
Published as a conference paper at ICLR 2024

ON THE STABILITY OF EXPRESSIVE POSITIONAL EN-
CODINGS FOR GRAPHS

Yinan Huang∗∗,1, William Lu∗,2, Joshua Robinson3, Yu Yang4, Muhan Zhang5,
Stefanie Jegelka6, Pan Li1
1Georgia Institute of Technology, 2Purdue University, 3Stanford University, 4Tongji University,
5Peking University, 6 MIT CSAIL
{yhuang903, panli}@gatech.edu, lu909@purdue.edu,
joshrob@cs.stanford.edu, yangyu0879@tongji.edu.cn, muhan@pku.edu.cn, stefje@mit.edu

ABSTRACT

Designing effective positional encodings for graphs is key to building powerful
graph transformers and enhancing message-passing graph neural networks. Al-
though widespread, using Laplacian eigenvectors as positional encodings faces
two fundamental challenges: (1) Non-uniqueness: there are many different eigen-
decompositions of the same Laplacian, and (2) Instability: small perturbations to
the Laplacian could result in completely different eigenspaces, leading to unpre-
dictable changes in positional encoding. Despite many attempts to address non-
uniqueness, most methods overlook stability, leading to poor generalization on un-
seen graph structures. We identify the cause of instability to be a “hard partition”
of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings
(SPE), an architecture for processing eigenvectors that uses eigenvalues to “softly
partition” eigenspaces. SPE is the first architecture that is (1) provably stable, and
(2) universally expressive for basis invariant functions whilst respecting all sym-
metries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least
as expressive as existing methods, and highly capable of counting graph struc-
tures. Finally, we evaluate the effectiveness of our method on molecular property
prediction, and out-of-distribution generalization tasks, finding improved general-
ization compared to existing positional encoding methods. Our code is available
at https://github.com/Graph-COM/SPE.

1 INTRODUCTION

Deep learning models for graph-structured data such as Graph Neural Networks (GNNs) and Graph
Transformers have been arguably one of the most popular machine learning models on graphs, and
have achieved remarkable results for numerous applications in drug discovery, computational chem-
istry, and social network analysis, etc. (Kipf & Welling, 2017; Bronstein et al., 2017; Duvenaud
et al., 2015; Stokes et al., 2020; Zhang & Chen, 2018; Ying et al., 2021; Rampášek et al., 2022b).
However, there is a common concern about these models: the limited expressive power. For exam-
ple, it is known that message-passing GNNs are at most expressive as the Weisfeiler-Leman test (Xu
et al., 2019; Morris et al., 2019) in distinguishing non-isomorphic graphs, and in general cannot even
approximate common functions such as the number of certain subgraph patterns (Chen et al., 2020;
Arvind et al., 2020; Tahmasebi et al., 2020; Huang et al., 2023). These limitations could signifi-
cantly restrict model performance, e.g., since graph substructures can be closely related to the target
function in chemistry, biology and social network analysis (Girvan & Newman, 2002; Granovetter,
1983; Koyutürk et al., 2004; Jiang et al., 2010; Bouritsas et al., 2022).

To alleviate expressivity limitations, there has been considerable interest in designing effective posi-
tional encodings for graphs (You et al., 2019; Dwivedi & Bresson, 2021; Wang et al., 2022a). Gen-
eralized from the positional encodings of 1-D sequences for Transformers (Vaswani et al., 2017),
the idea is to endow nodes with information about their relative position within the graph and thus
make them more distinguishable. Many promising graph positional encodings use the eigenvalue
decomposition of the graph Laplacian (Dwivedi et al., 2023; Kreuzer et al., 2021). The eigenvalue

∗equal contribution

1

https://github.com/Graph-COM/SPE

Published as a conference paper at ICLR 2024

decomposition is a strong candidate because the Laplacian fully describes the adjacency structure
of a graph, and there is a deep understanding of how these eigenvectors and eigenvalues inherit this
information (Chung, 1997). However, eigenvectors have special structures that must be taken into
consideration when designing architectures that process eigenvectors.

Firstly, eigenvectors are not unique: if v is an eigenvector, then so is −v. Furthermore, when
there are multiplicities of eigenvalues then there are many more symmetries, since any orthogonal
change of basis of the corresponding eigenvectors yields the same Laplacian. Because of this ba-
sis ambiguity, neural networks that process eigenvectors should be basis invariant: applying basis
transformations to input eigenvectors should not change the output of the neural network. This
avoids the pathological scenario where different eigendecompositions of the same Laplacian pro-
duce different model predictions. Several prior works have explored sign and basis symmetries of
eigenvectors. For example, Dwivedi & Bresson (2021); Kreuzer et al. (2021) randomly flip the sign
of eigenvectors during training so that the resulting model is robust to sign transformation. Lim
et al. (2023) instead design new neural architectures that are invariant to sign flipping (SignNet) or
basis transformation (BasisNet). Although these basis invariant methods have the right symmetries,
they do not yet account for the fact that two Laplacians that are similar but distinct may produce
completely different eigenspaces.

This brings us to another important consideration, that of stability. Small perturbations to the input
Laplacian should only induce a limited change of final positional encodings. This “small change of
Laplacians, small change of positional encodings” actually generalizes the previous concept of basis
invariance and proposes a stronger requirement on the networks. But this stability (or continuity)
requirement is a great challenge for graphs, because small perturbations can produce completely
different eigenvectors if some eigenvalues are close (Wang et al. (2022a), Lemma 3.4). Since the
neural networks process eigenvectors, not the Laplacian matrix itself, they run the risk of being
highly discontinuous with respect to the input matrix, leading to an inability to generalize to new
graph structures and a lack of robustness to any noise in the input graph’s adjacency. In contrast,
stable models enjoy many benefits such as adversarial robustness (Cisse et al., 2017; Tsuzuku et al.,
2018) and provable generalization (Sokolić et al., 2017).

Unfortunately, existing positional encoding methods are not stable. Methods that only focus on
sign invariance (Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Lim et al., 2023), for instance,
are not guaranteed to satisfy “same Laplacian, same positional encodings” if multiplicity of eigen-
values exists. Basis invariant methods such as BasisNet are unstable because they apply different
neural networks to different eigensubspaces. In a high-level view, they perform a hard partitioning
of eigenspaces and treat each chunk separately (see Appendix C for a detailed discussion). The
discontinuous nature of partitioning makes them highly sensitive to perturbations of the Laplacian.
The hard partition also requires fixed eigendecomposition thus unsuitable for graph-level tasks. On
the other hand, Wang et al. (2022a) proposes a provably stable positional encoding. But, to achieve
stability, it completely ignores the distinctness of each eigensubspaces and processes the merged
eigenspaces homogeneously. Consequently, it loses expressive power and has, e.g., a subpar perfor-
mance on molecular graph regression tasks (Rampášek et al., 2022a).

Main contributions. In this work, we present Stable and Expressive Positional Encodings (SPE).
The key insight is to perform a soft and learnable “partition” of eigensubspaces in a eigenvalue
dependent way, hereby achieving both stability (from the soft partition) and expressivity (from
dependency on both eigenvalues and eigenvectors). Specifically:

• SPE is provably stable. We show that the network sensitivity w.r.t. the input Laplacian is de-
termined by the gap between the d-th and (d + 1)-th smallest eigenvalues if using the first d
eigenvectors and eigenvalues. This implies our method is stable regardless of how the used d
eigenvectors and eigenvalues change.

• SPE can universally approximate basis invariant functions and is as least expressive as existing
methods in distinguishing graphs. We also prove its capability in counting graph substructures.

• We empirically illustrate that introducing more stability helps generalize better but weakens the
expressive power. Besides, on the molecule graph prediction datasets ZINC and Alchemy, our
method significantly outperforms other positional encoding methods. On DrugOOD (Ji et al.,
2023), a ligand-based affinity prediction task with domain shifts, our method demonstrates a
clear and constant improvement over other unstable positional encodings. All these validate the
effectiveness of our stable and expressive method.

2

Published as a conference paper at ICLR 2024

2 PRELIMINARIES

Notation. We always use n for the number of nodes in a graph, d ≤ n for the number of eigenvectors
and eigenvalues chosen, and p for the dimension of the final positional encoding for each node. We
use ∥·∥ to denote the L2 norm of vectors and matrices, and ∥·∥F for the Frobenius norm of matrices.

Graphs and Laplacian Encodings. Denote an undirected graph with n nodes by G = (A,X),
where A ∈ Rn×n is the adjacency matrix and X ∈ Rn×p is the node feature matrix. Let D =
diag([

∑n
j=1 Ai,j]

n
i=1) be the diagonal degree matrix. The normalized Laplacian matrix of G is a

positive semi-definite matrix defined by L = I −D−1/2AD−1/2. Its eigenvalue decomposition
L = V diag(λ)V ⊤ returns eigenvectors V and eigenvalues λ, which we denote by EVD(L) =
(V ,λ). In practice we may only use the smallest d ≤ n eigenvalues and eigenvectors, so abusing
notation slightly, we also denote the smallest d eigenvalues by λ ∈ Rd and the corresponding d
eigenvectors by V ∈ Rn×d. A Laplacian positional encoding is a function that produces node
embeddings Z ∈ Rn×p given (V ,λ) ∈ Rn×d × Rd as input.

Basis invariance. Given eigenvalues λ ∈ Rd, if eigenvalue λi has multiplicity di, then the cor-
responding eigenvectors Vi ∈ Rn×di form a di-dimensional eigenspace. A vital symmetry of
eigenvectors is the infinitely many choices of basis eigenvectors describing the same underlying
eigenspace. Concretely, if Vi is a basis for the eigenspace of λi, then ViQi is, too, for any orthog-
onal matrix Qi ∈ O(di). The symmetries of each eigenspace can be collected together to describe
the overall symmetries of V in terms of the direct sum group O(λ) := ⊕iO(di) = {⊕iQi ∈
R

∑
i di×

∑
i di : Qi ∈ O(di)}, i.e., block diagonal matrices with ith block belonging to O(di).

Namely, for any Q ∈ O(λ), both (V ,λ) and (V Q,λ) are eigendecompositions of the same un-
derlying matrix. When designing a model f that takes eigenvectors as input, we want f to be basis
invariant: f(V Q,λ) = f(V ,λ) for any (V ,λ) ∈ Rn×d × Rd, and any Q ∈ O(λ).

Permutation equivariance. Let Π(n) = {P ∈ {0, 1}n×n : PP⊤ = I} be the permutation
matrices of n elements. A function f : Rn → Rn is called permutation equivariant, if for any
x ∈ Rn and any permutation P ∈ Π(n), it satisfies f(Px) = P f(x). Similarly, f : Rn×n → Rn

is said to be permutation equivariant if satisfying f(PXP⊤) = P f(X).

3 A PROVABLY STABLE AND EXPRESSIVE PE

In this section we introduce our model Stable and Expressive Positional Encodings (SPE). SPE
is both stable and a maximally expressive basis invariant architecture for processing eigenvector
data, such as Laplacian eigenvectors. We begin with formally defining the stability of a positional
encoding. Then we describe our SPE model, and analyze its stability. In the final two subsections we
show that higher stability leads to improved out-of-distribution generalization, and show that SPE is
a universally expressive basis invariant architecture.

3.1 STABLE POSITIONAL ENCODINGS

Stability intuitively means that a small input perturbation yields a small change in the output. For
eigenvector-based positional encodings, the perturbation is to the Laplacian matrix, and should result
in a small change of node-level positional embeddings.
Definition 3.1 (PE Stability). A PE method PE : Rn×d×Rd → Rn×p is called stable, if there exist
constants c, C > 0, such that for any Laplacian L,L′,

∥PE(EVD(L))− P∗PE(EVD(L′))∥F ≤ C ·
∥∥L− P∗L

′P⊤
∗
∥∥c
F
, (1)

where P∗ = argminP∈Π(n)

∥∥L− PL′P⊤
∥∥
F

is the permutation matrix matching two Laplacians.

It is worth noting that here we adopt a slightly generalized definition of typical stability via Lipschitz
continuity (c = 1). This definition via Hölder continuity describes a more comprehensive stability
behavior of PE methods, while retaining the essential idea of stability.
Remark 3.1 (Stability implies permutation equivariance). Note that a PE method is permutation
equivariant if it is stable: simply let L = PL′P⊤ for some P ∈ Π(n) and we obtain the desired
permutation equivariance PE(EVD(PLP⊤)) = P · PE(EVD(L)).

3

Published as a conference paper at ICLR 2024

𝝀

d

𝑉

n × d

×

𝑉

n × d

diag 𝜙ℓ 𝝀 ℓ=1,2,…,𝑚

d×d

𝑉⊤

d×n

× =

𝑉diag 𝜙ℓ 𝜆 𝑉⊤ ℓ=1,2,…,𝑚

n×n×m

𝜌

𝑍

n×p

𝜙1(𝝀)

d

𝜙2(𝝀)

d

𝜙𝑚(𝝀)

d

. . .

