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Figure 1: Examples demonstrating high-quality results across various scenarios with different
prompt for each reference image.

ABSTRACT

We aim to enable efficient subject-to-video (S2V) learning, which otherwise re-
quires expensive video-subject-pair datasets that require tens of thousands of GPU
hours for training. While utilizing image-paired datasets to train video models
could address this challenge, naively training with image pairs results in catas-
trophic loss of temporal ability due to gradient conflicts. We hypothesize that S2V
generation decomposes into two orthogonal objectives of identity learning from
images and temporal dynamics from videos. Based on this orthogonality assump-
tion, we design a stochastic task-switching strategy that predominantly samples
from image datasets while maintaining minimal video replay for temporal coher-
ence. Our experiments validate this hypothesis by demonstrating that the gradi-
ent inner product between tasks converges exponentially to near-zero, confirming
emergent orthogonalization without requiring explicit orthogonal projection. This
validated orthogonality enables efficient image-dominant training while prevent-
ing catastrophic forgetting through proxy experience replay. We employ regular-
ization techniques including random frame selection and token dropping during
video replay to ensure efficient temporal learning. Extensive experiments demon-
strate our approach achieves superior performance with comparable compute to
per-subject tuned methods for single subjects, while providing zero-shot capabil-
ity and outperforming both per-subject tuned methods and some existing zero-shot
approaches.

1 INTRODUCTION

Recent advancements in video diffusion models [Hong et al.| (2022); [Yang et al. (2024)); [Blattmann
(2023) have significantly improved controllability by incorporating various conditioning mech-
anisms, ranging from text-to-video (T2V) synthesis to video customization using key points, edges,
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Table 1: Computational comparison on tuning-free and per-subject tuned methods.

Method Dataset Size Base Model (Size)  Train Steps A100 Hours* Supporting Domain
Tuning-free Methods

VACE [Jiang et al. |(2025) 53M videos’ LTX & Wan (14B) 200K 70K-210K*  Face/Object/General
Phantom|Liu et al.[(2025) 1M pairs? Wan (1.3-14B) & Seed ¥ 30K 10K-30K ¥# Face/Object
Consis-ID|Yuan et al.|(2024) 130K+** CogVideoX (5B) 1.8K - Face
Per-subject Tuned Methods

CustomCrafter|Wu et al.|(2025) 200 reg. images VideoCrafter2 (1.4B) 10K 200* Object
Still-Moving|Chefer et al.|(2024) few ref. images + 40 videos Lumiere (1.2B) 500 - Face/Object
Ours 200K images + 4K unpaired videos CogVideoX (5B) 4K 288 Object

Source pool. ¥Estimated based on implementation details in paper and GitHub. See supplement for
estimation calculation. Phantom-Data|Chen et al.|(2025b). TVaries by model size. *Total GPU hours.
*#130K clips, and in terms of pairs, not addressed.

or reference images Meng et al.[(2023); Yuan et al.|(2024); |Atzmon et al.| (2024); |Wu et al.| (2025));
Hu & Xu| (2023). Among them, subject-driven video customization, i.e., subject-to-video (S2V)
generation |Jiang et al.| (2024);|Wei et al.| (2024azb); Huang et al.|(2025), aims to generate videos that
maintain consistent subject identity across different scenes, motions, and contexts. S2V generation
has gained significant attention for its wide range of applications, including personalized content
creation, marketing, and entertainment. However, early approaches |Wei et al.[ (2024a); |Chen et al.
(2024); Wu et al.| (2025)); Ruiz et al.|(2023)) typically require per-subject optimization, which restricts
their applicability due to the additional optimization time.

To eliminate per-subject optimization, recent studies Jiang et al.| (2024); Huang et al.| (2025); |Chen
et al.| (2025a); [Wei et al.| (2024b); [Liu et al.| (2025); Jiang et al.| (2025); Hu et al.[ (2025) have de-
veloped zero-shot S2V methods. However, these approaches face critical challenges that require
expensive subject-driven video customization datasets and massive computational resources. As
shown in Table [I] state-of-the-art tuning-free methods like VACE Jiang et al. (2025) and Phan-
tom |Liu et al.| (2025) require 70K-210K and 10K-30K A100 hours respectively, training on millions
of video-subject pairs. This computational burden stems from training dominantly on video-paired
data, which is inherently more expensive than image-based training by orders of magnitude. Recent
studies attempt to gather even larger S2V datasets (Chen et al.| (2025a); [Huang et al.| (2025); [Yuan
et al.[ (2024), but this approach only exacerbates the computational burden without addressing the
fundamental problem.

A natural approach to address this challenge is leveraging readily available image customization
datasets to train video models, eliminating the need for expensive video-subject pairs. However,
naively fine-tuning video models on image data results in catastrophic loss of temporal modeling
ability, as the model learns to preserve identity but forgets how to generate coherent motion. We
hypothesize that this mutual interference can be resolved if subject-driven video generation naturally
decomposes into two orthogonal objectives in the gradient space, namely identity learning from
images (Vg Ling) and temporal dynamics from videos (V¢ L,iq). If these gradients are orthogonal,
they can be optimized independently without interference, enabling efficient training predominantly
on cheaper image data.

Based on this orthogonality hypothesis, we formulate subject-driven video generation as a pseudo-
continual learning problem and design a proxy experience replay mechanism. Our approach imple-
ments stochastic task switching that alternates between identity learning from image customization
datasets and temporal preservation through minimal video replay. Since the original pretraining
data is unavailable, we use proxy video samples that approximate the pretraining distribution to
maintain temporal capabilities. This stochastic interleaving strategy creates a weighted gradient
Elg] = (1 — p)VoLimg + PVoLyia, Where p is the replay ratio. We further introduce regularization
techniques including random frame selection and image-token dropping during video replay phases
to ensure effective temporal learning even with minimal video samples.

