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Abstract: Poor sample efficiency continues to be the primary challenge for deploy-1

ment of deep Reinforcement Learning (RL) algorithms for real-world applications,2

and in particular for visuo-motor control. Model-based RL has the potential to3

be highly sample efficient by concurrently learning a world model and using4

synthetic rollouts for planning and policy improvement. However, in practice,5

sample-efficient learning with model-based RL is bottlenecked by the exploration6

challenge. In this work, we find that leveraging just a handful of demonstrations can7

dramatically improve the sample-efficiency of model-based RL. Simply appending8

demonstrations to the interaction dataset, however, does not suffice. We identify9

key ingredients for leveraging demonstrations in model learning – policy pretrain-10

ing, targeted exploration, and oversampling of demonstration data – which forms11

the three phases of our model-based RL framework. We empirically study three12

complex visuo-motor control domains and find that our method is 160%− 250%13

more successful in completing sparse reward tasks compared to prior approaches14

in the low data regime (100K interaction steps, 5 demonstrations).15
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Figure 1. Success rate (%) in sparse reward
tasks. Given only 5 demonstrations and limited
online interaction, our method solves 21 hard
robotics tasks from pixels, including dexterous
manipulation, pick-and-place, and locomotion.

Reinforcement Learning (RL) provides a princi-17

pled and complete abstraction for training agents18

in unknown environments. However, poor sam-19

ple efficiency of existing algorithms prevent their20

applicability for real-world tasks like object manip-21

ulation with robots. This is further exacerbated in22

visuo-motor control tasks which present both the23

challenges of visual representation learning as well24

as motor control. Model-based RL (MBRL) can25

in principle [1] improve the sample efficiency of26

RL by concurrently learning a world model and27

policy [2, 3, 4, 5]. The use of imaginary rollouts28

from the learned model can reduce the need for real29

environment interactions, and thus improve sample30

efficiency. However, a series of practical challenges like the difficulty of exploration, the need for31

shaped rewards, and the need for a high-quality visual representation, prevent MBRL from realizing32

its full potential. In this work, we seek to overcome these challenges from a practical standpoint, and33

we propose to do so by using expert demonstrations to accelerate MBRL.34

Expert demonstrations for visuo-motor control tasks can be collected using human teleoperation,35

kinesthetic teaching, or scripted policies. While these demonstrations provide direct supervision to36

learn complex behaviors, they are hard to collect in large quantities due to human costs and the degree37

of expertise needed [6]. However, even a small number of expert demonstrations can significantly38

accelerate RL by circumventing challenges related to exploration. Prior works have studied this39

in the context of model-free RL (MFRL) algorithms [7, 8, 9]. In this work, we propose a new40

framework to accelerate model-based RL algorithms with demonstrations. On a suite of challenging41
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Figure 2. Our framework (MoDem) consists of three phases: (1) a policy pretraining phase where
representation and policy is trained on a handful of demonstrations via BC, (2) a seeding phase where
the pretrained policy is used to generate rollouts for targeted model learning, and (3) an interactive
learning phase where the model iteratively collects new rollouts and is trained with data from all three
phases. Crucially, we aggressively oversample demonstration data for model learning, regularize the
model using data augmentation, and reuse weights across phases. sg: stop-gradient operator.

visuo-motor control tasks, we find that our method can train policies that are approx. 160%− 250%42

more successful than prior state-of-the-art (SOTA) baselines.43

Off-policy RL algorithms [10] – both model-based and model-free – can in principle admit any dataset44

in the replay buffer. Consequently, it is tempting to naı̈vely append demonstrations to the replay buffer45

of an agent. However, we show that this is a poor choice (see Section 3), since the agent still starts with46

a random policy and must slowly incorporate the behavioral priors inherent in the demonstrations47

while learning in the environment. Simply initializing the policy by behavior cloning [11] the48

demonstrations is also insufficient. Any future learning of the policy is directly impacted by the49

quality of world model and/or critic – training of which requires sufficiently exploratory datasets.50

To circumvent these challenges and enable stable and monotonic, yet sample-efficient learning,51

we propose Model-based Reinforcement Learning with Demonstrations (MoDem), a three-phase52

framework for visual model-based RL using only a handful of demonstrations. Our framework is53

summarized in Figure 2 and consists of:54

• Phase 1: Policy pretraining, where the visual representation and policy are pretrained on the55

demonstration dataset via behavior cloning (BC). While this pretraining by itself does not produce56

successful policies, it provides a strong prior through initialization.57

• Phase 2: Seeding, where the pretrained policy, with added exploration, is used to collect a58

small dataset from the environment. This dataset is used to pretrain the world model and critic.59