Input Step 1

Step 2 Output

Laplacian
Decomposition

𝐿
𝝀

d

≤ 𝜖

Stability property

equivariant

𝐿 𝑃∗𝐿
′𝑃∗
⊤

−

F

𝑐
𝑍 𝑃∗𝑍

′

−

F

≤ 𝑐𝑜𝑛𝑠𝑡. ⋅ 𝜖𝑐⇒

Figure 1: Illustration of the SPE architecture (first two rows) and its stability property (last row).
The input graph is first decomposed into eigenvectors V and eigenvalues λ. In step 1, a permutation
equivariant ϕℓ act on λ to produce another vector ϕℓ(λ). In step 2, we compute V diag{ϕℓ(λ)}V ⊤

for each ϕℓ and concatenate the results into a tensor. This tensor is input into a permutation equiv-
ariant network ρ to produce final node positional encodings.

Stability is hard to achieve due to the instability of eigenvalue decomposition—a small perturbation
of the Laplacian can produce completely different eigenvectors (Wang et al. (2022a), Lemma 3.4).
Since positional encoding models process the eigenvectors (and eigenvalues), they naturally inherit
this instability with respect to the input matrix. Indeed, as mentioned above, many existing positional
encodings are not stable. The main issue is that they partition the eigenvectors by eigenvalue, which
leads to instabilities. See Appendix C for a detailed discussion.

3.2 SPE: A POSITIONAL ENCODING WITH GUARANTEED STABILITY

To achieve stability, the key insight is to avoid a hard partition of eigensubspaces. Simultaneously,
we should fully utilize the information in the eigenvalues for strong expressive power. Therefore,
we propose to do a “soft partitioning” of eigenspaces by leveraging eigenvalues. Instead of treat-
ing each eigensubspace independently, we apply a weighted sum of eigenvectors in an eigenvalue
dependent way. If done carefully, this can ensure that as two distinct eigenvalues converge—these
are exactly the degenerate points creating instability—the way their respective eigenvectors are pro-
cessed becomes more similar. This means that if two eigenvectors are “swapped”, as happens at
degenerate points, the model output does not change much. The resulting method is (illustrated in
Figure 1):

SPE : SPE(V ,λ) = ρ
(
V diag(ϕ1(λ))V

⊤,V diag(ϕ2(λ))V
⊤, ...,V diag(ϕm(λ))V ⊤), (2)

where the input is the d smallest eigenvalues λ ∈ Rd and corresponding eigenvectors V ∈ Rn×d,
m is a hyper-parameter, and ϕℓ : Rd → Rd and ρ : Rn×n×m → Rn×p are always permutation
equivariant neural networks. Here, permutation equivariance means ϕℓ(Pλ) = Pϕℓ(λ) for P ∈
Π(d) and ρ(PAP⊤) = P ρ(A) for any P ∈ Π(n) and input A. There are many choices of
permutation equivariant networks that can be used, such as element-wise MLPs or Deep Sets (Zaheer
et al., 2017) for ϕℓ, and graph neural networks for ρ. The permutation equivariance of ϕℓ and ρ
ensures that SPE is basis invariant.

Note that in Eq. (2), the term V diag(ϕℓ(λ))V
⊤ looks like a spectral graph convolution op-

erator. But they are methodologically different: SPE uses V diag(ϕℓ(λ))V
⊤ to construct posi-

tional encodings, which are not used as a convolution operation to process node attributes (say as
V diag(ϕℓ(λ))V

⊤X). Also, ϕℓ’s are general permutation equivariant functions that may express the

4

Published as a conference paper at ICLR 2024

interactions between different eigenvalues instead of elementwise polynomials on each eigenvalue
separately which are commonly adopted in spectral graph convolution.

It is also worthy noticing that term V diag(ϕℓ(λ))V
⊤ will reduce to hard partitions of eigenvec-

tors in the ℓ-th eigensubspace if we let [ϕℓ(λ)]j = 1(λj is the l-th smallest eigenvalue). To obtain
stability, what we need is to constrain ϕℓ to continuous functions to perform a continuous “soft
partition”.
Assumption 3.1. The key assumptions for SPE are as follows:

• ϕℓ and ρ are permutation equivariant (see definitions after SPE Eq. (2)).

• ϕℓ is Kℓ-Lipshitz continuous: for any λ,λ′ ∈ Rd, ∥ϕℓ(λ)− ϕℓ(λ
′)∥F ≤ Kℓ ∥λ− λ′∥ .

• ρ is J-Lipschitz continuous: for any [A1,A2, ...,Am] ∈ Rn×n×m and [A′
1,A

′
2, ...,A

′
m] ∈

Rn×n×m, ∥ρ(A1,A2, ...,Am)− ρ(A′
1,A

′
2, ...,A

′
m)∥F ≤ J

∑m
l=1 ∥Aℓ −A′

ℓ∥F .

These two continuity assumptions generally hold by assuming the underlying networks have norm-
bounded weights and continuous activation functions, such as ReLU. As a result, Assumption 3.1 is
mild for most neural networks.

Now we are ready to present our main theorem, which states that continuity of ϕℓ and ρ leads to the
desired stability.
Theorem 3.1 (Stability of SPE). Under Assumption 3.1, SPE is stable with respect to the input
Laplacian: for Laplacians L,L′,

∥SPE(EVD(L))− P∗SPE(EVD(L′))∥F ≤(α1 + α2)d
5/4
√
∥L− P∗LP⊤

∗ ∥F

+
(
α2

d
γ + α3

)∥∥L− P∗LP⊤
∗
∥∥
F
,

(3)

where the constants are α1 = 2J
∑m

l=1 Kℓ, α2 = 4
√
2J
∑m

l=1 Mℓ and α3 = J
∑m

l=1 Kℓ. Here
Mℓ = supλ∈[0,2]d ∥ϕℓ(λ)∥ and again P∗ = argminP∈Π(n)

∥∥L− P∗LP⊤
∗
∥∥
F
. The eigengap γ =

λd+1 − λd is the difference between the (d + 1)-th and d-th smallest eigenvalues, and γ = +∞ if
d = n.

Note that the stability of SPE is determined by both the Lipschitz constants J,Kℓ and the eigengap
γ = λd − λd+1. The dependence on γ comes from the fact that we only choose to use d eigenvec-
tors/eigenvalues. It is inevitable as long as d < n, and it disappears (γ = +∞) if we let d = n. This
phenomenon is also observed in PEG (Wang et al. (2022a), Theorem 3.6).

3.3 FROM STABILITY TO OUT-OF-DISTRIBUTION GENERALIZATION

An important implication of stability is that one can characterize the domain generalization gap by
the model’s Lipschitz constant (Courty et al., 2017; Shen et al., 2018). Although our method satisfies
Hölder continuity instead of strict Lipschitz continuity, we claim that interestingly, a similar bound
can still be obtained for domain generalization.

We consider graph regression with domain shift: the training graphs are sampled from source do-
main L ∼ PS , while the test graphs are sampled from target domain L ∼ PT . With ground-
truth function f(L) ∈ R and a prediction model h(L) ∈ R, we are interested in the gap be-
tween in-distribution error εs(h) = EL∼PS |h(L) − f(L)| and out-of-distribution error εt(h) =
EL∼PT |h(L) − f(L)|. The following theorem states that for a base GNN equipped with SPE,
we can upper bound the generalization gap in terms of the Hölder constant of SPE, the Lipschitz
constant of the base GNN and the 1-Wasserstein distance between source and target distributions.
Proposition 3.1. Assume Assumption 3.1 hold, and assume a base GNN model GNN(L,X) ∈ R
that is C-Lipschitz continuous, i.e.,

|GNN(L,X)−GNN(L′,X ′)| ≤ C min
P∈Π(n)

(∥∥L− PL′P⊤∥∥
F
+ ∥X − PX ′∥F

)
, (4)

for any Laplacians L,L′ and node features X,X ′. Now let GNN take positional encodings
as node features X = SPE(EVD(L)) and let the resulting prediction model be h(L) =
GNN(L,SPE(EVD(L))). Then the domain generalization gap εt(h)− εt(s) satisfies

εt(h)− εs(h) ≤ 2C(1 + α2
d
γ + α3)W (PS ,PT) + 2Cd5/4(α1 + α2)

√
W (PS ,PT), (5)

5

Published as a conference paper at ICLR 2024

where W (PS ,PT) is the 1-Wasserstein distance1.

3.4 SPE IS A UNIVERSAL BASIS INVARIANT ARCHITECTURE

SPE is a basis invariant architecture, but is it universally powerful? The next result shows that SPE
is universal, meaning that any continuous basis invariant function can be expressed in the form of
SPE (Eq. 2). To state the result, recall that SPE(V ,λ) = ρ(V diag(ϕ(λ))V ⊤), where for brevity,
we express the multiple ϕℓ channels by ϕ = (ϕ1, . . . , ϕm).
Proposition 3.2 (Basis Universality). SPE can universally approximate any continuous basis in-
variant function. That is, for any continuous f for which f(V) = f(V Q) for any eigenvalue λ and
any Q ∈ O(λ), there exist continuous ρ and ϕ such that f(V) = ρ(V diag(ϕ(λ))V ⊤).

Only one prior architecture, BasisNet (Lim et al., 2023), is known to have this property. However,
unlike SPE, BasisNet does not have the critical stability property. Section 5 shows that this has
significant empirical implications, with SPE considerably outperforming BasisNet across all eval-
uations. Furthermore, unlike prior analyses, we show that SPE can provably make effective use
of eigenvalues: it can distinguish two input matrices with different eigenvalues using 2-layer MLP
models for ρ and ϕ. In contrast, the original form of BasisNet does not use eigenvalues, though it is
easy to incorporate them.
Proposition 3.3. Suppose that (V ,λ) and (V ′,λ′) are such that V Q = V ′ for some orthogonal
matrix Q ∈ O(d) and λ ̸= λ′. Then there exist 2-layer MLPs for each ϕℓ and a 2-layer MLP ρ,
each with ReLU activations, such that SPE(V ,λ) ̸= SPE(V ′,λ′).

Finally, as a concrete example of the expressivity of SPE for graph representation learning, we show
that SPE is able to count graph substructures under stability guarantee.
Proposition 3.4 (SPE can count cycles). Assume Assumption 3.1 hold and let ρ be 2-IGNs (Maron
et al., 2019b). Then SPE can determine the number of 3, 4, 5 cycles of a graph.

4 RELATED WORKS

Expressive GNNs. Since message-passing graph neural networks have been shown to be at most
as powerful as the Weisfeiler-Leman test (Xu et al., 2019; Morris et al., 2019), there are many
attempts to improve the expressivity of GNNs. We can classify them into three types: (1) high-order
GNNs (Morris et al., 2020; Maron et al., 2019a;b); (2) subgraph GNNs (You et al., 2021; Zhang &
Li, 2021; Zhao et al., 2022; Bevilacqua et al., 2022); (3) node feature augmentation (Li et al., 2020;
Bouritsas et al., 2022; Barceló et al., 2021). In some senses, positional encoding can also be seen as
an approach of node feature augmentation, which will be discussed below.

Positional Encoding for GNNs. Positional encodings aim to provide additional global positional
information for nodes in graphs to make them more distinguishable and add global structural in-
formation. It thus serves as a node feature augmentation to boost the expressive power of general
graph neural networks (message-passing GNNs, spectral GNNs or graph transformers). Existing
positional encoding methods can be categorized into: (1) Laplacian-eigenvector-based (Dwivedi &
Bresson, 2021; Kreuzer et al., 2021; Maskey et al., 2022; Dwivedi et al., 2022; Wang et al., 2022b;
Lim et al., 2023; Kim et al., 2022); (2) graph-distance-based (Ying et al., 2021; You et al., 2019;
Li et al., 2020); and (3) random node features (Eliasof et al., 2023). A comprehensive discussion
can be found in (Rampášek et al., 2022a). Most of these methods do not consider basis invariance
and stability. Notably, Wang et al. (2022a) also studies the stability of Laplacian encodings. How-
ever, their method ignores eigenvalues and thus implements a stricter symmetry that is invariant to
rotations of the entire eigenspace. As a result, the “over-stability” restricts its expressive power.
Bo et al. (2023) propose similar operations as V diag(ϕ(λ))V ⊤. However they focus on a specific
architecture design (ϕ is transformer) for spectral convolution instead of positional encodings, and
do not provide any stability analysis.

Stability and Generalization of GNNs. The stability of neural networks is desirable as it implies
better generalization (Sokolić et al., 2017; Neyshabur et al., 2017; 2018; Bartlett et al., 2017) and

1For graphs, W (ps, pt) := infπ∈Π(PS ,PT)

∫
minP∈Π(n)

∥∥L− PL′P⊤∥∥
F
π(L,L′)dLdL′. Here

Π(PS ,PT) is the set of product distributions whose marginal distribution is PS and PT respectively.

6

Published as a conference paper at ICLR 2024

Table 1: Test MAE results (4 random seeds) on ZINC and Alchemy.

