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Abstract

With advancements in visual language models
(VLMs) and large language models (LLMs),
video anomaly detection (VAD) has progressed
beyond binary classification to fine-grained cate-
gorization and multidimensional analysis. How-
ever, existing methods focus mainly on coarse-
grained detection, lacking anomaly explanations.
To address these challenges, we propose Ex-VAD,
an Explainable Fine-grained Video Anomaly
Detection approach that combines fine-grained
classification with detailed explanations of anoma-
lies. First, we use a VLM to extract frame-level
captions, and an LLM converts them to video-
level explanations, enhancing the model’s explain-
ability. Second, integrating textual explanations
of anomalies with visual information greatly en-
hances the model’s anomaly detection capabil-
ity. Finally, we apply label-enhanced alignment
to optimize feature fusion, enabling precise fine-
grained detection. Extensive experimental results
on the UCF-Crime and XD-Violence datasets
demonstrate that Ex-VAD significantly outper-
forms existing State-of-The-Art methods.

1. Introduction
Video Anomaly Detection (VAD) is an important technol-
ogy with a wide range of applications that cover areas such
as security surveillance, healthcare, autonomous driving,
and content auditing (Zhao et al., 2017; Wang et al., 2019;
Samaila et al., 2024). It aims to improve the safety and effi-
ciency of systems by automatically identifying anomalous
events or behaviors through the analysis of video data (Ren
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Figure 1. Recent research in VAD can be categorized into three
types: a) Traditional binary classification VAD, b) Multi-
classification VAD, and c) Training-free VAD. Building on the
optimization of these approaches, our Ex-VAD is presented as: d)
Explainable VAD based on VLMs and LLMs.

et al., 2021; Nawaratne et al., 2020). For example, rapid
detection of dangerous behaviors for timely intervention in
surveillance, detection of abnormal road conditions to avoid
accidents in autonomous driving, and identification of ab-
normal vital signs to provide timely assistance in healthcare
monitoring.

Traditional VADs (Huang et al., 2024; Wang et al., 2025;
Huang et al., 2023; 2022; Ramachandra et al., 2022; Liu
et al., 2024; Zaigham Zaheer et al., 2020; Yan et al., 2023)
typically coarse-grained analyze videos, determining only
whether a video contains abnormal behavior and catego-
rizing it as normal or anomalous. However, such ap-
proaches (Nguyen & Meunier, 2019) face significant limita-
tions in practical applications. First, coarse-grained detec-
tion fails to provide detailed descriptions of specific types
of abnormal behavior, which is inadequate in scenarios that
require tailored responses to distinct anomalies, for exam-
ple, addressing varying security threats in surveillance sys-
tems or diagnosing multiple abnormal conditions in medical
monitoring. Second, coarse-grained methods are easily in-
fluenced by the complexity of video backgrounds and the
diversity of scenes, making it challenging to pinpoint the
time and type of anomalies accurately. This deficiency com-
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promises both the detection accuracy of the system and its
response efficiency.

Fine-grained video anomaly detection becomes particularly
important to distinguish different types of anomalous behav-
ior further and provide more targeted and interpretative de-
tection results. In recent years, visual-language pre-training
(VLP) models such as CLIP (Radford et al., 2021) have
significantly improved the semantic representation of im-
ages and text through contrast learning, driving advances in
visual representation. CLIP-based task-specific models have
excelled in various visual tasks, achieving unprecedented
performance breakthroughs. In VAD, some researchers (Wu
et al., 2024c;a) have used CLIP’s image-text alignment to
achieve fine-grained anomaly detection.

Despite advances, existing methods still struggle to explain
anomalous behavior effectively. Even when anomalous
events are successfully detected, models often fail to provide
clear explanations for the causes of the anomalies, posing
significant challenges to decision-makers. For example, in
security monitoring, the detection of abnormal behavior in a
specific area without a clear explanation can complicate sub-
sequent response efforts, leading to inefficiency and delays.
Consequently, enhancing the interpretability of VAD has
become a crucial focus in the field’s development. Recently,
the rapid progress in LLMs has introduced new possibilities
for VAD. Some researchers (Zanella et al., 2024; Ye et al.,
2024) have proposed training-free anomaly detection meth-
ods by generating descriptive text explanations of anomalies
using VLMs and LLMs. However, these methods primar-
ily rely on the generated text for anomaly detection, often
neglecting the full potential of the visual modality. Other
researchers (Lv & Sun, 2024; Kim et al., 2023a; Tang et al.,
2024b) have achieved interpretable anomaly detection by
fine-tuning large models. While effective, these approaches
often result in complex models that may be challenging to
deploy and maintain.

