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Abstract—1In this paper, we propose a novel framework
for synthesizing a single multimodal control policy capable of
generating diverse behaviors (or modes) and emergent inherent
transition maneuvers for bipedal locomotion. In our method,
we first learn efficient latent encodings for each behavior by
training an autoencoder from a dataset of rough reference
motions. These latent encodings are used as commands to train
a multimodal policy through an adaptive sampling of modes and
transitions to ensure consistent performance across different
behaviors. We validate the policy’s performance in simulation
for various distinct locomotion modes such as walking, leaping,
jumping on a block, standing idle, and all possible combinations
of inter-mode transitions. Finally, we integrate a task-based
planner to rapidly generate open-loop mode plans for the
trained multimodal policy to solve high-level tasks like reaching
a goal position on a challenging terrain. Complex parkour-like
motions by smoothly combining the discrete locomotion modes
were generated in ~3 min. to traverse tracks with a gap of
width 0.45 m, a plateau of height 0.2 m, and a block of height
0.4 m, which are all significant compared to the dimensions of
our mini-biped platform.

I. INTRODUCTION

Model-Free Reinforcement Learning (RL) has emerged
as an effective alternative to classical and optimization-
based techniques for controller synthesis in the paradigm
of legged robots [1]-[3]. By theory, RL as an optimization
technique does not suffer from any modeling constraints and
should be general by design in learning multiple behaviors.
Nonetheless, due to practical limitations like reward design,
task specification [4], and catastrophic forgetting [5], RL for
robot locomotion has been shown to generate policies that
specialize in a single behavior such as walking [2], [3] or a
conservative set of periodic motions [6]. In contrast, a model-
based control pipeline akin to that of Boston Dynamics’ Atlas
[7] has been shown to generalize to diverse behaviors in
well-choreographed routines like parkour, dance, and loco-
manipulation in controlled environments. However, a direct
counterpart is absent in the paradigm of RL-based control
for bipedal locomotion, which is the focus of this work.

An ideal RL policy for multimodal locomotion is expected
to learn multiple behaviors/modes and transition maneuvers
between those behaviors. Learning transitions raises a two-
fold challenge: 1) lack of explicit transition demonstrations,
unlike for different behaviors, and 2) the number of transi-
tions increasing as the square of the number of behaviors.
The former limitation requires the policy to develop emergent
transition maneuvers, while the latter makes it harder to
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Fig. 1: A parkour-like behavior composed in ~ 3 mins by
the proposed approach to traverse a track with a gap of
width 0.45 m and block of height 0.4 m. Accompanying video
results can be found at https://youtu.be/-ESEBf8695A

guarantee consistent performance across all possible tran-
sitions. Thus, we require the policy to learn the differ-
ent behaviors explicitly (with reference demonstration) and
the inter-behavior transitions implicitly (without reference
demonstration) while ensuring consistent performance across
the n behaviors and the n? transitions.

For behavior generalization in RL, an alternative would
be to learn multiple policies, where each specializes in a
single behavior, and later switch between them to solve high-
level tasks. Apart from the apparent computational limitation
of scaling to an increased number of behaviors, designing
smooth and feasible transition strategies between these dif-
ferent policies trained to operate in distinct and possibly
disjoint local regions of the state space is non-trivial. On the
other hand, techniques from Multi-Task RL (MTRL) [8] have
been developed to generalize across diverse environments
and cognitive tasks. Unlike unstructured cognitive tasks, for
learning versatile locomotion, we can exploit the specific
fixed structure for the problem. That is, irrespective of the
behavior we desire, the environment (a hybrid dynamical
system with contacts), observation (state of the dynamical
system), and action(torques/control) spaces remain the same.
Thus the synthesis of multimodal locomotion only requires
us to identify a general training strategy. In agreement with
our assertion, [9] demonstrates the extraction of kinematic
primitives from policies trained on a single behavior, thereby
realizing novel behaviors through human-Al shared auton-
omy. This work further motivates us to explore the possibility
of realizing multiple behaviors through a single policy while
learning feasible inter-behavior transitions.