Dataset PE method #PEs #param Test MAE

ZINC

No PE N/A 575k 0.1772±0.0040

PEG 8 512k 0.1444±0.0076

PEG Full 512k 0.1878±0.0127

SignNet 8 631k 0.1034±0.0056

SignNet Full 662k 0.0853±0.0026

BasisNet 8 442k 0.1554±0.0068

BasisNet Full 513k 0.1555±0.0124

SPE 8 635k 0.0736±0.0007

SPE Full 650k 0.0693±0.0040

Alchemy

No PE N/A 1387k 0.112±0.001

PEG 8 1388k 0.114±0.001

SignNet Full 1668k 0.113±0.002

BasisNet Full 1469k 0.110±0.001

SPE Full 1785k 0.108±0.001

transferability under domain shifts (Courty et al., 2017; Shen et al., 2018). In the context of GNNs,
many works theoretically study the stability of various GNN models (Gama et al., 2020; Kenlay
et al., 2020; 2021; Yehudai et al., 2020; Arghal et al., 2022; Xu et al., 2021; Chuang & Jegelka,
2022). Finally, some works try to characterize the generalization error of GNNs using VC dimen-
sion (Morris et al., 2023) or Rademacher complexity (Garg et al., 2020).

5 EXPERIMENTS

In this section, we use numerical experiments to verify our theory and the empirical effectiveness
of our SPE. Section 5.1 tests SPE’s strength as a graph positional encoder, and Section 5.2 tests
the robustness of SPE to domain shifts, a key promise of stability. Section 5.3 further explores the
empirical implications of stability in positional encodings. Our key finding is that there is a trade-
off between generalization and expressive power, with less stable positional encodings fitting the
training data better than their stable counterparts, but leading to worse test performance. Finally,
Section 5.4 tests SPE on challenging graph substructure counting tasks that message passing graph
neural networks cannot solve, and SPE significantly outperforms prior positional encoding methods.

Datasets. We primarily use three datasets: ZINC (Dwivedi et al., 2023), Alchemy (Chen et al.,
2019) and DrugOOD (Ji et al., 2023). ZINC and Alchemy are graph regression tasks for molecular
property prediction. DrugOOD is an OOD benchmark for AI drug discovery, for which we choose
ligand-based affinity prediction as our classfication task (to determine if a drug is active). It considers
three types of domains where distribution shifts arise: (1) Assay: which assay the data point belongs
to; (2) Scaffold: the core structure of molecules; and (3) Size: molecule size. For each domain, the
full dataset is divided into five partitions: the training set, the in-distribution (ID) validation/test sets,
the out-of-distribution validation/test sets. These OOD partitions are expected to be distributed on
the domains differently from ID partitions.

Implementation. We implement SPE by: ϕl either being a DeepSet (Zaheer et al., 2017), element-
wise MLPs or piece-wise cubic splines (see Appendix B.1 for detailed definition); and ρ being
GIN (Xu et al., 2019). Note that the input of ρ is n × n ×m tensors, hence we first split it into n
many n×m tensors, and then independently give each n×m tensors as node features to an identical
GIN. Finally, we sum over the first n axes to output a permutation equivariant n× p tensor.

Baselines. We compare SPE to other positional encoding methods including (1) No positional
encodings, (2) SignNet and BasisNet (Lim et al., 2023), and (3) PEG (Wang et al., 2022a). In all
cases we adopt GIN as the base GNN model. For a fair comparison, all models will have comparable
budgets on the number of parameters. We also conducted an ablation study to test the effectiveness
of our key component ϕℓ, whose results are included in Appendix B.

7

Published as a conference paper at ICLR 2024

Table 2: AUROC results (5 random seeds) on DrugOOD.

Domain PE Method ID-Val (AUC) ID-Test (AUC) OOD-Val (AUC) OOD-Test (AUC)

Assay

No PE 92.92±0.14 92.89±0.14 71.02±0.79 71.68±1.10

PEG 92.51±0.17 92.57±0.22 70.86±0.44 71.98±0.65

SignNet 92.26±0.21 92.43±0.27 70.16±0.56 72.27±0.97

BasisNet 88.96±1.35 89.42±1.18 71.19±0.72 71.66±0.05

SPE 92.84±0.20 92.94±0.15 71.26±0.62 72.53±0.66

Scaffold

No PE 96.56±0.10 87.95±0.20 79.07±0.97 68.00±0.60

PEG 95.65±0.29 86.20±0.14 79.17±0.29 69.15±0.75

SignNet 95.48±0.34 86.73±0.56 77.81±0.70 66.43±1.06

BasisNet 85.80±3.75 78.44±2.45 73.36±1.44 66.32±5.68

SPE 96.32±0.28 88.12±0.41 80.03±0.58 69.64±0.49

Size

No PE 93.78±0.12 93.60±0.27 82.76±0.04 66.04±0.70

PEG 92.46±0.35 92.67±0.23 82.12±0.49 66.01±0.10

SignNet 93.30±0.43 93.20±0.39 80.67±0.50 64.03±0.70

BasisNet 86.04±4.01 85.51±4.04 75.97±1.71 60.79±3.19

SPE 92.46±0.35 92.67±0.23 82.12±0.49 66.02±1.00

5.1 SMALL MOLECULE PROPERTY PREDICTION

We use SPE to learn graph positional encodings on ZINC and Alchemy. We let ϕl be Deepsets
using only the top 8 eigenvectors (PE-8), and be element-wise MLPs when using all eigenvectors
(PE-full). As before, we take ρ to be a GIN.

Results. The test mean absolute errorx (MAEs) are shown in Table 4. On ZINC, SPE performs
much better than other baselines, both when using just 8 eigenvectors (0.0736) and all eigenvectors
(0.0693) . On Alchemy, we always use all eigenvectors since the graph size only ranges from 8 to
12. For Alchemy we observe no significant improvement of any PE methods over base model w/o
positional encodings. But SPE still achieves the least MAE among all these models.

5.2 OUT-OF-DISTRIBUTION GENERALIZATION: BINDING AFFINITY PREDICTION

We study the relation between stability and out-of-distribution generalization using the DrugOOD
dataset (Ji et al., 2023). We take ϕl to be element-wise MLPs and ρ be GIN as usual.

Results. The results are shown in Table 2. All models have comparable Area Under ROC (AUC) on
the ID-Test set. However, there is a big difference in OOD-Test performance on Scaffold and Size
domains, with the unstable methods (SignNet and BasisNet) performing much worse than stable
methods (No PE, PEG, SPE). This emphasizes the importance of stability in domain generalization.
Note that this phenomenon is less obvious in the Assay domain, which is because the Assay domain
represents concept (labels) shift instead of covariant (graph features) shift.

5.3 TRADE-OFFS BETWEEN STABILITY, GENERALIZATION AND EXPRESSIVITY

We hypothesize that stability has different effects on expressive power and generalization. Intu-
itively, very high stability means that outputs change very little as inputs change. Consequently, we
expect highly stable models to have lower expressive power, but to generalize more reliably to new
data. To test this behavior in practice we evaluate SPE on ZINC using 8 eigenvectors. We control
the stability by tuning the complexity of underlying neural networks in the following two ways:

1. Directly control the Lipschitz constant of each MLP in SPE (in both ϕℓ and ρ) by normalizing
weight matrices.

2. Let ϕℓ be a piecewise cubic spline. Increase the number of spline pieces from 1 to 6, with fewer
splines corresponding to higher stability.

See Appendix B for full details. In both cases we use eight ϕℓ functions. We compute the summary
statistics over different random seeds. As a measure of expressivity, we report the average training
loss over the last 10 epochs on ZINC. As a measure of stability, we report the generalization gap
(the difference between the test loss and the training loss) at the best validation epoch over ZINC.

8

Published as a conference paper at ICLR 2024

10 1 100 101 102 103 104 105 106

Lipschitz Constant

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

Tr
ai

n
Er

ro
r

Train Error
Individual run

10 1 100 101 102 103 104 105 106

Lipschitz Constant

0.160

0.165

0.170

0.175

0.180

0.185

0.190

Te
st

 E
rr

or

Test Error
Individual run

10 1 100 101 102 103 104 105 106

Lipschitz Constant

0.140

0.145

0.150

0.155

0.160

0.165

0.170

0.175

0.180

G
en

er
al

iz
at

io
n

G
ap

Generalization Gap
Individual run

1 2 3 4 5 6

spline.n_pieces

0.20

0.21

0.22

0.23

0.24

0.25

0.26

Tr
ai

ni
ng

 E
rr

or

Training Error
Individual run

1 2 3 4 5 6

spline.n_pieces

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Te
st

 E
rr

or

Test Error
Individual run

1 2 3 4 5 6

spline.n_pieces

0.015

0.020

0.025

0.030

0.035

G
en

er
al

iz
at

io
n

ga
p

Generalization gap
Individual run

Figure 2: Training error, test error and generalization gap v.s. model complexity (stability). In
the first row, we directly change the Lipschitz constant of individual MLPs; in the second row, we
choose ϕℓ to be piecewise spline functions and change the number of pieces.

Results. In Figure 2, we show the trend of training error, test error and generalization gap as Lipschiz
constant of individual MLPs (first row) or the number of spline pieces (second row) changes. We can
see that as model complexity increases (stability decreases), the training error gets reduced (more
expressive power) while the generalization gap grows. This justifies the important practical role of
model stability for the trade-off between expressive power and generalization.

5.4 COUNTING GRAPH SUBSTRUCTURES

3-Cycle 4-Cycle 5-Cycle 6-Cycle
5

4

3

2

1

0

lo
g

(M
A

E)

log test MAE of substructures counting

No PE
PEG
SignNet
BasisNet
SPE

Figure 3: loge(Test MAE) over 3 random
seeds on cycle counting task. Lower is better.

To empirically study the expressive power of
SPE, we follow prior works that generate random
graphs (Zhao et al., 2022; Huang et al., 2023). The
dataset contains Erdős-Renyi random graphs and
other random regular graphs (see Appendix M.2.1
in Chen et al. (2020)) and is randomly split into
train/valid/test splitting with ratio 3:2:5. and label
nodes according to the number of substructures they
are part of. We aggregate the node labels to obtain
the number of substructures in the overall graph and
view this as a graph regression task. We let ϕl be
element-wise MLPs and ρ be GIN.

Results. Figure 3 shows that SPE significantly out-
performs SignNet in counting 3,4,5 and 6-cycles. We emphasize that linear differences in log-MAE
correspond to exponentially large differences in MAE. This result shows that SPE still achieves very
high expressive power, whilst enjoying improved robustness to domain-shifts thanks to its stability
(see Section 5.2).

6 CONCLUSION

We present SPE, a learnable Laplacian positional encoding that is both provably stable and ex-
pressive. Extensive experiments show the effectiveness of SPE on molecular property prediction
benchmarks, the high expressivity in learning graph substructures, and the robustness as well as
generalization ability under domain shifts. In the future, this technique can be extended to link pre-
diction or other tasks involving large graphs where stability is also crucial and desired. Finally, our
analysis provides a general technique for graph eigenspace stability, not just limited to domains of
positional encodings and graph learning.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The authors would like to thank Derek Lim for a constructive discussion. Yinan Wang and Pan Li
are partially supported by the NSF awards PHY-2117997, IIS-2239565.

REFERENCES

Raghu Arghal, Eric Lei, and Shirin Saeedi Bidokhti. Robust graph neural networks via probabilistic
lipschitz constraints. In Learning for Dynamics and Control Conference, pp. 1073–1085. PMLR,
2022.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System Sci-
ences, 113:42–59, 2020.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. Advances in Neural Information Processing Systems, 34:25280–25293,
2021.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In International Conference on Learning Representations, 2022.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, 2023.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao, Wei-
wen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, Richard S. Zemel, and Shengyu Zhang. Alchemy:
A quantum chemistry dataset for benchmarking ai models. CoRR, abs/1906.09427, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

C. Chuang and S. Jegelka. Tree mover’s distance: Bridging graph metrics and stability of graph
neural networks. In Neural Information Processing Systems (NeurIPS), 2022.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International conference on machine
learning, pp. 854–863. PMLR, 2017.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. Advances in neural information processing systems,
30, 2017.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

10

Published as a conference paper at ICLR 2024

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. International Conference
on Machine Learning, 2023.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pp. 3419–3430.
PMLR, 2020.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

Mark Granovetter. The strength of weak ties: A network theory revisited. Sociological theory, pp.
201–233, 1983.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of
graph neural networks with i$ˆ2$-GNNs. In The Eleventh International Conference on Learning
Representations, 2023.

Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu,
Yu Rong, Jie Ren, Ding Xue, Houtim Lai, Wei Liu, Junzhou Huang, Shuigeng Zhou, Ping Luo,
Peilin Zhao, and Yatao Bian. Drugood: Out-of-distribution dataset curator and benchmark for
ai-aided drug discovery – a focus on affinity prediction problems with noise annotations. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37(7):8023–8031, 2023.