To address these challenges, we propose a novel method
called Ex-VAD, which is designed to overcome the lim-
itations of traditional VAD methods, particularly in fine-
grained classification and anomaly explanation. Specifi-
cally, we first propose an Anomaly Explanation Genera-
tion Module (AEGM), which extracts frame-level captions
from videos using VLMs, followed by a cleaning step to
refine the captions. The cleaned captions are then integrated
by an LLM to generate video-level anomaly explanations
through specific prompts, which enable the model to detect
abnormal behavior in the video and analyze its cause. Sec-
ond, we develop a Multimodal Anomaly Detection Module
(MADM), which encodes the text from AEGM and extracts
both temporal and spatial features between video frames.
These features are then fed into a coarse-grained anomaly
classifier to determine whether the video contains anoma-

lies. Finally, we employ a Label Augment and Alignment
Module (LAAM), which uses an LLM to expand anomaly
category labels into phrases, selects the top-k phrases seman-
tically most similar to the original labels, and aligns them
with the fused multimodal features to obtain fine-grained
anomaly categories. In summary, Ex-VAD effectively inte-
grates multimodal features, fine-grained classification, and
anomaly explanations, providing a comprehensive solution
to video anomaly detection with enhanced interpretability
and accuracy.

Our main contributions are summarized as follows.

• We develop an Anomaly Explanation Generation Mod-
ule (AEGM), which utilizes a VLM and an LLM to
generate explanations for video anomalies, allowing
the model to detect abnormal behavior and analyze its
cause, thereby enhancing its semantic interpretation.

• We propose a Label Augment and Alignment Module
(LAAM) that enhances label semantics, enabling the
model to better align videos with anomaly categories,
thereby improving fine-grained anomaly classification,
particularly for complex categories.

• Extensive experimental results show that our method
outperforms existing approaches in both coarse-
grained and fine-grained accuracy, improving overall
anomaly detection and classification precision.

2. Related Work
2.1. Video Anomaly Detection

According to the output of existing VAD, it can be divided
into binary-classification VAD (Ramachandra et al., 2022;
Liu et al., 2024), multi-classification VAD (Sultani et al.,
2019; Wu et al., 2024a;c), and interpretable VAD (Lv &
Sun, 2024). Traditional VAD methods classify videos as
normal or abnormal. They typically adopt a classification
paradigm. Firstly, pre-trained visual models are used to
extract frame-level features. Then, these features are fed
into a binary classifier based on Multiple Instance Learning
(MIL) for training. Finally, abnormal events are detected
based on the predicted anomaly confidences.

With the development of the CLIP model, some methods
have attempted to make improvements. VadCLIP (Wu et al.,
2024c) proposed a fine-grained Weakly Supervised Video
Anomaly Detection (WSVAD) method that can distinguish
different types of abnormal frames. VadCLIP encodes text
labels into class embeddings and calculates the matching
similarities between class embeddings and frame-level vi-
sual features to obtain an alignment map. Each input text
label represents a class of abnormal events, thus achieving
fine-grained WSVAD.
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Interpretability is of utmost importance in VAD, especially
in sensitive or high-stake applications. Early methods of-
ten relied on black-box models, and their prediction results
were difficult to trust. Recently, some methods have utilized
Large Language Models (LLMs) and Vision-Language Mod-
els (VLMs) to generate understandable reasoning through
semantic insights and textual explanations. For example,
VADor (Lv & Sun, 2024) fine-tunes the projection layer of
VideoLLaMA to integrate anomaly detection with seman-
tic reasoning. HAWK (Tang et al., 2024a)enhances inter-
pretability by integrating motion-based reasoning through
interactive VLMs. However, there are still challenges in
balancing the granularity of explanations and computational
efficiency.

