

KG-DG: KNOWLEDGE-GUIDED DOMAIN GENERALIZATION VIA NEURO-SYMBOLIC FUSION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Domain generalization remains a critical challenge in medical imaging, where
 012 models trained on single sources often fail under real-world distribution shifts.
 013 We propose **KG-DG**, a neuro-symbolic framework for diabetic retinopathy (DR)
 014 classification that integrates vision transformers with expert-guided symbolic
 015 reasoning to enable robust generalization across unseen domains. Our approach
 016 leverages clinical lesion ontologies through structured, rule-based features and
 017 retinal vessel segmentation, fusing them with deep visual representations via
 018 a confidence-weighted integration strategy. The framework addresses both
 019 single-domain generalization (SDG) and multi-domain generalization (MDG) by
 020 minimizing the KL divergence between domain embeddings, thereby enforcing
 021 alignment of high-level clinical semantics.

022 Extensive experiments across four public datasets (APROS, EyePACS, Messidor-1,
 023 Messidor-2) demonstrate significant improvements: up to a 5.2% accuracy gain
 024 in cross-domain settings and a 6% improvement over baseline ViT models.
 025 Notably, our symbolic-only model achieves a 63.67% average accuracy in MDG,
 026 while the complete neuro-symbolic integration achieves the highest accuracy
 027 compared to existing published baselines and benchmarks in challenging SDG
 028 scenarios. Ablation studies reveal that lesion-based features (84.65% accuracy)
 029 substantially outperform purely neural approaches, confirming that symbolic
 030 components act as effective regularizers beyond merely enhancing interpretability.
 031 Our findings establish neuro-symbolic integration as a promising paradigm for
 032 building clinically robust, and domain-invariant medical AI systems. **Keywords:**
 033 Domain Generalization, Neuro-Symbolic Learning, Medical Imaging, Diabetic
 034 Retinopathy, Vision Transformers, Out-of-Distribution Robustness

1 INTRODUCTION

037 Diabetic Retinopathy (DR) is a microvascular complication of Diabetes Mellitus that affects the
 038 retinal vasculature, leading to hemorrhages, microaneurysms, exudates, and cotton-wool spots which,
 039 if left untreated, can culminate in irreversible vision loss Khandelwal et al. (2023). Manual grading
 040 of fundus photographs by expert ophthalmologists remains the clinical gold standard but is both
 041 time-consuming and subject to inter-observer variability Kauppi et al. (2019). Despite the success
 042 of deep learning models—particularly Vision Transformers (ViTs)—on single-source DR datasets
 043 Dosovitskiy et al. (2021); Zhao et al. (2022), their performance suffers when confronted with
 044 domain shifts caused by variations in imaging devices, resolution settings, and patient demographics.
 045 Although Domain Generalization (DG) strategies such as Empirical Risk Minimization under the
 046 DomainBed protocol Gulrajani & Lopez-Paz (2021) offer a baseline for robustness, they often
 047 overlook the integration of structured clinical knowledge and realistic augmentation techniques that
 048 are critical for reliable cross-domain deployment.

049 Neuro-symbolic learning, which integrates deep learning with symbolic reasoning, has gained traction
 050 as a promising strategy to improve domain generalization in medical imaging. Deep models extract
 051 complex patterns from raw data, while symbolic components encode high-level domain knowledge
 052 and constraints, thereby effectively guiding model behavior across varying domains. This hybrid
 053 approach can mitigate overfitting to domain-specific artifacts by enforcing consistency with known
 anatomical or pathological rules. For example, Han et al. introduced a neuro-symbolic framework

for spinal MRI segmentation that embeds anatomical priors into a deep adversarial graph network, resulting in better generalization and interpretability across different datasets Han et al. (2021). Similarly, Ozkan and Boix demonstrated that training across multiple imaging modalities (e.g., MRI, CT, ultrasound) significantly improves generalization to unseen domains, emphasizing the value of diverse training data and domain-aware learning strategies Ozkan & Boix (2024). These findings suggest that symbolic reasoning components can serve as a regularizing force that biases models toward clinically meaningful and domain-invariant features—thereby enabling more robust, scalable medical AI systems.