Our experiments validate the orthogonality hypothesis through empirical observation of gradient dy-
namics. We observe that the gradient inner product (Vg Ling, Vo Lyiq) indeed converges to near-zero
in an exponential-decay manner, confirming emergent orthogonalization without requiring explicit
orthogonal projections. This phenomenon validates our initial hypothesis and explains why proxy
replay is remarkably effective. Rather than forcing gradients to be orthogonal through complex pro-
jections like PCGrad [Yu et al.| (2020)), the proxy replay dynamics naturally evolve the optimization
to find mutually compatible directions for both tasks.
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Figure 2: Overview of our framework. We interpret the subject-driven video customization (S2V)
as dual-task learning with proxy-experience replay in terms of continual learning of the two domains
with temporal-awareness preservation and ID injection (Left). To optimize the two objectives, we
utilize a stochastically interleaving strategy, randomly switching between the two training objectives
(Right).

The validated orthogonality enables computational cost reduction. Our approach achieves zero-shot
capability with 288 A100 hours of training (Table[I)), comparable to CustomCrafter[Wu et al| (2025)
(200 A100 hours) which requires per-subject optimization for each new identity. By leveraging
predominantly cheap image-based training (80% of iterations) while maintaining minimal unpaired
video replay (20%), we reduce computational cost by 92.7%. The emergent gradient orthogonal-
ization ensures both tasks are optimized efficiently without interference, making high-quality video
customization both accessible and practical.

The key contributions of our work are as follows:

* We propose the hypothesis that subject-driven video generation decomposes into orthogo-
nal tasks and design a proxy experience replay method based on this assumption.

* We experimentally validate that proxy replay induces emergent gradient orthogonalization,
with gradient conflicts naturally resolving to near-zero correlation without explicit projec-
tion.

* Our approach achieves superior performance with dramatically reduced computational re-
quirements, outperforming per-subject methods and matching some zero-shot baselines
while requiring less compute.

2 RELATED WORK

2.1 SUBJECT-DRIVEN IMAGE GENERATION

Recent diffusion models [Esser et al.| (2024)); |[Labs| (2024)); |Chen et al| (2023) have expanded text-
to-image synthesis capabilities Meng et al.| (2022)); Zhang et al.| (2023), with a key challenge be-
ing injecting novel subjects while maintaining identity across diverse prompts. Early methods like
ControlNet [Zhang et al.|(2023) and T2I-Adapter [Fu et al|(2023) used spatially aligned condition-
ing but struggled with pose variations. IP-Adapter Ye et al.|(2023) and SSR-Encoder [Zhang et al.
(2024) addressed this through cross-attention mechanisms for robust feature integration. Dream-
Booth Ruiz et al.|(2023)) and Textual Inversion |Gal et al.|(2022) introduced specialized embeddings,
while recent works explore tuning-free Ding et al.| (2024); Zeng et al.| (2024)); [Tan et al. (2024),
multi-subject [Kumari et al.| (2023); |Liu et al.| (2023), and subject-agnostic |Chan et al.| (2024) ap-
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proaches. These image-level methods provide foundations for video generation, where temporal
coherence adds complexity.

2.2 SUBIJECT-DRIVEN VIDEO GENERATION

Traditional video generation requires expensive training on large datasets [jovianzm| (2025); Bain
et al.| (2021); [panl (2022). Recent methods divide into two approaches: (1) test-time optimization
methods like DreamVideo |Wei et al.|(2024a)), MotionBooth [Wu et al.| (2024), Still-Moving Chefer,
et al.| (2024)), and CustomCrafter Wu et al.| (2025) that separate appearance and motion modules;
(2) zero-shot solutions including Consis-ID|Yuan et al.|(2024), Concept-Master Huang et al.|(2025)),
VideoBooth Jiang et al.|(2024), and MagicMirror Zhang et al.|(2025) that avoid fine-tuning. Methods
like Phantom |Liu et al.| (2025)) and VACE [Jiang et al.| (2025) achieve strong zero-shot performance
but still require video-paired datasets (Chen et al.| (2025b)); Yuan et al.|(2025).

2.3  EXPERIENCE REPLAY AND CONTINUAL LEARNING

Continual learning prevents catastrophic forgetting [French! (1999) through experience replay Mnih
et al.| (2015)), which stores and replays past experiences. Variants include exact replay [Lopez-Paz
& Ranzato| (2017), generative replay [Shin et al.| (2017), and pseudo-rehearsal using proxy sam-
ples [Robins| (1995). GEM |Lopez-Paz & Ranzato (2017) constrains gradient updates to preserve
previous task performance, while A-GEM |Chaudhry et al.| (2019) approximates these constraints
efficiently. We apply these principles to video generation, where gradient conflicts between iden-
tity and temporal objectives necessitate replay mechanisms, even in the absence of sequential task
presentation.

Unlike methods that require extensive video training|Chen et al.| (2025a); Huang et al.| (2025)); Jiang
et al.[(2024), we utilize proxy experience replay to avoid the need for large-scale annotated datasets.
Similar to pseudo-rehearsal |[Robins| (1995)), we use proxy video samples to maintain temporal ca-
pabilities while learning identity from images. We formulate S2V as pseudo-continual learning,
strategically interleaving image and video samples to prevent forgetting while achieving computa-
tional efficiency through predominant use of cheaper image data.

3 METHOD

3.1 PRELIMINARIES

Our framework builds upon the Multi-Modal Diffusion Transformer (MM-DiT) [Peebles & Xie
(2023)), employed in architectures such as FLUX.1 Labs| (2024)), Stable Diffusion 3 |Esser et al.
(2024), CogVideo |[Hong et al.| (2022); |Yang et al.| (2024)) and Wan 2.1 |WanTeam et al.| (2025). DiT
adopts a Transformer-based denoising network that iteratively refines noisy tokens through multi-
modal attention.

At each denoising step, DiT processes noisy visual tokens X € RV*? and text tokens Cy € RM >4,
sharing embedding dimension d. Each DiT block consists of Layer Normalization (LN) followed
by Multi-Modal Attention (MMA). Spatial positions are encoded using Rotary Position Embedding
(RoPE) Su et al.|(2023) as X; ; — X ;-R(4, j), where R(4, j) is a rotation matrix. MMA computes
attention as

MMA ([X; Cr]) = softmax <QKT> v (D

s T \/& )

where [X; Cr| denotes concatenated tokens. The quadratic complexity O(n?) makes video-paired
training computationally expensive.