A major challenge for RL in realizing multi-behavior poli-
cies is catastrophic forgetting and remembering [5], which
hinders the consistent performance of a multi-skilled policy,
causing mode collapse and aliasing, respectively. [10] tackles
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it by learning all the skills in parallel, whereas [11] proposes
to learn a sequence of repeated skills. However, neither of
the above considers the inherent bias in the complexity of
different skills. For instance, a skill like a backflip may be
more complicated than flat-ground walking, thus requiring
more samples to master. Additionally, equal exposure to
skills of varied complexity results in a local optimum where
the policy is successful only in a subset of the skills, causing
mode collapse. [12] tackles a similar variance in complexity
across body shape variations through an adaptive sampling
of the body shape parameters to ensure the more frequent
encountering of challenging variants in training, thereby
leading to a consistent policy.

In humanoid character control, [11], [13] show impressive
locomotion skills learned from human motion capture data,
but their dependence on the fidelity of the demonstrations is
unclear. The target system (a humanoid character) and the
demonstration expert (a human) are morphologically alike,
with the same form factor and similar dynamics. However,
such a rich collection of dynamically-consistent motion cap-
ture data is unavailable for robots of varied form factors and
morphologies. A common solution is to generate practical
demonstrations from a model-based framework, such as
Trajectory Optimization (TO), for RL policies to imitate
[14], which is redundant as two full-order optimizations are
performed concurrently for the same objective. Additionally,
using overspecified rewards and differences in modeling
choices can limit RL by TO’s performance. Typically, TO
generates dynamically-plausible trajectories based on a rough
initial guess, such as linear interpolation and waypoints [15],
which are then realized by Model Predictive Control (MPC)
based controllers. In contrast, since RL directly synthesizes
control policies, we ponder the possibility of learning a
policy to realize locomotion modes from a library of rough
motion demonstrations. Recently [16] showcased agile skills
through adversarial imitation of rough partial demonstrations,
providing a critical insight that the physical plausibility of
the reference trajectories is not vital for the success of RL.

For quadrupedal locomotion, [17] demonstrated multiple
variants of a single behavior (walking) by inputting an
explicit behavior specification as an input to the policy, which
is tuned during inference to adapt to unseen terrain condi-
tions. Having been designed with periodic gait parameters,
extending the above behavior specification to represent an
aperiodic transient motion like jumping on a block is unclear.
Alternatively, [9] uses one-hot encoding to represent and
realize multiple locomotion skills through a single control
policy capable of transient behaviors. Such a naive choice
of behavior encoding strategy 1) increases the dimension of
the command vector for every new behavior added and 2)
bears no fruitful information regarding the properties of the
commanded motion, which can be vital while composing a
smooth composition of multiple behaviors, as in parkour. To
this end, we propose a technique to automatically generate
latent encodings (called latent modes) with a fixed dimension
using autoencoders (called mode encoders) purely based on
a demonstration dataset. Similar to template planning [18],

using these latent modes, we propose mode planning to
rapidly realize complex behavior compositions instead of
performing full-order TO.

In the proposed direction, [9] demonstrates a handful of
behaviors (3 in their case) and discreetly switched transi-
tions on a wheeled quadrupedal robot. However, behaviors
with significant flight phases are absent, which are time
critical and hence call for precise transitions. For example,
a transition from hop to walk [6] may be trivial, but in
a parkour-like motion where you run, jump and land on
a block of comparable body height, the switching time
and strategy becomes highly crucial to ensure a successful
landing, which we also investigate in this work. Thus the
primary contributions of our paper are as follows.

o A general framework to synthesize a single versatile
multimodal policy capable of performing diverse loco-
motion modes, broadly classified as

— Periodic Modes: walk, hop, leap, etc

— Transient Modes: launch and land on a block

— Steady-state Modes: stay idle in nominal rest pose
while learning feasible inter-mode transition maneuvers
implicitly.