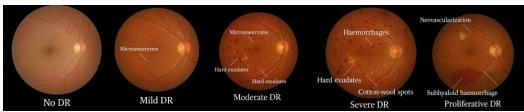


Figure 1: Fundus images showing DR progression: from No DR to Proliferative DR Kauppi et al. (2019).

knowledge integration and domain generalization in a cohesive framework. This gap motivates our proposed method, **KG-DG**, a knowledge-guided domain generalization framework that unifies structured clinical knowledge with deep learning models in a scalable manner. KG-DG encodes domain-invariant biomarkers—such as exudates, hemorrhages, and vascular abnormalities—directly into the learning pipeline, guiding classification tasks while enhancing out-of-distribution (OOD) robustness.

1.1 DOMAIN GENERALIZATION

Vision transformers (ViTs) have revolutionized medical image analysis, particularly in ophthalmology, offering a powerful alternative to traditional convolutional neural networks. Dosovitskiy et al. Dosovitskiy et al. (2021) established the foundation by demonstrating ViTs’ state-of-the-art performance on large-scale image recognition benchmarks, catalyzing their adoption for diabetic retinopathy (DR) detection. Subsequent work by Kothari et al. introduced TransDR Wang et al. (2024), enhancing ViTs with lesion-aware attention mechanisms that improve lesion localization capabilities, though without explicitly addressing domain shift robustness challenges.

In many real-world applications, particularly in biomedical fields, it is unrealistic to expect access to new patients’ data before model deployment due to domain shifts between data from different patients Muandet et al. (2013). To address this challenge, the concept of Domain Generalization (DG) was introduced Blanchard et al. (2011). DG aims to train models on data from one or more related but distinct source domains, enabling them to generalize effectively to unseen, out-of-distribution (OOD) target domains. Since its formal introduction by Blanchard et al. in 2011 Blanchard et al. (2011), a wide range of techniques have been proposed to tackle the DG challenge Zhou et al. (2021)–Cha et al. (2021).

These approaches include learning domain-invariant representations by aligning source domain distributions Li et al. (2018b;d), simulating domain shifts during training using meta-learning Li et al. (2018a); Balaji et al. (2018), and generating synthetic data through domain augmentation Zhou et al. (2020b;a). From an application perspective, DG has been explored in various areas such as computer vision (e.g., object recognition Li et al. (2017; 2019), semantic segmentation Volpi & Murino (2019), and person re-identification Zhou et al. (2021; 2020b)), speech recognition Shankar et al. (2018), natural language processing Balaji et al. (2018), medical imaging Liu et al. (2020b;a), and reinforcement learning Zhou et al. (2021).

Despite recent advances, most current neuro-symbolic methods remain narrowly focused—typically emphasizing symbolic reasoning mechanics without incorporating the type of clinical knowledge used by medical experts to inform robust, generalizable decision-making. In particular, few approaches simultaneously address both symbolic

Table 1: Clinical Signs of DR Their Significance

Symptom	Observations & Relevance
Microaneurysms	Tiny red dilations; earliest sign of Mild NPDR (Frank, 2004; Wilkinson et al., 2003).
Haemorrhages	Dot/blot or flame-shaped. Severe NPDR: >20 in all quadrants (of Ophthalmology, 2023; Group, 1991).
Hard Exudates	Lipid deposits from leakage near macula. Risk for DME (Group, 1991; Shukla & Tripathy, 2025).
Cotton Wool Spots	White lesions from nerve infarction. Signify ischemia (Frank, 2004; Publishing, 2024).
Subhyaloid Haemorrhages	Boat/D-shaped bleed. Hallmark of Proliferative DR (Yanoff & Duker, 2019; Shukla & Tripathy, 2025).
Neovascularization	New fragile vessels on disc (NVD) or retina (NVE). Defines PDR (Group, 1991; of Ophthalmology, 2023).

108 In medical imaging, domain shift is especially prevalent due to variations across clinical sites and
 109 individual patients Liu et al. (2020a); Dou et al. (2019). Datasets like Multi-site Prostate MRI
 110 Segmentation Liu et al. (2020a) and Chest X-rays Mahajan et al. (2021) reflect this reality, with
 111 differences in imaging equipment and acquisition protocols introducing substantial distribution
 112 variability.

