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ABSTRACT

Domain generalization remains a critical challenge in medical imaging, where
models trained on single sources often fail under real-world distribution shifts.
We propose KG-DG, a neuro-symbolic framework for diabetic retinopathy (DR)
classification that integrates vision transformers with expert-guided symbolic
reasoning to enable robust generalization across unseen domains. Our approach
leverages clinical lesion ontologies through structured, rule-based features and
retinal vessel segmentation, fusing them with deep visual representations via
a confidence-weighted integration strategy. The framework addresses both
single-domain generalization (SDG) and multi-domain generalization (MDG) by
minimizing the KL divergence between domain embeddings, thereby enforcing
alignment of high-level clinical semantics.

Extensive experiments across four public datasets (APTOS, EyePACS, Messidor-1,
Messidor-2) demonstrate significant improvements: up to a 5.2% accuracy gain
in cross-domain settings and a 6% improvement over baseline ViT models.
Notably, our symbolic-only model achieves a 63.67% average accuracy in MDG,
while the complete neuro-symbolic integration achieves the highest accuracy
compared to existing published baselines and benchmarks in challenging SDG
scenarios. Ablation studies reveal that lesion-based features (84.65% accuracy)
substantially outperform purely neural approaches, confirming that symbolic
components act as effective regularizers beyond merely enhancing interpretability.
Our findings establish neuro-symbolic integration as a promising paradigm for
building clinically robust, and domain-invariant medical Al systems. Keywords:
Domain Generalization, Neuro-Symbolic Learning, Medical Imaging, Diabetic
Retinopathy, Vision Transformers, Out-of-Distribution Robustness

1 INTRODUCTION

Diabetic Retinopathy (DR) is a microvascular complication of Diabetes Mellitus that affects the
retinal vasculature, leading to hemorrhages, microaneurysms, exudates, and cotton-wool spots which,
if left untreated, can culminate in irreversible vision loss [Khandelwal et al.|(2023). Manual grading
of fundus photographs by expert ophthalmologists remains the clinical gold standard but is both
time-consuming and subject to inter-observer variability [Kauppi et al.|(2019). Despite the success
of deep learning models—particularly Vision Transformers (ViTs)—on single-source DR datasets
Dosovitskiy et al.[ (2021); Zhao et al.| (2022), their performance suffers when confronted with
domain shifts caused by variations in imaging devices, resolution settings, and patient demographics.
Although Domain Generalization (DG) strategies such as Empirical Risk Minimization under the
DomainBed protocol |Gulrajani & Lopez-Paz| (2021) offer a baseline for robustness, they often
overlook the integration of structured clinical knowledge and realistic augmentation techniques that
are critical for reliable cross-domain deployment.

Neuro-symbolic learning, which integrates deep learning with symbolic reasoning, has gained traction
as a promising strategy to improve domain generalization in medical imaging. Deep models extract
complex patterns from raw data, while symbolic components encode high-level domain knowledge
and constraints, thereby effec tively guiding model behavior across varying domains. This hybrid
approach can mitigate overfitting to domain-specific artifacts by enforcing consistency with known
anatomical or pathological rules. For example, Han et al. introduced a neuro-symbolic framework
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for spinal MRI segmentation that embeds anatomical priors into a deep adversarial graph network,
resulting in better generalization and interpretability across different datasets Han et al.| (2021]).
Similarly, Ozkan and Boix demonstrated that training across multiple imaging modalities (e.g., MRI,
CT, ultrasound) significantly improves generalization to unseen domains, emphasizing the value of
diverse training data and domain-aware learning strategies |Ozkan & Boix|(2024). These findings
suggest that symbolic reasoning components can serve as a regularizing force that biases models
toward clinically meaningful and domain-invariant features—thereby enabling more robust, scalable
medical Al systems.

Despite recent advances, most current
neuro-symbolic methods remain narrowly
focused—typically emphasizing symbolic
reasoning mechanics without incorporating
the type of clinical knowledge used by
Figure 1: Fundus images showing DR progression: medical experts to inform robust, generalizable
from No DR to Proliferative DR [Kauppi et al|(2019).  decision-making. In particular, few approaches

simultaneously  address both  symbolic
knowledge integration and domain generalization in a cohesive framework. This gap motivates
our proposed method, KG-DG, a knowledge-guided domain generalization framework that unifies
structured clinical knowledge with deep learning models in a scalable manner. KG-DG encodes
domain-invariant biomarkers—such as exudates, hemorrhages, and vascular abnormalities—directly
into the learning pipeline, guiding classification tasks while enhancing out-of-distribution (OOD)
robustness.

