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+ “A blue car skids 
through a snowy 

mountain, kicking up 
powder as it drifts icy 

turns.”

+ “Clock is placed 
on a shiny glass 

table, with a vase of 
flowers next to it.”

+ “A pig swinging 
on a tire swing in a 
backyard ground.”

Figure 1: Examples demonstrating high-quality results across various scenarios with different
prompt for each reference image.

ABSTRACT

We aim to enable efficient subject-to-video (S2V) learning, which otherwise re-
quires expensive video-subject-pair datasets that require tens of thousands of GPU
hours for training. While utilizing image-paired datasets to train video models
could address this challenge, naively training with image pairs results in catas-
trophic loss of temporal ability due to gradient conflicts. We hypothesize that S2V
generation decomposes into two orthogonal objectives of identity learning from
images and temporal dynamics from videos. Based on this orthogonality assump-
tion, we design a stochastic task-switching strategy that predominantly samples
from image datasets while maintaining minimal video replay for temporal coher-
ence. Our experiments validate this hypothesis by demonstrating that the gradi-
ent inner product between tasks converges exponentially to near-zero, confirming
emergent orthogonalization without requiring explicit orthogonal projection. This
validated orthogonality enables efficient image-dominant training while prevent-
ing catastrophic forgetting through proxy experience replay. We employ regular-
ization techniques including random frame selection and token dropping during
video replay to ensure efficient temporal learning. Extensive experiments demon-
strate our approach achieves superior performance with comparable compute to
per-subject tuned methods for single subjects, while providing zero-shot capabil-
ity and outperforming both per-subject tuned methods and some existing zero-shot
approaches.

1 INTRODUCTION

Recent advancements in video diffusion models Hong et al. (2022); Yang et al. (2024); Blattmann
et al. (2023) have significantly improved controllability by incorporating various conditioning mech-
anisms, ranging from text-to-video (T2V) synthesis to video customization using key points, edges,
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Table 1: Computational comparison on tuning-free and per-subject tuned methods.

Method Dataset Size Base Model (Size) Train Steps A100 Hours* Supporting Domain
Tuning-free Methods
VACE Jiang et al. (2025) 53M videos† LTX & Wan (14B) 200K 70K-210K‡ Face/Object/General
Phantom Liu et al. (2025) 1M pairs§ Wan (1.3-14B) & Seed¶ 30K 10K-30K¶‡ Face/Object
Consis-ID Yuan et al. (2024) 130K+∗∗ CogVideoX (5B) 1.8K - Face

Per-subject Tuned Methods
CustomCrafter Wu et al. (2025) 200 reg. images VideoCrafter2 (1.4B) 10K 200‡ Object
Still-Moving Chefer et al. (2024) few ref. images + 40 videos Lumiere (1.2B) 500 - Face/Object

Ours 200K images + 4K unpaired videos CogVideoX (5B) 4K 288 Object
†Source pool. ‡Estimated based on implementation details in paper and GitHub. See supplement for

estimation calculation. §Phantom-Data Chen et al. (2025b). ¶Varies by model size. *Total GPU hours.
**130K clips, and in terms of pairs, not addressed.

or reference images Meng et al. (2023); Yuan et al. (2024); Atzmon et al. (2024); Wu et al. (2025);
Hu & Xu (2023). Among them, subject-driven video customization, i.e., subject-to-video (S2V)
generation Jiang et al. (2024); Wei et al. (2024a;b); Huang et al. (2025), aims to generate videos that
maintain consistent subject identity across different scenes, motions, and contexts. S2V generation
has gained significant attention for its wide range of applications, including personalized content
creation, marketing, and entertainment. However, early approaches Wei et al. (2024a); Chen et al.
(2024); Wu et al. (2025); Ruiz et al. (2023) typically require per-subject optimization, which restricts
their applicability due to the additional optimization time.

To eliminate per-subject optimization, recent studies Jiang et al. (2024); Huang et al. (2025); Chen
et al. (2025a); Wei et al. (2024b); Liu et al. (2025); Jiang et al. (2025); Hu et al. (2025) have de-
veloped zero-shot S2V methods. However, these approaches face critical challenges that require
expensive subject-driven video customization datasets and massive computational resources. As
shown in Table 1, state-of-the-art tuning-free methods like VACE Jiang et al. (2025) and Phan-
tom Liu et al. (2025) require 70K-210K and 10K-30K A100 hours respectively, training on millions
of video-subject pairs. This computational burden stems from training dominantly on video-paired
data, which is inherently more expensive than image-based training by orders of magnitude. Recent
studies attempt to gather even larger S2V datasets Chen et al. (2025a); Huang et al. (2025); Yuan
et al. (2024), but this approach only exacerbates the computational burden without addressing the
fundamental problem.

A natural approach to address this challenge is leveraging readily available image customization
datasets to train video models, eliminating the need for expensive video-subject pairs. However,
naı̈vely fine-tuning video models on image data results in catastrophic loss of temporal modeling
ability, as the model learns to preserve identity but forgets how to generate coherent motion. We
hypothesize that this mutual interference can be resolved if subject-driven video generation naturally
decomposes into two orthogonal objectives in the gradient space, namely identity learning from
images (∇θLimg) and temporal dynamics from videos (∇θLvid). If these gradients are orthogonal,
they can be optimized independently without interference, enabling efficient training predominantly
on cheaper image data.

Based on this orthogonality hypothesis, we formulate subject-driven video generation as a pseudo-
continual learning problem and design a proxy experience replay mechanism. Our approach imple-
ments stochastic task switching that alternates between identity learning from image customization
datasets and temporal preservation through minimal video replay. Since the original pretraining
data is unavailable, we use proxy video samples that approximate the pretraining distribution to
maintain temporal capabilities. This stochastic interleaving strategy creates a weighted gradient
E[g] = (1− p)∇θLimg + p∇θLvid, where p is the replay ratio. We further introduce regularization
techniques including random frame selection and image-token dropping during video replay phases
to ensure effective temporal learning even with minimal video samples.