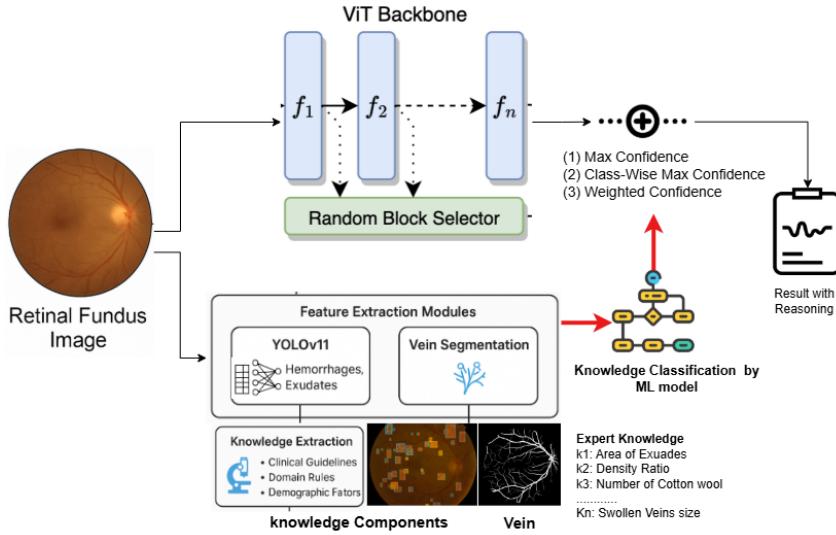
113

114 2 METHODOLOGY

115

116 We propose a general-purpose framework for *knowledge imputation into AI-based models*, enabling
 117 integration of clinically validated rules, visual biomarkers, and demographic insights into conventional
 118 learning pipelines. This approach is designed to improve **robustness**, **interpretability**, and **domain**
 119 **generalization**, addressing critical limitations commonly encountered in medical deployments where
 120 data heterogeneity, distribution shifts, and limited supervision can degrade model performance.

121



139

140 Figure 2: Overview of the proposed knowledge-guided DR classification framework, illustrating the integration
 141 of symbolic clinical rules and deep learning features Kauppi et al. (2019).

142

143

144 2.1 KNOWLEDGE-GUIDED AUGMENTATION OF DEEP MODELS

145

146 Traditional deep learning models typically learn a predictive mapping $f_{DL} : \mathcal{X} \rightarrow \mathcal{Y}$, where \mathcal{X}
 147 denotes input modalities (e.g., retinal images) and \mathcal{Y} represents target disease labels. This approach
 148 inherently lacks structured medical inductive biases, potentially limiting clinical applicability. To
 149 overcome this limitation, we propose a *dual-branch architecture*, integrating structured knowledge
 150 representation \mathcal{K} into deep learning-based image analysis.

151

152 We formalize \mathcal{K} as a set of diagnostic rules $\{r_1, r_2, \dots, r_n\}$, each reflecting expert-validated
 153 correlations between observable clinical features and disease states. These rules incorporate visual
 154 biomarkers such as (e.g., exudates, hemorrhages, vascular patterns) and demographic parameters
 155 (e.g., patient age, glycemic status). For practical implementation, we develop corresponding *feature*
 156 *extractors* $C = \{c_1, c_2, \dots, c_k\}$, instantiated via object detection models (YOLOv11), segmentation
 157 architectures, and logical rule functions.

158

159 Each extractor c_i outputs a quantitative feature $f_i \in \mathbb{R}$, aggregated into a structured vector:

160

$$F^* = \{f_1, f_2, \dots, f_k\}.$$

161

162 This structured vector encodes clinical attributes such as presence, severity, and spatial distribution
 163 of significant retinal lesions, facilitating symbolic reasoning aligned closely with clinical diagnostic
 164 criteria.

162 A parallel *knowledge-driven classifier* $f_{KD} : F^* \rightarrow \mathcal{Y}$ is trained alongside the deep learning model
 163 f_{DL} . The final prediction can then be determined through different fusion strategies. In the simplest
 164 case, a **selective fusion** rule is applied:

$$166 \quad 167 \quad 168 \quad y_{\text{final}} = \begin{cases} y_{DL}, & \text{if } s_{DL} \geq s_{KD}, \\ y_{KD}, & \text{otherwise,} \end{cases}$$

169 where s_{DL} and s_{KD} denote the maximum confidence scores from the deep and symbolic classifiers,
 170 respectively. This strategy enhances robustness by leveraging symbolic reasoning when the deep
 171 model predictions exhibit uncertainty, particularly valuable in handling out-of-distribution scenarios.
 172 Beyond this, we experimented with three additional fusion techniques:

- 173 **1. Max Confidence Fusion:** both the neural (ViT) and symbolic classifiers output calibrated
 174 probabilities via softmax normalization. The class with the globally highest confidence is selected,
 175 irrespective of source.
- 176 **2. Class-wise Max Fusion:** normalized per-class confidence scores are compared across models, and
 177 the prediction is made according to the higher class-specific confidence.
- 178 **3. Weighted Fusion:** empirically tuned weights $(\alpha_{DL}, \alpha_{KL})$ are applied to balance neural and
 179 symbolic predictions. Formally,

$$181 \quad 182 \quad y_{\text{final}} = \arg \max_{c \in \mathcal{C}} (\alpha_{DL} \cdot s_{DL}(c) + \alpha_{KL} \cdot s_{KL}(c)),$$

183 where $s_{DL}(c)$ and $s_{KL}(c)$ are the softmax confidence scores assigned by the deep and symbolic
 184 classifiers, respectively, for class c , and \mathcal{C} is the set of all DR severity classes.

185 Together, these strategies allow us to assess the trade-off between model confidence, robustness, and
 186 the influence of symbolic knowledge on final decision-making.

188 2.2 DIABETIC RETINOPATHY CLASSIFICATION

190 We evaluated the proposed KG-DG framework on the task of diabetic retinopathy (DR) classification
 191 using retinal fundus images—well-suited for knowledge-guided learning due to the presence of clearly
 192 defined visual pathologies such as microaneurysms, hemorrhages, exudates, and neovascularization.
 193 Domain-specific diagnostic rules were curated from ophthalmological guidelines (see Table 1) and
 194 operationalized via automated feature extraction pipelines built using two open-source, modular tools:
 195 YOLOv11 and a retinal vessel segmentation model.

196 For lesion-level localization, we employed the YOLOv11 object detection model, a state-of-the-art
 197 one-stage detector known for its efficiency and precision in dense object environments. YOLOv11
 198 extends the YOLOv5/YOLOv7 series with advanced improvements including CSPDarkNet-based
 199 backbones, decoupled heads, and dynamic label assignment (DLA), achieving superior mean average
 200 precision (mAP) with real-time inference capabilities Wang et al. (2022). We fine-tuned YOLOv11
 201 to detect clinically relevant lesions such as hemorrhages, hard exudates, and cotton wool spots.
 202 Bounding boxes produced by the model were post-processed and validated using Intersection over
 203 Union (IoU) scores against expert-labeled fundus images, ensuring medical fidelity.

204 In parallel, we integrated a vein segmentation module to extract morphological vessel features. This
 205 module, adapted from the open-source DRIVE and CHASE-DB1 datasets, uses a modified U-Net
 206 architecture with spatial attention layers to segment retinal vessels with high sensitivity. From these
 207 segmented maps, we extracted quantitative features including vessel tortuosity, branching angles, and
 208 average caliber—biomarkers strongly associated with DR progression.

209 This structured knowledge vector was passed into a parallel symbolic classifier trained independently
 210 from the deep model, enabling our system to rely on rule-driven inference when the deep model
 211 exhibits uncertainty. Various machine learning models, including Logistic Regression, Random Forest,
 212 Support Vector Machines (SVM), Gradient Boosting, and K-Nearest Neighbors, were evaluated for
 213 knowledge-based classification on the feature set (F). Among these, Gradient Boosting demonstrated
 214 the best classification performance. Both YOLOv11 and the vein segmentation module functioned
 215 solely as independent auxiliary components to extract biomarkers from images, facilitating symbolic
 reasoning. The biomarkers were annotated by expert medical annotators on approximately 500

216 images, with random samples validated by respective domain experts. These annotations were
 217 subsequently used to fine-tune the YOLOv11 and vein segmentation modules, which then act as
 218 knowledge extractors within the pipeline. This accurate integration of clinical knowledge enhances
 219 model robustness, promotes domain invariance, and provides a solid foundation for understanding
 220 domain shifts through distributional alignment.

221 The classification results from the knowledge-based machine learning model and the ViT model are
 222 integrated using three main methods as shown in Figure 2: (1) selecting the maximum confidence
 223 score across all predictions, (2) computing the class-wise maximum confidence, and (3) applying
 224 a weighted confidence scheme. The outcomes of these three integration strategies are evaluated to
 225 assess the overall performance of the final framework.