2.2. Visual Language Model in VAD

Vision language models (VLMs) offer a new perspective
for detecting anomalies in video anomaly detection (VAD),
especially in fine-grained classification and explanation
of anomalous behaviors. Traditional VAD methods (Tian
et al., 2021a; Li et al., 2022b;a) mainly focus on identifying
anomalous behaviors in videos but lack detailed classifi-
cation of these behaviors. (Wu et al., 2024c) leverages
the pre-trained CLIP model to align video frames with
labels in VAD, enabling fine-grained anomaly classifica-
tion. Meanwhile, the use of LLMs in VAD is still in its in-
fancy(Kim et al., 2023b) and LAVAD (Zanella et al., 2024)
implemented training-free VAD using pre-trained LLMs
and VLMs. This method efficiently transforms LLMs into
video anomaly detectors by generating textual descriptions
of each frame in the test video, which is combined with
prompting to activate LLMs for time series aggregation and
anomaly score estimation. Additionally, by referring to
VLMs, we establish a strong complementary relationship
between visual and textual modalities. This approach not
only enables the detection of anomalous behaviors but also
provides clear explanations for each behavior, enhancing
the explanation of anomaly detection.

2.3. Prompt Learning

Prompt learning, a technique for adapting prompt words to
fit a specific task, was initially applied mainly in the field
of Natural Language Processing (NLP) and has gradually
been extended to the visual domain. CLIP (Radford et al.,
2021) relys on fixed hand-designed cues (e.g., a photo of
a class), which are suitable for open domains but not flex-
ible enough. CLIP-COOP (Zhou et al., 2022a) introduces
learnable context vectors, enhancing performance with lim-
ited samples but struggling with generalization. These ad-
vances refine prompt adaptation, improving vision-language
models across diverse tasks. In VAD, VADCLIP leverages
trainable textual templates to generate precise anomaly de-
scriptions. However, manually designing prompts remains

time-consuming and highly sensitive to template content.
To address this challenge and reduce the dependence on
hand-crafted language designs, PEL4VAD (Pu et al., 2024)
used ConceptNet definitions to create prompt templates
and expanded class labels through a conceptual dictionary,
significantly improving open-vocabulary object detection.
Based on this approach, this paper uses GPT4 (OpenAI &
etc, 2024) to generate rich semantics for simple labels, and
uses CLIP image-text alignment to allow the VAD model to
achieve better performance in fine-grained anomaly classifi-
cation.

3. Approach
3.1. Architecture

As shown in Figure 2, the proposed Ex-VAD consists of
three components: an Anomaly Explanation Generation
Module (AEGM), a Multimodal Anomaly Detection Mod-
ule (MADM), and a Label Augment and Alignment Module
(LAAM). Ex-VAD processes input videos V by first utiliz-
ing the AEGM to generate anomaly explanation text E. This
text serves two purposes: providing interpretative explana-
tions for video anomalies and acting as the text modality
input for the MADM, where it is fused with visual features
for coarse-grained anomaly detection. Finally, the LAAM
refines the detection by expanding and aligning labels to
achieve fine-grained anomaly classification, ensuring both
interpretability and accuracy in video anomaly detection.
The implementation details are introduced as follows.

3.2. Anomaly Explanation Generation Module

LAVAD (Zanella et al., 2024) demonstrated the feasibility
of achieving anomaly detection by prompting VLMs and
LLMs to generate text descriptions. Inspired by this ap-
proach, our AEGM improves the prompting mechanism to
guide LLMs in time series aggregation and the generation
of anomaly explanations. This not only helps the visual
module enhance the performance of VAD but also serves as
an explanation for the causes of anomalies, further enhanc-
ing the interpretability of detection. As shown in Figure 3,
AEGM consists of two sub-modules: the Caption Extraction
and Cleaning Module, and the Explainable Modules Based
on LLM.

Caption Extraction and Cleaning Module. With the rapid
development of VLMs, the ability to generate captions from
videos has become increasingly powerful. First, uniformly
sample n frames from the video V . For each frame Ii ∈ V ,
we use the SOTA captioning model ΦC i.e. BLIP-2 (Li
et al., 2023) and set appropriate prompts PC to generate
frame-level text descriptions:

Ti = PC · ΦC(Ii). (1)
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Figure 2. Our Ex-VAD includes three components: an Anomaly Explanation Generation Module using VLM and LLM to generate
anomaly explanation text, a Multimodal Anomaly Detection Module combining enriched visual and textual features for coarse anomaly
classification, and a Label Augment and Alignment Module that refines the detection by expanding and aligning labels to achieve
fine-grained anomaly classification.

Due to the randomness of VLMs, some irrelevant captions
may be generated, which may harm training. Since the
scenes in the video are captured by a static camera at a high
frame rate, the semantic content between frames overlaps to
some extent. From this perspective, we alleviate the above
problems by designing an image-text alignment mechanism.
Specifically, we use a vision-language encoder to encode
the captions of each frame. For each frame Ii ∈ V , we
calculate its closest caption:

T̂i = argmax
T∈T

{EI(Ii) · ET (T )}, (2)

where {·, ·} is the cosine similarity, EI is the image encoder
of the VLM, ET is the text encoder and T = {T1, ..., TN}.
This module allows us to generate fairly accurate text de-
scriptions for each video frame.