Our experiments validate the orthogonality hypothesis through empirical observation of gradient dy-
namics. We observe that the gradient inner product ⟨∇θLimg,∇θLvid⟩ indeed converges to near-zero
in an exponential-decay manner, confirming emergent orthogonalization without requiring explicit
orthogonal projections. This phenomenon validates our initial hypothesis and explains why proxy
replay is remarkably effective. Rather than forcing gradients to be orthogonal through complex pro-
jections like PCGrad Yu et al. (2020), the proxy replay dynamics naturally evolve the optimization
to find mutually compatible directions for both tasks.
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Figure 2: Overview of our framework. We interpret the subject-driven video customization (S2V)
as dual-task learning with proxy-experience replay in terms of continual learning of the two domains
with temporal-awareness preservation and ID injection (Left). To optimize the two objectives, we
utilize a stochastically interleaving strategy, randomly switching between the two training objectives
(Right).

The validated orthogonality enables computational cost reduction. Our approach achieves zero-shot
capability with 288 A100 hours of training (Table 1), comparable to CustomCrafter Wu et al. (2025)
(200 A100 hours) which requires per-subject optimization for each new identity. By leveraging
predominantly cheap image-based training (80% of iterations) while maintaining minimal unpaired
video replay (20%), we reduce computational cost by 92.7%. The emergent gradient orthogonal-
ization ensures both tasks are optimized efficiently without interference, making high-quality video
customization both accessible and practical.

The key contributions of our work are as follows:

• We propose the hypothesis that subject-driven video generation decomposes into orthogo-
nal tasks and design a proxy experience replay method based on this assumption.

• We experimentally validate that proxy replay induces emergent gradient orthogonalization,
with gradient conflicts naturally resolving to near-zero correlation without explicit projec-
tion.

• Our approach achieves superior performance with dramatically reduced computational re-
quirements, outperforming per-subject methods and matching some zero-shot baselines
while requiring less compute.

2 RELATED WORK

2.1 SUBJECT-DRIVEN IMAGE GENERATION

Recent diffusion models Esser et al. (2024); Labs (2024); Chen et al. (2023) have expanded text-
to-image synthesis capabilities Meng et al. (2022); Zhang et al. (2023), with a key challenge be-
ing injecting novel subjects while maintaining identity across diverse prompts. Early methods like
ControlNet Zhang et al. (2023) and T2I-Adapter Fu et al. (2023) used spatially aligned condition-
ing but struggled with pose variations. IP-Adapter Ye et al. (2023) and SSR-Encoder Zhang et al.
(2024) addressed this through cross-attention mechanisms for robust feature integration. Dream-
Booth Ruiz et al. (2023) and Textual Inversion Gal et al. (2022) introduced specialized embeddings,
while recent works explore tuning-free Ding et al. (2024); Zeng et al. (2024); Tan et al. (2024),
multi-subject Kumari et al. (2023); Liu et al. (2023), and subject-agnostic Chan et al. (2024) ap-
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proaches. These image-level methods provide foundations for video generation, where temporal
coherence adds complexity.

2.2 SUBJECT-DRIVEN VIDEO GENERATION

Traditional video generation requires expensive training on large datasets jovianzm (2025); Bain
et al. (2021); pan (2022). Recent methods divide into two approaches: (1) test-time optimization
methods like DreamVideo Wei et al. (2024a), MotionBooth Wu et al. (2024), Still-Moving Chefer
et al. (2024), and CustomCrafter Wu et al. (2025) that separate appearance and motion modules;
(2) zero-shot solutions including Consis-ID Yuan et al. (2024), Concept-Master Huang et al. (2025),
VideoBooth Jiang et al. (2024), and MagicMirror Zhang et al. (2025) that avoid fine-tuning. Methods
like Phantom Liu et al. (2025) and VACE Jiang et al. (2025) achieve strong zero-shot performance
but still require video-paired datasets Chen et al. (2025b); Yuan et al. (2025).

2.3 EXPERIENCE REPLAY AND CONTINUAL LEARNING

Continual learning prevents catastrophic forgetting French (1999) through experience replay Mnih
et al. (2015), which stores and replays past experiences. Variants include exact replay Lopez-Paz
& Ranzato (2017), generative replay Shin et al. (2017), and pseudo-rehearsal using proxy sam-
ples Robins (1995). GEM Lopez-Paz & Ranzato (2017) constrains gradient updates to preserve
previous task performance, while A-GEM Chaudhry et al. (2019) approximates these constraints
efficiently. We apply these principles to video generation, where gradient conflicts between iden-
tity and temporal objectives necessitate replay mechanisms, even in the absence of sequential task
presentation.

Unlike methods that require extensive video training Chen et al. (2025a); Huang et al. (2025); Jiang
et al. (2024), we utilize proxy experience replay to avoid the need for large-scale annotated datasets.
Similar to pseudo-rehearsal Robins (1995), we use proxy video samples to maintain temporal ca-
pabilities while learning identity from images. We formulate S2V as pseudo-continual learning,
strategically interleaving image and video samples to prevent forgetting while achieving computa-
tional efficiency through predominant use of cheaper image data.

3 METHOD

3.1 PRELIMINARIES

Our framework builds upon the Multi-Modal Diffusion Transformer (MM-DiT) Peebles & Xie
(2023), employed in architectures such as FLUX.1 Labs (2024), Stable Diffusion 3 Esser et al.
(2024), CogVideo Hong et al. (2022); Yang et al. (2024) and Wan 2.1 WanTeam et al. (2025). DiT
adopts a Transformer-based denoising network that iteratively refines noisy tokens through multi-
modal attention.

At each denoising step, DiT processes noisy visual tokens X ∈ RN×d and text tokens CT ∈ RM×d,
sharing embedding dimension d. Each DiT block consists of Layer Normalization (LN) followed
by Multi-Modal Attention (MMA). Spatial positions are encoded using Rotary Position Embedding
(RoPE) Su et al. (2023) as Xi,j → Xi,j ·R(i, j), where R(i, j) is a rotation matrix. MMA computes
attention as

MMA
(
[X;CT ]

)
= softmax

(
QK⊤
√
d

)
V, (1)

where [X;CT ] denotes concatenated tokens. The quadratic complexity O(n2) makes video-paired
training computationally expensive.

3.2 PROBLEM FACTORIZATION BASED ON ORTHOGONALITY HYPOTHESIS

To adapt the pretrained T2V model to subject-driven video customization without expensive video-
subject pairs, we hypothesize that the learning problem can be factorized into two orthogonal objec-
tives: identity injection to learn subject features from S2I dataset Tan et al. (2024) comprising image
pairs of the same subject, and temporal awareness preservation to maintain motion dynamics using
unpaired video dataset as proxy experiences.
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Our core hypothesis is that these two objectives are orthogonal in the gradient space, meaning
⟨∇θLimg,∇θLvid⟩ ≈ 0. If true, this orthogonality would enable efficient optimization without
mutual interference, allowing us to train predominantly on cheaper image data while maintaining
temporal coherence through minimal video replay.