3.2 PROBLEM FACTORIZATION BASED ON ORTHOGONALITY HYPOTHESIS

To adapt the pretrained T2V model to subject-driven video customization without expensive video-
subject pairs, we hypothesize that the learning problem can be factorized into two orthogonal objec-
tives: identity injection to learn subject features from S2I dataset|Tan et al.|(2024) comprising image
pairs of the same subject, and temporal awareness preservation to maintain motion dynamics using
unpaired video dataset as proxy experiences.
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Our core hypothesis is that these two objectives are orthogonal in the gradient space, meaning
(VoLimg, VoLyia) ~ 0. If true, this orthogonality would enable efficient optimization without
mutual interference, allowing us to train predominantly on cheaper image data while maintaining
temporal coherence through minimal video replay.

3.3 PROXY EXPERIENCE REPLAY BASED ON ORTHOGONALITY HYPOTHESIS

3.3.1 ORTHOGONALITY HYPOTHESIS AND METHOD DESIGN

We hypothesize that identity learning and temporal
dynamics constitute orthogonal tasks. Let g (t) = 101
VoLimg(0:) and go(t) = VgLyia(0:) be the gra-
dients for identity and temporal objectives respec-
tively. Our hypothesis states that these gradients
should be approximately orthogonal, with gradient
conflict

__zi(t) 'ge(t)
g1 (@)llg2()]

Based on this hypothesis, we design a proxy experi-
ence replay mechanism with stochastic task switch- _—
ing. We sample with probability p from video data Step

and (1 — p) from image data, creating the weighted  Figure 3: Gradient Conflict and Align-

update 01 = 6, — n[(1 — p)g1 + pga]. If our or- ment. Our Proxy Replay strategy exponen-
thogonality hypothesis holds, this simple weighted tially converges to zero.

averaging should enable efficient optimization with-
out gradient interference.

P(t) = cos Z(g1(t), g2(1)) ~ 0

Distance (Gradient Alignment)

3.3.2 EXPERIMENTAL VALIDATION OF ORTHOGONALIZATION

Our experiments validate the orthogonality hypothesis. As shown in Figure |3 we observe that
gradient conflict ¢(t) indeed converges exponentially to zero from an initial negative value (¢(0) <
0), confirming emergent orthogonalization.

Theorem 1. Under proxy replay, the gradient conflict ¢(¢) converges to zero, validating our orthog-
onality hypothesis.

Proof sketch. The weighted update creates loss dynamics

L1(041) = L1(6:) —nl(1 — p)llg1]|* + pey g2] + O(n?) 3)

where the cross-term g, g appears with opposite signs in each loss update, creating repulsion from
conflict regions. The gradient alignment A(t) = g g evolves as A(t) ~ A(0)e~ ", yielding
exponential decay to orthogonality. This validates our initial hypothesis that two tasks can be or-
thogonal. See supplement for detailed proof.

3.4 TASK 1: IDENTITY INJECTION

For identity injection, we adopt the S2I approach Tan et al.|(2024). Given source image [inpu: €
RIXWX3 and target Toypu € RT*W>3 with prompt P, we encode using Xin = VAE(finpu),
Xout = VAE(Louput), and Cr = T5(P). We apply LoRA Hu et al.[(2022) for parameter-efficient
fine-tuning, updating LN layers only for X;, while keeping them frozen for X, and Cr. This
selective updating ensures identity learning remains orthogonal to temporal and textual representa-
tions, aligning with our hypothesis that identity injection and temporal dynamics are independent
objectives.

Additionally, We introduce <CLS> token prepended to prompts (e.g., "An <CLS> armchair in the
living room”) to explicitly signal identity mapping. This token acts as an anchor for identity features
while maintaining orthogonality with temporal learning. See supplement for ablation on the <CLS>
token.
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Table 2: Quantitative comparison with other methods on VBench.

Motion Dynamic

Smoothness Degree CLIP-T CLIP-I DINO-I

Training Method Used Data

VideoBooth Custom T2V 96.95 51.67 29.59 66.06 34.54
OmniControl+I12V Custom T2I 98.21 51.67 31.89 72.58 54.16
BLIP+I2V Custom T21 97.53 49.17 28.19 79.29 56.58
[P-Adapter+I2V ~ Custom T2I 97.21 55.83 2697 73.86 45.18
Ours Custom T2I 98.72 60.19 3224 7370  59.29

3.5 TASK 2: TEMPORAL AWARENESS PRESERVATION

While S2I training injects identity, it causes loss of temporal awareness. Leveraging our orthogonal-
ity hypothesis, we introduce 12V fine-tuning using unpaired videos as proxy experiences to restore
temporal dynamics without disrupting the learned identity features.

I2V vs. T2V Fine-Tuning. We choose 12V alignment over T2V as it better matches our modal-
ities (image input, video output), maintaining the orthogonal decomposition between identity and
motion. T2V training would entangle text-based identity with temporal dynamics, violating our or-
thogonality assumption. I2V preserves this separation by using visual identity inputs while learning
temporal coherence.

Mitigating First-Frame Overreliance. Naive 12V training causes copy-and-paste artifacts where
the model simply replicates the first frame. To maintain orthogonality between static identity and dy-
namic motion, we employ random-frame selection by choosing reference frame ¢ ~ Uniform(1,7T’)
and image-token dropping with probability pgrop. These techniques force the model to synthesize
motion from partial information rather than copying, preserving the independence between identity
learning (Lim,) and temporal dynamics (Lyiq).

3.6 TRAINING WITH PROXY EXPERIENCE REPLAY

Building on our validated orthogonality hypothesis, we implement training through stochastic inter-
leaving. At each iteration, we sample u ~ U/(0, 1) and select the training objective based on replay
probability p = 0.1, using predominantly cheaper image data (90% of iterations) while maintaining
temporal coherence through minimal video replay.

Objectives. For S2I pair (11, 1(?)), we optimize Lin,(IV), 1)), and for video (T, V'), we opti-
mize L.iq(T, V), both following v-prediction|Yang et al.| (2024):

Lo La(T, V), with probability p @

AT Limg(IM, 1), with probability 1 — p

The experimentally validated orthogonalization ensures both objectives are preserved without inter-
ference despite the imbalanced sampling.

Proxy Replay vs. S2I+I2V. An alternative
S21+12V pipeline (Figure @) sequentially trains
identity then motion, but fails when subjects are
small or occluded. Our proxy replay jointly
learns both objectives through interleaved train-
ing, enabling robust identity maintenance across
scales while preserving temporal coherence.