Mild DR

1.1 DOMAIN GENERALIZATION

Vision transformers (ViTs) have revolutionized medical image analysis, particularly in ophthalmology,
offering a powerful alternative to traditional convolutional neural networks. Dosovitskiy et
al. [Dosovitskiy et al.| (2021)) established the foundation by demonstrating ViTs’ state-of-the-art
performance on large-scale image recognition benchmarks, catalyzing their adoption for diabetic
retinopathy (DR) detection. Subsequent work by Kothari et al. introduced TransDR [Wang et al.
(2024), enhancing ViTs with lesion-aware attention mechanisms that improve lesion localization
capabilities, though without explicitly addressing domain shift robustness challenges.

In many real-world applications, particularly in biomedical Tuple 1: Clinical Signs of DR Their
fields, it is unrealistic to expect access to new patients’ data
before model deployment due to domain shifts between data
from different patients Muandet et al.| (2013). To address
this challenge, the concept of Domain Generalization (DG)
was introduced Blanchard et al.| (2011). DG aims to train Microaneurysms Tiny red dilations; earliest sign
models on data from one or more related but distinct source 351111\3230?;2? ;g{%“)k' 200%
domains, enabling them to generalize effectively to unseen, ’ '

out-of-distribution (OOD) target domains. Since its formal Haemorrhages  Dotblot or —flame-shaped.
Severe NPDR: >20 in all

Significance

Symptom Observations & Relevance

introduction by Blanchard et al. in 2011 Blanchard et al.|(2011), quadrants (of Ophthalmology}
a wide range of techniques have been proposed to tackle the 2023} |Group) |1991).
DG challenge |Zhou et al.|(2021)-{Cha et al.| (2021). Hard Lipid deposits from leakage
. . .. . Exudates near macula. Risk for DME
These approaches include learning domain-invariant (Group| [T991; [Shukla &
representations by aligning source domain distributions [Li Tripathy} [2025).
et al| (2018bid), simulating domain shifts during training cotton Wool ~ White lesions from nerve
using meta-learning Li et al.[(2018a); |Balaji et al.|(2018])), and  Spots infarction.  Signify ischemia
. . T T (Frank| [2004; |Publishing}
generating synthetic data through domain augmentation Zhou 5o,
et al.| (2020bza). From an application perspective, DG has been Subfvaloid D shaned bleed. Hallmark
. . fod : ubhyaloi Boat/D-shaped bleed. Hallmarl
explore@ in various areas such as computer vision (e.g., ob]'ect Haemorthages  of Proliferative DR (Yanoff
recognition |L1 et al.| (2017; 2019), semantic segmentation & Duker, [2019; [Shukla &
Volpi & Murino| (2019), and person re-identification [Zhou [ripathy} 2025).
et al.| (2021} [2020b)), speech recognition Shankar et al.[(2018)), NeovascularizationNew fragile vessels on disc
natural language processing [Balaji et al.| (2018]), medical (NVD)  or retina_ (NVE).

Defines PDR (Group} [1991}

imaging |Liu et al.|(2020bga), and reinforcement learning |Zhou of Ophthalmology| 2023).

et al.[|(2021)).
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In medical imaging, domain shift is especially prevalent due to variations across clinical sites and
individual patients [Liu et al.| (2020a)); |[Dou et al| (2019). Datasets like Multi-site Prostate MRI
Segmentation |Liu et al.| (2020a) and Chest X-rays Mahajan et al.| (2021) reflect this reality, with
differences in imaging equipment and acquisition protocols introducing substantial distribution
variability.

2 METHODOLOGY

We propose a general-purpose framework for knowledge imputation into AI-based models, enabling
integration of clinically validated rules, visual biomarkers, and demographic insights into conventional
learning pipelines. This approach is designed to improve robustness, interpretability, and domain
generalization, addressing critical limitations commonly encountered in medical deployments where
data heterogeneity, distribution shifts, and limited supervision can degrade model performance.
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Figure 2: Overview of the proposed knowledge-guided DR classification framework, illustrating the integration
of symbolic clinical rules and deep learning features | Kauppi et al.| (2019).