3.3 PROXY EXPERIENCE REPLAY BASED ON ORTHOGONALITY HYPOTHESIS

3.3.1 ORTHOGONALITY HYPOTHESIS AND METHOD DESIGN
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Figure 3: Gradient Conflict and Align-
ment. Our Proxy Replay strategy exponen-
tially converges to zero.

We hypothesize that identity learning and temporal
dynamics constitute orthogonal tasks. Let g1(t) =
∇θLimg(θt) and g2(t) = ∇θLvid(θt) be the gra-
dients for identity and temporal objectives respec-
tively. Our hypothesis states that these gradients
should be approximately orthogonal, with gradient
conflict

ϕ(t) = cos∠(g1(t),g2(t)) =
g1(t)

⊤g2(t)

∥g1(t)∥∥g2(t)∥
≈ 0

(2)
Based on this hypothesis, we design a proxy experi-
ence replay mechanism with stochastic task switch-
ing. We sample with probability p from video data
and (1 − p) from image data, creating the weighted
update θt+1 = θt − η[(1 − p)g1 + pg2]. If our or-
thogonality hypothesis holds, this simple weighted
averaging should enable efficient optimization with-
out gradient interference.

3.3.2 EXPERIMENTAL VALIDATION OF ORTHOGONALIZATION

Our experiments validate the orthogonality hypothesis. As shown in Figure 3, we observe that
gradient conflict ϕ(t) indeed converges exponentially to zero from an initial negative value (ϕ(0) <
0), confirming emergent orthogonalization.

Theorem 1. Under proxy replay, the gradient conflict ϕ(t) converges to zero, validating our orthog-
onality hypothesis.

Proof sketch. The weighted update creates loss dynamics

L1(θt+1) = L1(θt)− η[(1− p)∥g1∥2 + pg⊤
1 g2] +O(η2) (3)

where the cross-term g⊤
1 g2 appears with opposite signs in each loss update, creating repulsion from

conflict regions. The gradient alignment A(t) = g⊤
1 g2 evolves as A(t) ≈ A(0)e−ηλt, yielding

exponential decay to orthogonality. This validates our initial hypothesis that two tasks can be or-
thogonal. See supplement for detailed proof.

3.4 TASK 1: IDENTITY INJECTION

For identity injection, we adopt the S2I approach Tan et al. (2024). Given source image Iinput ∈
RH×W×3 and target Ioutput ∈ RH×W×3 with prompt P , we encode using Xin = VAE(Iinput),
Xout = VAE(Ioutput), and CT = T5(P ). We apply LoRA Hu et al. (2022) for parameter-efficient
fine-tuning, updating LN layers only for Xin while keeping them frozen for Xout and CT . This
selective updating ensures identity learning remains orthogonal to temporal and textual representa-
tions, aligning with our hypothesis that identity injection and temporal dynamics are independent
objectives.

Additionally, We introduce <CLS> token prepended to prompts (e.g., ”An <CLS> armchair in the
living room”) to explicitly signal identity mapping. This token acts as an anchor for identity features
while maintaining orthogonality with temporal learning. See supplement for ablation on the <CLS>
token.
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Table 2: Quantitative comparison with other methods on VBench.

Training Method Used Data Motion Dynamic CLIP-T CLIP-I DINO-ISmoothness Degree
VideoBooth Custom T2V 96.95 51.67 29.59 66.06 34.54

OmniControl+I2V Custom T2I 98.21 51.67 31.89 72.58 54.16
BLIP+I2V Custom T2I 97.53 49.17 28.19 79.29 56.58
IP-Adapter+I2V Custom T2I 97.21 55.83 26.97 73.86 45.18

Ours Custom T2I 98.72 60.19 32.24 73.70 59.29

3.5 TASK 2: TEMPORAL AWARENESS PRESERVATION

While S2I training injects identity, it causes loss of temporal awareness. Leveraging our orthogonal-
ity hypothesis, we introduce I2V fine-tuning using unpaired videos as proxy experiences to restore
temporal dynamics without disrupting the learned identity features.

I2V vs. T2V Fine-Tuning. We choose I2V alignment over T2V as it better matches our modal-
ities (image input, video output), maintaining the orthogonal decomposition between identity and
motion. T2V training would entangle text-based identity with temporal dynamics, violating our or-
thogonality assumption. I2V preserves this separation by using visual identity inputs while learning
temporal coherence.

Mitigating First-Frame Overreliance. Naive I2V training causes copy-and-paste artifacts where
the model simply replicates the first frame. To maintain orthogonality between static identity and dy-
namic motion, we employ random-frame selection by choosing reference frame i ∼ Uniform(1, T )
and image-token dropping with probability pdrop. These techniques force the model to synthesize
motion from partial information rather than copying, preserving the independence between identity
learning (Limg) and temporal dynamics (Lvid).

3.6 TRAINING WITH PROXY EXPERIENCE REPLAY

Building on our validated orthogonality hypothesis, we implement training through stochastic inter-
leaving. At each iteration, we sample u ∼ U(0, 1) and select the training objective based on replay
probability p = 0.1, using predominantly cheaper image data (90% of iterations) while maintaining
temporal coherence through minimal video replay.

Objectives. For S2I pair (I(1), I(2)), we optimize Limg(I
(1), I(2)), and for video (T, V ), we opti-

mize Lvid(T, V ), both following v-prediction Yang et al. (2024):

Ltotal =

{
Lvid(T, V ), with probability p

Limg(I
(1), I(2)), with probability 1− p

(4)

The experimentally validated orthogonalization ensures both objectives are preserved without inter-
ference despite the imbalanced sampling.

+ “Under the glow of a streetlamp, a toy car comes closer to 
camera on a wet pavement, reflecting the flickering city lights.”

O
ur
s

I2
V

As Start 
Frame

Figure 4: Limitation of S2I+I2V method. With subject pre-
sented small in first frame, I2V fails to generate consistent results as
it cannot interpret low-resolution subjects.

Proxy Replay vs. S2I+I2V. An alternative
S2I+I2V pipeline (Figure 4) sequentially trains
identity then motion, but fails when subjects are
small or occluded. Our proxy replay jointly
learns both objectives through interleaved train-
ing, enabling robust identity maintenance across
scales while preserving temporal coherence.