EE + “Under the glow of a streetlamp, a toy car comes closer to

camera on a wet pavement, reflecting the flickering city lights.”

Computational Efficiency. With video process- . o ) i

. - Flgure 4: Limitation of S2I+I12V method. With subject pre-
g cost CVid ~ 169 x Cimg (13 latent frames, sented small in first frame, 12V fails to generate consistent results as
169 = 132), our approach yields E[C] — it cannot interpret low-resolution subjects.

0.8Cimg + 0.2C\ig = 13.72C}y,, achieving 92.7% reduction. The validated orthogonality enables
this efficiency without performance degradation.
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Figure 5: Qualitative comparison with tuning-free methods (left) and per-subject optimized
methods (right).

4 EXPERIMENTS

4.1 SETUP

Implementation Details. Our method is built upon the CogVideoX-5B, which employs a 3D Multi-
modal Diffusion Transformer (MM-DiT) architecture utilizing a v-prediction objective
(2024) with DDIM scheduler following Rombach et al.| (2021). Following the standard CongdeoX
training pipeline, we adopt the AdamW optimizer with a learning rate of 5 x 10~° and a cosine with
restart learning rate scheduler. Training was performed for 4,000 steps, requiring approximately
288 GPU hours on NVIDIA A100 GPUs. We utilize a batch size of 256 for image data and 32 for
video data during joint fine-tuning. To facilitate efficient training, we use mixed-precision BF16
training. Our method employs LoRA (Low-Rank Adaptation) with rank 128 and dropout of 0.1 for
efficient fine-tuning. We set the probability parameter p = 0.1 for stochastic switching, ensuring
balanced optimization between identity injection and temporal modeling. We utilize OmniControl’s
Subject200K dataset for image customization, comprising 200K subject-specific image pairs cov-
ering various poses, styles, and contexts. Additionally, for video fine-tuning, we leverage 2.5% of
the Pexels 400K dataset by randomly selecting approximately 10,000 unpaired videos. Note that for
ablation study, we used CogVideoX and provide details in supplement.

Baseline. For baseline comparison, we utilize video S2V model VideoBooth [Jiang et al.| (2024),
and state-of-the-art image S2I models [Tan et al.| (2024); [Li et al.| (2023)); [Ye et al.| (2023) along with
image-to-video (I2V) model. We utilize OmniControl Tan et al.|(2024)), and BLIP-Diffusion|Li et al.
(2023) and IP-Adapter Ye et al|(2023). Each baseline initially performs image customization inde-
pendently using its original setup, after which we apply the CogVideoX-5B 12V model to get video
from the images. These methods represent state-of-the-art in subject-driven video customization,
allowing us to comprehensively evaluate the effectiveness of our proposed approach under zero-shot
conditions. Also for methods with per-subject tuning, we compare with state-of-the-art S2V mod-
els that requires per-subject tuning, Still-Moving |(Chefer et al.| (2024) and CustomCrafter W
(2025). Since the code is neither public|Chefer et al.|(2024) or requires extensive finetuning for each

sample (Wu et al| (2025), we compare with samples inside their paper and supplement.

Evaluation. We gather 30 reference images from state-of-the-art image customization papers |Avra-

(2023); [Chefer et al.| (2024) along with the traditional DreamBooth dataset Ruiz et al.
(2023)). We utilize GPT to generate four prompts for each image and evaluate using VBench |Huang

etall (2024).
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Table 3: Ablation result on training strategy of alternating optimization with image-only and two-
stage training approaches.

Motion Dynamic

Training Method Smoothness Degree CLIP-T CLIP-I DINO-I
Image-only 99.60 0.84 32.67 71.15 43.19
Two-stage 96.04 81.51 2896 8473 76.13
Ours 98.72 60.19 3224 7370 59.29

Additionally, we assess temporal modeling per-
formance using 300 videos sampled from the
Pexels dataset, ensuring no overlap with videos
used during training. Following FloVD
(2025), we classify these videos into three
groups based on optical flow magnitude (small:
< 25, medium: 25 ~ 50, large: > 50) for
detailed analysis. We additionally demonstrate
the preprocessing details to evaluate temporal
modeling performance in the supplement.

L . PH
Jﬁ- gl

+ "Cat is rollerblading in the park.

Two-stage [mage unly

Figure 6: Qualitative result on ablation study
4.2 COMPARISON of our component in temporal awareness preser-

WITH TUNING-FREE METHODS vance.

Quantitative Analysis. Table [2] shows our method outperforming baselines in zero-shot video cus-
tomization across motion smoothness (98.72), dynamic degree (60.19), text alignment (CLIP-T,
32.24), and identity consistency (DINO-I, 59.29). Notably, we achieve significant gains over Video-
Booth in identity preservation (DINO-I: +24.75) and prompt fidelity (CLIP-T: +2.65). Compared to
OmniControl + 12V, our method enhances dynamic degree (+8.52) and temporal coherence (DINO-
I: +5.13). While BLIP-Diffusion achieves a higher CLIP-I (79.29), our approach offers a more bal-
anced performance, excelling in diverse motion and subject fidelity, underscoring its effectiveness
and generalization.

Qualitative Analysis. As illustrated in Fig- Table 4: Temporal Evaluation following

ure [5] our method demonstrates superior detail FloVD [Jin et al| (2023), assessing whether

retention, ID consistency, and natural tempo- ) — .
e . motion dynamics improve compared to image-

ral transitions compared to OmniControl + 12V, . X
only or two-stage training. Small - Medium -

Vidu 2.0, and VideoBooth. For the backpack Large - with each number representing FVD. 1

example (Flg] B} lefo), our model falthfqlly I denotes Pexels[jovianzm| (2025)-finetuned version

produces intricate details. In contrast, Vidu 2.0 .
preserves ID but shows erratic movement; Om- of CogVideoX @I m

niControl + 12V captures the subject reasonably Method Small] Medium] Large]
bgt with occasional artlfac.ts; and VideoBooth CogVideoX-T2VT 597.54 59426  573.86
yields the weakest ID fidelity. Overall, our ap-

ST : ~ Image-only 641.92 63642  680.34
proach bett.er preserves subject 1den.t1ty. and co Two-stage 0197 87230  824.03
herent motion across examples, aligning with
quantitative improvements. Ours 51230 511.66  550.14