« A novel adaptive sampling technique to ensure consis-
tent performance across locomotion modes and transi-
tions by addressing mode collapse.

o A mode planner for rapidly generating complex behav-
ior compositions to enable the trained multimodal policy
to solve fruitful high-level tasks.

II. PROPOSED APPROACH

This section describes our proposed approach for learning
multiple locomotion modes and inter-mode transitions in a
single policy, followed by composing mode plans to solve
high-level tasks. Fig 2 shows a pictorial representation of
the framework with the proposed training and inference
pipelines. Our framework consists of three modules:

o a mode encoder: to map reference motions to a low-

dimensional latent space.

« a multimodal policy: to learn optimal control strategies

for distinct locomotion modes.

« a mode planner: to generate optimal mode plans and

solve high-level tasks.

First, we train the mode encoder to learn efficient encod-
ing (latent modes) of a repertoire of reference motions by
minimizing a reconstruction loss. Using these latent modes,
we train a multimodal policy to imitate the commanded
locomotion modes sampled adaptively to prevent 1) failure
in a subset of modes: mode collapse and 2) overlapping
of distinct modes: mode aliasing. With the trained multi-
modal policy, we use a mode planner to solve high-level
tasks through open-loop mode planning. Each of the above
modules is explained in detail as follows.

A. Generating Rough Reference Motions

To preserve the scalability of our approach to diverse
behaviors while also being agnostic to the robot’s mor-
phology, we use rough reference motions, which are not
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Fig. 2: The decoupled training procedure for i) encoder and ii) policy (top) and the control pipeline for inference (bottom)

required to be either kinematically or dynamically feasible
but merely be a visual proxy of the desired motion. We
only need the keyframes of the base pose (position and
orientation) and, optionally, the contact sequence (for well-
defined contact patterns) in a desired motion’s reference. As
shown in Fig 3 (top), we generate the rough reference motion
by linearly interpolating between user-defined keyframes. We
can optionally specify the reference contact sequence through
a binary signal for each leg to obtain locomotion modes with
well-defined contact patterns. For instance, a reference for
walking mode defined as constant base height with increasing
position value along the heading direction seldom results
in a distinct left-right marching motion, making it hard to
distinguish between walking and hopping. Note that there
are no reference trajectories for the actuated states (joint
DOFs), thus allowing the policy to learn the required actions
to realize without overspecified constraints.

B. Mode Encoder

Unlike prior works, [11], [13], [19] which have a one-
to-one correspondence between the agent’s state and latent
trajectories, we propose to encode a complete reference
motion into a single point in the latent space before the
agent’s training. By decoupling the temporal correspondence,
the policy has direct access to the compressed past and
future intent, which is agnostic to its current state. As shown
later in the paper, a state-agnostic mode command helps
us generate complex behaviors (as in Fig. 1) with discrete
switching through simple mode planning methods. Since the
reference motions are time-series data with a strong temporal
relationship between each point in the trajectory, we use a
Long Short-Term Memory (LSTM) Autoencoder to learn our
mode embeddings. Additionally, the architecture of an LSTM
network is independent of the input trajectory’s length,
which is of practical significance. Unlike periodic (walk)
or steady state (stay idle) modes, where we can generate
reference motions of arbitrary length, transient motions such

Fig. 3: The locomotion modes (from left to right): walk, leap,
and launch with the rough keyframe references (top) and
corresponding actual motion by the policy (bottom).

as jumping on a block are time-critical, thus having a defined
trajectory length. As shown in Fig 2 (top) , we train an
LSTM Encoder, Ey and Decoder, D, pair based on the
reconstruction loss below

min||.X — X2 (1)

where X is a reference motion of length T and X is
its reconstruction. Thus, Ejy recurrently takes in the entire
trajectory one timestep at a time and generates a single
latent vector z as output. A repeat vector is then constructed,
making T identical copies of z and sent as an input to the
decoder along with the hidden state being propagated inter-
nally in a recurrent fashion, thus outputting a reconstruction
of the X trajectory, X of the same length. We use the open-
source implementation sequitur! for training the autoencoder,
with identical encoder and decoder networks with a single

Thttps://github.com/shobrook/sequitur
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Fig. 4: The rough reference motions (top) with the corresponding reconstructions (centre) and learnt embeddings(bottom)

hidden layer of 32 neurons and no activations. As seen Fig. 4
the mode encoder effectively encodes a complete trajectory
into a single latent vector thereby leading to a compact
representation of the desired behaviors.