2.1 KNOWLEDGE-GUIDED AUGMENTATION OF DEEP MODELS

Traditional deep learning models typically learn a predictive mapping fpr, : X — ), where X
denotes input modalities (e.g., retinal images) and ) represents target disease labels. This approach
inherently lacks structured medical inductive biases, potentially limiting clinical applicability. To
overcome this limitation, we propose a dual-branch architecture, integrating structured knowledge
representation /C into deep learning-based image analysis.

We formalize K as a set of diagnostic rules {ry,72,...,7,}, each reflecting expert-validated
correlations between observable clinical features and disease states. These rules incorporate visual
biomarkers such as (e.g., exudates, hemorrhages, vascular patterns) and demographic parameters
(e.g., patient age, glycemic status). For practical implementation, we develop corresponding feature
extractors C = {c1, ca, ..., ck}, instantiated via object detection models (YOLOv11), segmentation
architectures, and logical rule functions.

Each extractor ¢; outputs a quantitative feature f; € R, aggregated into a structured vector:

F* = {f15f27"'7fk}-
This structured vector encodes clinical attributes such as presence, severity, and spatial distribution
of significant retinal lesions, facilitating symbolic reasoning aligned closely with clinical diagnostic
criteria.
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A parallel knowledge-driven classifier fxp : F* — Y is trained alongside the deep learning model
fpL. The final prediction can then be determined through different fusion strategies. In the simplest
case, a selective fusion rule is applied:

_ JypL, ifspL > skp,
Yfinal = .
ykp, oOtherwise,

where spp. and sgp denote the maximum confidence scores from the deep and symbolic classifiers,
respectively. This strategy enhances robustness by leveraging symbolic reasoning when the deep
model predictions exhibit uncertainty, particularly valuable in handling out-of-distribution scenarios.
Beyond this, we experimented with three additional fusion techniques:

1. Max Confidence Fusion: both the neural (ViT) and symbolic classifiers output calibrated
probabilities via softmax normalization. The class with the globally highest confidence is selected,
irrespective of source.

2. Class-wise Max Fusion: normalized per-class confidence scores are compared across models, and
the prediction is made according to the higher class-specific confidence.

3. Weighted Fusion: empirically tuned weights (apy,ak ) are applied to balance neural and
symbolic predictions. Formally,

Yfinal = arg Tzlggi (apr - spr(c) + axr - skr(c)),

where spr,(c) and sk (c) are the softmax confidence scores assigned by the deep and symbolic
classifiers, respectively, for class ¢, and C is the set of all DR severity classes.

Together, these strategies allow us to assess the trade-off between model confidence, robustness, and
the influence of symbolic knowledge on final decision-making.

2.2  DIABETIC RETINOPATHY CLASSIFICATION

We evaluated the proposed KG-DG framework on the task of diabetic retinopathy (DR) classification
using retinal fundus images—well-suited for knowledge-guided learning due to the presence of clearly
defined visual pathologies such as microaneurysms, hemorrhages, exudates, and neovascularization.
Domain-specific diagnostic rules were curated from ophthalmological guidelines (see Table[T)) and
operationalized via automated feature extraction pipelines built using two open-source, modular tools:
YOLOVI11 and a retinal vessel segmentation model.

For lesion-level localization, we employed the YOLOv11 object detection model, a state-of-the-art
one-stage detector known for its efficiency and precision in dense object environments. YOLOv11
extends the YOLOvVS5/YOLOV7 series with advanced improvements including CSPDarkNet-based
backbones, decoupled heads, and dynamic label assignment (DLA), achieving superior mean average
precision (mAP) with real-time inference capabilities Wang et al.| (2022). We fine-tuned YOLOv11
to detect clinically relevant lesions such as hemorrhages, hard exudates, and cotton wool spots.
Bounding boxes produced by the model were post-processed and validated using Intersection over
Union (IoU) scores against expert-labeled fundus images, ensuring medical fidelity.

In parallel, we integrated a vein segmentation module to extract morphological vessel features. This
module, adapted from the open-source DRIVE and CHASE-DBI1 datasets, uses a modified U-Net
architecture with spatial attention layers to segment retinal vessels with high sensitivity. From these
segmented maps, we extracted quantitative features including vessel tortuosity, branching angles, and
average caliber—biomarkers strongly associated with DR progression.