Explainable Modules Based on LLM. The cleaned cap-
tions can describe frame information more accurately than
the initial captions, but they are only simple descriptions and
cannot describe abnormal phenomena in detail. Therefore,
we prompt LLM i.e. LLAMA-3 (Touvron et al., 2023)to
generate the required anomaly explanations. Specifically,
we input the collection T̂ of cleaned frame captions and

the prompt PS into the advanced LLM ΦLLM to obtain the
explanation E for video V :

E = PS · ΦLLM (T̂ ), (3)

where T̂ = {T̂1, T̂2, ..., T̂N}. Through the above methods,
we can obtain an anomaly description E that is more accu-
rate semantically and temporally than the captions T̂ .

3.3. Multi-Modal Feature Fusion

This component primarily performs coarse-grained anomaly
detection by entering the fused visual and text features into
an anomaly classifier. For visual features, we follow prior
work (Wu et al., 2024c) to uniformly sample dense video
frames from the input video at 16-frame intervals, obtaining
a video frame sequence V . The video frames are then
encoded by the frozen visual encoder EI in CLIP to produce
frame features FI . To bridge the gap between the image and
video domains in CLIP, we adopt the approach from (Wu
et al., 2024c), modeling the temporal dependencies of the
video frame sequence using the Local and Global Temporal
Adapter (LGT-Adapter):

FV = LGT (EI(V )). (4)
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We use the exception of explanation E generated from
AEGM as textual information. These textual informa-
tion are encoded by the frozen textual encoder ET in
CLIP to produce textual features FT = ET (E). Subse-
quently, the textual features and visual features are fused
into FF = FV + FT , which is then input into a binary clas-
sifier that contains a feed-forward network (FFN) layer, an
FC layer, and a Sigmoid activation to obtain the anomaly
scores s ∈ Rn∗1:

s = Sigmoid(FC(FFN(FF ) + FF )). (5)

3.4. Label Augment and Alignment Module

This part mainly includes the following two steps: label aug-
mentation set construction and fine-grained classification.

Label Augmentation Set Construction. We utilize a pre-
trained LLM (OpenAI & etc, 2024) to generate m descrip-
tive sentences related to each category label. To filter the
sentences that are most semantically related to the category
labels, we calculate the semantic similarity between the
category labels and the generated sentences by using co-
sine similarity. Specifically, first, the category labels L and
the related descriptive sentences {S1, ..., Sm} generated by
the LLM are encoded into vectors. Then, the cosine sim-
ilarity between the label vector and the sentence vector is
calculated as:

Sim(L, Si) =
vL · vSi

∥vL∥ · ∥vSi
∥
, (6)

where vL and vSi represent the embedding vectors of the
category label and the generated sentence, respectively. Ac-

cording to the similarity score, the top-k sentences with the
highest similarity are selected from the generated sentences.
The features of the screened sentences are integrated with
the original label embeddings to form the final enhanced
label embeddings FL.

Fine-grained Classification. Calculate the matching simi-
larity between these category embeddings FL and Fusion
features FF to obtain an alignment map M ∈ Rn∗m, where
m is the number of text labels. In this alignment map,
each input text label represents a class of abnormal events.
By analyzing the similarity between the video and differ-
ent category labels, a more detailed classification of ab-
normal events is achieved, naturally achieving the goal of
fine-grained classification.

3.5. Loss Function

Binary Classification Loss. We follow previous work (Wu
et al., 2020) and use the Top-k mechanism to select K
highest anomaly confidence levels among anomalous and
normal videos as video-level predictions. The classification
loss LBCE is then computed using the binary cross-entropy
between video-level prediction and ground truth:

LBCE = −[y log(s) + (1− y) log(1− s)], (7)

where s denotes the predicted score and y is the true label
(usually 0 represents normal, and 1 represents abnormal).