C. Multimodal Policy

In contrast to traditional locomotion policies for legged
robots that are command-conditioned on the base’s lateral,
longitudinal, and yaw velocities, we use a latent-conditioned
policy, m(als, z) where z € Z, is a latent space of behav-
iors/modes. Prior approaches simultaneously discover and
learn such skills from scratch [20] or morphologically accu-
rate motion capture data [11], [13], [21], which are unsuitable
for robot control. Thus we decoupled the training first to
learn the latent mode encodings (as explained in Sec. II-
B, II-A) and then trained a policy conditioned to those
encodings to imitate the corresponding locomotion mode. We
control the policy only through mode commands and relax
the need to accurately track velocity commands as it is often
merely a surrogate objective used to satisfy high-level task
objectives. An indirect way to modulate the robot velocity
and a method to plan compositional locomotion tasks like
parkour is discussed in Sec III. Described below are the
specific details pertaining to the policy.

1) Observation Space: The observation space to our pol-
icy, o consists of a subset of the robot’s proprioceptive state
feedback s;, a clock signal cl;, and the mode command (as
a latent mode) m;. Since any locomotion mode is invariant
to the translational DOFs in the transverse plane (typically
denoted by x and y), s; € R3' comprises the complete state
of the robot dynamics exempting the free-floating torso’s
x and y position in the world coordinates. The orientation
is expressed as quaternions, the translation velocity of the
torso link is transformed to the base frame, and the torso’s z
is sent relative to the current support plane. As mentioned,
my is a latent vector encoding the given locomotion mode’s
reference motion. While m; provides information on the
desired locomotion mode, the policy has no explicit feedback
on its progress along that motion. To this end, we define a
phase variable, ¢, which runs from 0 to 1, marking the start
and end of a given mode and construct cl; = [sin ¢, cos ¢].
Thus, o; = [el, my, s¢] is a 33 + n,, dimensional vector
where n,, is length of the latent mode vector. While n,,, can
be of arbitrary length, we empirically found n,, = 4 to be
the minimum sufficient value for our results.

2) Action Space: Similar to the conventional practices, we
define the action space, a; € R'? to be motor targets to the
10 actuated DOFs (5 joints per leg) of the robot. The final
applied motor torques, 7 are then given by

7= Ky(a] —q]) — Ka(q]) )

where 7, qf are the index and position of a given joint,
K, =30 and Ky = 0.5 are fixed joint PD gains. We clip 7
at 30 Nm, which is the torque limit of our actual robot but
do not apply any joint angle limits to a;, as it is not strictly
the position target and can only be intuitively interpreted so.
The feasibility of our motions is unaffected by the absence
of joint angle limits as we do not perform position control
but directly send torque commands.

3) Reward Function: With a well-defined objective of
imitating the desired torso states and optionally a contact
sequence, we use the following reward function.

—kpllers |2 —kolleroll2

T = wpe + wye + wee Fellerell2(3)

where w = [wp,w,,w,.] are the scaling gains, k =
[kp, ko, k] are the sensitivity gains, erp,er, are the error
in base position and orientation and er. is the error in
contact state. The possible values of contact states are
[0,0],[1,0],[0,1],[1,1] which correspond to flight, single
support(left), single support(right) and double support phases
respectively. The w used for each experiment can be found
in table I, while the sensitivity gains are kept at k = [5, 5, 2]
for all experiments.