227 2.3 BACKBONE ARCHITECTURES AND TRAINING STRATEGY

228 For the image-based analysis, we employed advanced Vision Transformer (ViT) architectures. The
 229 DeiT-small architecture, comprising approximately 22M parameters, was used without distillation
 230 Touvron et al. (2021a). The CvT-13 model, with 20M parameters, integrates convolutional layers
 231 with transformer blocks to enhance spatial feature learning Wu et al. (2021). Additionally, we utilized
 232 T2T-ViT-14, featuring progressive tokenization and encompassing 21.5M parameters Yuan et al.
 233 (2021b).

234 All ViT models were initialized with ImageNet-pretrained weights, and during training, encoder
 235 parameters remained fixed to prevent overfitting. Only the classification heads underwent optimization
 236 using class-weighted cross-entropy loss. Training adhered to DomainBed protocols, employing
 237 resizing to 224×224, random cropping, horizontal flipping, color jitter, and grayscale augmentation.
 238 AdamW optimizer was utilized with a learning rate of 5×10^{-5} , and early stopping was implemented
 239 after 10 epochs without performance improvement.

241 2.4 EVALUATION PROTOCOL AND RESULTS

242 Initially, KG-DG is evaluated on the Aptos Dataset (60% training, 20% cross-validation, and 20%
 243 testing), achieving superior performance, exceeding a ViT benchmark by 6% (84.65% vs. 78.40%)
 244 and significantly outperforming existing baselines. We conducted extensive evaluations in both
 245 multi-source and single-source domain generalization settings using publicly available DR datasets:
 246 APTOS Kauppi et al. (2019), EyePACS Kaggle (2015), MESSIDOR, and MESSIDOR2 Decencière
 247 et al. (2014). Each dataset constituted a distinct domain. In multi-source experiments, we trained
 248 models on three datasets while testing on the fourth. In single-source setups, we trained on a single
 249 dataset and evaluated on the remaining domains.

250 Our knowledge-guided framework consistently demonstrated superior performance, achieving a
 251 +2.1% average accuracy improvement in multi-source domain generalization and a notable +4.2%
 252 increase in single-source domain generalization scenarios, particularly impactful on imbalanced data
 253 distributions (see detailed results in Table 6).

254 The structured knowledge-driven classifier notably improved generalization by encapsulating
 255 domain-invariant medical reasoning, whereas the deep learning branch effectively modeled intricate
 256 visual patterns, validating the effectiveness of integrating clinical expertise within deep learning
 257 frameworks.

258 *Note. Unless otherwise stated, in all tables the best-performing value within each column is
 259 highlighted in **bold**.*

263 3 EXPERIMENTS

264 3.1 SINGLE DOMAIN GENERALIZATION RESULTS

265 In the SDG setting, models were trained on one dataset and evaluated on the remaining three to
 266 simulate clinical deployment in unseen environments. Our method was evaluated against DRGen,
 267 ERM-ViT, SD-ViT, and SPSD-ViT using APTOS Kauppi et al. (2019), EyePACS Kaggle (2015),
 268 Messidor-1 and Messidor-2. Decencière et al. (2014) as source domains respectively. As shown in

270 Table 2: Single Domain Generalization (SDG) Cross-domain Accuracy (%). Models were trained on one source
 271 domain and evaluated on the three unseen target domains. The highest average accuracy is in bold.

272 Table 3: Trained on APTOS

Method	Eyepacs	Messidor	Messidor2	Avg
DRGen	67.5 \pm 1.8	46.7 \pm 0.1	61.0 \pm 0.1	58.4
ERM-ViT	67.8 \pm 1.4	45.5 \pm 0.2	58.8 \pm 0.4	57.3
SD-ViT	72.0 \pm 0.8	45.4 \pm 0.1	58.5 \pm 0.2	58.6
SPSD-ViT	71.4 \pm 0.8	45.6 \pm 0.1	58.8 \pm 0.2	58.6
VIT (DL)	66.6 \pm 0.4	46.4 \pm 0.3	48.9 \pm 0.2	53.9
Knowledge (KL)	66.4 \pm 0.8	49.6 \pm 0.2	53.9 \pm 0.7	56.6
NonW (DL+KL)	72.8 \pm 0.5	50.6 \pm 0.4	54.3 \pm 0.4	59.9
Weighted	67.4 \pm 0.3	49.6 \pm 0.3	53.9 \pm 0.6	57.0