Multiple Class Loss. For multi-classification tasks, we
propose the MIL-Align mechanism to align the frame-level
fusion feature FF and all label embeddings FL. Specifically,
for each video, we select the top-k similarity values and
compute the average to measure how well this video is
aligned with the current class. Then, we can obtain a vector
V = {v1, . . . , vm} that represents the similarity between
this video and all classes. We hope the video and its paired
textual label emit the highest similarity score among others.
To achieve this, the multi-class prediction is first computed
as follows:

pi =
exp(vi/τ)∑
j exp(vj/τ)

, (8)

where pi is the prediction with respect to the ith class, and
τ refers to the temperature hyper-parameter for scaling. Fi-
nally, the alignment loss LMCE can be computed by the
cross-entropy:

LMCE = −
m∑
i=1

yi log(pi), (9)

where yi is the ground truth label and m is the total number
of classes.

Contrastive Loss. To pull apart the normal class embed-
dings from the anomaly class embeddings, we introduce
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Method mAP@IOU(%)

0.1 0.2 0.3 0.4 0.5 AVG

Random Baseline 0.21 0.14 0.04 0.02 0.01 0.08

RealAD (2018) 5.73 4.41 2.69 1.93 1.44 3.24
RTFM (2021) 12.59 7.54 6.44 5.42 1.54 6.71
AVVD (2022) 10.27 7.01 6.25 3.42 3.29 6.05
DMU(2023) 11.32 7.62 5.97 4.33 2.36 6.32
CLIP-TSA(2023) 12.62 8.13 6.66 4.28 1.91 6.72
UMIL(2024) 11.84 7.85 6.52 3.97 2.84 6.60
VadCLIP(2024) 11.72 7.83 6.40 4.53 2.93 6.68
STPrompt(2024) 11.56 7.49 6.13 5.11 2.11 6.48

Ex-VAD (Ours) 16.51 12.35 9.41 7.82 4.65 10.15

Table 1. Fine-grained comparisons on UCF-Crime.

the contrast loss. Specifically, we first calculate the cosine
similarity between the normal class embedding and other ab-
normal class embeddings, and then compute the contrastive
loss Lcts as follows:

LCTS =
∑
j

max

(
0,

LT
NLAj

∥LN∥2 · ∥LAj
∥2

)
, (10)

where LN is the normal class embedding, and LAj
is the

abnormal class embedding.

Overall, the final total objective of Ex-VAD is given by:

L = LBCE + LMCE + λLCTS . (11)

3.6. Inference

ExVAD contains three branches that enable it to handle
fine-grained and coarse-grained WSVAD tasks and anomaly
interpretation. Regarding fine-grained WSVAD, we follow
previous work (Wu et al., 2023) and use a thresholding strat-
egy on the alignment graph M to predict anomalous events.
For coarse-grained WSVAD, we follow previous work (Wu
et al., 2024c) in employing two methods to compute the
frame-level anomaly degree. The first method directly uses
the anomaly scores from the coarse-grained classification,
while the second method uses the alignment map from the
fine-grained classification, i.e., the similarity between the
video and the normal class minus 1 is the anomaly degree.
Finally, we choose the best of these two methods to compute
the frame-level anomaly degree.

4. Experiments
In this section, we perform experiments on the UCF-
Crime (Sultani et al., 2019) and XD-Violence (Wu et al.,
2020) datasets. Ex-VAD focuses on fine-grained anomaly
detection and explainability. We compare it with other meth-
ods designed for fine-grained anomaly detection and explore
novel approaches for explainable coarse-grained anomaly
detection using LLMs and VLMs. Furthermore, we conduct

Method mAP@IOU(%)

0.1 0.2 0.3 0.4 0.5 AVG

Random Baseline 1.82 0.92 0.48 0.23 0.09 0.71

RealAD (2018) 22.72 15.57 9.98 6.20 3.78 11.65
RTFM (2021) 31.25 26.85 21.94 13.56 12.54 21.23
AVVD (2022) 30.51 25.75 20.18 14.83 9.79 20.21
DMU(2023) 32.33 28.88 22.57 14.33 13.68 22.36
CLIP-TSA(2023) 34.53 32.88 28.11 13.65 10.01 23.84
UMIL(2024) 34.44 27.13 22.63 19.85 13.24 23.46
VadCLIP(2024) 37.03 30.84 23.38 17.09 14.31 24.70
STPrompt(2024) 38.21 25.63 28.66 13.11 11.63 23.44

Ex-VAD (Ours) 40.14 32.75 28.78 20.15 18.35 28.23

Table 2. Fine-grained comparisons on XD-Violence.

comprehensive ablation studies to validate the effectiveness
of each module in the proposed model.