This structured knowledge vector was passed into a parallel symbolic classifier trained independently
from the deep model, enabling our system to rely on rule-driven inference when the deep model
exhibits uncertainty. Various machine learning models, including Logistic Regression, Random Forest,
Support Vector Machines (SVM), Gradient Boosting, and K-Nearest Neighbors, were evaluated for
knowledge-based classification on the feature set (F'). Among these, Gradient Boosting demonstrated
the best classification performance. Both YOLOv11 and the vein segmentation module functioned
solely as independent auxiliary components to extract biomarkers from images, facilitating symbolic
reasoning. The biomarkers were annotated by expert medical annotators on approximately 500
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images, with random samples validated by respective domain experts. These annotations were
subsequently used to fine-tune the YOLOvV11 and vein segmentation modules, which then act as
knowledge extractors within the pipeline. This accurate integration of clinical knowledge enhances
model robustness, promotes domain invariance, and provides a solid foundation for understanding
domain shifts through distributional alignment.

The classification results from the knowledge-based machine learning model and the ViT model are
integrated using three main methods as shown in Figure 2: (1) selecting the maximum confidence
score across all predictions, (2) computing the class-wise maximum confidence, and (3) applying
a weighted confidence scheme. The outcomes of these three integration strategies are evaluated to
assess the overall performance of the final framework.

2.3 BACKBONE ARCHITECTURES AND TRAINING STRATEGY

For the image-based analysis, we employed advanced Vision Transformer (ViT) architectures. The
DeiT-small architecture, comprising approximately 22M parameters, was used without distillation
Touvron et al.| (2021a). The CvT-13 model, with 20M parameters, integrates convolutional layers
with transformer blocks to enhance spatial feature learning Wu et al.| (2021)). Additionally, we utilized
T2T-ViT-14, featuring progressive tokenization and encompassing 21.5M parameters [Yuan et al.
(2021Db).

All ViT models were initialized with ImageNet-pretrained weights, and during training, encoder
parameters remained fixed to prevent overfitting. Only the classification heads underwent optimization
using class-weighted cross-entropy loss. Training adhered to DomainBed protocols, employing
resizing to 224x224, random cropping, horizontal flipping, color jitter, and grayscale augmentation.
AdamW optimizer was utilized with a learning rate of 5 x 1075, and early stopping was implemented
after 10 epochs without performance improvement.

2.4 EVALUATION PROTOCOL AND RESULTS

Initially, KG-DG is evaluated on the Aptos Dataset (60% training, 20% cross-validation, and 20%
testing), achieving superior performance, exceeding a ViT benchmark by 6% (84.65% vs. 78.40%)
and significantly outperforming existing baselines. We conducted extensive evaluations in both
multi-source and single-source domain generalization settings using publicly available DR datasets:
APTOS Kauppi et al.{(2019), EyePACS Kaggle| (2015), MESSIDOR, and MESSIDOR?2 Decenciere
et al.[(2014). Each dataset constituted a distinct domain. In multi-source experiments, we trained
models on three datasets while testing on the fourth. In single-source setups, we trained on a single
dataset and evaluated on the remaining domains.

Our knowledge-guided framework consistently demonstrated superior performance, achieving a
+2.1% average accuracy improvement in multi-source domain generalization and a notable +4.2%
increase in single-source domain generalization scenarios, particularly impactful on imbalanced data
distributions (see detailed results in Table 6).

The structured knowledge-driven classifier notably improved generalization by encapsulating
domain-invariant medical reasoning, whereas the deep learning branch effectively modeled intricate
visual patterns, validating the effectiveness of integrating clinical expertise within deep learning
frameworks.

Note. Unless otherwise stated, in all tables the best-performing value within each column is

highlighted in bold.

3 EXPERIMENTS

3.1 SINGLE DOMAIN GENERALIZATION RESULTS

In the SDG setting, models were trained on one dataset and evaluated on the remaining three to
simulate clinical deployment in unseen environments. Our method was evaluated against DRGen,
ERM-ViT, SD-ViT, and SPSD-ViT using APTOS [Kauppi et al.|(2019), EyePACS Kaggle| (2015)),
Messidor-1 and Messidor-2. |Decenciere et al.[(2014) as source domains respectively. As shown in
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Table 2: Single Domain Generalization (SDG) Cross-domain Accuracy (%). Models were trained on one source
domain and evaluated on the three unseen target domains. The highest average accuracy is in bold.