Computational Efficiency. With video process-
ing cost Cvid ≈ 169 × Cimg (13 latent frames,
169 = 132), our approach yields E[C] =
0.8Cimg + 0.2Cvid = 13.72Cimg, achieving 92.7% reduction. The validated orthogonality enables
this efficiency without performance degradation.
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Figure 5: Qualitative comparison with tuning-free methods (left) and per-subject optimized
methods (right).

4 EXPERIMENTS

4.1 SETUP

Implementation Details. Our method is built upon the CogVideoX-5B, which employs a 3D Multi-
modal Diffusion Transformer (MM-DiT) architecture utilizing a v-prediction objective Yang et al.
(2024) with DDIM scheduler following Rombach et al. (2021). Following the standard CogVideoX
training pipeline, we adopt the AdamW optimizer with a learning rate of 5×10−5 and a cosine with
restart learning rate scheduler. Training was performed for 4,000 steps, requiring approximately
288 GPU hours on NVIDIA A100 GPUs. We utilize a batch size of 256 for image data and 32 for
video data during joint fine-tuning. To facilitate efficient training, we use mixed-precision BF16
training. Our method employs LoRA (Low-Rank Adaptation) with rank 128 and dropout of 0.1 for
efficient fine-tuning. We set the probability parameter p = 0.1 for stochastic switching, ensuring
balanced optimization between identity injection and temporal modeling. We utilize OmniControl’s
Subject200K dataset for image customization, comprising 200K subject-specific image pairs cov-
ering various poses, styles, and contexts. Additionally, for video fine-tuning, we leverage 2.5% of
the Pexels 400K dataset by randomly selecting approximately 10,000 unpaired videos. Note that for
ablation study, we used CogVideoX and provide details in supplement.

Baseline. For baseline comparison, we utilize video S2V model VideoBooth Jiang et al. (2024),
and state-of-the-art image S2I models Tan et al. (2024); Li et al. (2023); Ye et al. (2023) along with
image-to-video (I2V) model. We utilize OmniControl Tan et al. (2024), and BLIP-Diffusion Li et al.
(2023) and IP-Adapter Ye et al. (2023). Each baseline initially performs image customization inde-
pendently using its original setup, after which we apply the CogVideoX-5B I2V model to get video
from the images. These methods represent state-of-the-art in subject-driven video customization,
allowing us to comprehensively evaluate the effectiveness of our proposed approach under zero-shot
conditions. Also for methods with per-subject tuning, we compare with state-of-the-art S2V mod-
els that requires per-subject tuning, Still-Moving Chefer et al. (2024) and CustomCrafter Wu et al.
(2025). Since the code is neither public Chefer et al. (2024) or requires extensive finetuning for each
sample Wu et al. (2025), we compare with samples inside their paper and supplement.

Evaluation. We gather 30 reference images from state-of-the-art image customization papers Avra-
hami et al. (2023); Chefer et al. (2024) along with the traditional DreamBooth dataset Ruiz et al.
(2023). We utilize GPT to generate four prompts for each image and evaluate using VBench Huang
et al. (2024).
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Table 3: Ablation result on training strategy of alternating optimization with image-only and two-
stage training approaches.

Training Method Motion Dynamic CLIP-T CLIP-I DINO-ISmoothness Degree
Image-only 99.60 0.84 32.67 71.15 43.19
Two-stage 96.04 81.51 28.96 84.73 76.13

Ours 98.72 60.19 32.24 73.70 59.29
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+ ”Cat is rollerblading in the park.”

Figure 6: Qualitative result on ablation study
of our component in temporal awareness preser-
vance.

Additionally, we assess temporal modeling per-
formance using 300 videos sampled from the
Pexels dataset, ensuring no overlap with videos
used during training. Following FloVD Jin
et al. (2025), we classify these videos into three
groups based on optical flow magnitude (small:
≤ 25, medium: 25 ∼ 50, large: ≥ 50) for
detailed analysis. We additionally demonstrate
the preprocessing details to evaluate temporal
modeling performance in the supplement.

4.2 COMPARISON
WITH TUNING-FREE METHODS

Quantitative Analysis. Table 2 shows our method outperforming baselines in zero-shot video cus-
tomization across motion smoothness (98.72), dynamic degree (60.19), text alignment (CLIP-T,
32.24), and identity consistency (DINO-I, 59.29). Notably, we achieve significant gains over Video-
Booth in identity preservation (DINO-I: +24.75) and prompt fidelity (CLIP-T: +2.65). Compared to
OmniControl + I2V, our method enhances dynamic degree (+8.52) and temporal coherence (DINO-
I: +5.13). While BLIP-Diffusion achieves a higher CLIP-I (79.29), our approach offers a more bal-
anced performance, excelling in diverse motion and subject fidelity, underscoring its effectiveness
and generalization.

Table 4: Temporal Evaluation following
FloVD Jin et al. (2025), assessing whether
motion dynamics improve compared to image-
only or two-stage training. Small - Medium -
Large - with each number representing FVD. †
denotes Pexels jovianzm (2025)-finetuned version
of CogVideoX Yang et al. (2024).

Method Small↓ Medium↓ Large↓
CogVideoX-T2V† 597.54 594.26 573.86

Image-only 641.92 636.42 680.34
Two-stage 801.97 872.30 824.03

Ours 512.30 511.66 550.14

Qualitative Analysis. As illustrated in Fig-
ure 5, our method demonstrates superior detail
retention, ID consistency, and natural tempo-
ral transitions compared to OmniControl + I2V,
Vidu 2.0, and VideoBooth. For the backpack
example (Fig. 5, left), our model faithfully re-
produces intricate details. In contrast, Vidu 2.0
preserves ID but shows erratic movement; Om-
niControl + I2V captures the subject reasonably
but with occasional artifacts; and VideoBooth
yields the weakest ID fidelity. Overall, our ap-
proach better preserves subject identity and co-
herent motion across examples, aligning with
quantitative improvements.