4.1. Experimental Setups

Datasets. We perform experiments on the UCF-Crime
and XD-Violence datasets. UCF-Crime consists of 1,900
untrimmed surveillance videos with a total duration of 128
hours, covering 13 real-world anomalies (e.g., abuse, rob-
bery, explosion) and normal activities. In the WSVAD,
1,610 videos are used for training with video-level annota-
tions, while 290 videos are used for testing with frame-level
annotations. XD-Violence contains 4,754 untrimmed videos
totaling 217 hours, making it one of the largest multimodal
violence detection datasets. It includes six types of vio-
lence (e.g., abuse, car accidents, explosions) across diverse
sources such as surveillance, films, and games. The dataset
is divided into 3,954 training videos and 800 testing videos,
with video-level labels.

Evaluation Metrics. For coarse-grained WSVAD, the eval-
uation uses frame-level Average Precision (AP) and frame-
level AUC for XD-Violence, and only frame-level AUC
for UCF-Crime. For fine-grained WSVAD, mean Average
Precision (mAP) values are calculated under different Inter-
section over Union (IoU) thresholds (ranging from 0.1 to
0.5 with a stride of 0.1). The average mAP (AVG) is also
reported, and mAP is computed only for abnormal videos
in the test set.

Implementation Details. All experiments are conducted
on a single NVIDIA RTX A100 GPU using PyTorch. The
network employs frozen image and text encoders from pre-
trained CLIP (ViT-B/16) with a Transformer-based FFN
layer and GELU activation. BLIP-2 is used for caption
generation, while Llama-3.1 generates anomaly explana-
tions. Visual and text features are fused via concatenation.
Key hyperparameters include: σ = 1, τ = 0.07, context
length l = 20, window length in LGT-Adapter (64 for
XD-Violence, 8 for UCF-Crime), and λ (1× 10−4 for XD-
Violence, 1 for UCF-Crime).
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Category Method Fine-grained Explainability XD-Violence(AP) UCF-Crime(AUC)

Training-Free LAVAD(Zanella et al., 2024) × ✓ 62.01 80.28
VERA(Ye et al., 2024) × ✓ 88.2 86.6

Fine-tuning LLMs VADOr(Lv & Sun, 2024) × ✓ - 88.1

Weakly

RealAD(Sultani et al., 2019) ✓ × 75.18 84.14
RTFM (Tian et al., 2021b) ✓ × 78.27 85.66
AVVD(Zhou et al., 2022b) ✓ × 78.10 84.57
TEVAD(Chen et al., 2023) × × 79.80 84.9
DMU(Zhou et al., 2023) ✓ × 82.41 86.75
CLIP-TSA(Joo et al., 2023) ✓ × 82.17 87.58
UMIL(Sánchez-Macián et al., 2024) ✓ × - 86.75
VADCLIP(Wu et al., 2024c) ✓ × 84.51 88.02
STPrompt(Wu et al., 2024b) ✓ × 83.97 88.08

Ex-VAD (Ours) ✓ ✓ 86.52 88.29

Table 3. Coarse-grained comparisons of methods on XD-Violence and UCF-Crime datasets.

Visual AEGM LAAM AUC (%)

Captionl Explainable text
✓ 86.76
✓ ✓ 86.33
✓ ✓ ✓ 87.86
✓ ✓ ✓ ✓ 88.29

Table 4. Effectiveness of each module for Coarse-grained anomaly
detection.

AEGM 0.1 0.2 0.3 0.4 0.5 AVG

Captions 17.74 13.27 10.25 7.01 6.10 10.88
Explainable Text 16.51 12.35 9.41 7.82 4.65 10.15

Table 5. Effectiveness of the Anomaly Explainable Generation
Module for fine-grained anomaly detection.

4.2. Comparison Results

Fine-grained WSVAD Results. The fine-grained detection
task is more challenging as it involves detecting the presence
of anomalous events while also accurately identifying their
specific categories. To demonstrate the superiority of our
proposed Ex-VAD, we conduct comparisons with several
VAD methods, including RealAD (Sultani et al., 2019),
RTFM (Tian et al., 2021b), AVVD (Zhou et al., 2022b),
DMU (Zhou et al., 2023), CLIP-TSA (Joo et al., 2023),
UMIL (Sánchez-Macián et al., 2024), VADCLIP (Wu et al.,
2024c), and STPrompt (Wu et al., 2024b). For fairness,
CLIP (ViT-B/16) is used for all feature extractors.