Table 3: Trained on APTOS Table 4: Trained on MESSIDOR
Method Eyepacs  Messidor Messidor2  Avg Method Aptos Eyepacs  Messidor2  Avg
DRGen 67.5+1.8 46.7+0.1 61.0+£0.1 584 DRGen 417443 431+£79 448409 432
ERM-ViT 67.8+£1.4 455402 588+04 573 ERM-ViT 453413 524432 582432 519
SD-ViT 72.0+0.8 45440.1 58.5+0.2 58.6 SD-ViT 443409 532416 578424 51.7
SPSD-ViT 71.4+0.8 45.6+0.1 58.8+0.2 58.6 SPSD-ViT 483+1.1 574421 622416 559
VIT (DL) 66.6+04 464403 489402 539 VIT (DL) 498404 62.1+£03 59.1+£03 57.0
Knowledge (KL) 66.4+0.8 49.6+0.2 53.9+0.7 56.6 Knowledge (KL) 74.0+0.5 63.6+04 63.84+0.3 67.1
NonW (DL+KL) 72.84+0.5 50.6£04 543404 59.9 NonW (DL+KL) 52.74+0.7 63.4+£04 614405 59.2
Weighted 67.4+£0.3 49.6+0.3 539+0.6 57.0 Weighted 74.1£0.5 63.3+02 63.84£0.6 67.1
Table 5: Trained on MESSIDOR2 Table 6: Trained on EYEPACS
Method Aptos Eyepacs  Messidor Avg Method Aptos Messidor Messidor2  Avg
DRGen 409439 69.3+£1.0 61.3+0.8 57.7 DRGen 61.3£1.9 54.6+15 654£0.1 604
ERM-ViT 479421 67.4+£09 59.6+39 583 ERM-ViT 69.1£14 504403 628402 60.8
SD-ViT 51.84+0.9 68.7+0.6 62.0+1.7 60.8 SD-ViT 69.3+0.3 50.0+0.5 629402 60.7
SPSD-ViT 52.842.0 72,5403 61.0+08 62.1 SPSD-ViT 75.1+0.5 50.5+0.8 62.2+04 625
VIT (DL) 292404 447405 494407 41.1 VIT (DL) 497409 52.9+0.2 49.1+£09 50.6
Knowledge (KL) 69.14+0.3 71.1+£04 55.3+0.9 652 Knowledge (KL) 60.2+0.2 53.7+0.6 66.5+0.4 60.1
NonW (DL+KL) 63.64+0.6 71.1£0.8 56.4+0.2 63.7 NonW (DL+KL) 63.94+0.2 53.8£0.3 67.24+0.6 61.7
Weighted 69.5+04 71.0+0.2 559406 65.5 Weighted 60.2+0.3 48.7+0.2 66.4+0.7 584

Tables 2-5, our method consistently outperformed existing baselines in three out of four training
configurations.

For instance, when trained on APTOS, the Non-Weighted DL+KL fusion achieved the highest average
accuracy (59.9%), outperforming all transformer baselines and showing superior generalization to
diverse domains like MESSIDOR?2. Similarly, when trained on MESSIDOR2, the Weighted DL+KL
fusion delivered a performance of 65.5%, highlighting robustness against shifts in both demographic
and imaging characteristics. These results validate that symbolic knowledge integration enables
effective generalization from a single domain, crucial for low-resource clinical settings.

3.2 MULTI DOMAIN GENERALIZATION RESULTS

In the MDG setting, we trained our model on three datasets and evaluated on the unseen fourth, as
per the DomainBed protocol. Results in Table [/] show that our KG-DG model using Clip-ViT
(ViT+KL) and symbolic classifiers significantly improved generalization compared to popular
convolutional and transformer-based DG methods, including ERM, IRM, Fishr, and SD-ViT. Notably,
the knowledge-guided symbolic model (KL only) achieved the best average accuracy (63.67%),
while SPSD-ViT and ERM-ViT with strong augmentations reached 65.5%. Despite having fewer
parameters, our model’s performance indicates effective utilization of symbolic lesion features and
their generalization power across domain shifts. In particular, the KL. model exceeded both standard
ViT and ResNet baselines across most target domains, demonstrating the critical role of encoded
clinical knowledge in cross-domain settings.

4 EVALUATION

4.1 BENCHMARK SETUP

To rigorously evaluate the generalization capability of the proposed KG-DG framework, we conducted
experiments on four publicly available diabetic retinopathy (DR) fundus image datasets: APTOS
Kauppi et al.|(2019), EyePACS, Messidor-1, and Messidor-2. Each dataset represents a distinct clinical
domain, differing significantly in patient demographics, imaging devices, and image acquisition
protocols. Following the DomainBed benchmark protocol established by Gulrajani et al. |Gulrajani
& Lopez-Paz[(2021), we implemented two experimental scenarios: Single-Domain Generalization
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Table 7: Performance comparison of different methods and backbones across diabetic retinopathy
datasets (Accuracy %).