4.3 COMPARISON WITH PER-SUBJECT OPTIMIZED METHODS

We show qualitative comparisons with Still-Moving Chefer et al. (2024) and CustomCrafter Wu
et al. (2025) using their official samples in the Figure 5 right. Against Still-Moving Chefer et al.
(2024), Our method exhibits superior identity preservation. The “pink cat” (row 1) has more con-
sistent color and detailed whiskers; the “pig” (row 2) shows more faithful eye shape and coloration,
indicating higher subject fidelity. Also compared to CustomCrafter Wu et al. (2025) (rows 3–4), Our
results are more identity-faithful, whereas CustomCrafter often displays distorted details.
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4.4 ABLATION STUDY

Training Strategy. We compared image-only, two-stage, and our proxy experience replay training
strategies. Image-only training produced superficially smooth (99.60) but static videos (0.84 dy-
namic degree), with poor FVD (Tables 3, 4, Fig. 6). Two-stage training improved dynamics (81.51)
and ID similarity (CLIP-I: 84.73) but introduced severe artifacts and S2V forgetting, leading to high
FVD. Our alternating strategy (Ours) excelled, balancing motion smoothness (98.72) and dynamic
degree (60.19) without the drawbacks of the other methods. Its lower FVD scores confirm superior
motion realism and temporal consistency, on par with CogVideoX Yang et al. (2024) (see supple-
ment).

Oursw/o random 
image drop

w/o random 
initial frame

+ “A close up view. A bowl of oranges placed on a 
wooden table. The background is a dark room, the TV is on, 

and the screen is showing a cooking show.”

+"On the beach, a lady sits under a beach umbrella. She's 
wearing this hawaiian shirt and has a big smile on her face, 

with her surfboard hehind her. The sun is setting.

Figure 7: Effect of random initial frame and image
token dropping.

Random Initial Frame Selection & Drop-
ping. We also examined the effect of random
frame selection and image-token dropping on
I2V fine-tuning. Without either technique, the
model often shows superficially strong motion
smoothness but drastically reduced dynamic
degree, indicating a near-static outcome where
the subject barely moves. Qualitative observa-
tions (Figure 7) reveal that the first reference
image dominates subsequent frames, inflating
identity metrics like CLIP-I and DINO-I while
eliminating motion.

By enabling only random frame selection, we
recover some degree of temporal variability
yet introduce artifacts in scenes such as shirts
or oranges, thereby lowering image alignment
scores. By contrast, the combination of frame selection and token dropping strikes an effective
balance. We can observe that artifacts are greatly reduced with the reference being more naturally
blended. This confirms the importance of mitigating first-frame over-reliance and excessive condi-
tioning on a single reference image for smoother, more natural video generation.

4.5 LIMITATIONS

+ “A woman walking down the street with backpack.”

Figure 8: Limitation of our work. Identity
preservation with human faces shows blurry arti-
facts since Subject200K Tan et al. (2024), which
our model trained lacks human identities.

Our primary finetuning dataset, the Subject-
200K dataset Tan et al. (2024), primarily com-
prises general objects and contains few hu-
man faces. Although our method supports
video customization for arbitrary inputs, train-
ing on such a general dataset may hinder its ef-
fectiveness for human-specific personalization.
When evaluated on human facial data as in
Figure 8, our approach generates recognizable
facial structures but often introduces blurring
artifacts, thereby failing to preserve nuanced
identity features. We believe incorporating an
identity-focused dataset would mitigate this is-
sue and identify this as a key area for future investigation. Additionally, the theoretical analysis
makes simplifying assumptions that might not hold for deep networks and requires further analysis
on this in future work.

5 CONCLUSION

We presented a zero-shot subject-driven video generation method based on the hypothesis that iden-
tity learning and temporal dynamics are orthogonal tasks. Our approach bypasses expensive S2V
datasets through proxy experience replay with stochastic task switching between S2I image pairs
and unpaired videos. Experiments validate our orthogonality hypothesis, showing gradient conflicts
converge to near-zero, enabling computational reduction with image-dominant training, outperform-
ing per-subject tuned models and some tuning-free models.
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A APPENDIX

Algorithm 1: Proxy Experience Replay for Subject-Driven Video Generation
Input : Pretrained MM-DiT model fθ;

Image dataset Dimg (pairs (I src, I tgt,P) for identity);
Proxy video dataset Dvid (videos (V, T ) as proxy experiences);
Replay probability p ∈ [0, 1] controlling task interleaving;
RandomFrameSelect() and TokenDrop() regularizations.

Output: Fine-tuned model fθ achieving emergent gradient orthogonalization
Problem Decomposition (Sec. 3.2):

• Task 1 - Identity Learning: Learn from Dimg for subject features

• Task 2 - Temporal Preservation: Maintain dynamics via proxy replay from Dvid

Proxy Experience Replay (Sec. 3.3):
/* Initialize gradient tracking for orthogonalization monitoring */
ϕ0 ← cos(∇θLimg,∇θLvid) // Initial conflict
foreach iteration t← 1, . . . , Tmax do

Sample u ∼ U(0, 1) for stochastic task selection
if u < p then

/* Proxy Replay: Sample proxy experiences to preserve temporal
dynamics */

Fetch batch {(Vi, Ti)} from Dvid // Proxy samples
fref ← RandomFrameSelect(Vi) // Prevent overfitting
Xref ← TokenDrop(VAE(fref), pdrop)
Compute Lvid(Vi,Xref, Ti) via v-prediction
θ ← θ − ηg2

else
/* Identity Learning: Sample image pairs for subject features */

Fetch batch {(I src
i , I tgt

i ,Pi)} from Dimg
Prepend <CLS> token to Pi for identity signaling
Apply LoRA updates for parameter-efficient learning
Compute Limg(I

src
i , I tgt

i ,Pi) via v-prediction
g1 ← ∇θLimg // Identity gradient
θ ← θ − ηg1

end
/* Monitor emergent orthogonalization */
if t mod 100 = 0 then

ϕt ← cos(g1,g2) // Track convergence to zero
end

end
/* Expected outcome: ϕt → 0 (orthogonality) after ∼1K iterations */
return fθ with naturally orthogonalized task gradients

In this section, we provide additional details on our zero-shot subject-driven video (S2V) framework,
including full pseudocode for the proposed method and extended ablation results that further validate
our design choices.

A.1 METHOD DETAILS

Our subject-driven video (S2V) framework, as outlined in Algorithm 1, begins by initializing a
pre-trained multi-modal diffusion transformer fθ (for example, CogVideoX Yang et al. (2024)),
which already possesses general text–visual alignment and motion priors. Two datasets are made
available: the first is an image-based S2I dataset DS2I containing image pairs (I(1), I(2)) depicting
the same subject under varying poses or contexts, and the second is an unlabeled video dataset Dvid
consisting of text–video pairs (T, V ). Our key insight is to factorize video customization into two
tasks—identity injection and temporal modeling—and then interleave them stochastically during
training.