D. Adaptive Mode and Transition Sampling

With the structure of our policy extablished, we now
explain our proposed adaptive sampling-based training in
Algo. 1 to realize a consistent performance across modes and
transitions. Unlike prior approaches of curriculum learning to
gradually learn the increasing difficulty of a single behavior
[2], comparing the complexities across different locomotion
modes and defining an optimal learning order is not straight-
forward. However, there is indeed an inherent difference in
complexity that requires more exposure to difficult instances
while training. Hence, we propose to adaptively sample the
mode commands in an episode such that the mode and
the transition in which the policy performs the poorest are
chosen more frequently. As shown in Algo. 1, during each
episode, we choose an initial mode m; and a final mode mg,
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based on skewed distributions p; and p; respectively. p;, ps
are constructed based on the records of the policy’s returns
across each mode (R;) and each transition (Rf). Note that
while p; provides the marginal probability of choosing m;, p;
provides the conditional probability of choosing my given my;.
We compute the switching timestep ts, based on a randomly
chosen clip®: clip, and a phase: ¢s. The above sampling
technique introduces two parameters, v and ¢, for each
distribution, p; and p;. v prevents the distributions from being
myopic (only dependent on the previous episode’s returns)
and rather be computed based on the history of returns
corresponding to a given mode/transition, preventing the
policy from alternatively learning and unlearning. Unlearning
or catastrophic forgetting can also arise due to a learnt mode
not being sampled further down the training. To alleviate this,
we use € to add a small offset, thereby ensuring the mode
with the best performance has a non-zero, yet the smallest
probability of being chosen. For the results below, the values
of € = 0.2 and y;, vy varies as 0.2,0.4,0.8 across different
training.

E. Task-based Mode Planner

Having learnt a policy that can successfully realize a
multitude of locomotion modes and transitions, we now
showcase a method to rapidly compose mode plans to solve
high-level tasks such as traversing a non-trivial terrain that
calls for parkour-like locomotion. In this work, we use a
rudimentary task-based mode planner as a proof of concept to
show the ease of composing complex locomotion maneuvers
with a trained multimodal policy. We parameterize the mode
plan as a zero-order spline (as in Fig. 9) and formulate a
collocation problem by defining knots of the spline at discrete
time intervals. Thus, the planning problem is to find the
optimal sequence of modes to maximize a task objective
using the multimodal policy. We consider the reaching task
where the objective is for the robot to reach a fixed goal
position in the world frame. To solve this optimization, we
use tabular Q-learning to obtain an optimal policy: the mode
plan. The task MDP has the knot index as the state and
the mode index at that knot as the action, with the reward
function defined as

kdt
max E e~ 12 =pa (1) %)
mMo,..., Mg
t=0

where, p9°* p,(t) are the goal and current base position,
k is the total number of knots and dt is the discretisa-
tion period for the planner. The optimal plan is obtained
through Monte Carlo rollouts with a given terrain type in
the environment. Note that the mode planner has neither
the exteroceptive feedback of the underlying terrain nor the
proprioceptive feedback of the robot states. Thus the planner
only generates an open-loop time-dependent plan of modes
to be performed by the multimodal policy at the low level. A
summary of the experiments conducted is tabulated in table

2a single cycle of a locomotion mode

Algorithm 1 Adaptive Sampling based Training

Require: B = {By, ..., By}
dataset of ‘n’linear keyframe interpolated demonstrations
i) encoder training:

1: train an LSTM Autoencoder on B as described in Sec
II-B, to obtain latent encodings: z, = {my, ..., m,}
corresponding to the motions {By, ..., By}

ii) policy training:
¢ < initialise policy
initialise initial mode returns, Ri(m;) = 0, R; € R"*?
initialise final mode returns, Re(m;,m;) = 0, R; € R™*"
while not done do
p; = RETURNS2PROB(R;)
m; ~ p;(m)
p; = RETURNS2PROB(R(m;))
my ~ pe(m | m;)
os ~ U{0.25, 0.5, 0.75}
clip, ~ U{0, 1}
12: compute t; based on ¢, clip
m 0<t<ty
my t<t<T
14: ¢+ {(op a1 o1}, 0, = [cl, mg, s
roll-out with 7¢(als,m,cl) and mgequence
15: perform PPO update of 7¢ using ¢
16: Ri(mi) +— 7R+ Z;l;(l) Iy
17: Re(m;,my) < ~veRe(m;,me)+ ZtT:(l) Ii
18: end while
19: function RETURNS2PROB(R) > R is a vector
20: k < -R > all operations are element-wise
21: k < k - min(k)