Method Backbone (#Param) Aptos Eyepacs  Messidor Messidor 2 Avg.
ERM |Vapnik! (1999) ResNet50(23.5m) 47.6£1.7 71.3+0.3  63.0+£0.4 69.0+1.5 62.7
IRM |Arjovsky et al.| (2019) ResNet50 52.1£1.7 732403  51.3+3.8 57.2+1.7 58.4
ARM [Zhang et al.|(2021) ResNet50 45.6+1.5 71.74£0.5  62.4+£1.0 60.0£3.4 599
Fish|Shi et al.| (2021) ResNet50 44.6+22 727407  62.1+£0.7 66.4+1.7 614
Fishr[Rame et al.| (2022) ResNet50 47.0£1.8 71.940.6  63.3£0.5 66.4+0.2 62.2
GroupDRO |Sagawa et al.|(2020) ResNet50 449438  72.0+0.3  63.1£0.9 67.8+£1.9 62.0
MLDG [Li et al.| (2018a)) ResNet50 441£1.6  727+0.6  62.7£0.6 64.4+04  61.0
Mixup|Yan et al.| (2020) ResNet50 473+1.7  72.04+0.3  59.84£2.8 658414  61.2
Coral |Sun & Saenko|(2016) ResNet50 49.8+1.0 71.74£0.9  58.6£2.8 68.240.6 62.1
MMD [Li et al.{(2018b) ResNet50 493+1.0 693+1.1 64.1+4.8 69.6+0.6 63.1
DANN |Ganin et al.| (2016) ResNet50 544408 729414 57.0+1.1 58.6+1.7 60.7
CDANNLi et al.{(2018c) ResNet50 48.1£0.7  73.1+£0.3  55.8+1.8 61.2+1.3 59.5
ERM-ViT |Vapnik! (1999) DeiT-Small2om) 48.5+0.9  70.7+£1.7  62.7£1.6 69.54+2.5 62.9
ERM-ViT |Vapnik! (1999) T2T-141.5m) 54.043.0 73.2+£04 60.8+1.7 72.0+0.2 62.5
ERM-VIiT [Vapnik! (1999) CvT-130m) 51.3+1.7 73.34£02 64.840.6 72.44+0.6 65.5
SD-ViT |Sultana et al.|(2022) DeiT-Small2om) 48.2+£25 69.6+1.5 63.9+1.3 65.0+£1.7 61.8
SD-ViT |Sultana et al.| (2022) T2T-141.5m) 46.5£0.8  71.1+£0.7 63.9+£09  71.440.2 63.2
SPSD-ViT [Jayanga et al.[(2023)  DeiT-Small2om) 51.6+1.1  73.3+£04 64.0+14  72.940.1 65.5
SPSD-VIiT Jayanga et al.| (2023)  T2T-14¢1.5m) 50.0+2.8  73.6+0.3 65.2+0.3  73.3+0.2  65.5
SPSD-VIiT Jayanga et al.| (2023)  CvT-1320m) 51.7+1.2 73.34£02 64.840.6 72.44+0.6 65.5
ViT (Ours) Vit 2om) 50.1£1.7 69.44+03 58.13£3.8 67.1£1.7 61.18
ViT +KL (Ours) Vit1.5m) 53.1£1.7 722403  51.3+3.8 56.2+1.7 58.4
KL (Ours) Knowledgeom) 60.70+1.2 68.45+0.2 58.67+0.6 67.66+0.6 63.67

(SDG), wherein the model is trained on a single domain and evaluated on the remaining three
domains, and Multi-Domain Generalization (MDG), where training is performed on three domains
with evaluation conducted on a separate unseen domain.

For preprocessing, all images were uniformly resized to 224 x 224 pixels and subjected to data
augmentations including center cropping, horizontal flipping, color jittering, and grayscale conversion
to mimic realistic variability and prevent dataset-specific biases. To ensure a robust and unbiased
evaluation, early stopping was applied based on validation accuracy computed on the training
domain(s).