Chuntao Jiang, Frans Coenen, and Michele Zito. Finding frequent subgraphs in longitudinal social
network data using a weighted graph mining approach. In Advanced Data Mining and Appli-
cations: 6th International Conference, ADMA 2010, Chongqing, China, November 19-21, 2010,
Proceedings, Part I 6, pp. 405–416. Springer, 2010.

Henry Kenlay, Dorina Thanou, and Xiaowen Dong. On the stability of polynomial spectral graph
filters. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5350–5354. IEEE, 2020.

Henry Kenlay, Dorina Thano, and Xiaowen Dong. On the stability of graph convolutional neural net-
works under edge rewiring. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8513–8517. IEEE, 2021.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, 35:14582–14595, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Mehmet Koyutürk, Ananth Grama, and Wojciech Szpankowski. An efficient algorithm for detecting
frequent subgraphs in biological networks. Bioinformatics, 20(suppl 1):i200–i207, 2004.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34, 2021.

11

Published as a conference paper at ICLR 2024

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 2020.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
The Eleventh International Conference on Learning Representations, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pp. 2153–2164, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
Generalized laplacian positional encoding for graph representation learning. In NeurIPS 2022
Workshop on Symmetry and Geometry in Neural Representations, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33:21824–21840, 2020.

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In Proceedings
of the 40th International Conference on Machine Learning, pp. 25275–25302. PMLR, 2023.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022a.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022b.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Gilbert W Stewart and Ji-guang Sun. Matrix perturbation theory. 1990.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
graph neural networks: Possibility and impossibility results. arXiv preprint arXiv:2012.03174,
2020.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certi-
fication of perturbation invariance for deep neural networks. Advances in neural information
processing systems, 31, 2018.

12

Published as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In International Conference on Learning Representa-
tions, 2022a.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In International Conference on Learning Representa-
tions, 2022b.

K. Xu, M. Zhang, J. Li, S. Du, K. Kawarabayashi, and S. Jegelka. How neural networks extrap-
olate: From feedforward to graph neural networks. In International Conference on Learning
Representations, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. On size generalization
in graph neural networks. 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning, pp. 7134–7143. PMLR, 2019.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 10737–10745, 2021.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Process-
ing Systems, 34:15734–15747, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

13

Published as a conference paper at ICLR 2024

A DEFERRED PROOFS

Basic conventions. Let [n] = Z ∩ [1, n] and Ja, bK = Z ∩ [a, b] denote integer intervals. Let Π(n)
be the symmetric group on n elements. Unless otherwise stated, eigenvalues are counted with mul-
tiplicity; for example, the first and second smallest eigenvalues of I ∈ R2×2 are both 1. Let ∥·∥ and
∥·∥F be L2-norm and Frobenius norm of matrices.

Matrix indexing. For any matrix A ∈ Rn×d:

• Let [A]i,j ∈ R be the entry at row i and column j

• Let [A]⟨i⟩ ∈ Rd be row i represented as a column vector

• Let [A]j ∈ Rn be column j

• For any set J = {j1, · · · , jd′} ⊆ [d], let [A]J ∈ Rn×d′
be columns j1, · · · , jd′ arranged in a

matrix
• If n = d, let diag(A) ∈ Rn be the diagonal represented as a column vector

Special classes of matrices. Define the following sets:

• All n× n diagonal matrices: D(n) =
{
D ∈ Rn×n : ∀i ̸= j, [D]i,j = 0

}
• The orthogonal group in dimension n, i.e. all n × n orthogonal matrices: O(n) ={

Q ∈ Rn×n : Q−1 = Q⊤}
• All n× n permutation matrices: Π(n) =

{
P ∈ {0, 1}n×n

: P−1 = P⊤
}

• All n× n symmetric matrices: S(n) =
{
A ∈ Rn×n : A = A⊤}

Spectral graph theory. Many properties of an undirected graph are encoded in its (normalized)
Laplacian matrix, which is always symmetric and positive semidefinite. In this paper, we only con-
sider connected graphs. The Laplacian matrix of a connected graph always has a zero eigenvalue
with multiplicity 1 corresponding to an eigenvector of all ones, and all other eigenvalues positive.
The Laplacian eigenmap technique uses the eigenvectors corresponding to the d smallest positive
eigenvalues as vertex positional encodings. We assume the dth and (d+1)th smallest positive eigen-
values of the Laplacian matrices under consideration are distinct. This motivates definitions for the
following sets of matrices:

• All n× n Laplacian matrices satisfying the properties below:

Ld(n) ={L ∈ S(n) : L ⪰ 0 ∧ rank(L) = n− 1 ∧ L1 = 0

∧ d-th and (d+ 1)-th smallest positive eigenvalues are distinct} (6)

• All n× n diagonal matrices with positive diagonal entries: D+(n) = {D ∈ D(n) : D ≻ 0}

• All n×d matrices with orthonormal columns: O(n, d) =
{
Q ∈ Rn×d : [Q]i · [Q]j = 1[i = j]

}
Eigenvalues and eigenvectors. For the first two functions below, assume the given matrix has at
least d positive eigenvalues.

• Let Λd :
⋃

n≥d S(n) → D+(d) return a diagonal matrix containing the d smallest positive
eigenvalues of the given matrix, sorted in increasing order.

• Let Xd :
⋃

n≥d S(n)→ O(n, d) return a matrix whose columns contain an unspecified set of or-
thonormal eigenvectors corresponding to the d smallest positive eigenvalues (sorted in increasing
order) of the given matrix.

• Let X⟨d⟩ :
⋃

n≥d S(n) → O(n, d) return a matrix whose columns contain an unspecified set
of orthonormal eigenvectors corresponding to the d smallest eigenvalues (sorted in increasing
order) of the given matrix.

• Let Λd :
⋃

n≥d S(n) → D(d) return a diagonal matrix containing the d greatest eigenvalues of
the given matrix, sorted in increasing order.

14

Published as a conference paper at ICLR 2024

• Let Xd :
⋃

n≥d S(n) → O(n, d) return a matrix whose columns contain an unspecified set of
orthonormal eigenvectors corresponding to the d greatest eigenvalues (sorted in increasing order)
of the given matrix.

Batch submatrix multiplication. Let A ∈ Rn×d be a matrix and let {Jk}pk=1 be a partition of [d].
For each k ∈ [p], let dk = |Jk| and let Bk ∈ Rdk×dk be a matrix. For notational convenience, let
B = {(Bk,Jk)}pk=1. Define a binary star operator such that

A ⋆ B ∈ Rn×d is the matrix where ∀k ∈ [p], [A ⋆ B]Jk
= [A]Jk

Bk . (7)

We primarily use batch submatrix multiplication in the context of orthogonal invariance, where an
orthogonal matrix is applied to each eigenspace. For any (eigenvalue) matrix Λ ∈ D(d), define

O(Λ) =

{
{(Qk,Jk)}pk=1 : {Qk}pk=1 ∈

p∏
k=1

O(dk)

}
, (8)

where Jk =
{
j ∈ [d] : [diag(Λ)]j = σk

}
for each k ∈ [p] and {σk}pk=1 are the distinct values in

diag(Λ). In this context, O(Λ) is the domain of the right operand of ⋆.

A.1 PROOF OF THEOREM 3.1

Theorem 3.1 (Stability of SPE). Under Assumption 3.1, SPE is stable with respect to the input
Laplacian: for Laplacians L,L′,

∥SPE(EVD(L))− P∗SPE(EVD(L′))∥F ≤(α1 + α2)d
5/4
√
∥L− P∗LP⊤

∗ ∥F

+
(
α2

d
γ + α3

)∥∥L− P∗LP⊤
∗
∥∥
F
,

(3)

where the constants are α1 = 2J
∑m

l=1 Kℓ, α2 = 4
√
2J
∑m

l=1 Mℓ and α3 = J
∑m

l=1 Kℓ. Here
Mℓ = supλ∈[0,2]d ∥ϕℓ(λ)∥ and again P∗ = argminP∈Π(n)

∥∥L− P∗LP⊤
∗
∥∥
F
. The eigengap γ =

λd+1 − λd is the difference between the (d + 1)-th and d-th smallest eigenvalues, and γ = +∞ if
d = n.

Proof. Fix Laplacians L,L′ ∈ Ld(n). We will show that for any permutation matrix P ∈ Π(n),

∥SPE(EVD(L))− P SPE(EVD(L′))∥F ≤ (α1 + α2) d
5
4

∥∥L− PL′P⊤∥∥ 1
2

F

+

(
α2

d

γ
+ α3

)∥∥L− PL′P⊤∥∥
F
.

(9)

Fix P ∈ Π(n). For notational convenience, we denote diag{ρ(λ)} by ρ(Λ) with Λ = diag{λ}, and
let X = Xd(L), Λ = Λd(L), X ′ = Xd(L

′), and Λ′ = Λd(L
′). Then

∥SPE(EVD(L))− P SPE(EVD(L′))∥F (10)
(a)
=
∥∥ρ(Xϕ1(Λ)X⊤, · · · ,Xϕm(Λ)X⊤)− Pρ

(
X ′ϕ1(Λ

′)X ′⊤, · · · ,X ′ϕm(Λ′)X ′⊤)∥∥
F

(11)
(b)
=
∥∥ρ(Xϕ1(Λ)X⊤, · · · ,Xϕm(Λ)X⊤)− ρ

(
PX ′ϕ1(Λ

′)X ′⊤P⊤, · · · ,PX ′ϕm(Λ′)X ′⊤P⊤)∥∥
F

(12)
(c)

≤ J

m∑
ℓ=1

∥∥Xϕℓ(Λ)X⊤ − PX ′ϕℓ(Λ
′)X ′⊤P⊤∥∥

F
(13)

(d)

≤ J

m∑
ℓ=1

∥∥Xϕℓ(Λ)X⊤ − PX ′ϕℓ(Λ)X ′⊤P⊤∥∥
F

+
∥∥PX ′ϕℓ(Λ)X ′⊤P⊤ − PX ′ϕℓ(Λ

′)X ′⊤P⊤∥∥
F

(14)

(e)
= J

m∑
ℓ=1

{∥∥Xϕℓ(Λ)X⊤ − PX ′ϕℓ(Λ)X ′⊤P⊤∥∥
F︸ ︷︷ ︸

1

+
∥∥X ′ϕℓ(Λ)X ′⊤ −X ′ϕℓ(Λ

′)X ′⊤∥∥
F︸ ︷︷ ︸

2

}
,

(15)

15

Published as a conference paper at ICLR 2024

where (a) holds by definition of SPE, (b) holds by permutation equivariance of ρ, (c) holds by Lips-
chitz continuity of ρ, (d) holds by the triangle inequality, and (e) holds by permutation invariance of
Frobenius norm.

Next, we upper-bound 1 . Let δ = min
{
γ, d−

1
4

∥∥L− PL′P⊤
∥∥ 1

2

F

}
. The δ = 0 case is trivial,

because

δ = 0 ⇐⇒ L = PL′P⊤ =⇒ SPE(EVD(L)) = SPE(EVD
(
PL′P⊤))

(a)⇐⇒ SPE(EVD(L)) = P SPE(EVD(L′)) ,
(16)

where (a) holds due to permutation equivariance of SPE. Thus, assume δ > 0 for the remainder of
this proof. Let

{jk}p+1
k=1 = {1} ∪ {j ∈ [d+ 1] : λj − λj−1 ≥ δ} , 1 = j1 < · · · < jp+1

(a)
= d+ 1 (17)

be the keypoint indices at which eigengaps are greater than or equal to δ, where (a) holds because

λd+1 − λd = γ ≥ min
{
γ, d−

1
4

∥∥L− PL′P⊤∥∥ 1
2

F

}
= δ . (18)

For each k ∈ [p], let Jk = {j ∈ [d] : jk ≤ j < jk+1} be a chunk of contiguous indices at which
eigengaps are less than δ, and let dk = |Jk| be the size of the chunk. Define a matrix Λ̃ ∈ D(d) as

∀k ∈ [p], ∀j ∈ Jk,
[
diag

(
Λ̃
)]

j
= λjk . (19)

It follows that

1
(a)

≤
∥∥∥Xϕℓ(Λ)X⊤ −Xϕℓ

(
Λ̃
)
X⊤

∥∥∥
F
+
∥∥∥Xϕℓ

(
Λ̃
)
X⊤ − PX ′ϕℓ

(
Λ̃
)
X ′⊤P⊤

∥∥∥
F

+
∥∥∥PX ′ϕℓ

(
Λ̃
)
X ′⊤P⊤ − PX ′ϕℓ(Λ)X ′⊤P⊤

∥∥∥
F

(20)

(b)
=
∥∥∥Xϕℓ(Λ)X⊤ −Xϕℓ

(
Λ̃
)
X⊤

∥∥∥
F
+
∥∥∥Xϕℓ

(
Λ̃
)
X⊤ − PX ′ϕℓ

(
Λ̃
)
X ′⊤P⊤

∥∥∥
F

+
∥∥∥X ′ϕℓ

(
Λ̃
)
X ′⊤ −X ′ϕℓ(Λ)X ′⊤

∥∥∥
F

(21)