D A

—_
—_ o

13: Mgequence =

n k=d maxgy A0
0 else

23: k+k+ i(

24: p=1 2ok Ziwk #0
U{0,1, ... n} else

25: return p

26: end function

III, where we ran five ideal trials of 100 episodes in parallel,
and the best plan was chosen for each task.

III. RESULTS

In this section, we now present the exhaustive list of
simulation results. We use the MulJoCo physics engine
for simulation and a custom implementation® of PPO for
training. Each training is run for a wall-clock time of two
days when deployed with 8 parallel CPU workers. First,
we showcase the consistent performance of the multimodal
policy across modes and transitions, followed by integration
with a mode planner for seamlessly composing mode plans
to solve high-level reaching tasks.

3https://github.com/osudrl/RSS-2020-learning-memory-based-control
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policy mosjgs in no. ques, rgward
training transitions gains, w
- idle, walk(f,b,Lr), 9, 81 [0.5,0.5,0]
L leap(f,b,1,r)
- idle, walk(f only), 4,16 [0.5,0.5,0]
2 leap(f only), launch
idle, walk(f only), 4, 16 [0.35,0.35,0.3]
3 hop(f only), leap(f only)

TABLE I: Training configuration for different experiments,
where f, b, 1, r stand for the front, back, left and right
depicting the direction of motion w.r.t the robot

olic sampling technique | "I MRA norm. MRA
policy plng q all modes all transitions

71 (9 modes, uniform 0.81 4+ 0.06 0.71 = 0.09
81 transitions) adaptive 0.87+£0.04 | 0.77+0.05
72 (4 modes, uniform 0.87 0.1 0.64 +£0.18
16 transitions) adaptive 0.91+£0.05 | 0.79+0.24

TABLE II: Normalized Mean Returns Across (MRA) all
modes and all transitions for uniform vs adaptive sampling

A. Performance across diverse modes

In order to highlight our key contributions, we train three
different multimodal policies, namely 71, 7o, and 73 whose
training configurations are tabulated in table I. For compari-
son, we conduct each of the experiments with both uniform
sampling (m;¢ ~ Ujs) and our proposed adaptive sampling
of modes and transitions (mj¢ ~ pi,f). The attached video
shows that the proposed framework successfully realizes the
different locomotion modes, such as periodic: walk, leap,
transient: launch, and steady-state: idle, from the rough ref-
erence demonstrations. Quantitatively the mean performance
across modes is computed as the mean normalized returns
over the rollouts for each mode, as shown in table II. We
conduct the following comparisons to study the implications
of our proposed design choices.

Choice of behavior encoding: Similar to [10], [20], for
a baseline, we train by uniformly sampling the different
locomotion modes in each episode that were parametrized
as latent vectors with one-hot encoding. We compare our
approach with the baseline by keeping everything the same
and swapping the parameterization for learnt latent encod-
ings. A key observation was that the policies learnt with
one-hot encoding resulted in indistinguishable locomotion
modes, i.e., mode aliasing. The attached video and Fig. 6
(left) show that the baseline policy results in a similar base
height profile for both walk and leap modes. On the other
hand, policy trained with learnt latent encoding Fig. 7 (left),
results in a distinct motion for each mode where there is a
well-defined rise and fall of the base height for the leap mode
while it is kept constant at the nominal value for the walk
mode, as desired. We hypothesize that the features in our
latent encoding reflect crucial attributes of the locomotion
mode that aids the policy in realizing discernible behaviors
successfully.