273 Table 4: Trained on MESSIDOR

Method	Aptos	Eyepacs	Messidor2	Avg
DRGen	41.7 \pm 4.3	43.1 \pm 7.9	44.8 \pm 0.9	43.2
ERM-ViT	45.3 \pm 1.3	52.4 \pm 3.2	58.2 \pm 3.2	51.9
SD-ViT	44.3 \pm 0.9	53.2 \pm 1.6	57.8 \pm 2.4	51.7
SPSD-ViT	48.3 \pm 1.1	57.4 \pm 2.1	62.2 \pm 1.6	55.9
VIT (DL)	49.8 \pm 0.4	62.1 \pm 0.3	59.1 \pm 0.3	57.0
Knowledge (KL)	74.0 \pm 0.5	63.6 \pm 0.4	63.8 \pm 0.3	67.1
NonW (DL+KL)	52.7 \pm 0.7	63.4 \pm 0.4	61.4 \pm 0.5	59.2
Weighted	74.1 \pm 0.5	63.3 \pm 0.2	63.8 \pm 0.6	67.1

282 Table 5: Trained on MESSIDOR2

Method	Aptos	Eyepacs	Messidor	Avg
DRGen	40.9 \pm 3.9	69.3 \pm 1.0	61.3 \pm 0.8	57.7
ERM-ViT	47.9 \pm 2.1	67.4 \pm 0.9	59.6 \pm 3.9	58.3
SD-ViT	51.8 \pm 0.9	68.7 \pm 0.6	62.0 \pm 1.7	60.8
SPSD-ViT	52.8 \pm 2.0	72.5 \pm 0.3	61.0 \pm 0.8	62.1
VIT (DL)	29.2 \pm 0.4	44.7 \pm 0.5	49.4 \pm 0.7	41.1
Knowledge (KL)	69.1 \pm 0.3	71.1 \pm 0.4	55.3 \pm 0.9	65.2
NonW (DL+KL)	63.6 \pm 0.6	71.1 \pm 0.8	56.4 \pm 0.2	63.7
Weighted	69.5 \pm 0.4	71.0 \pm 0.2	55.9 \pm 0.6	65.5

283 Table 6: Trained on EYEPACS

Method	Aptos	Messidor	Messidor2	Avg
DRGen	61.3 \pm 1.9	54.6 \pm 1.5	65.4 \pm 0.1	60.4
ERM-ViT	69.1 \pm 1.4	50.4 \pm 0.3	62.8 \pm 0.2	60.8
SD-ViT	69.3 \pm 0.3	50.0 \pm 0.5	62.9 \pm 0.2	60.7
SPSD-ViT	75.1 \pm 0.5	50.5 \pm 0.8	62.2 \pm 0.4	62.5
VIT (DL)	49.7 \pm 0.9	52.9 \pm 0.2	49.1 \pm 0.9	50.6
Knowledge (KL)	60.2 \pm 0.2	53.7 \pm 0.6	66.5 \pm 0.4	60.1
NonW (DL+KL)	63.9 \pm 0.2	53.8 \pm 0.3	67.2 \pm 0.6	61.7
Weighted	60.2 \pm 0.3	48.7 \pm 0.2	66.4 \pm 0.7	58.4

294 Tables 2-5, our method consistently outperformed existing baselines in three out of four training
 295 configurations.

296 For instance, when trained on APTOS, the Non-Weighted DL+KL fusion achieved the highest average
 297 accuracy (59.9%), outperforming all transformer baselines and showing superior generalization to
 298 diverse domains like MESSIDOR2. Similarly, when trained on MESSIDOR2, the Weighted DL+KL
 299 fusion delivered a performance of 65.5%, highlighting robustness against shifts in both demographic
 300 and imaging characteristics. These results validate that symbolic knowledge integration enables
 301 effective generalization from a single domain, crucial for low-resource clinical settings.