(c)

≤ ∥X∥2
∥∥∥ϕℓ(Λ)− ϕℓ

(
Λ̃
)∥∥∥

F
+
∥∥∥Xϕℓ

(
Λ̃
)
X⊤ − PX ′ϕℓ

(
Λ̃
)
X ′⊤P⊤

∥∥∥
F

+ ∥X ′∥2
∥∥∥ϕℓ

(
Λ̃
)
− ϕℓ(Λ)

∥∥∥
F

(22)

(d)
= 2

∥∥∥ϕℓ(Λ)− ϕℓ

(
Λ̃
)∥∥∥

F
+
∥∥∥Xϕℓ

(
Λ̃
)
X⊤ − PX ′ϕℓ

(
Λ̃
)
X ′⊤P⊤

∥∥∥
F

(23)

(e)

≤ 2Kℓ

∥∥∥Λ− Λ̃
∥∥∥
F
+
∥∥∥Xϕℓ

(
Λ̃
)
X⊤ − PX ′ϕℓ

(
Λ̃
)
X ′⊤P⊤

∥∥∥
F

(24)

(f)
= 2Kℓ

∥∥∥Λ− Λ̃
∥∥∥
F

+

∥∥∥∥∥
p∑

k=1

[X]Jk

[
ϕℓ

(
Λ̃
)]

Jk,Jk

[X]
⊤
Jk
− P

(
p∑

k=1

[X ′]Jk

[
ϕℓ

(
Λ̃
)]

Jk,Jk

[X ′]
⊤
Jk

)
P⊤

∥∥∥∥∥
F
(25)

(g)

≤ 2Kℓ

∥∥∥Λ− Λ̃
∥∥∥
F︸ ︷︷ ︸

3

+

p∑
k=1

∥∥∥∥[X]Jk

[
ϕℓ

(
Λ̃
)]

Jk,Jk

[X]
⊤
Jk
− P [X ′]Jk

[
ϕℓ

(
Λ̃
)]

Jk,Jk

[X ′]
⊤
Jk

P⊤
∥∥∥∥
F︸ ︷︷ ︸

4

,

(26)

where (a) holds by the triangle inequality, (b) holds by permutation invariance of Frobenius norm, (c)
holds by lemma A.1, (d) holds because X and X ′ have orthonormal columns, (e) holds by Lipschitz

16

Published as a conference paper at ICLR 2024

continuity of ϕℓ, (f) holds by block matrix algebra, and (g) holds by the triangle inequality. Next,
we upper-bound 3 :

3
(a)
=

√√√√ p∑
k=1

∑
j∈Jk

(λj − λjk)
2 (27)

(b)
=

√√√√√ p∑
k=1

∑
j∈Jk

 j∑
j′=jk+1

(λj′ − λj′−1)

2

(28)

(c)

≤

√√√√√ p∑
k=1

∑
j∈Jk

 j∑
j′=jk+1

δ

2

(29)

= δ

√√√√ p∑
k=1

∑
j∈Jk

(j − jk)2 (30)

(d)
= δ

√√√√ p∑
k=1

dk−1∑
j=1

j2 (31)

≤ δ

√√√√ p∑
k=1

d3k , (32)

where (a) holds by definition of Λ̃, (b) holds because the innermost sum in (b) telescopes, (c) holds
becauseJk is a chunk of contiguous indices at which eigengaps are less than δ, and (d) holds because
Jk is a contiguous integer interval.

Next, we upper-bound 4 . By definition of Λ̃, the entries
[
diag

(
Λ̃
)]

j
are equal for all j ∈ Jk.

By permutation equivariance of ϕℓ, the entries
[
diag

(
ϕℓ

(
Λ̃
))]

j
are equal for all j ∈ Jk. Thus,[

ϕℓ

(
Λ̃
)]

Jk,Jk

= µℓ,kI for some µℓ,k ∈ R. As ϕℓ is Lipschitz continuous and defined on a bounded

domain [0, 2]d, it must be bounded by constant Mℓ = supλ∈[0,2]d ϕℓ(λ). Then by boundedness of
ϕℓ,

|µℓ,k| =
1√
dk
∥µℓ,kI∥F =

1√
dk

∥∥∥∥[ϕℓ

(
Λ̃
)]

Jk,Jk

∥∥∥∥
F

≤ 1√
dk

∥∥∥ϕℓ

(
Λ̃
)∥∥∥

F
≤ Mℓ√

dk
. (33)

Therefore,

4 =
∥∥∥[X]Jk

(µℓ,kI) [X]
⊤
Jk
− P [X ′]Jk

(µℓ,kI) [X
′]
⊤
Jk

P⊤
∥∥∥
F

(34)

= |µℓ,k|
∥∥∥[X]Jk

[X]
⊤
Jk
− P [X ′]Jk

[X ′]
⊤
Jk

P⊤
∥∥∥
F

(35)

≤ Mℓ√
dk

∥∥∥[X]Jk
[X]

⊤
Jk
− P [X ′]Jk

[X ′]
⊤
Jk

P⊤
∥∥∥
F
. (36)

Now, we consider two cases. Case 1: k ≥ 2 or λ1 − λ0 ≥ δ. Define the matrices

Zk = [X]Jk
and Z ′

k = [X ′]Jk
. (37)

There exists an orthogonal matrix Qk ∈ O(dk) such that

∥Zk − PZ ′
kQk∥F

(a)
=
∥∥∥[Xd(L)]Jk

−
[
Xd

(
PL′P⊤)]

Jk
Qk

∥∥∥
F

(38)

(b)

≤
√
8
∥∥L− PL′P⊤

∥∥
F

min
{
λjk − λjk−1, λjk+1

− λjk+1−1

} (39)

17

Published as a conference paper at ICLR 2024

(c)

≤
√
8
∥∥L− PL′P⊤

∥∥
F

δ
, (40)

where (a) holds by lemmas A.2 and A.3, (b) holds by proposition A.1,2 and (c) holds because jk and
jk+1 are keypoint indices at which eigengaps are greater than or equal to δ.

Case 2: k = 1 and λ1 − λ0 < δ. Define the matrices

Z1 =
[

1√
n
1 [X]J1

]
and Z ′

1 =
[

1√
n
1 [X ′]J1

]
. (41)

There exists an orthogonal matrix Q1 ∈ O(d1 + 1) such that

∥Z1 − PZ ′
1Q1∥F

(a)
=
∥∥X⟨d1+1⟩(L)− X⟨d1+1⟩

(
PL′P⊤)Q1

∥∥
F

(42)

(b)

≤
√
8
∥∥L− PL′P⊤

∥∥
F

λj2 − λj2−1
(43)

(c)

≤
√
8
∥∥L− PL′P⊤

∥∥
F

δ
, (44)

where (a) holds by lemmas A.2 and A.3, (b) holds by proposition A.1,3 and (c) holds because j2 is
a keypoint index at which the eigengap is greater than or equal to δ.

Hence, in both cases,∥∥∥[X]Jk
[X]

⊤
Jk
− P [X ′]Jk

[X ′]
⊤
Jk

P⊤
∥∥∥
F

(a)
=
∥∥ZkZ

⊤
k − PZ ′

kZ
′⊤
k P⊤∥∥

F
(45)

(b)
=
∥∥ZkZ

⊤
k − PZ ′

kQkQ
⊤
k Z

′⊤
k P⊤∥∥

F
(46)

(c)

≤
∥∥ZkZ

⊤
k −ZkQ

⊤
k Z

′⊤
k P⊤∥∥

F
+
∥∥ZkQ

⊤
k Z

′⊤
k P⊤ − PZ ′

kQkQ
⊤
k Z

′⊤
k P⊤∥∥

F
(47)

(d)

≤ ∥Zk∥
∥∥Z⊤

k −Q⊤
k Z

′⊤
k P⊤∥∥

F
+ ∥Zk − PZ ′

kQk∥F ∥Qk∥ ∥Z ′
k∥ ∥P ∥ (48)

(e)
=
∥∥Z⊤

k −Q⊤
k Z

′⊤
k P⊤∥∥

F
+ ∥Zk − PZ ′

kQk∥F (49)
(f)
= 2 ∥Zk − PZ ′

kQk∥F (50)
(g)

≤
√
32
∥∥L− PL′P⊤

∥∥
F

δ
, (51)

where (a) holds in Case 2 because

[X]Jk
[X]

⊤
Jk
− P [X ′]Jk

[X ′]
⊤
Jk

P⊤ (52)

=
1

n
11⊤ + [X]Jk

[X]
⊤
Jk
− 1

n
11⊤ − P [X ′]Jk

[X ′]
⊤
Jk

P⊤ (53)

=
1

n
11⊤ + [X]Jk

[X]
⊤
Jk
− P

(
1

n
11⊤ + [X ′]Jk

[X ′]
⊤
Jk

)
P⊤ (54)

=
[

1√
n
1 [X]Jk

] [1√
n
1⊤

[X]
⊤
Jk

]
− P

[
1√
n
1 [X′]Jk

] [1√
n
1⊤

[X′]
⊤
Jk

]
P⊤ (55)

= ZkZ
⊤
k − PZ ′

kZ
′⊤
k P⊤ , (56)

(b) holds because QkQ
⊤
k = I , (c) holds by the triangle inequality, (d) holds by lemma A.1, (e) holds

because Zk and Z ′
k have orthonormal columns and Qk and P are orthogonal, (f) holds because

Frobenius norm is invariant to matrix transpose, and (g) holds by substituting in eqs. (40) and (44).
Combining these results,

4 ≤
√
32Mℓ

∥∥L− PL′P⊤
∥∥
F√

dk δ
. (57)

2We can apply proposition A.1 because Xd extracts the same contiguous interval of eigenvalue indices for
any matrix in Ld(n), and PL′P⊤ ∈ Ld(n) by lemmas A.2 and A.3.

3We can apply proposition A.1 because X⟨d1+1⟩ extracts the same contiguous interval of eigenvalue indices
for any matrix.

18

Published as a conference paper at ICLR 2024

Next, we upper-bound 2 :

2
(a)

≤ ∥X ′∥2 ∥ϕℓ(Λ)− ϕℓ(Λ
′)∥F (58)

(b)
= ∥ϕℓ(Λ)− ϕℓ(Λ

′)∥F (59)
(c)

≤ Kℓ ∥Λ−Λ′∥F (60)

(d)
= Kℓ

√√√√ d∑
j=1

(
λj − λ′

j

)2
(61)

(e)

≤ Kℓ

∥∥L− PL′P⊤∥∥
F
, (62)

where (a) holds by lemma A.1, (b) holds because X ′ has orthonormal columns, (c) holds by Lip-
schitz continuity of ϕℓ, the notation λ′

j in (d) is the jth smallest positive eigenvalue of L′, and (e)
holds by proposition A.3 and lemma A.3.

Combining our results above,

∥SPEn,d(L)− P SPEn,d(L
′)∥F (63)

(a)

≤ J

m∑
ℓ=1

2Kℓδ

√√√√ p∑
k=1

d3k +

p∑
k=1

4
√
2Mℓ

∥∥L− PL′P⊤
∥∥
F√

dk δ
+Kℓ

∥∥L− PL′P⊤∥∥
F

 (64)

(b)

≤ J

m∑
ℓ=1

{
2Kℓd

3
2 δ + 4

√
2Mℓd

∥∥L− PL′P⊤
∥∥
F

δ
+Kℓ

∥∥L− PL′P⊤∥∥
F

}
(65)

(c)
= α1d

3
2 δ + α2d

∥∥L− PL′P⊤
∥∥
F

δ
+ α3

∥∥L− PL′P⊤∥∥
F

(66)

(d)

≤ (α1 + α2) d
5
4

∥∥L− PL′P⊤∥∥ 1
2

F
+

(
α2

d

γ
+ α3

)∥∥L− PL′P⊤∥∥
F

(67)

as desired, where (a) holds by substituting in 1 - 4 , (b) holds because
∑p

k=1 d
3
k ≤ (

∑p
k=1 dk)

3
=

d3 and
∑p

k=1
1√
dk
≤ p ≤ d, (c) holds by the definition of α1 through α3, and (d) holds because

δ ≤ d−
1
4

∥∥L− PL′P⊤∥∥ 1
2

F
, (68)∥∥L− PL′P⊤

∥∥
F

δ
≤
∥∥L− PL′P⊤

∥∥
F

γ
+ d

1
4

∥∥L− PL′P⊤∥∥ 1
2

F
. (69)

A.2 PROOF OF PROPOSITION 3.1

Proposition 3.1. Assume Assumption 3.1 hold, and assume a base GNN model GNN(L,X) ∈ R
that is C-Lipschitz continuous, i.e.,

|GNN(L,X)−GNN(L′,X ′)| ≤ C min
P∈Π(n)

(∥∥L− PL′P⊤∥∥
F
+ ∥X − PX ′∥F

)
, (4)

for any Laplacians L,L′ and node features X,X ′. Now let GNN take positional encodings
as node features X = SPE(EVD(L)) and let the resulting prediction model be h(L) =
GNN(L,SPE(EVD(L))). Then the domain generalization gap εt(h)− εt(s) satisfies

εt(h)− εs(h) ≤ 2C(1 + α2
d
γ + α3)W (PS ,PT) + 2Cd5/4(α1 + α2)

√
W (PS ,PT), (5)

where W (PS ,PT) is the 1-Wasserstein distance4.
4For graphs, W (ps, pt) := infπ∈Π(PS ,PT)

∫
minP∈Π(n)

∥∥L− PL′P⊤∥∥
F
π(L,L′)dLdL′. Here

Π(PS ,PT) is the set of product distributions whose marginal distribution is PS and PT respectively.