At each training iteration, a uniform random variable u is drawn from U(0, 1). If u < p, we sample
a mini-batch of unlabeled video (Ti, Vi) and perform temporal-phase optimization (lines 9–14 in
Algorithm 1), referred to as I2V fine-tuning. This phase leverages the random frame selection and
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image-token dropping steps (Random Frame Select and Random Image Drop) to discour-
age the model from fixating on a single reference frame. By computing the video reconstruction
loss Lvid(Ti, Vi) in a v-prediction manner, we update fθ to maintain or recover realistic motion
characteristics. Alternatively, if u ≥ p, we focus on identity-phase optimization (lines 16–19),
sampling a mini-batch of image pairs (I

(1)
i , I

(2)
i ) from DS2I and minimizing the identity injection

loss Limg(I
(1)
i , I

(2)
i ). Crucially, we only tune the LoRA-based parameters dealing with the subject-

specific tokens Xin in this phase, preserving the model’s capacity to handle text tokens CT and
output frames Xout.

By stochastically switching between these two objectives, the model balances subject fidelity and
temporal consistency throughout training, avoiding the pitfalls of purely sequential or single-focus
approaches. After Tmax iterations, fθ emerges as a zero-shot S2V model capable of generating
videos that simultaneously preserve the subject’s identity and exhibit coherent motion—even though
no large-scale annotated S2V dataset was required.

A.2 THEORETICAL ANALYSIS OF EMERGENT GRADIENT ORTHOGONALIZATION

A.2.1 PROBLEM SETUP AND DEFINITIONS

Consider two loss functions L1 : Rn → R (identity loss) and L2 : Rn → R (temporal loss) with
gradients g1(θ) = ∇θL1(θ) and g2(θ) = ∇θL2(θ).

Definition A.1 (Gradient Conflict). The gradient conflict at parameters θ is:

ϕ(θ) = cos∠(g1(θ),g2(θ)) =
⟨g1(θ),g2(θ)⟩
∥g1(θ)∥∥g2(θ)∥

(5)

Definition A.2 (Proxy Experience Replay). The stochastic gradient update with replay probability
p ∈ (0, 1) is:

θt+1 = θt − ηgt, where gt =

{
g2(θt) w.p. p
g1(θt) w.p. 1− p

(6)

A.2.2 MAIN THEOREM

Theorem A.1 (Convergence to Orthogonality). Under the following assumptions:

1. Both L1 and L2 are L-smooth: ∥∇2Li(θ)∥ ≤ L for all θ
2. Both losses are locally convex in a neighborhood of convergence
3. Learning rate satisfies η < min{1/L, 2/(µ+ L)}
4. Initial conflict exists: ϕ(θ0) < 0

Then the expected gradient alignment converges to zero: limt→∞ E[⟨g1(θt),g2(θt)⟩] = 0.

A.2.3 PROOF OF THEOREM A.1

Step 1: Evolution of Individual Losses

Using Taylor expansion around θt, the expected change in L1 is:

E[L1(θt+1)] = E [L1 (θt − ηgt)]

= L1(θt)− ηE[⟨g1(θt),gt⟩] +
η2

2
E[g⊤

t H1(ξt)gt]
(7)

where H1(ξt) = ∇2L1(ξt) for some ξt between θt and θt+1.

Computing the expectation:

E[⟨g1(θt),gt⟩] = (1− p)∥g1(θt)∥2 + p⟨g1(θt),g2(θt)⟩ (8)

Similarly for L2:

E[⟨g2(θt),gt⟩] = p∥g2(θt)∥2 + (1− p)⟨g1(θt),g2(θt)⟩ (9)
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Step 2: Lyapunov Function Analysis

Define the Lyapunov function:

V (θ) = (1− p)L1(θ) + pL2(θ) + α|⟨g1(θ),g2(θ)⟩| (10)

where α > 0 is chosen small enough to ensure V decreases.

The expected change in V is:

E[∆V ] = −η
[
(1− p)2∥g1∥2 + p2∥g2∥2 + 2p(1− p)⟨g1,g2⟩

]
+ αE[∆|⟨g1,g2⟩|] +O(η2)

(11)

Step 3: Dynamics of Gradient Alignment

Let At = ⟨g1(θt),g2(θt)⟩. Using the chain rule:

dAt

dt
= ⟨∇θg1(θt), θ̇t⟩⊤g2(θt) + g1(θt)

⊤⟨∇θg2(θt), θ̇t⟩ (12)

Substituting θ̇t = −ηE[gt] = −η[(1− p)g1 + pg2]:

dAt

dt
= −η

[
g⊤

avgH1g2 + g⊤
1 H2gavg

]
(13)

where gavg = (1− p)g1 + pg2.

Step 4: Linearization Near Critical Points

Near a critical point where g1 and g2 are small, we can linearize. Let gi = Hi(θ
∗)(θ − θ∗) where

θ∗ is a local minimum of the combined loss. The alignment becomes:

At ≈ (θ − θ∗)⊤H1H2(θ − θ∗) (14)

Step 5: Eigenvalue Analysis

Let λ(1)
i and λ

(2)
j be eigenvalues of H1 and H2 respectively, with corresponding eigenvectors v(1)

i

and v
(2)
j . The contribution to alignment from the (i, j) eigenspace pair is:

Aij = λ
(1)
i λ

(2)
j |⟨v(1)

i ,v
(2)
j ⟩|2 · cicj (15)

where ci, cj are the components of (θ − θ∗) in the respective eigendirections.

Step 6: Decay Rate

The dynamics of each component follows:

dci
dt

= −ηλeff
i ci (16)

where λeff
i = (1− p)λ

(1)
i + pλ

(2)
i cos2(∠(v(1)

i ,v
(2)
i )).

This gives exponential decay:

Aij(t) = Aij(0) exp
(
−η(λeff

i + λeff
j )t

)
(17)

Step 7: Convergence to Orthogonality

Since all λeff
i > 0 (by strong convexity), we have:

|At| ≤
∑
i,j

|Aij(t)| ≤ C exp(−ηλmint) (18)

where λmin = mini,j{λeff
i + λeff

j } > 0 and C is a constant depending on initial conditions.

Therefore:
lim
t→∞

At = lim
t→∞

⟨g1(θt),g2(θt)⟩ = 0 (19)
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Table 5: Result on human preference study in Likert scale of 1-5.