Choice of mode sampling: As mentioned, all three exper-
iments were conducted and trained with uniform (baseline)
and adaptive (proposed) sampling. Pertaining to the modes,
Fig. 5 (top) shows that the policies trained with adaptive

300 4
uniform
4@ 200 adaptive
=t E ! l )
= Al
= 100 1 WI”
=
U 4
z 200 4 —— uniform
2 adaptive
=
- E 100 4 :M
&= g i
=
=
0 4 Fe
0 200 400 600 800

policy iterations along training

Fig. 5: Mean Returns Across (MRA) various modes (top) and
transitions (bottom) along training
uniform

. mode
encoding [gampling

multiple unimodal

lines: . .
baselines policies

learnt latent |2daptive

. mode
encoding sampling

single multmodal

ours: .
policy

Fig. 6: Simulation results of assorted comparisons between
baseline (top) and our (bottom) design choices: 1) left: the
distinction between walk and leap modes (mode aliasing)
2) center: failure in a subset of modes, i.e., leap-left (mode
collapse) 3) right: commanded mode transitions as in Fig. 8

mode sampling have a higher mean return across all modes
as compared to sampling modes uniformly along the training.
This effect is particularly significant, for a higher number of
modes, as in the case shown in Fig. 5, which was of 7 with
9 modes in training. Furthermore, uniform sampling often
leads to mode collapse, where the policy only succeeds in
a subset of modes while failing or performing poorly in the
rest, which can be seen in Fig. 6(center). m; trained with
uniform sampling was successful in every other mode in the
training but leap-left mode where the resulting base height
profile fails to be anywhere close to the reference motion
shown in blue in Fig. 7 (center). In contrast, the adaptive
sampling variant successfully imitates the reference to the
best extent permitted by the robot’s dynamics across all
modes, as seen in the attached video and Fig. 7 (center).
Trained with and without contact sequence: From 7,
w9, wWe can observe that a rough demonstration with just
the keyframes for the base pose is sufficient to realize the
locomotion modes without needing a reference of either the
joint or contact states. The attached video shows that this
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training leads to asymmetric yet natural-looking gaits for
periodic modes like walk and leap. However, we often need
well-defined contact sequences to locomote on constrained
terrains such as stepping stones. To this end, we illustrate
the flexibility of our framework by integrating a rough
demonstration of the contact state along with the base pose,
in ms. Particularly, with the same base pose reference of
constant base height, we construct two modes: hop and walk,
by only changing the reference contact states between the
legs to be in and out of synchronization, respectively. The
video results of 73 show the resultant symmetric well-defined
walking and hopping behavior upon using a contact sequence
reference.

Frequency of motion in modes: The current framework
with mode-conditioned policies lacks granular control over
certain states ( e.g., walking velocity), unlike the current
SOTA command-conditioned policies and MPCs. Though
we justify this trade-off by realizing fruitful high-level tasks
through mode planning, preliminary investigations show that
we can crudely control the frequency or rate of motion
by modulating the clock rate of the policy’s clock input.
Specifically, in the leap mode, increasing the clock signal
frequency led to a direct increase in the heading speed of
the robot. In Fig. 7 (right), the heading velocity is double
(1.0 m/s) the nominal value of 0.5 m/s when we increase
the clock rate by a factor of 2. This effect saturates at thrice
the nominal clock rate at a velocity of ~ 1.2 m/s, which
we believe is due to the physical limits of the robot’s form
factor and the nature of the given leap mode.

B. Performance across all the inherent transitions

As stated before, the major advantage of learning a single
policy to operate on multiple locomotion modes lies in
inherently realizing smooth inter-mode transition maneuvers.
We elucidate the above hypothesis and the benefit of training
with adaptive transition sampling below