4.2 BASELINE MODELS

We evaluated our KG-DG framework against several competitive baseline methods representative
of both convolutional neural network (CNN)-based and transformer-based domain generalization
strategies. For convolutional architectures, we included Empirical Risk Minimization (ERM) with
ResNet-50 He et al.| (2016)), a strong baseline under fair evaluation standards (Gulrajani & Lopez-Paz
(2021). Additionally, we compared against Invariant Risk Minimization (IRM) |Arjovsky et al.
(2019), Group Distributionally Robust Optimization (GroupDRO) Sagawa et al.| (2020), Fishr|[Rame
et al.[(2022)), and Adaptive Risk Minimization (ARM) [Zhang et al.|(2021)), each employing distinct
strategies to enforce robustness and domain invariance.

Transformer-based models considered included ERM-ViT with DeiT-Small Touvron et al.| (2021D)),
CvT-13 [Wu et al.| (2021), and T2T-ViT |Yuan et al.| (2021al). We further included state-of-the-art
transformer-based domain generalization models, SD-ViT |Sultana et al.| (2022) and SPSD-ViT
Jayanga et al.|(2023)), which utilize semantic alignment and pseudo-labeling to enhance robustness.
Lastly, we compared against DRGen |Atwany & Yaqub, (2022), a DR-specific DG method leveraging
adversarial and contrastive learning.



Under review as a conference paper at ICLR 2026

The evaluation of our framework and comparative methods was performed using multiple metrics
designed to comprehensively assess the models’ performance under domain shift. Cross-domain
accuracy was employed as the primary metric to gauge generalization effectiveness on unseen datasets.
To address inherent class imbalance common in diabetic retinopathy classification tasks, we reported
the Macro F1-score, which provides a balanced measure across all DR severity classes. Additionally,
we calculated the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), offering
insights into sensitivity-specificity trade-offs critical in medical diagnostics.

To quantify distributional alignment across domains, we employed KL divergence between
domain-specific embeddings. Lastly, the quality and reliability of our symbolic lesion detection
modules were assessed through Intersection-over-Union (IoU) scores against expert annotations,
ensuring clinical relevance and interpretability of the symbolic knowledge incorporated into our
framework.

4.3 ABLATION STUDY

Ablation Study I: APTOS-Trained Domain Generalization To understand the individual and
combined contributions of neural and symbolic components in our framework, we conducted a
focused ablation study using the APTOS dataset as the source domain. Table[§]reports the accuracy
performance on three unseen target domains—EyePACS, Messidor-1 and Messidor-2 when models
were trained solely on APTOS.

The neural-only baseline using Vision Transformer (ViT) achieves a modest average accuracy of
53.9%, indicating limited generalization under domain shift. The symbolic-only model, based on
knowledge-driven lesion features (KL), improves the average accuracy to 56.6%, highlighting the
value of structured clinical priors. The best performance is observed when combining both neural
and symbolic reasoning. In particular, the non-weighted fusion approach yields the highest average
accuracy of 59.9%, outperforming both standalone models. This result demonstrates the strength
of the proposed neuro-symbolic integration in improving robustness and domain generalization in
diabetic retinopathy classification.

Table 8: Ablation study comparing neural-only (ViT), symbolic-only (KL), and fused (DL+KL)
models, trained on the APTOS dataset and evaluated on unseen domains. Neuro-symbolic fusion
achieves the highest average generalization accuracy.

Setting Eyepacs | Messidor | Messidor2
Neural Only (ViT) 66.6 46.4 48.9
Symbolic Only (KL) 66.4 49.6 53.9
Neural + Symbolic (Non-Weighted) 72.8 50.6 54.3
Neural + Symbolic (Weighted) 67.4 49.6 53.9

Table 9: Ablation Study on Symbolic Lesion Biomarkers with and without Retinal Vein Features.
The first section evaluates performance with lesion biomarkers alone exudates, hard hemorrhages,
soft hemorrhages, and cotton wool spots on the APTOS dataset; the second includes additional retinal
vein morphology features (e.g., tortuosity, caliber, branching angles).