4.3 COMPARISON WITH PER-SUBJECT OPTIMIZED METHODS

We show qualitative comparisons with Still-Moving [Chefer et al.| (2024) and CustomCrafter Wu;
(2025)) using their official samples in the Figure [5|right. Against Still-Moving [Chefer et al.
(2024)), Our method exhibits superior identity preservation. The “pink cat” (row 1) has more con-
sistent color and detailed whiskers; the “pig” (row 2) shows more faithful eye shape and coloration,
indicating higher subject fidelity. Also compared to CustomCrafterWu et al|(2025) (rows 3—4), Our
results are more identity-faithful, whereas CustomCrafter often displays distorted details.
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4.4 ABLATION STUDY

Training Strategy. We compared image-only, two-stage, and our proxy experience replay training
strategies. Image-only training produced superficially smooth (99.60) but static videos (0.84 dy-
namic degree), with poor FVD (Tables 3] @] Fig.[6). Two-stage training improved dynamics (81.51)
and ID similarity (CLIP-I: 84.73) but introduced severe artifacts and S2V forgetting, leading to high
FVD. Our alternating strategy (Ours) excelled, balancing motion smoothness (98.72) and dynamic
degree (60.19) without the drawbacks of the other methods. Its lower FVD scores confirm superior

motion realism and temporal consistency, on par with CogVideoX (2024) (see supple-
ment).

Random Initial Frame Selection & Drop- w/o random w/o random

initial frame

. Ours
ping. We also examined the effect of random image drop 3

frame selection and image-token dropping on
12V fine-tuning. Without either technique, the |
model often shows superficially strong motion Ddig =V ]

smoothness but drastcally reduced dynamic bl ek et sl s
degree, indicating a near-static outcome where with her surfboard hehind her. The sun is setting.
the subject barely moves. Qualitative observa- 2355, »l" < 5
tions (Figure [7) reveal that the first reference g g <

image dominates subsequent frames, inflating - ' 7
identity metrics like CLIP-I and DINO-I while

.. . . + “A close up view. A bowl of oranges placed on a
ellmlnatlng motion. wooden table. The background is a dark room, the TV is on,

and the screen is showing a cooking show.”

By enabling only random frame selection, we

recover some degree of temporal variability Figure 7: Effect of random initial frame and image
yet introduce artifacts in scenes such as shirts token dropping.

or oranges, thereby lowering image alignment

scores. By contrast, the combination of frame selection and token dropping strikes an effective
balance. We can observe that artifacts are greatly reduced with the reference being more naturally
blended. This confirms the importance of mitigating first-frame over-reliance and excessive condi-
tioning on a single reference image for smoother, more natural video generation.

4.5 LIMITATIONS

Our primary finetuning dataset, the Subject-
200K dataset (2024), primarily com-
prises general objects and contains few hu-
man faces. Although our method supports
video customization for arbitrary inputs, train-
ing on such a general dataset may hinder its ef- .

fectiveness for human-specific personalization. + “A woman walking down the street with backpack.”
When evaluated on human facial data as in Figure 8: Limitation of our work. Identity
Figure [ our approach generates recognizable preservation with human faces shows blurry arti-
facial structures but often introduces blurring facts since Subject200K [Tan et al| (2024), which
artifacts, thereby failing to preserve nuanced our model trained lacks human identities.
identity features. We believe incorporating an

identity-focused dataset would mitigate this is-

sue and identify this as a key area for future investigation. Additionally, the theoretical analysis
makes simplifying assumptions that might not hold for deep networks and requires further analysis
on this in future work.

5 CONCLUSION

We presented a zero-shot subject-driven video generation method based on the hypothesis that iden-
tity learning and temporal dynamics are orthogonal tasks. Our approach bypasses expensive S2V
datasets through proxy experience replay with stochastic task switching between S2I image pairs
and unpaired videos. Experiments validate our orthogonality hypothesis, showing gradient conflicts
converge to near-zero, enabling computational reduction with image-dominant training, outperform-
ing per-subject tuned models and some tuning-free models.
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A APPENDIX

Algorithm 1: Proxy Experience Replay for Subject-Driven Video Generation

Input : Pretrained MM-DiT model fo;

Image dataset Dim, (pairs (I, I'*", P) for identity);

Proxy video dataset Dyiq (videos (V, T') as proxy experiences);

Replay probability p € [0, 1] controlling task interleaving;

RandomFrameSelect() and TokenDrop() regularizations.
Output: Fine-tuned model fy achieving emergent gradient orthogonalization
Problem Decomposition (Sec. 3.2):

* Task 1 - Identity Learning: Learn from Djy, for subject features

 Task 2 - Temporal Preservation: Maintain dynamics via proxy replay from D.;q

Proxy Experience Replay (Sec. 3.3):

/* Initialize gradient tracking for orthogonalization monitoring */
Po COS(V@,Cimg, Veﬁvid) // Initial conflict
foreach iterationt < 1, ..., T, do
Sample u ~ U(0, 1) for stochastic task selection
if u < p then
/* Proxy Replay: Sample proxy experiences to preserve temporal
dynamics */
Fetch batch {(V;, 7;)} from Dyig // Proxy samples
fret < RandomFrameSelect(V;) // Prevent overfitting

Xt < TokenDrop(VAE(fref), Pdrop)

Compute Lyia(Vi, Xret, Ti) via v-prediction

0 <+ 0 —ng2

else

/* Identity Learning: Sample image pairs for subject features =/
Fetch batch { (I3, I'*', P;) } from Dimg

Prepend <CLS> token to P; for identity signaling

Apply LoRA updates for parameter-efficient learning

Compute Limg (I3, I ;gt, ‘P;) via v-prediction

g1 < VoLimg // Identity gradient
0+ 0 —ng1
end
/* Monitor emergent orthogonalization */
if £ mod 100 = O then
‘ ¢¢ + cos(g1, g2) // Track convergence to zero
end
end
/* Expected outcome: ¢+ —0 (orthogonality) after ~1K iterations */

return fy with naturally orthogonalized task gradients

In this section, we provide additional details on our zero-shot subject-driven video (S2V) framework,
including full pseudocode for the proposed method and extended ablation results that further validate
our design choices.

