·)

{
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))]

2
}

+Em,m̃∼pMtrain
(·)

{
DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))]

2
}

+Em,m̃∼pMtrain
(·)

{
DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]

2
}

+2

√
Em,m̃∼pMtrain

(·)

{
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))]

2
}
· Em,m̃∼pMtrain

(·)

{
DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))]

2
}

+2

√
Em,m̃∼pMtrain

(·)

{
DTV [π(·|ϕm(u∗)), π(·|ϕm̃(u∗))]

2
}
· Em,m̃∼pMtrain

(·)

{
DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]

2
}

+2

√
Em,m̃∼pMtrain

(·)

{
DTV [π(·|ϕm̃(u∗)), π̃(·|ϕm̃(u∗))]

2
}
· Em,m̃∼pMtrain

(·)

{
DTV [π̃(·|ϕm(u∗)), π̃(·|ϕm̃(u∗))]

2
}

≤D2 +D1 +D3 + 2
√
D2D1 + 2

√
D2D3 + 2

√
D1D3

=
(√

D1 +
√
D2 +

√
D3

)2

.

(33)

Finally, by combining the inequality (30) and inequality (33), we derive

η(π̃) ≥ Lπ(π̃)−
4γAmax

(1− γ)2
·
(√

D1 +
√
D2 +

√
D3

)2

, (34)

concluding the proof of Theorem 3.5.
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