Emergent non-trivial transitions: We first showcase the
significance of learning a single multimodal policy with
implicit transitions as opposed to having multiple unimodal
policies and explicit transitions. For the baseline akin to
current SOTA, we train 4 different unimodal policies that
specialize in a single mode, namely: walk, leap, launch, and
idle, respectively, and verified that these policies successfully
realized their respective modes when tested without any
transitions. However, when we try to compose motions with
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Fig. 8: Comparison of base height profiles for motion shown
in Fig. 6 (right), with mode transitions: walk — launch,
launch — leap, and leap — idle

transitions such as pacing and jumping on top of a box, the
optimal transition time and maneuver are not straightforward
to obtain. Hence, when we discreetly switch between the
walking and launch unimodal policies, the baseline fails as
the states faced during the transition are out of distribution
for the launch policy, as seen in the attached video and
Fig. 6 (right). In contrast, Fig. 8 shows that the multimodal
policy results in a feasible and emergent transition maneuver
(zoomed-in view) to perform the parkour-like task with the
transitions: walk — launch, launch — leap, and leap — idle.
Thus, the multimodal policy successfully stitches together a
smooth sequence of distinct locomotion modes even with
discrete switching commands.

Choice of transitions sampling: Similar to the case of
mode sampling, uniformly sampling transitions in training
leads to transition collapse, thus failing in a subset of
all possible transitions. To circumvent this, extending the
adaptive sampling to transitions, we see higher mean returns
over all the transitions than uniform sampling along training
in Fig. 5 (bottom). Furthermore, we can also see that uniform
sampling falls into a local optimum where it is successful
in specific transitions but sub-optimal in the rest leading to
high returns early on in training (point denoted with a star in
Fig. 5 (bottom) ). However, it never recovers from this local
optima and thus results in transition collapse. In contrast,
adaptive sampling of transitions ensures consistent perfor-
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goal i
] pd dt solve time
Experiment (m) k (sec) (mins:sec)
. goal __.
reach pi - witha | 15500, 057 | 11 | 03 | 3:05+0:08
gap in between
goal __ -
reach pi = with &\ 15 60 057 | 11 | 03 | 333 + 0:10
plateau in between
reach p%°®! with a gap : :
and block in between [20.00.09) | 30 ] 015 | 241 & 0:20

TABLE III: Summary of experiments for mode planning

mance across all transitions and increases along the training,
leading to compelling and reactive transition maneuvers, as
seen in the supplementary video and table II.

C. Rapid mode-planning for high-level tasks

As presented in the attached video, we can successfully
traverse challenging terrains (as in Fig. 1) with discreetly-
switched open-loop plans (as in Fig. 9) generated by the
mode planner. The planner generates agile parkour-like mo-
tions by exploiting the multimodal policy’s different loco-
motion modes to overcome gaps of width 0.45 m, plateaus
of height 0.2 m, and blocks of height 0.4. The experiment
shown in Fig. 1 demonstrates a leap of width 102% the
maximum leg length and a jump of height 80% the nominal
COM height of our mini-biped platform. As seen in table
III, thanks to the low-dimensional and compact Q-table, we
can rapidly compose these complex behavior compositions
(as in Fig. 1 with the corresponding plan in Fig. 9) in a few
minutes, thus being capable of planning in real-time.

IV. CONCLUSION

This paper presents a novel framework for learning multi-
modal bipedal locomotion with periodic, steady-state, and
transient behaviors from rough reference motion clips. A
single policy trained with learnt latent modes and adaptive
sampling has been shown to consistently perform diverse
locomotion skills and successful transitions despite their var-
ied complexities by alleviating mode collapse and aliasing.
Effectively caching solutions across distinct regions of the
state space, the multimodal policy guarantees feasible tran-
sition maneuvers, thereby radically decreasing the compute
load and solving time of a high-level planner to compose

smooth multimodal behaviors. Simulation results show that a
primitive open-loop task-based planner, in conjugation with
the trained multimodal policy, can result in agile parkour-
like behaviors to traverse challenging terrains with gaps,
plateaus, and blocks. Since transferability to hardware was
not a focus of this work, extensive reward shaping to improve
the quality of the motion (to avoid high impact, jittery
motions, etc) was absent, which is a work in progress.
Future work will include developing a sophisticated mode
planner utilizing exteroceptive feedback of the environment
for tackling contact-rich loco-manipulation tasks.
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