A.1 METHOD DETAILS

Our subject-driven video (S2V) framework, as outlined in Algorithm |1} begins by initializing a
pre-trained multi-modal diffusion transformer fy (for example, CogVideoX |Yang et al.| (2024)),
which already possesses general text—visual alignment and motion priors. Two datasets are made
available: the first is an image-based S2I dataset Dsy; containing image pairs (I(1), 1(?)) depicting
the same subject under varying poses or contexts, and the second is an unlabeled video dataset Dyiq
consisting of text—video pairs (7', V). Our key insight is to factorize video customization into two
tasks—identity injection and temporal modeling—and then interleave them stochastically during
training.

At each training iteration, a uniform random variable u is drawn from 2/ (0, 1). If u < p, we sample
a mini-batch of unlabeled video (T3, V;) and perform temporal-phase optimization (lines 9-14 in
AlgorithmI)), referred to as 12V fine-tuning. This phase leverages the random frame selection and
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image-token dropping steps (Random Frame Select and Random Image Drop) to discour-
age the model from fixating on a single reference frame. By computing the video reconstruction
loss Lyia(T;,V;) in a v-prediction manner, we update fp to maintain or recover realistic motion

characteristics. Alternatively, if u > p, we focus on identity-phase optimization (lines 16-19),
sampling a mini-batch of image pairs (I i(l), IZ.(Q)) from Dgy; and minimizing the identity injection
loss Limg (1, i(l), 1 i(z)). Crucially, we only tune the LoRA-based parameters dealing with the subject-
specific tokens Xj, in this phase, preserving the model’s capacity to handle text tokens Cr and
output frames Xy.

By stochastically switching between these two objectives, the model balances subject fidelity and
temporal consistency throughout training, avoiding the pitfalls of purely sequential or single-focus
approaches. After T, iterations, fp emerges as a zero-shot S2V model capable of generating
videos that simultaneously preserve the subject’s identity and exhibit coherent motion—even though
no large-scale annotated S2V dataset was required.

A.2 THEORETICAL ANALYSIS OF EMERGENT GRADIENT ORTHOGONALIZATION
A.2.1 PROBLEM SETUP AND DEFINITIONS

Consider two loss functions £1 : R” — R (identity loss) and Lo : R™ — R (temporal loss) with
gradients g1 (0) = Vg.L1(0) and g2(0) = Vo Lo(6).
Definition A.1 (Gradient Conflict). The gradient conflict at parameters 8 is:

) _ (g1(0),22(00))
d(0) = cos Z(g1(0),g2(0)) = m v

Definition A.2 (Proxy Experience Replay). The stochastic gradient update with replay probability

p € (0,1)is:
g2(0:) wp.p
Or41 = 0¢ — h = 6
t+1 t — 18, Where g {gl(gt) wp.1—p (6)
A.2.2 MAIN THEOREM
Theorem A.1 (Convergence to Orthogonality). Under the following assumptions:
1. Both £ and L5 are L-smooth: | V2£;(6)| < L for all 6
2. Both losses are locally convex in a neighborhood of convergence
3. Learning rate satisfies n < min{1/L,2/(u+ L)}
4. Initial conflict exists: ¢(6p) < 0
Then the expected gradient alignment converges to zero: lim;_, o E[(g1(6:), g2(0:))] = 0.
A.2.3 PROOF OF THEOREM A.1
Step 1: Evolution of Individual Losses
Using Taylor expansion around 6;, the expected change in £y is:
E[£1(0s41)] = E [£L1 (0: — ng:)]
n T )
= L1(0:) — nE[(g1(6:), &8¢)] + E]E[gt Hi(&)gt
where H; (&) = V2L, (&) for some &; between 6; and 6, ;.
Computing the expectation:
E[(g1(0:),&:)] = (1 = p)lIg1(00)[I* + p(g1(0:), 82(6:)) (8)
Similarly for Ls:
E[(g2(0:). &¢)] = pllg2(6:)]1> + (1 — p)(g1(6:), 82(6¢)) )
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Step 2: Lyapunov Function Analysis
Define the Lyapunov function:

V() = (1 —p)L1(0) + pL2(0) + al(g1(6), g2(0))] (10)
where o > 0 is chosen small enough to ensure V' decreases.

The expected change in V is:
E[AV] = =1 [(1=p)*gl* + p*llg2l* + 2p(1 — p){g1, 82)]

(11)
+ oE[Al(g1, 82)[] + O(n°)
Step 3: Dynamics of Gradient Alignment
Let Ay = (g1(0:),82(6:)). Using the chain rule:
dA . .
cTtt = (Vog1(01),0:) "82(6:) + 81(6:) " (Voga(6:),01) (12)
Substituting 6, = —nE[g] = —n[(1 — p)g1 + pga):
dA
ditt =-n I:g;:/nggQ + g1TH2gavg] (13)

where Bavg = (1 - p)gl + pga.
Step 4: Linearization Near Critical Points

Near a critical point where g; and g» are small, we can linearize. Let g; = H;(6*)(6 — 6*) where
0* is a local minimum of the combined loss. The alignment becomes:

Ap~ (0 —6%)TH Hy (0 — 67) (14)

Step 5: Eigenvalue Analysis
1)

%

Let )\El) and >\§-2) be eigenvalues of H; and Hy respectively, with corresponding eigenvectors v
(2

and v;~. The contribution to alignment from the (i, j) eigenspace pair is:

Ay = AP V)2 e (15)
where ¢;, ¢; are the components of (¢ — 6*) in the respective eigendirections.
Step 6: Decay Rate
The dynamics of each component follows:

de;
dt

where AT = (1 — p)AY + pAl? cos?(£(viV viP)).

This gives exponential decay:

= —n\fe; (16)

Aij(t) = Aij(0) exp (—n(A" + XST)t) (17)

Step 7: Convergence to Orthogonality
Since all AT > 0 (by strong convexity), we have:
Al <A (1)] < Cexp(—nAmint) (18)
1,J
where Amin = min; ;{\T + )\Eff} > 0 and C is a constant depending on initial conditions.

Therefore:
Jim Ay = Jim (g1(61), 2(61)) = 0 19)
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Table 5: Result on human preference study in Likert scale of 1-5.