Model ‘ Feature Set ‘ Accuracy ‘ F1-Score ‘ Precision ‘ Recall ‘ Exudate Score | Hemorrhage Score | AUC
Logistic Regression Lesions Only 0.7732 0.7322 0.59 0.49 0.77 0.75 0.74
Random Forest Lesions Only 0.8169 0.8115 0.82 0.80 0.80 0.78 0.81
SVM Lesions Only 0.7814 0.7432 0.59 0.50 0.77 0.75 0.76
Gradient Boosting Lesions Only 0.8465 0.8412 0.82 0.76 0.83 0.80 0.84
K-Nearest Neighbors | Lesions Only 0.7814 0.7896 0.63 0.56 0.78 0.76 0.77
Logistic Regression | Lesions + Vein | 0.6424 0.6019 0.25 0.33 0.55 0.58 0.58
Random Forest Lesions + Vein | 0.7384 0.7038 0.55 0.47 0.71 0.71 0.70
SVM Lesions + Vein | 0.6556 0.6083 0.26 0.34 0.56 0.59 0.58
Gradient Boosting Lesions + Vein | 0.7252 0.7389 0.51 0.44 0.70 0.70 0.69
K-Nearest Neighbors | Lesions + Vein |  0.6987 0.6369 0.43 0.44 0.65 0.67 0.66
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Ablation Study II: Performance of Symbolic Lesion Biomarkers with and without Retinal Vein
Features. This experiment evaluates the discriminative capacity of structured symbolic features
extracted from retinal images, focusing on four clinically validated lesion types: exudates, hard
hemorrhages, soft hemorrhages, and cotton wool spots. The first group of results in Table [0]includes
only lesion-based features, while the second incorporates additional vascular information derived
from retinal vein morphology—such as tortuosity, caliber, and branching angles.

Across all classifiers, models trained solely on lesion features consistently outperform those that
include both lesions and vein information. Gradient Boosting achieves the highest accuracy (84.65%)
and macro F1-score (84.12%), confirming the strong discriminative value of lesion-level biomarkers.
In contrast, the addition of vein-based features leads to performance degradation, indicating that
vessel morphology introduces domain-sensitive variability that hampers generalization.

Accordingly, our main KG-DG framework prioritizes lesion biomarkers as the most reliable symbolic
inputs, while vein features are treated as optional. This design choice also strengthens interpretability:
lesion counts and distributions directly align with established clinical diagnostic protocols, whereas
vessel morphology requires context-specific calibration and exhibits less transferability across
domains.

4.4 DISCUSSION AND LIMITATIONS

The KG-DG framework achieves consistent generalization across unseen domains by combining
symbolic clinical knowledge with deep visual features, though several limitations remain. Its
reliance on accurate lesion-level annotations and pre-trained modules like YOLOv11 and retinal vein
segmentation introduces dependency on expert-verified data, which may not be available for other
medical imaging tasks. The symbolic classifier may miss complex visual cues, and fusion performance
varies with confidence-weighting strategies, highlighting a need for more adaptive mechanisms.
Across SDG and MDG tasks, maximum cross-domain improvement reaches 5.2% (Messidor2 —
APTOS), with average gains around 2—-3%, indicating steady but not uniform dominance. Feature
importance analysis shows lesion features such as “exudates count” and “hemorrhage density” align
with clinical practice, supporting human-aligned decision-making. Future work could explore
dynamic neuro-symbolic reasoning, integrate temporal clinical data, and extend KG-DG to other
modalities like OCT or histopathology.

5 CONCLUSIONS

This paper introduces KG-DG, an improved knowledge-guided domain generalization framework
specifically tailored for medical imaging applications, as exemplified by diabetic retinopathy
classification. KG-DG integrates symbolic clinical reasoning and deep visual representations through
a confidence-weighted fusion approach, significantly enhancing robustness and interpretability.
Comprehensive experimental results on four diverse DR datasets demonstrated that KG-DG
consistently achieved superior performance compared to strong baselines of domain generalization
methods, achieving notable improvements in both single-source and multi-source generalization
settings, with gains of up to 5.2% accuracy in cross-domain accuracy.

Our findings underscore the importance of embedding structured clinical knowledge within deep
learning models, thereby significantly improving generalization and trustworthiness in clinical settings.
Future directions include adapting the KG-DG framework to additional medical imaging modalities,
such as optical coherence tomography and histopathology, and further integrating dynamic symbolic
reasoning via neuro-symbolic architectures, enhancing real-time decision support capabilities in
medical Al deployments. Insights: Our observations indicate that the integration of symbolic clinical
knowledge into traditional architectures—whether Vision Transformers (ViTs) or domain-specific
models such as DeepXSOZ|Shama et al.| (2023)—consistently leads to significant improvements in
classification accuracy. Furthermore, this knowledge imputation enhances both domain generalization
and the explainability of model behavior, addressing critical challenges in clinical deployment.
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