Tables 1 and 2 present the fine-grained detection results
on UCF-Crime and XD-Violence datasets, evaluated using
mean average precision (mAP) and average accuracy (AVG)
across IOU thresholds (0.1–0.5). Our Ex-VAD consistently
achieves the best results, highlighting its superior perfor-
mance. Specifically, Ex-VAD achieves an AVG of 9.00

LAAM 0.1 0.2 0.3 0.4 0.5 AVG

[CLS] 14.38 10.54 6.92 5.03 2.51 7.87
a video of [CLS] 14.77 10.68 6.69 4.78 3.73 8.13
Learnable-Prompt 15.18 12.03 6.65 4.96 3.20 8.40
Label-Augment Prompt 16.51 12.35 9.41 7.82 4.65 10.15

Table 6. Effectiveness of the Label Augment Alignment Module
for fine-grained anomaly detection.

on UCF-Crime, outperforming VADCLIP, STPrompt, and
TCVADS by 1.32, 1.52, and 7.24, respectively. On XD-
Violence, Ex-VAD achieves 28.23 AVG, exceeding these
methods by 3.53, 4.79, and 11.28, respectively. Unlike meth-
ods like VADCLIP, STPrompt, and TCVADS which align
visual features with text embeddings from CLIP or LLMs,
Ex-VAD introduces a novel approach. Using AEGM, it
prompts VLMs and LLMs to generate textual information,
fuses this with visual features, and aligns the representation
with labels. This generated textual information enriches se-
mantics and enhances detection performance. Additionally,
LAAM expands label semantics by converting single labels
(e.g., ”Abuse”) into descriptive phrases (e.g., ”Someone is
being mistreated”), better aligning with visual-text features.

Coarse-grained WSVAD Results. Additionally, we com-
pare the results of the state-of-the-art methods for coarse-
grained anomaly detection, including the training-free
methods LAVAD (Zanella et al., 2024) and VERA (Ye
et al., 2024); fine-tuned models to achieve interpretable
VADor (Lv & Sun, 2024), and the above for fine-grained
anomaly detection methods.

Table 3 shows that while LAVAD and VERA are simple and
interpretable due to their lack of training, they do not sup-
port fine-grained detection. Our method, Ex-VAD, performs
best on the UCF dataset and second best on the XD dataset.
VADOr achieves explainability through fine-tuning but lacks
fine-grained detection support. For methods supporting fine-
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grained detection, older approaches like RealAD underper-
form (75.18 AP on XD-Violence), while recent methods,
including AVVD, DMU, and STPrompt, show consistent
improvement. VADCLIP and TCVADS push the state of
the art, with TCVADS achieving 85.58 AP on XD-Violence
and 88.58 AUC on UCF-Crime. Ex-VAD uniquely com-
bines fine-grained detection and interpretability, excelling
in both. Although its performance on UCF-Crime (88.29
AUC) is marginally below TCVADS (88.58), it leads to XD-
Violence, highlighting its versatility. This dual capability
makes Ex-VAD an optimal choice for practical applications
requiring precision and insights into detection results.

4.3. Model Analysis

Ablation Study. To evaluate the impact of the two key
components, AEGM and LAAM, we conducted ablation
experiments on the UCF-Crime dataset by removing one or
both components from Ex-VAD, with results summarized
in Table 4. The findings reveal that generating captions
solely for videos degrades performance, whereas cleaning
these captions and generating anomaly explanations signif-
icantly enhances it. This highlights the negative impact
of low-quality captions, which often contain redundant or
erroneous information, and the complementary role of high-
quality anomaly explanations in improving visual perfor-
mance. While AEGM is primarily designed for fine-grained
anomaly detection, it also contributes to coarse-grained de-
tection improvements.

Effectiveness of the AEGM. We evaluate the effectiveness
of fine-grained anomaly detection for AEGM, with results
shown in Table 5. The analysis shows that Captions alone
outperform Explainable Text in fine-grained anomaly de-
tection, as Captions provide frame-level semantic details,
while Explainable Text offers a concise video-level sum-
mary. However, Explainable Text enhances fine-grained
anomaly detection while also providing transparent, summa-
rized explanations of anomalies at the video level. Therefore,
we choose Explainable Text for the final model to balance
performance and interpretability.

Effectiveness of LAAM. We evaluate the effectiveness of
LAAM in fine-grained VAD, as summarized in Table 6. The
results demonstrate that LLAM-augmented labels signifi-
cantly enhance detection accuracy compared to manually
defined cue words and learnable prompt-based approaches.
This improvement highlights the value of leveraging LLAM
to generate semantically rich and contextually relevant la-
bels that align more effectively with the visual and textual
features used for fine-grained anomaly detection.