Method ID Prompt Motion Overall
Consistency Alignment Quality Quality
Omini+I2V 3.80 3.78 3.62 3.44
VideoBooth 3.25 3.20 3.08 291
Vidu 2.0 3.42 3.24 3.22 3.03
Ours 4.08 3.82 3.88 3.71

Table 6: Ablation on the reference token. Adding <CLS> yields improved subject identity scores
(CLIP-1, DINO-I) and a higher dynamic degree.

Motion Dynamic

Training Method Smoothness  Degree CLIP-T CLIP-I DINO-I
w/o Ref. token 98.84 54.55 32.87 73.36 57.51
w/ Ref. token 98.72 60.19 32.24 73.70 59.29

A.2.4 COMPARISON WITH PCGRAD

PCGrad Yu et al.|(2020) explicitly projects conflicting gradients:

(20)

R ﬁgl;ﬁ? g2 if (g1,82) <0
! g1 otherwise

Our method achieves (g;,g2) — 0 through dynamics, effectively reaching the same orthogonal
configuration without explicit projection. The convergence rate is:

Ours: O(e~"mint)  ys  PCGrad: O(1) (immediate projection) 21

While PCGrad achieves immediate orthogonalization, our method’s gradual convergence allows for
smoother optimization trajectories and better exploration of the loss landscape before settling into
orthogonal configurations.

A.3 HUMAN PREFERENCE STUDY

While benchmark metrics offer quantitative insights, they can sometimes be misled by “cheating”
behaviors such as static outputs with artificially high scores. To complement our objective mea-
surements, we conducted a human preference study using 20 randomly chosen samples from each
baseline and our approach, without cherry-picking. A total of 30 participants were asked to rate the
generated videos on a five-point Likert scale across dimensions of ID consistency, Prompt alignment,
Motion quality, and Overall visual appeal. Our method consistently outperformed the baselines, sug-
gesting that our balanced approach to identity preservation and temporal awareness best aligns with
human judgments of video realism and quality when viewed holistically.

A.4 ABLATION STUDIES
A.4.1 EFFECT OF THE REFERENCE TOKEN

Tab. [6|demonstrates how adding a dedicated <CLS> token to the prompt affects our model’s perfor-
mance. Without this reference token, the model attains slightly higher motion smoothness (98.84)
and marginally better CLIP-T (32.87), but it underperforms in dynamic degree (54.55) and identity-
focused metrics (CLIP-I: 73.36, DINO-I: 57.51). Introducing <CLS> evidently improves subject
fidelity (CLIP-I increases to 73.70 and DINO-I to 59.29) and fosters more diverse motion (dy-
namic degree rises to 60.19). We attribute these gains to the reference token guiding the alignment
of subject tokens (Xj,) with the textual prompt more explicitly, resulting in both stronger identity
preservation and more coherent variations in motion.
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Table 7: Comparison with T2V-only stochastically-switched finetuning, with image drop prob-
ability of 1. Switching to text-only input (T2V) moderately boosts CLIP-T but hurts subject fidelity
and dynamic degree.

Training Method Motion — Dynamic oy yp 1 cpipy  DINO-I
moothness  Degree

T2+ T2V (oin)  98.85 4414 3341 7271 4868

Ours 98.72 60.19 3224 7370 5929

Table 8: Abalation study on using different number of videos.

Video Motion Dynamic

Count Smoothness  Degree CLIP-T  CLIP-T. DINO-I
1K 99.03 59.66 32.16 72.69 56.98
2K 98.96 52.25 32.49 72.13 54.42
3K 98.79 55.46 32.04 72.79 55.57
4K (Ours) 98.72 60.19 32.24 73.70 59.29

A.4.2 T2V vs. 12V TRAINING

We also ablate replacing our image-to-video (I12V) training with a text-to-video (T2V) setup. In
Tab. 8] the T2I+T2V (joint) attains a slightly better CLIP-T but lower dynamic degree and subject
alignment (CLIP-I, DINO-I). This suggests T2V training struggles when introducing a novel subject
identity purely through text, yielding weaker overall identity preservation. By contrast, our 12V
approach strikes a better balance, preserving subject details (CLIP-I: 73.70, DINO-I: 59.29) and
maintaining sufficient motion (dynamic degree: 60.19).

A.4.3 EFFECT OF VARYING THE VIDEO DATASET SIZE

Tab. [§] reports how our method’s performance changes when using different amounts of unlabeled
video data for 12V fine-tuning (1K, 2K, 3K, and 4K videos). Notably, with only 1K videos, we
already obtain relatively strong results, suggesting that even a small unlabeled corpus can restore
temporal consistency to some extent. However, increasing the video count to 4K (our default setting)
steadily improves dynamic degree from 59.66 to 60.19 and also boosts identity fidelity (DINO-I)
from 56.98 up to 59.29, indicating more consistent subject representation across frames.

We also observe a modest variation in CLIP-T and CLIP-I scores when moving from 1K to 4K
videos, implying that a larger video dataset helps balance subject detail preservation and temporal
motion, without overfitting to particular frames or motion patterns. In short, while our method is
fairly robust to smaller unlabeled datasets, using around 4K (i.e., 1% of Pexels jovianzm! (2025
dataset) videos offers the best trade-off between data efficiency and stable motion/appearance re-
sults.

A.4.4 EFFECT OF VARYING THE SWITCHING PROBABILITY

In Tab.[9] we examine how different values of p—the probability of sampling unlabeled video data
(I2V fine-tuning)—affect overall performance. When p = 0.0, the model relies solely on image-
based training (S2I) and achieves a relatively high dynamic degree (63.03) but moderate identity
scores (CLIP-I: 72.86, DINO-I: 57.86). Increasing p to 0.2 or 0.4 yields balanced improvements
across most metrics, reflecting better coordination between identity and motion. At p = 0.6, the
model dedicates a greater share of updates to I2V training, strengthening identity alignment (CLIP-
I: 76.71, DINO-I: 62.84) while keeping dynamic degree stable (60.87). Although different p values
trade off between motion smoothness and identity fidelity to varying degrees, our chosen p = 0.2
demonstrates a strong overall balance, as highlighted in the main paper.

A.5 TEMPORAL MODELING EVALUATION

We assess our model’s capability to capture realistic object motion using a protocol adapted
from FloVD Jin et al.| (2025), while ensuring minimal or no camera movement in the test data.
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Table 9: Abalation study on using different p’ to choose 12V finetuning.