19

Published as a conference paper at ICLR 2024

Proof. The proof goes in two steps. The first step shows that a Lipschitz continuous base GNN
with a Hölder continuity SPE yields an overall Hölder continuity predictive model. The second step
shows that this Hölder continuous predictive model has a bounded generalization gap under domain
shift.

Step 1: Suppose base GNN model GNN(L,X) is C-Lipschitz and SPE method SPE(L) satifies
Theorem 3.1. Let our predictive model be h(L) = GNN(L,SPE(EVD(L))) ∈ R. Then for any
Laplacians L,L′ ∈ and any permutation P ∈ Π(n) we have
|h(L)− h(L′)| = |GNN(L,SPE(EVD(L)))−GNN(L′,SPE(EVD(L′))| (70)

(a)

≤ C (∥L− PL′P ∥F + ∥SPE(EVD(L))− PSPE(EVD(L′))∥F) (71)
(b)

≤ C

(
1 + α2

d

γ
+ α3

)∥∥L− PL′P⊤∥∥
F
+ C (α1 + α2) d

5/4
∥∥L− PL′P⊤∥∥1/2

F
,

(72)

:= C1

∥∥L− PL′P⊤∥∥
F
+ C2

∥∥L− PL′P⊤∥∥1/2
F

, (73)
where (a) holds by continuity assumption of base GNN, and (b) holds by the stability result Theorem
3.1.

Step 2: Suppose the ground-truth function h∗ lies in our hypothesis space (thus also satisfies eq.
(73)). The absolute risk on source and target domain are defined εs(h) = EL∼PS |h(L) − h∗(L)|
and εt(h) = EL∼PT |h(L)−h∗(L)| respectively. Note that function f(L) = |h(L)−h∗(L)| is also
Hölder continuous but with two times larger Hölder constant. This is because
|h(L)− h∗(L)| ≤ |h(L)− h(L′)|+ |h(L′)− h∗(L)| (triangle’s inequality for arbitrary L′)

(74)

≤ |h(L)− h(L′)|+ |h(L′)− h∗(L′)|+ |h∗(L)− h∗(L′)| (triangle’s inequality),
(75)

and thus for arbitrary L,L′,
f(L)− f(L′) = |h(L)− h∗(L)| − |h(L′)− h∗(L′)| ≤ |h(L)− h(L′)|+ |h∗(L)− h∗(L′)|

(76)

≤ 2C1

∥∥L− PL′P⊤∥∥
F
+ 2C2

∥∥L− PL′P⊤∥∥1/2
F

. (77)

We can show the same bound for f(L′) − f(L). Thus f is Hölder continuous with constants
2C1, 2C2, and we denote such property by ∥f∥H ≤ (2C1, 2C2) for notation convenience.

An upper bound of generalization gap εt(h)− εs(h) can be obtained:
εt(h)− εs(h) = EL∼PT |h(L)− h∗(L)| − EL∼PS |h(L)− h∗(L)| (78)

(a)

≤ sup
∥f∥H≤(C1,C2)

EL∼PT f(L)− EL∼PSf(L) (79)

= sup
∥f∥H≤(C1,C2)

∫
f(L)(PT (L)− PS(L))dL (80)

(b)
= inf

π∈Π(n)(PT ,PS)
sup

∥f∥H≤(C1,C2)

∫
(f(L)− f(L′))π(L,L′)dLdL′ (81)

where (a) holds because ∥|h(L)− h∗(L)|∥H ≤ (C1, C2), and (b) holds because of the definition of
product distribution

Π(PT ,PS) =

{
π :

∫
π(L,L′)dL′ = PT (L) ∧

∫
π(L,L′)dL = PS(L)

}
.

Notice the integral can be further upper bounded using Hölder continuity of f :

sup
∥f∥H≤(C1,C2)

∫
(f(L)− f(L′))π(L,L′)dLdL′

≤
∫ (

2C1 min
P∈Π(n)

∥∥L− PL′P⊤∥∥
F
+ 2C2 min

P∈Π(n)

∥∥L− PL′P⊤∥∥1/2
F

)
π(L,L′)dLdL′.

(82)

20

Published as a conference paper at ICLR 2024

Let us define the Wasserstein distance of PT and PS be

W (PT ,PS) = inf
π∈Π(PT ,PS)

∫
min

P∈Π(n)

∥∥L− PL′P⊤∥∥
F
π(L,L′)dLdL′. (83)

Then plugging eqs. (82, 83) into (81) yields the desired result

εt(h)− εs(h) ≤ 2C1W (PT ,PS) + 2C2 inf
π∈Π(PT ,PS)

∫
min

P∈Π(n)

∥∥L− PL′P⊤∥∥1/2
F

π(L,L′)dLdL′

(84)

(a)

≤ 2C1W (PT ,PS) + 2C2 inf
π∈Π(PT ,PS)

(∫
min

P∈Π(n)

∥∥L− PL′P⊤∥∥
F
π(L,L′)dLdL′

)1/2

(85)

= 2C1W (PT ,PS) + 2C2W
1/2(PT ,PS), (86)

where (a) holds due to the concavity of sqrt root function.

A.3 PROOF OF PROPOSITION 3.2

Proposition 3.2 (Basis Universality). SPE can universally approximate any continuous basis in-
variant function. That is, for any continuous f for which f(V) = f(V Q) for any eigenvalue λ and
any Q ∈ O(λ), there exist continuous ρ and ϕ such that f(V) = ρ(V diag(ϕ(λ))V ⊤).

Proof. In the proof we are going to show basis universality by expressing BasisNet. Fix eigen-
values λ ∈ Rd. Let λ̃ ∈ RL be a sorting of eigenvalues without repetition, i.e., λ̃i =
i-th smallest eigenvalues. Assume m ≥ d. For eigenvectors V , let Iℓ ⊂ [d] be indices of ℓ-th
eigensubspaces. Recall that BasisNet is of the following form:

BasisNet(V ,λ) = ρ(B)
(
ϕ
(B)
1 (VIV

⊤
I1
), ..., ϕ

(B)
L (VIL

V ⊤
IL

)
)
, (87)

where L is number of eigensubspaces.

For SPE, let us construct the following ϕℓ:

[ϕℓ(x)]i =

1, if xi = λ̃ℓ,

1− xi − λ̃ℓ

λ̃ℓ−1 − λ̃ℓ

, if xi ∈ (λ̃l, λ̃l+1),

xi − λ̃ℓ−1

xi − λ̃l

, if xi ∈ (λ̃ℓ−1, λ̃ℓ),

0, otherwise.

(88)

Note that this is both Lipschitz continuous with Lipschitz constant 1/minℓ(λ̃ℓ+1 − λ̃ℓ), and per-
mutation equivariant (since it is elementwise). Now we have V diag{ϕℓ(λ)}V ⊤ = VIℓ

V ⊤
Iℓ

, since
ϕℓ(λ) is either 1 (when λi = λ̃ℓ) or 0 otherwise. For ℓ > L, we let ϕℓ = 0 by default. Then simply
let ρ be:

ρ(A1, ...,Am) = ρ(S)
(
ϕ
(S)
1 (A1), ..., ϕ

(S)
m (Am)

)
= ρ(B)

(
ϕ
(B)
1 (A1), ..., ϕ

(B)
L (AL)

)
. (89)

Here ϕ
(S)
ℓ (Aℓ) = ϕ

(B)
ℓ (Aℓ) for Aℓ ̸= 0 and WLOG ϕ

(S)
ℓ (Aℓ) = 0 if Aℓ = 0. And ρ(S) is a

function that first ignores 0 matrices and mimic ρ(B). Therefore,

SPE(V ,λ) = ρ(V diag{ϕ1(λ)}V ⊤, ...,V diag{ϕm(λ)}V ⊤)

= ρ(S)
(
ϕ
(S)
1 (VI1

V ⊤
I1
), ..., ϕ(S)

m (VIm
V ⊤
Im

)
)

= BasisNet(V ,λ).

(90)

Since BasisNet universally approximates all continuous basis invariant function, so can SPE.

21

Published as a conference paper at ICLR 2024

A.4 PROOF OF PROPOSITION 3.4

Proposition 3.4 (SPE can count cycles). Assume Assumption 3.1 hold and let ρ be 2-IGNs (Maron
et al., 2019b). Then SPE can determine the number of 3, 4, 5 cycles of a graph.

Proof. Note that from Lim et al. (2023), Theorem 3 we know that BasisNet can count 3, 4, 5 cycles.
One way to let SPE count cycles is to approximate BasisNet first and round the approximate error,
thanks to the discrete nature of cycle counting. The key observation is that the implementation of
BasisNet to count cycles is a special case of SPE:

#cycles of each node = BasisNet(V ,λ) = ρ(V diag{ϕ̂1(λ)}V ⊤, ...,V diag{ϕ̂m(λ)}V ⊤), (91)

where [ϕ̂ℓ(λ)]i = 1(λi is the ℓ-th smallest eigenvalue) and ρ is continuous. Unfortunately, these
ϕ̂ℓ are not continuous so SPE cannot express them under stability requirement. Instead, we can
construct a continuous function ϕℓ to approximate discontinuous ϕ̂ℓ with arbitrary precision ε, say,

∀λ ∈ [0, 2]d,
∥∥∥ϕ̂(λ)− ϕ(λ)

∥∥∥ < ε. (92)

Then we can upper-bound∥∥∥V diag{ϕ̂ℓ(λ)}V ⊤ − V diag{ϕℓ(λ)}V ⊤
∥∥∥
F

(a)

≤ ∥V ∥
∥∥V ⊤∥∥ ∥∥∥ϕ̂ℓ(λ)− ϕℓ(λ)

∥∥∥ < ϵ, (93)

where (a) holds due to the Lemma A.1. Moreover, using the continuity of ρ (defined in Assumption
3.1), we obtain

∥BasisNet(V ,λ)− SPE(V ,λ)∥F ≤ J

m∑
ℓ=1

∥∥∥V ϕ̂(λ)V ⊤ − V ϕℓ(λ)V
⊤
∥∥∥
F
< Jdε. (94)

Now, let ε = Jd/2, then we can upper-bound the maximal error of node-level counting:

max
i∈[n]
|#cycles of node i− SPE(V ,λ)|2 ≤ ∥BasisNet(V ,λ)− SPE(V ,λ)∥2F < J2d2ε2 = 1/4.

(95)
=⇒ max

i∈[n]
|#cycles of node i− SPE(V ,λ)| < 1/2. (96)

Then, by applying an MLP that universally approximates rounding function, we are done with the
proof.

A.5 PROOF OF PROPOSITION 3.3

Proposition 3.3. Suppose that (V ,λ) and (V ′,λ′) are such that V Q = V ′ for some orthogonal
matrix Q ∈ O(d) and λ ̸= λ′. Then there exist 2-layer MLPs for each ϕℓ and a 2-layer MLP ρ,
each with ReLU activations, such that SPE(V ,λ) ̸= SPE(V ′,λ′).

Proof. Our proof does not require the use of the channel dimension—i.e., we take m and p to equal
1. The argument is split into two steps.

First we show that for the given λ,λ′ and any ϕ,ϕ′ ∈ Rd there is a choice of two layer network
ϕ(λ) = W2σ(W1λ+ b1) + b2 such that ϕ(λ) = ϕ and ϕ(λ′) = ϕ′. Our choices of W1,W2 will
have dimensions d× d, b1, b2 ∈ Rd, and σ denotes the ReLU activation function.

Second we choose ϕ,ϕ′ ∈ Rd such that V ϕV ⊤ has strictly positive entries, whilst V ′ϕ′V ′⊤ = 0
(the matrix of all zeros). The argument will conclude by choosing a1, a2, b1, b2 ∈ R such that the 2
layer network (on the real line) ρ(x) = a2 ·σ(a1x+ b1)+ b2 (a 2 layer MLP on the real line, applied
element-wise to matrices then summed over both n dimensions) produces distinct embeddings for
(V ,λ) and (V ′,λ′).

We begin with step one.

22

Published as a conference paper at ICLR 2024

Step 1: If ϕ = ϕ′ then we may simply take W1 and b1 to be the zero matrix and vector respectively.
Then σ(W1λ + b1) = σ(W1λ

′ + b1) = 0. Then we may take W2 = I (identity) and b2 = ϕ,
which guarantees that ϕ(λ) = ϕ and ϕ(λ′) = ϕ′.