Effectiveness of Top-k. Figure 4 presents the impact of dif-
ferent top-k values in the LAAM module on coarse-grained
and fine-grained detection results, respectively. The trend
graphs reveal that selecting the top 4 phrases (k = 4) with
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Figure 4. Sensitivity analysis of a different number of templates
K to generalization of (a) coarse-grained detection and (b) fine-
grained detection.

Method Trainable Params Inference Time MACs

RTFM 24.72M 8.28ms 126.59G
DMU 6.49M 16.60ms 21.00G
CLIP-TSA 16.41M 18.33ms 102.63G
VADCLIP 35.17M 22.30ms 29.17G

ExVAD 9.97M 15.37ms 12.04G

Table 7. Comparison of Trainable Parameters, Inference Time, and
Multiply-Add Operations (MACs). The best and second-best val-
ues are highlighted with bold text and underlined text, respectively.

the highest similarity to the original labels achieves opti-
mal label enhancement for video anomaly detection. In
this setting, the AUC for coarse-grained detection peaks
at 88.28%, while the average mAP@IOU for fine-grained
detection reaches its highest value of 10.15%, demonstrat-
ing the best detection performance. However, excessive
enhancement (k > 5) may introduce noise, resulting in per-
formance degradation. These results highlight that moderate
label enhancement significantly enhances the model’s over-
all detection capability and anomaly localization accuracy.

Analysis of Computational Efficiency. We evaluate the
number of trainable parameters (Trainable Params), infer-
ence time of a frame (Inference Time), and multiply-add
operations (MACs). Table 7 demonstrates that our method,
ExVAD, achieves a well-balanced trade-off between model
complexity and size, optimizing both performance and re-
source usage effectively.

5. Conclusion
In this paper, we propose Ex-VAD, an explainable ap-
proach for fine-grained video anomaly detection. First,
the Anomaly Explanation Generation Module (AEGM) ex-
tracts and refines frame-level captions using VLMs, and
then generates video-level anomaly explanations with an
LLM. Second, the Multimodal Anomaly Detection Module
(MADM) encodes the text and extracts temporal and spatial
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features to detect coarse-grained anomalies. Finally, the La-
bel Augment and Alignment Module (LAAM) expands and
aligns anomaly category labels with multimodal features
to achieve fine-grained anomaly detection. Experiments
show that Ex-VAD outperforms existing methods in fine-
and coarse-grained anomaly detection, providing a more
transparent and effective solution.
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A. appendix.

Arson Explosions 

RoadAccidents

Explosions 

Shoplifting

Normal

Please answer with a ‘Yes’ or ‘No’ to whether the video contains any unusual 

behaviour. If so, please provide a brief description of the anomaly.

No, this is a normal video.

Please answer with a ‘Yes’ or ‘No’ to whether the video contains any unusual 

behaviour. If so, please provide a brief description of the anomaly.

Yes, road accidents cause chaos, people fall.

Please answer with a ‘Yes’ or ‘No’ to whether the video contains any unusual 

behaviour. If so, please provide a brief description of the anomaly.

Yes, two individuals inspect and handle merchandise suspiciously.

Please answer with a ‘Yes’ or ‘No’ to whether the video contains any unusual 

behaviour. If so, please provide a brief description of the anomaly.

Yes, explosion in control room causes chaos.

Please answer with a ‘Yes’ or ‘No’ to whether the video contains any unusual 

behaviour. If so, please provide a brief description of the anomaly.

Yes, explosions near train tracks cause fires, smoke; workers manage calmly.

Please answer with a ‘Yes’ or ‘No’ to whether the video contains any unusual 

behaviour. If so, please provide a brief description of the anomaly.

Yes, Flames appear from litter, growing intense.

Figure 5. Confidence visualization on the UCF-Crime dataset.

Qualitative Analyses. Figure 5 illustrates the qualitative visualization of Ex-VAD. The blue curve represents the anomaly
prediction score, while the grey area highlights the ground truth anomaly time positions. The figure also showcases
fine-grained anomaly categories and anomaly explanations, which are generated by querying the LLM. As shown, Ex-VAD
effectively detects unused anomaly categories, describes anomalous phenomena, and accurately differentiates between
normal and abnormal clips in anomalous videos.
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