Method ID Prompt Motion Overall
Consistency Alignment Quality Quality

Omini+I2V 3.80 3.78 3.62 3.44
VideoBooth 3.25 3.20 3.08 2.91
Vidu 2.0 3.42 3.24 3.22 3.03

Ours 4.08 3.82 3.88 3.71

Table 6: Ablation on the reference token. Adding <CLS> yields improved subject identity scores
(CLIP-I, DINO-I) and a higher dynamic degree.

Training Method Motion Dynamic CLIP-T CLIP-I DINO-ISmoothness Degree
w/o Ref. token 98.84 54.55 32.87 73.36 57.51

w/ Ref. token 98.72 60.19 32.24 73.70 59.29

A.2.4 COMPARISON WITH PCGRAD

PCGrad Yu et al. (2020) explicitly projects conflicting gradients:

gPC
1 =

{
g1 − ⟨g1,g2⟩

∥g2∥2 g2 if ⟨g1,g2⟩ < 0

g1 otherwise
(20)

Our method achieves ⟨g1,g2⟩ → 0 through dynamics, effectively reaching the same orthogonal
configuration without explicit projection. The convergence rate is:

Ours: O(e−ηλmint) vs PCGrad: O(1) (immediate projection) (21)

While PCGrad achieves immediate orthogonalization, our method’s gradual convergence allows for
smoother optimization trajectories and better exploration of the loss landscape before settling into
orthogonal configurations.

A.3 HUMAN PREFERENCE STUDY

While benchmark metrics offer quantitative insights, they can sometimes be misled by “cheating”
behaviors such as static outputs with artificially high scores. To complement our objective mea-
surements, we conducted a human preference study using 20 randomly chosen samples from each
baseline and our approach, without cherry-picking. A total of 30 participants were asked to rate the
generated videos on a five-point Likert scale across dimensions of ID consistency, Prompt alignment,
Motion quality, and Overall visual appeal. Our method consistently outperformed the baselines, sug-
gesting that our balanced approach to identity preservation and temporal awareness best aligns with
human judgments of video realism and quality when viewed holistically.

A.4 ABLATION STUDIES

A.4.1 EFFECT OF THE REFERENCE TOKEN

Tab. 6 demonstrates how adding a dedicated <CLS> token to the prompt affects our model’s perfor-
mance. Without this reference token, the model attains slightly higher motion smoothness (98.84)
and marginally better CLIP-T (32.87), but it underperforms in dynamic degree (54.55) and identity-
focused metrics (CLIP-I: 73.36, DINO-I: 57.51). Introducing <CLS> evidently improves subject
fidelity (CLIP-I increases to 73.70 and DINO-I to 59.29) and fosters more diverse motion (dy-
namic degree rises to 60.19). We attribute these gains to the reference token guiding the alignment
of subject tokens (Xin) with the textual prompt more explicitly, resulting in both stronger identity
preservation and more coherent variations in motion.
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Table 7: Comparison with T2V-only stochastically-switched finetuning, with image drop prob-
ability of 1. Switching to text-only input (T2V) moderately boosts CLIP-T but hurts subject fidelity
and dynamic degree.

Training Method Motion Dynamic CLIP-T CLIP-I DINO-ISmoothness Degree
T2I + T2V (joint) 98.85 44.14 33.41 72.71 48.68

Ours 98.72 60.19 32.24 73.70 59.29

Table 8: Abalation study on using different number of videos.

Video Motion Dynamic CLIP-T CLIP-I DINO-ICount Smoothness Degree
1K 99.03 59.66 32.16 72.69 56.98
2K 98.96 52.25 32.49 72.13 54.42
3K 98.79 55.46 32.04 72.79 55.57
4K (Ours) 98.72 60.19 32.24 73.70 59.29

A.4.2 T2V VS. I2V TRAINING

We also ablate replacing our image-to-video (I2V) training with a text-to-video (T2V) setup. In
Tab. 8, the T2I+T2V (joint) attains a slightly better CLIP-T but lower dynamic degree and subject
alignment (CLIP-I, DINO-I). This suggests T2V training struggles when introducing a novel subject
identity purely through text, yielding weaker overall identity preservation. By contrast, our I2V
approach strikes a better balance, preserving subject details (CLIP-I: 73.70, DINO-I: 59.29) and
maintaining sufficient motion (dynamic degree: 60.19).

A.4.3 EFFECT OF VARYING THE VIDEO DATASET SIZE

Tab. 8 reports how our method’s performance changes when using different amounts of unlabeled
video data for I2V fine-tuning (1K, 2K, 3K, and 4K videos). Notably, with only 1K videos, we
already obtain relatively strong results, suggesting that even a small unlabeled corpus can restore
temporal consistency to some extent. However, increasing the video count to 4K (our default setting)
steadily improves dynamic degree from 59.66 to 60.19 and also boosts identity fidelity (DINO-I)
from 56.98 up to 59.29, indicating more consistent subject representation across frames.

We also observe a modest variation in CLIP-T and CLIP-I scores when moving from 1K to 4K
videos, implying that a larger video dataset helps balance subject detail preservation and temporal
motion, without overfitting to particular frames or motion patterns. In short, while our method is
fairly robust to smaller unlabeled datasets, using around 4K (i.e., 1% of Pexels jovianzm (2025)
dataset) videos offers the best trade-off between data efficiency and stable motion/appearance re-
sults.

A.4.4 EFFECT OF VARYING THE SWITCHING PROBABILITY

In Tab. 9, we examine how different values of p—the probability of sampling unlabeled video data
(I2V fine-tuning)—affect overall performance. When p = 0.0, the model relies solely on image-
based training (S2I) and achieves a relatively high dynamic degree (63.03) but moderate identity
scores (CLIP-I: 72.86, DINO-I: 57.86). Increasing p to 0.2 or 0.4 yields balanced improvements
across most metrics, reflecting better coordination between identity and motion. At p = 0.6, the
model dedicates a greater share of updates to I2V training, strengthening identity alignment (CLIP-
I: 76.71, DINO-I: 62.84) while keeping dynamic degree stable (60.87). Although different p values
trade off between motion smoothness and identity fidelity to varying degrees, our chosen p = 0.2
demonstrates a strong overall balance, as highlighted in the main paper.

A.5 TEMPORAL MODELING EVALUATION

We assess our model’s capability to capture realistic object motion using a protocol adapted
from FloVD Jin et al. (2025), while ensuring minimal or no camera movement in the test data.
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Table 9: Abalation study on using different ’p’ to choose I2V finetuning.