So from now on assume that ϕ ̸= ϕ′. Let λ and λ′ differ in their ith entries λi, λ
′
i, and assume

without loss of generality that λi < λ′
i. Let W1 = [0, . . . ,0, ei,0, . . . ,0] the matrix of all zeros,

except the ith column which is the ith standard basis vector. Then W1λ is the vector of all zeros,
except for i entry equaling λi (similarly for λ′). Next take b1 to be the vector of all zeros, except
for ith entry −(λi + λ′

i)/2, the midpoint between the differing eigenvalues. These choices make
z = σ(W1λ+ b1) = 0, and z′ = σ(W1λ

′ + b1) such that z′j = 0 for j ̸= i, and z′i = (λ′
i − λi)/2.

Next, taking W2 = [0, . . . ,0, ci,0, . . . ,0] where the ith column is ci = 2(ϕ′−ϕ)/(λ′
i−λi) ensures

that

W2z = 0, (97)

W2z
′ = ϕ′ − ϕ. (98)

Then we may simply take b2 = ϕ, producing the desired outputs:

ϕ(λ) = W2σ(W1λ+ b1) + b2 = ϕ, (99)

ϕ(λ′) = W2σ(W1λ
′ + b1) + b2 = ϕ′ (100)

as claimed.

Step 2: Expanding the matrix multiplications into their sums we have:

[V diag(ϕ)V ⊤]ij =
∑
d

ϕdvidvjd (101)

[V ′diag(ϕ′)V ′⊤]ij =
∑
d

ϕ′
dv

′
idv

′
jd. (102)

Our first choice is to take ϕ′ = 0, ensuring that V ′diag(ϕ′)V ′⊤ = 0 (an n× n matrix of all zeros).
Next, we aim to pick ϕ such that [V diag(ϕ)V ⊤]i∗j∗ > 0 for some indices i∗, j∗. In fact, this is
possible for an i, j pair since each pair of eigenvectors is orthogonal, and non-zero, so for each i, j
there must be a d∗ such that vid∗vjd∗ > 0, and we can simply take ϕd = 1 if d = d∗ and ϕd = 0 for
d ̸= d∗.

Thanks to the above choices, taking a1 = 1 and b1 = 0 ensures that

σ
(
a1 · V ′diag(ϕ′)V ′⊤ + b1

)
= 0. (103)

but that, [
σ
(
a1 · V diag(ϕ)V ⊤ + b1

)]
ij
> 0 (104)

for some i, j. Note that in both cases, the scalar operations are applied to matrices element-wise.

Finally, taking a2 = 1/
∑

ij [σ
(
a1 · V diag(ϕ)V ⊤ + b1

)]
ij
> 0 and b2 = 0 produces embeddings

SPE(V ,λ) = 1 ̸= 0 = SPE(V ′,λ′). (105)

A.6 AUXILIARY RESULTS

Proposition A.1 (Davis-Kahan theorem (Yu et al., 2015, Theorem 2)). Let A,A′ ∈ S(n). Let
λ1 ≤ · · · ≤ λn be the eigenvalues of A, sorted in increasing order. Let the columns of x,x′ ∈ O(n)
contain the orthonormal eigenvectors of A and A′, respectively, sorted in increasing order of their
corresponding eigenvalues. Let J = Js, tK be a contiguous interval of indices in [n], and let d = |J |
be the size of the interval. For notational convenience, let λ0 = −∞ and λn+1 = ∞. Then there
exists an orthogonal matrix Q ∈ O(d) such that

∥∥[x]J − [x′]J Q
∥∥
F
≤

√
8min

{√
d ∥L−L′∥ , ∥L−L′∥F

}
min {λs − λs−1, λt+1 − λt}

. (106)

23

Published as a conference paper at ICLR 2024

Proposition A.2 (Weyl’s inequality). Let λi : S(n) → R return the ith smallest eigenvalue of the
given matrix. For all A,A′ ∈ S(n) and all i ∈ [n], |λi(A)− λi(A

′)| ≤ ∥A−A′∥.

Proof. By Horn & Johnson (2012, Corollary 4.3.15),

λi(A
′) + λ1(A−A′) ≤ λi(A) ≤ λi(A

′) + λn(A−A′) . (107)

Therefore λi(A)− λi(A
′) ∈ [λ1(A−A′), λn(A−A′)], and

|λi(A)− λi(A
′)| = max {λi(A)− λi(A

′), λi(A
′)− λi(A)} (108)

≤ max {λn(A−A′),−λ1(A−A′)} (109)

= max
i∈[n]
|λi(A−A′)| (110)

= σmax(A−A′) (111)

= ∥A−A′∥ . (112)

Proposition A.3 (Hoffman-Wielandt corollary (Stewart & Sun, 1990, Corollary IV.4.13)). Let λi :
S(n)→ R return the ith smallest eigenvalue of the given matrix. For all A,A′ ∈ S(n),√√√√ n∑

i=1

(λi(A)− λi(A′))
2 ≤ ∥A−A′∥F . (113)

Lemma A.1. Let {Ak}pk=1 be compatible matrices. For any ℓ ∈ [p],∥∥∥∥∥
p∏

k=1

Ak

∥∥∥∥∥
F

≤

(
ℓ−1∏
k=1

∥Ak∥

)
∥Aℓ∥F

(
p∏

k=ℓ+1

∥∥A⊤
k

∥∥) . (114)

Proof. First, observe that for any matrices A ∈ Rm×r and B ∈ Rr×n,

∥AB∥F =

√√√√ n∑
j=1

∥∥∥[AB]j

∥∥∥2 =

√√√√ n∑
j=1

∥ABej∥2 ≤

√√√√ n∑
j=1

∥A∥2 ∥Bej∥2 = ∥A∥

√√√√ n∑
j=1

∥∥∥[B]j

∥∥∥2
= ∥A∥ ∥B∥F .

(115)

Therefore, ∥∥∥∥∥
p∏

k=1

Ak

∥∥∥∥∥
F

(a)

≤

(
ℓ−1∏
k=1

∥Ak∥

)∥∥∥∥∥
p∏

k=ℓ

Ak

∥∥∥∥∥
F

(116)

(b)
=

(
ℓ−1∏
k=1

∥Ak∥

)∥∥∥∥∥
p−ℓ∏
k=0

A⊤
p−k

∥∥∥∥∥
F

(117)

(c)

≤

(
ℓ−1∏
k=1

∥Ak∥

)(
p−ℓ−1∏
k=0

∥∥A⊤
p−k

∥∥)∥∥A⊤
ℓ

∥∥
F

(118)

(d)
=

(
ℓ−1∏
k=1

∥Ak∥

)
∥Aℓ∥F

(
p∏

k=ℓ+1

∥∥A⊤
k

∥∥) , (119)

where (a) and (c) hold by applying eq. (115) recursively, and (b) and (d) hold because Frobenius
norm is invariant to matrix transpose.

Lemma A.2 (Permutation equivariance of eigenvectors). Let A ∈ Rn×n and P ∈ P(n). Then for
any x ∈ Rn, Px is an eigenvector of PAP⊤ iff x is an eigenvector of A.

24

Published as a conference paper at ICLR 2024

Proof.

Px is an eigenvector of PAP⊤ (a)⇐⇒ ∃λ ∈ R, PAP⊤Px = λPx (120)
(b)⇐⇒ ∃λ ∈ R, PAx = λPx (121)
(c)⇐⇒ ∃λ ∈ R, PAx = Pλx (122)
(d)⇐⇒ ∃λ ∈ R, Ax = λx (123)
(e)⇐⇒ x is an eigenvector of A , (124)

where (a) is the definition of eigenvector, (b) holds because permutation matrices are orthogonal,
(c) holds by linearity of matrix-vector multiplication, (d) holds because permutation matrices are
invertible, and (e) is the definition of eigenvector.

Lemma A.3 (Permutation invariance of eigenvalues). Let A ∈ Rn×n and P ∈ P(n). Then λ ∈ R
is an eigenvalue of PAP⊤ iff λ is an eigenvalue of A.

Proof.

λ is an eigenvalue of PAP⊤ (a)⇐⇒ ∃y ̸= 0, PAP⊤y = λy (125)
(b)⇐⇒ ∃y ̸= 0, PAP⊤y = λPP⊤y (126)
(c)⇐⇒ ∃y ̸= 0, PAP⊤y = PλP⊤y (127)
(d)⇐⇒ ∃x ̸= 0, PAx = Pλx (128)
(e)⇐⇒ ∃x ̸= 0, Ax = λx (129)
(f)⇐⇒ λ is an eigenvalue of A , (130)

where (a) is the definition of eigenvalue, (b) holds because permutation matrices are orthogonal,
(c) holds by linearity of matrix-vector multiplication, (d)-(e) hold because permutation matrices are
invertible, and (f) is the definition of eigenvalue.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 IMPLEMENTATION OF SPE

SPE includes parameterized permutation equivariant functions ρ : Rn×n×m → Rn×p and ϕℓ :
Rd → Rd.

For ϕℓ, we treat input λ as d vectors with input dimension 1 and use either elementwise-MLPs, i.e.,
[ϕℓ(λ)]i = MLP(λi), or Deepsets to process them. We also use piecewise cubic splines, which is a
R to R piecewise function with cubic polynomials on each piece. Given number of pieces as a hy-
perparameter, the piece interval is determined by uniform chunking [0, 2], the range of eigenvalues.
The learnable parameters are the coefficients of cubic functions for each piece. To construct ϕℓ, we
simply let one piecewise cubic spline elementwisely act on each individual eigenvalues:

[ϕℓ(λ)]i = spline(λi). (131)

For ρ, in principle any permutation equivariant tensor neural networks can be applied. But in our
experiments we adapt GIN as ρ. Here is how: for input A ∈ Rn×n×m, we first partition A along the
second axis into n many matrices Ai ∈ Rn×m (in code we do not actually need to partition them
since parallel matrix multiplication does the work). Then we treat Ai as node features of the original
graph and independently and identically apply a GIN to this graph with node features Ai. This will
produce node representations Zi ∈ Rn×p from Ai. Finally we let Z =

∑n
i=1 Zi be the final output

of ρ. Note that this whole process makes ρ permutation equivariant.

25

Published as a conference paper at ICLR 2024

B.2 IMPLEMENTATION OF BASELINES

For PEG, we follow the formula of their paper and augment edge features by

ei,j ← ei,j ·MLP(∥Vi,: − Vj,:∥). (132)

For SignNet/BasisNet, we refer to their public code release at https://github.com/cptq/SignNet-
BasisNet. Specifically, SignNet uses GINs as ϕ and BasisNet uses 2-IGN as ϕ. Note that the original
BasisNet does not support inductive learning, i.e., it cannot even apply to new graph structures. This
is because it has separate weights for eigensubspaces with different dimension. Here we simply
initialize an unlearned weights for eigensubspaces with unseen dimensions.

B.3 OTHER TRAINING DETAILS

We use Adam optimizer with an initial learning rate 0.001 and 100 warm-up steps. We adopt a linear
decay learning rate scheduler. Batch size is 128 for ZINC, Alchemy and substructures counting, 64
for DrugOOD.

B.4 CONTROLLING LIPSCHITZ CONSTANT OF MLPS

Here we state how we control the Lipschitz constant of MLPs in Section 5.3. Technically, by Lips-
chitz constant we actually mean an upper bound for best Lipschitz constant (the minimal Lipschitz
constant for function). Note that for a compositition of Lipschitz functions (f1 ◦ f2 ◦ ... ◦ fk) with
individual Lipschitz constants C1, C2, ..., Ck, the product C1 · C2 · ... · Ck is a valid Lipschitz con-
stant. A MLP consists of linear layers and ReLU activation. The Lipschitz constants of linear layers
are simply the operator norm of weight matrices, while ReLU is 1-Lipschitz. So we can easily get
the Lipschitz constant of MLPs by multiplying the operator norm of weight matrices. As a result,
we can control the Lipschitz constant to be C by first normalizing weight matrices to be unit norm
and then multiply a constant C1/k between layers assuming there are k layers.

B.5 GENERALIZATION GAP ON ZINC

We show the training loss and the generalization gap (test loss - training loss) on ZINC dataset as
shown below. These loss are all evaluated at the epoch with minimal validation loss. We can see
that though SignNet and BasisNet achieve a pretty low training MAE (high expressive power), their
generalization gap is larger than other baselines (poor stability) and thus the final test MAE is not the
best. For baseline GNN and PEG, they are pretty stable with small generalization gap, but the poor
expressive power make them hard to fit the dataset well (training loss is high). In contrast, SPE has
not only a lowest training MAE (high expressive power) but also a small generalization gap (good
stability). That is why it can obtain the best test performance among all the models.

Table 3: Test/training MAE and generalization gap results (4 random seeds) on ZINC. Bold-face
black, blue and pink are used to denote the first, second and third best method for each column
(each method only counts once as there are multiple configurations).