Empirically, data collected by the pretrained policy is far more useful for model and critic learning60

than random policies used in prior work, and is key to the success of our work as it ensures that61

the world model and critic benefit from the inductive biases provided by demonstrations. Without62

this phase, interactive learning can quickly cause policy collapse after the first few iterations of63

training, consequently erasing the benefits of policy pretraining.64

• Phase 3: Finetuning with interactive learning, where we interleave policy learning using65

synthetic rollouts and world model learning using data from all three phases including fresh66

environment interactions. Crucially, we aggressively oversample demonstration data during world67

model learning, and regularize with data augmentation in all phases.68

Our Contributions. Our primary contribution in this work is the development of MoDem, which69

we evaluate on 18 challenging visual manipulation tasks from Adroit [7] and Meta-World [12] suites70

with only sparse rewards, as well as locomotion tasks from DMControl [13] that use dense rewards.71

Measured in terms of policy success after 100K interaction steps (and using just 5 demonstrations),72

MoDem achieves 160% − 250% higher relative success and 38% − 50% higher absolute success73

compared to strong baselines. Through extensive empirical evaluations, we also elucidate the74

importance of each phase of MoDem.75
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2 Model-Based Reinforcement Learning with Demonstrations76

In this work, our goal is to accelerate the sample efficiency of (visual) model-based RL with a77

handful of demonstrations. To this end, we propose Model-based Reinforcement Learning with78

Demonstrations (MoDem), a simple and intuitive framework for visual RL under a strict environment-79

interaction budget. Figure 2 provides an overview of our method. MoDem consists of three80

phases: (1) a policy pretraining phase where the policy is trained on a handful of demonstrations81

via behavior cloning, (2) a seeding phase where the pretrained policy is used to collect a small82

dataset for targeted world-model learning, and (3) an interactive learning phase where the agent83

iteratively collects new data and improves using data from all the phases, with special emphasis on84

the demonstration data. We describe each phase in more detail below.85

Phase 1: policy pretraining. We start by learning a policy from the demonstration dataset86

Ddemo := {D1, D2, . . . , DN} where each demonstration Di consists of {s0,a0, s1,a1, . . . , sT ,aT }.87

In general, the demonstrations may be noisy or sub-optimal – we do not explicitly make any optimality88

assumptions. Let hθ : S 7→ Rl denote the encoder and πθ : Rl 7→ A denote the policy that maps from89

the latent state representation to the action space. In Phase 1, we pretrain both the policy and encoder90

using a behavior-cloning objective, given by91

LP1(θ) = E(s,a)∼Ddemo

[
− log πθ

(
a|hθ(s)

)]
. (1)

When πθ(·|z) is parameterized by an isotropic Gaussian distribution, as commonly used in practice,92

Eq. 1 simplifies to the standard MSE loss. Behavior cloning with a small demonstration dataset is93

known to be difficult, especially from high-dimensional visual observations [14, 15, 16]. In Section 3,94

we indeed show that behavior cloning alone cannot train successful policies for the environments95

and datasets we study, even when using pre-trained visual representations [16, 17]. However, policy96

pretraining can provide strong inductive priors that facilitate sample-efficient adaptation in subsequent97

phases outlined below.98

Phase 2: seeding. In the previous phase, we only pretrained the policy. In Phase 2, our goal is to also99

pretrain the critic and world-model, which requires a “seeding” dataset with sufficient exploration. A100

random policy is conventionally used to collect such a dataset in algorithms like TD-MPC. However,101

for visual RL tasks with sparse rewards, a random policy is unlikely to yield successful trajectories or102

visit task-relevant parts of the state space. Thus, we collect a small dataset with additive exploration103

using the policy from phase 1. Concretely, given πP1
θ and hP1

θ from the first phase, we collect a dataset104

Dseed = {τ1, τ2, . . . τK} by rolling out πP1
θ (hP1

θ (s)). To ensure sufficient variability in trajectories,105

we add Gaussian noise to actions [5]. Let ξt = (si,ai, ri, s
′
i)

t+H
i=t be a generic trajectory snippet of106

length H . In this phase, we learn πθ, hθ, dθ, Rθ, Qθ – the policy, representation, dynamics, reward,107

and value models – by minimizing the loss108

LP2(θ) := κ · Eξt∼Ddemo [LTD−MPC(θ, ξt)] + (1− κ) · Eξt∼Dseed [LTD−MPC(θ, ξt)] , (2)

where κ is an “oversampling” rate that provides more weight to the demonstration dataset. In109

summary, the seeding phase plays the key role of initializing the world model, reward, and critic in the110

task-relevant parts of the environment, both through data collection and demonstration oversampling.111