Video Motion Dynamic CLIP-T CLIP-I DINO-IRatio Smoothness Degree
0.0 99.60 0.84 32.67 71.15 43.19
0.2 (Ours) 98.72 60.19 32.24 73.70 59.29
0.4 98.31 59.12 31.94 73.53 56.60
0.6 98.33 60.87 31.31 76.71 62.84

Specifically, we collect 100K videos from Pexels jovianzm (2025) that are not used during our
stochastically-switched fine-tuning, then apply the following steps to create three benchmark sub-
sets (small, medium, large) based on foreground motion magnitude:

1) Foreground–Background Segmentation. For each video, we use an off-the-shelf segmentation
model (e.g., Grounded-SAM2) on the first frame to separate foreground and background regions.
This allows us to measure object (foreground) motion independently from any camera-induced back-
ground shifts.

2) Optical Flow Computation. We estimate optical flow between the first frame and each sub-
sequent frame using a standard flow estimator (e.g., RAFT Teed & Deng (2020)). Let uf (x) and
ub(x) denote the per-pixel flow vectors for the foreground and background pixels, respectively, at
position x. We record:

FlowMagf =
1

Nf

∑
x∈fg

∥uf (x)∥,

FlowMagb =
1

Nb

∑
x∈bg

∥ub(x)∥,

where Nf and Nb are the respective pixel counts in the foreground and background masks.

3) Dataset Filtering. To ensure negligible camera motion, we discard any video whose average
magnitude of background flow FlowMagb exceeds 10 pixels. This filtering step excludes scenes
with significant global shifts, retaining only those with primarily object-centric motion.

4) Category Assignment. Based on the average magnitude of foreground flow FlowMagf (averaged
over all frames), we categorize videos into:

• Small: 0 ≤ FlowMagf ≤ 25

• Medium: 25 < FlowMagf ≤ 50

• Large: FlowMagf > 50

Each category contains 300 videos, ensuring a balanced evaluation of low-, moderate-, and high-
motion scenarios.

5) Evaluation Protocol. Within each subset, we use only the first frame (including any textual or
reference cues, if required) to generate a video of the same length. We then compute FVD Liu
et al. (2024) between the generated outputs and the ground-truth videos. By comparing FVD across
small, medium, and large motion classes, we obtain a clearer picture of how each model (ours vs.
baselines) adapts to varying object-motion intensities.

Discussion. This motion-focused split highlights each method’s strengths and weaknesses. For
example, a model might produce near-static outputs for low-motion data—cheating on metrics like
smoothness—yet fail to track fast-moving objects in high-motion videos. As observed in FloVD Jin
et al. (2025), categorizing by foreground flow magnitude reveals these nuances more effectively than
aggregated scores alone.

Additional Details on Evaluation of Original CogVideoX. To ensure a fair comparison with our
method, we additionally fine-tune the original CogVideoX Yang et al. (2024) using a subset of the
Pexels jovianzm (2025) dataset equivalent to the one used in our training. Since our model is trained
for 4K steps with a sampling ratio p = 0.2, we match this by finetuning CogVideoX for 800 steps
(0.2 × 4000). As a result, we achieved a performance comparable to the original CogVideoX in
terms of motion dynamics evaluation.
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+ ”Under the glow of a streetlamp, a toy car comes closer to camera on a wet 
pavement, reflecting the flickering city lights.”
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+ “A cat cautiously steps through a rainy alleyway, its fur slightly damp 
as puddles reflect the city lights.”

Figure 9: Additional qualitative result. Comparison with tuning-free baselines.

A.6 QUALITATIVE RESULT WITH VIDEOS

We present additional qualitative results in Figure 9 and Figure 10, comparing with tuning-free
baselines and tuning-based baselines. In Figure 9, we demonstrate that the OminiControl+I2V fails
to interpret the ‘comes closer to camera’ for the first example with ‘a toy car’, due to the tendency
not to generate close-ups as they tend to show articulated result as in Figure 4 in manuscript. Also
in the example of ‘Cat’, they also show little articulated result with eye, since they fail to interpret
small objects. Also compared to Vidu 2.0 and VideoBooth, they show degraded result compared to
ours.

Additionally, when we compare with tuning-based baselines, ours show more identity-preserved
result, compared to Still-Moving and CustomCrafter. For example, in the first example above with
‘pig’, ours follow the shape of ‘pig’ better, without change in colors or shapes of eyes. For the
‘boy’, we see that ours show less copy-pasted result, with heads turned during the video. For the
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+ “pig skiing down a slope”

+ “a boy riding a race cart”

+ “anime girl selfie standing under the pink blossoms of a cherry tree”

+ “a teddy bear is playing guitar”
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Figure 10: Additional qualitative result. Comparison with tuning-based baselines.

comparison with CustomCrafter in the third and fourth row examples, teddy bear’s consistency also
is better, also for the ‘anime girl’. Please refer to the supplement video attached for moving videos.

A.7 ESTIMATION OF OTHER METHODS’ COMPUTATIONAL COST

We estimate the train time of CustomCrafter Wu et al. (2025) and VACE Jiang et al. (2025) based
on the given implementation details on the manuscript.
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CustomCrafter. The estimated GPU hours for training a single subject is in the range of 100–300
A100-hours, with a median estimate of around 200 A100-hours.

wall-clock time (hours) =
10 000× t

3 600

total GPU-hours = 4× wall-clock time
where t ∈ [10, 30] is the estimated time per iteration in seconds.

VACE. The estimated GPU hours for training VACE on LTX-Video is in the range of 9,000–
27,000 A100-hours, with a median estimate of around 18,000 A100-hours.

number of training steps = 200 000

wall-clock time per training (hours) =
200 000× t

3 600

GPU-hours = 16× 200 000× t

3 600
=

3 200 000t

3 600
=

8 000t

9

where t ∈ [10, 30] is the estimated time per iteration in seconds. The estimated GPU hours for
training VACE on Wan-T2V is in the range of 70,000–210,000 A100-hours, with a median estimate
of around 140,000 A100-hours.

number of training steps = 200 000

wall-clock time per training (hours) =
200 000× t

3 600

GPU-hours = 128× 200 000× t

3 600
=

25 600 000t

3 600
=

64 000t

9

where t ∈ [10, 30] is the estimated time per iteration in seconds.

B USE OF LARGE LANGUAGE MODELS

Anthropic’s Claude was used to polish the writing of this manuscript. All text generated by the tool
has been reviewed and revised by the authors.
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