Dataset PE method #PEs #param Test MAE Training MAE General. Gap

ZINC

No PE N/A 575k 0.1772±0.0040 0.1509±0.0086 0.0263±0.0113

PEG 8 512k 0.1444±0.0076 0.1088±0.0066 0.0382±0.0100

PEG Full 512k 0.1878±0.0127 0.1486±0.0191 0.0342±0.0206

SignNet 8 631k 0.1034±0.0056 0.0418±0.0101 0.0602±0.0112

SignNet Full 662k 0.0853±0.0026 0.0349±0.0078 0.0502±0.0103

BasisNet 8 442k 0.1554±0.0068 0.0513±0.0053 0.1042±0.0063

BasisNet Full 513k 0.1555±0.0124 0.0684±0.0202 0.0989±0.0258

SPE 8 635k 0.0736±0.0007 0.0324±0.0058 0.0413±0.0057

SPE Full 650k 0.0693±0.0040 0.0334±0.0054 0.0359±0.0087

26

Published as a conference paper at ICLR 2024

B.6 RUNNING TIME EVALUATION

We evaluate the running time of SPE and other baselines on ZINC and DrugOOD. The results
represents the training/inference time on the whole training dataset (ZINC or DrugOOD) over 5
trials. We can see that the speed SPE is overall comparable to SignNet, and is much faster than
BasisNet. This is possibly because BasisNet has to deal with the irregular and length-varying input
[V1V

⊤
1 , V2V

⊤
2 , ...], which is hard for parallel computation in a batch, while SPE simply needs to

deal with the more uniform V diag(ϕ(λ))V ⊤.

Table 4: Training and inference time (average over 5 trials) on ZINC and DrugOOD, evaluated on
the whole training dataset. GPU is Quadro RTX 6000

Dataset PE method #PEs Train Time (s) Inference Time (s)

ZINC

No PE N/A 3.319±0.400 2.852±0.310

PEG 8 3.785±0.424 3.590±0.341

PEG Full 3.639±0.387 3.518±0.318

SignNet 8 8.724±0.686 3.546±0.366

SignNet Full 23.157±1.932 7.883±0.374

BasisNet 8 49.923±6.391 18.295±0.569

BasisNet Full 66.176±4.015 27.546±0.622

SPE 8 10.888±0.416 5.336±0.738

SPE Full 11.576±0.472 5.406±0.499

DrugOOD

No PE N/A 13.560±0.657 4.260±0.140

PEG 32 14.212±1.084 4.780±0.351

SignNet 32 30.705±0.723 12.844±0.307

BasisNet 32 199.364±2.807 86.529±1.693

SPE 32 37.577±0.833 21.706±0.850

To see how complexity grows with graph size, we construct Erdos–Renyi random graphs for dif-
ferent graph sizes, ranging from 10 to 320. For each graph size, we construct 1,000 such random
graphs with fixed node degree 2.5. Then we train and test each methods on these 1,000 graph for 10
epochs to estimate the time complexity. For fairness, each model has 60k parameters. By default we
use batch size 50, and if it is out-of-memory (OOM), we use batch size 5 then. It batch size 5 still
leads to OOM, we will denote OOM in the results. Below we report the average training/inference
time per epoch.

Graph size GINE PEG SignNet SPE BasisNet
10 0.505±0.277 0.574±0.321 1.750±0.332 1.357±0.321 5.185±0.407

20 0.535±0.275 0.631±0.336 1.648±0.325 1.323±0.309 3.418±0.323

40 0.561±0.297 0.644±0.332 2.293±0.362 1.507±0.352 6.019±0.305

80 0.609±0.294 0.750±0.338 5.810±0.335 4.030±0.369 40.848±0.359

160 1.056±0.271 1.410±0.356 21.153±0.275 55.256±0.757 OOM
320 2.714±0.411 4.403±0.425 83.833±0.168 OOM OOM

Table 5: Average training time (s) on random graph dataset over 10 epochs.

Graph size GINE PEG SignNet SPE BasisNet
10 0.125±0.001 0.154±0.001 0.465±0.002 0.385±0.002 2.326±0.248

20 0.163±0.001 0.204±0.001 0.434±0.002 0.299±0.001 1.659±0.006

40 0.174±0.001 0.212±0.002 0.986±0.002 0.543±0.002 3.167±0.101

80 0.213±0.003 0.307±0.004 2.976±0.017 2.093±0.007 22.054±0.017

160 0.512±0.035 0.778±0.032 11.886±0.134 38.747±0.247 OOM
320 1.500±0.098 2.841±0.113 48.179±0.264 OOM OOM

Table 6: Average inference/test time (s) on random graph dataset over 10 epochs.

27

Published as a conference paper at ICLR 2024

B.7 ABLATION STUDY

One key component of SPE is to leverage eigenvalues using ϕℓ(λ). Here We try removing the
use of eigenvalues, i.e., set ϕℓ(λ) = 1 to see the difference. Mathematically, this will result in
SPE(V ,λ) = ρ([V V ⊤]mℓ=1). This is pretty similar to PEG and we loss expressive power from this
over-stable operation V V ⊤. As shown in the table below, removing eigenvalue information leads
to a dramatic drop of performance on ZINC-subset. Therefore, the processing of eigenvalues is an
effective and necessary design in our method.

Method Test MAE
SPE (ϕℓ =MLPs) 0.0693±0.0040

SPE (ϕℓ = 0) 0.1230±0.0323

Table 7: Abalation study for SPE on ZINC (subset).

B.8 MORE RESULTS ON TUDATASETS

We further conduct experiments on TUDatasets. For each task, we randomly split dataset into train-
ing, validation and test by 8:1:1. We uniformly use batch size 128 and train 250 epoch. Architectures
and hyperparameters follows the same ones as on ZINC. We report the test accuracy at the epoch
with highest validation accuracy over 5 random seeds. See Table 8 for results.

GINE EPG SignNet BasisNet SPE
PROTEINS 71.07±4.03 70.71±7.20 73.21±2.67 63.57±2.42 74.82±4.72

ENZYMES 51.33±8.96 57.00±2.50 45.00±8.45 32.00±4.08 52.34±6.24

PTC MR 54.86±4.04 58.29±8.85 54.86±12.67 57.14±11.67 58.29±8.08

MUTUG 85.00±6.29 84.00±7.50 85.00±14.36 79.00±8.54 89.00±4.08

Table 8: Test accuracy over 5 random seeds on TUDatasets.

C WHY PREVIOUS POSITIONAL ENCODINGS ARE UNSTABLE?

C.1 ALL SIGN-INVARIANT METHODS ARE UNSTABLE

One line of work (Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Lim et al., 2023) is to consider
the sign ambiguity of each individual eigenvectors and aim to make positional encodings invariant
to sign flipping. The underlying assumption is that eigenvalues are all distinct so eigenvectors are
equivalent up to a sign transformation. However, we are going to show that all these sign-invariant
methods are unstable, regardless of the eigenvalues being distinct or not.

Firstly, suppose eigenvalues are distinct. Lemma 3.4 in Wang et al. (2022a) states that
Lemma C.1. For any positive semi-definite matrix B ∈ RN×N without multiple eigenvalues, set
positional encoding PE(B) as the eigenvectors given by the smallest p eigenvalues sorted as 0 =
λ1 < λ2 < ... < λp(< λp+1) of B. For any suffciently small ϵ > 0, there exists a perturbation ∆B,
∥B∥F ≤ ϵ such that

min
S∈SN(p)

∥PE(B)− PE(B +∆B)∥ ≥ 0.99 max
1≥i≤p

|λi+1 − λi|−1 ∥∆B∥F + o(ϵ), (133)

where SN(p) = {Q ∈ Rp×p : Qi,i = ±1, Qi,j = 0, for i ̸= j} is the sign flipping operations.

This Lemma shows that when there are two closed eigenvalues, a small perturbation to graph may
still yield a huge change of eigenvectors that cannot be compensated by sign flipping. Therefore,
these sign-invariant methods are highly unstable on graphs with distinct but closed eigenvalues.

On the other hand, if eigenvalues have repeated values, then the same graph may produce different
eigenvectors that are associated by basis transformations. Simply invariant to sign flipping cannot

28

Published as a conference paper at ICLR 2024

Figure 4: A illustration of [ϕ1(λ)]2 for λ = (λ1, λ2). Clearly ϕ1 is discontinuous.

handle this basis ambiguity. As a result, these sign-invariant methods will produce different
positional encodings for the same input graph. That means there is no stability gurantee for them at
all.

C.2 BASISNET IS UNSTABLE

Another line of work (e.g, BasisNet (Lim et al., 2023)) further consider basis invariance of eigen-
vectors by separately dealing with each eigensubspaces instead of each individual eigenvectors. The
idea is to first partition eigenvectors V ∈ Rn×d into their corresponding eigensubspace (V1, V2, ...)
according to eigenvalues, where Vk ∈ Rn×dk is the eigenvectors in k-th eigensubspace of dimen-
sion dk. Then neural networks ϕdk

: Rn×n → Rn×p is applied to each VkV
⊤
k and the output will

be ρ(ϕd1(V1V
⊤
1), ϕd2(V2V

⊤
2), ...) where ρ : Rn×(d·p) → Rn×p is a MLP. Intuitively, this method

is unstable because a perturbation of graph can change the dimension of eigensubspace and thus
dramatically change the input (V1, V2, ...). As an example, let us say we have three eigenvectors
(d = 3), and denote the three columns of V as u1, u2, u3. We construct two graphs: the original
graph A has λ1 = λ2 < λ3 while the perturbed graph A′ has λ′

1 < λ′
2 < λ′

3. Two graphs share the
same eigenvectors. Note that the difference between A and A′ can be arbitrarily small to make λ′

2 a
little bit different from λ2. BasisNet will produce the following embeddings:

BasisNet(A) = ρ(ϕ2(u1u
⊤
1 + u2u

⊤
2), ϕ1(u3u

⊤
3))

BasisNet(A′) = ρ(ϕ1(u1u
⊤
1), ϕ1(u2u

⊤
2), ϕ1(u3u

⊤
3)).

Clearly as the input to ρ are completly different, there is no way to ensure stability even if ρ and ϕ
are continuous.

C.3 WHY STABILITY THEOREM 3.1 CANNOT BE APPLIED FOR PREVIOUS METHODS

One may wonder why we cannot prove the stability of previous hard-partition methods following
the same argument in Theorem 3.1. The reason is that they do not satisfy Assumption 3.1 or the
requirement that ϕ is equivariant, both of which are the key to prove stability result in Theorem 3.1.

To see this, let us first consider sign-invariant methods (e.g., SignNet). Using the notation of SPE, it
is equivalent to use a ϕℓ(λ) to separate the ℓ-th eigenvectors, thus whose k-th entry is

[ϕℓ(λ)]k = δk,ℓ. (134)

This ϕ function does not rely on λ and thus is Lipschitz continuous. However, it is not permutation
equivariant to λ vector. So it violates “ϕ is always permutation equivariant” as stated in the defini-
tion of SPE, and thus we cannot apply Theorem 3.1 to sign-invariant methods (and they are indeed

29

Published as a conference paper at ICLR 2024

unstable as shown before).
On the other hand, let us consider basis-invariant methods using hard partition of eigensubspaces
(e.g., BasisNet). In this case, the k-th entry of the hard partition ϕℓ(λ) is

[ϕℓ(λ)]k =

{
1, if λk is ℓ-th smallest eigenvalue
0, otherwise

This ϕ function is actually discontinuous. As an example, we may consider λ = (λ1, λ2) and plot
the figure of [ϕ1(λ)]2 below. Clearly there is a sharp transition from 0 to 1 when λ2 approches λ1.
Therefore, ϕℓ(λ) is more like a step function instead of a constant function. They are discontinuous,
and thus are not Lipschitz continuous. So Assumption 3.1 does not hold and Theorem 3.1 cannot be
applied for such hard partition functions.

30

	Introduction
	Preliminaries
	A Provably Stable and Expressive PE
	Stable Positional Encodings
	SPE: A positional encoding with guaranteed stability
	From stability to out-of-distribution generalization
	SPE is a Universal Basis Invariant Architecture

	Related Works
	Experiments
	Small Molecule Property Prediction
	Out-Of-Distribution Generalization: Binding Affinity Prediction
	Trade-offs between stability, generalization and expressivity
	Counting Graph Substructures

	Conclusion
	Deferred Proofs
	Proof of Theorem 3.1
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.4
	Proof of Proposition 3.3
	Auxiliary results

	Experimental details and Additional Results
	Implementation of SPE
	Implementation of baselines
	Other training details
	Controlling Lipschitz constant of MLPs
	Generalization gap on ZINC
	Running time evaluation
	Ablation study
	More results on TUDatasets

	Why previous positional encodings are unstable?
	All sign-invariant methods are unstable
	BasisNet is unstable
	Why Stability Theorem 3.1 cannot be applied for previous methods