We find in Section 3 that the seeding phase is crucial for sample-efficient learning, without which the112

learning agent is unable to make best use of the inductive priors in the demonstrations.113

Phase 3: interactive learning. After initial pretraining of model and policy, we continue to improve114

the agent using fresh interactions with the environment. To do so, we initialize the replay buffer from115

the second phase, i.e. B ← Dseed. A naı̈ve approach to utilizing the demonstrations is to simply116

append them to the replay buffer. However, we find this to be ineffective in practice, since online117

interaction data quickly outnumbers demonstrations. In line with the seeding phase, we propose to118

aggressively oversample demonstration data throughout training, but progressively anneal away the119

oversampling through the course of training. Concretely, we minimize the loss120

LP3(θ) := κ · Eξt∼Ddemo [LTD−MPC(θ, ξt)] + (1− κ) · Eξt∼B [LTD−MPC(θ, ξt)] . (3)

Finally, we find it highly effective to regularize the visual representation using data augmentation,121

which we apply in all phases.122
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Figure 3. Main result. Success rate and episode return as a function of interaction steps for each of
the three domains that we consider (Adroit, Meta-World, DMControl), aggregated across a total of
21 challenging, visual robotics tasks. Adroit and Meta-World use sparse rewards. Mean of 5 seeds;
shaded area indicates 95% CIs. Our method is significantly more sample-efficient than prior methods.

3 Results & Discussion123

Environments and Evaluation For our experimental evaluation, we consider 21 challenging124

visual control tasks. This includes 3 dexterous hand manipulation tasks from the Adroit suite [7],125

15 manipulation tasks from Meta-World, as well as 3 locomotion tasks involving high-dimensional126

embodiments from DMControl [13]. For Adroit and Meta-World, we use sparse task completion127

rewards instead of human-shaped rewards. We use DM-Control to illustrate that MoDem provides128

significant sample-efficiency gains even for visual RL tasks with dense rewards. In the case of129

Meta-World, we study a diverse collection of medium, hard, and very hard tasks as categorized130

by Seo et al. [18]. We put strong emphasis on sample-efficiency and evaluate methods under an131

extremely constrained budget of only 5 demonstrations1 and 100K online interactions.132
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Figure 4. Relative contribution
of each phase. Mean success
across all Adroit tasks. 5 seeds,
shaded areas are 95% CIs.

Baselines for Comparison We consider a set of strong baselines133

from prior work on both visual IL, model-free RL (MFRL) with134

demonstrations, and visual model-based RL (MBRL): (1) BC +135

R3M that leverages the pretrained R3M visual representation [17]136

to train a policy by behavior cloning the demonstration dataset.137

(2) state-based (oracle) DAPG [7] that regularizes a policy gradient138

method with demonstrations. (3) FERM [9] combines model-free139

RL, contrastive representation learning, and imitation learning.140

Finally, we also compare with (4) TD-MPC [5] instantiated both141

with and without demonstrations. Our TD-MPC baseline appends142

demonstrations to the replay buffer at the start of training follow-143

ing Zhan et al. [9] and can thus be interpreted as a model-based144

analogue of FERM (but without contrastive pretraining). We evalu-145

ate all baselines under the same experimental setup as our method146

(e.g., frame stacking, action repeat, data augmentation, and access147

to robot state) for a fair comparison.148

Benchmark Results Our main results are summarized in Figure149

3. Our method achieves an average success rate of 53% at 100K150

steps across Adroit tasks, whereas all baselines fail to achieve any non-trivial results under this sample151

budget. FERM solves a small subset of the Meta-World tasks, whereas our method solves all 15152

tasks. We find that our TD-MPC and FERM baselines fare relatively better in DM-Control, which153

uses dense rewards. Nevertheless, we still observe that MoDem outperforms all baselines. We also154

find that behavior cloning – even with pretrained visual representations – is ineffective with just 5155

demonstrations. Finally, we study the relative importance of phases by considering all three Adroit156

tasks, and exhaustively evaluating all valid combinations of policy pretraining – as opposed to random157

initialization; BC seeding – as opposed to seeding with random interactions; and oversampling during158

interactive learning – as opposed to adding demonstrations to the interaction data buffer. Results159

are shown in Figure 4. We find that each aspect of our framework – policy pretraining, seeding, and160

oversampling – greatly improve sample-efficiency, both individually and in conjunction.161

1Each demonstration corresponds to 50-500 online interaction steps, depending on the task.
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