Video Motion Dynamic

Ratio Smoothness  Degree CLIP-T  CLIP-I. DINO-I
0.0 99.60 0.84 32.67 71.15 43.19
0.2 (Ours) 98.72 60.19 32.24 73.70 59.29
0.4 98.31 59.12 31.94 73.53 56.60
0.6 98.33 60.87 31.31 76.71 62.84

Specifically, we collect 100K videos from Pexels jovianzm)| (2025) that are not used during our
stochastically-switched fine-tuning, then apply the following steps to create three benchmark sub-
sets (small, medium, large) based on foreground motion magnitude:

1) Foreground-Background Segmentation. For each video, we use an off-the-shelf segmentation
model (e.g., Grounded-SAM?2) on the first frame to separate foreground and background regions.
This allows us to measure object (foreground) motion independently from any camera-induced back-
ground shifts.

2) Optical Flow Computation. We estimate optical flow between the first frame and each sub-
sequent frame using a standard flow estimator (e.g., RAFT Teed & Deng|(2020)). Let us(x) and
u,(z) denote the per-pixel flow vectors for the foreground and background pixels, respectively, at
position x. We record:

1
FlowMag; = 7= > _ [[us ()l
zefg

1
FlowMag, = 5 > (@),

xEbg
where Ny and NV}, are the respective pixel counts in the foreground and background masks.

3) Dataset Filtering. To ensure negligible camera motion, we discard any video whose average
magnitude of background flow FlowMag, exceeds 10 pixels. This filtering step excludes scenes
with significant global shifts, retaining only those with primarily object-centric motion.

4) Category Assignment. Based on the average magnitude of foreground flow FlowMag ; (averaged
over all frames), we categorize videos into:

e Small: 0 < FlowMagf <25
* Medium: 25 < FlowMag, < 50
* Large: FlowMag; > 50

Each category contains 300 videos, ensuring a balanced evaluation of low-, moderate-, and high-
motion scenarios.

5) Evaluation Protocol. Within each subset, we use only the first frame (including any textual or
reference cues, if required) to generate a video of the same length. We then compute FVD |Liu
et al.| (2024) between the generated outputs and the ground-truth videos. By comparing FVD across
small, medium, and large motion classes, we obtain a clearer picture of how each model (ours vs.
baselines) adapts to varying object-motion intensities.

Discussion. This motion-focused split highlights each method’s strengths and weaknesses. For
example, a model might produce near-static outputs for low-motion data—cheating on metrics like
smoothness—yet fail to track fast-moving objects in high-motion videos. As observed in FloVD Jin
et al.| (2023)), categorizing by foreground flow magnitude reveals these nuances more effectively than
aggregated scores alone.

Additional Details on Evaluation of Original CogVideoX. To ensure a fair comparison with our
method, we additionally fine-tune the original CogVideoX |Yang et al|(2024) using a subset of the
Pexels|jovianzm)| (2025)) dataset equivalent to the one used in our training. Since our model is trained
for 4K steps with a sampling ratio p = 0.2, we match this by finetuning CogVideoX for 800 steps
(0.2 x 4000). As a result, we achieved a performance comparable to the original CogVideoX in
terms of motion dynamics evaluation.
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OminiControl + Vidu 2.0 VideoBooth

Ours

OminiControl + Vidu 2.0 VideoBooth

Ours

\ A cat cautiously steps through a rainy alleyway, its fur slightly damp
as puddles reflect the city lights.”

Figure 9: Additional qualitative result. Comparison with tuning-free baselines.

A.6 QUALITATIVE RESULT WITH VIDEOS

We present additional qualitative results in Figure [0 and Figure [I0] comparing with tuning-free
baselines and tuning-based baselines. In Figure[9} we demonstrate that the OminiControl+I12V fails
to interpret the ‘comes closer to camera’ for the first example with ‘a toy car’, due to the tendency
not to generate close-ups as they tend to show articulated result as in Figure @] in manuscript. Also
in the example of ‘Cat’, they also show little articulated result with eye, since they fail to interpret
small objects. Also compared to Vidu 2.0 and VideoBooth, they show degraded result compared to
ours.

Additionally, when we compare with tuning-based baselines, ours show more identity-preserved
result, compared to Still-Moving and CustomCrafter. For example, in the first example above with
‘pig’, ours follow the shape of ‘pig’ better, without change in colors or shapes of eyes. For the
‘boy’, we see that ours show less copy-pasted result, with heads turned during the video. For the
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Figure 10: Additional qualitative result. Comparison with tuning-based baselines.

comparison with CustomCrafter in the third and fourth row examples, teddy bear’s consistency also
is better, also for the ‘anime girl’. Please refer to the supplement video attached for moving videos.

A.7 ESTIMATION OF OTHER METHODS’ COMPUTATIONAL COST

We estimate the train time of CustomCrafter (2025) and VACE (2025) based

on the given implementation details on the manuscript.
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CustomCrafter. The estimated GPU hours for training a single subject is in the range of 100-300
A100-hours, with a median estimate of around 200 A100-hours.

10000 x t
3600
total GPU-hours = 4 x wall-clock time

wall-clock time (hours) =

where ¢t € [10, 30] is the estimated time per iteration in seconds.

VACE. The estimated GPU hours for training VACE on LTX-Video is in the range of 9,000—
27,000 A100-hours, with a median estimate of around 18,000 A100-hours.

number of training steps = 200 000

200000 x ¢
1I-clock ti training (h = —
wall-clock time per training (hours) 3600
200000 x ¢t 3200000t 8000t
GPU-h =16 = =
ours = 1 600 3600 9

where ¢ € [10,30] is the estimated time per iteration in seconds. The estimated GPU hours for
training VACE on Wan-T2V is in the range of 70,000-210,000 A100-hours, with a median estimate
of around 140,000 A100-hours.

number of training steps = 200 000

2 t
wall-clock time per training (hours) = 200000 x ¢
3600
GPU-hours — 128 x 200000 x ¢ 25600000¢ _ 64000
3600 3600 9

where ¢t € [10, 30] is the estimated time per iteration in seconds.

B USE OF LARGE LANGUAGE MODELS

Anthropic’s Claude was used to polish the writing of this manuscript. All text generated by the tool
has been reviewed and revised by the authors.
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