302 3.2 MULTI DOMAIN GENERALIZATION RESULTS

303 In the MDG setting, we trained our model on three datasets and evaluated on the unseen fourth, as
 304 per the DomainBed protocol. Results in Table 7 show that our KG-DG model using Clip-ViT
 305 (ViT+KL) and symbolic classifiers significantly improved generalization compared to popular
 306 convolutional and transformer-based DG methods, including ERM, IRM, Fishr, and SD-ViT. Notably,
 307 the knowledge-guided symbolic model (KL only) achieved the best average accuracy (63.67%),
 308 while SPSD-ViT and ERM-ViT with strong augmentations reached 65.5%. Despite having fewer
 309 parameters, our model’s performance indicates effective utilization of symbolic lesion features and
 310 their generalization power across domain shifts. In particular, the KL model exceeded both standard
 311 ViT and ResNet baselines across most target domains, demonstrating the critical role of encoded
 312 clinical knowledge in cross-domain settings.

314 4 EVALUATION

315 4.1 BENCHMARK SETUP

316 To rigorously evaluate the generalization capability of the proposed KG-DG framework, we conducted
 317 experiments on four publicly available diabetic retinopathy (DR) fundus image datasets: APTOS
 318 Kauppi et al. (2019), EyePACS, Messidor-1, and Messidor-2. Each dataset represents a distinct clinical
 319 domain, differing significantly in patient demographics, imaging devices, and image acquisition
 320 protocols. Following the DomainBed benchmark protocol established by Gulrajani et al. Gulrajani
 321 & Lopez-Paz (2021), we implemented two experimental scenarios: Single-Domain Generalization
 322

324
 325 Table 7: Performance comparison of different methods and backbones across diabetic retinopathy
 326 datasets (Accuracy %).

327 Method	328 Backbone (#Param)	329 Aptos	330 Eyepacs	331 Messidor	332 Messidor 2	333 Avg.
329 ERM Vapnik (1999)	330 ResNet50 _(23.5M)	331 47.6±1.7	332 71.3±0.3	333 63.0±0.4	334 69.0±1.5	335 62.7
330 IRM Arjovsky et al. (2019)	331 ResNet50	332 52.1±1.7	333 73.2±0.3	334 51.3±3.8	335 57.2±1.7	336 58.4
331 ARM Zhang et al. (2021)	332 ResNet50	333 45.6±1.5	334 71.7±0.5	335 62.4±1.0	336 60.0±3.4	337 59.9
332 Fish Shi et al. (2021)	333 ResNet50	334 44.6±2.2	335 72.7±0.7	336 62.1±0.7	337 66.4±1.7	338 61.4
333 Fishr Rame et al. (2022)	334 ResNet50	335 47.0±1.8	336 71.9±0.6	337 63.3±0.5	338 66.4±0.2	339 62.2
334 GroupDRO Sagawa et al. (2020)	335 ResNet50	336 44.9±3.8	337 72.0±0.3	338 63.1±0.9	339 67.8±1.9	340 62.0
335 MLDG Li et al. (2018a)	336 ResNet50	337 44.1±1.6	338 72.7±0.6	339 62.7±0.6	340 64.4±0.4	341 61.0
336 Mixup Yan et al. (2020)	337 ResNet50	338 47.3±1.7	339 72.0±0.3	340 59.8±2.8	341 65.8±1.4	342 61.2
337 Coral Sun & Saenko (2016)	338 ResNet50	339 49.8±1.0	340 71.7±0.9	341 58.6±2.8	342 68.2±0.6	343 62.1
338 MMD Li et al. (2018b)	339 ResNet50	340 49.3±1.0	341 69.3±1.1	342 64.1±4.8	343 69.6±0.6	344 63.1
339 DANN Ganin et al. (2016)	340 ResNet50	341 54.4±0.8	342 72.9±1.4	343 57.0±1.1	344 58.6±1.7	345 60.7
340 CDANN Li et al. (2018c)	341 ResNet50	342 48.1±0.7	343 73.1±0.3	344 55.8±1.8	345 61.2±1.3	346 59.5
341 ERM-ViT Vapnik (1999)	342 DeiT-Small _(22M)	343 48.5±0.9	344 70.7±1.7	345 62.7±1.6	346 69.5±2.5	347 62.9
342 ERM-ViT Vapnik (1999)	343 T2T-14 _(21.5M)	344 54.0±3.0	345 73.2±0.4	346 60.8±1.7	347 72.0±0.2	348 62.5
343 ERM-ViT Vapnik (1999)	344 CvT-13 _(20M)	345 51.3±1.7	346 73.3±0.2	347 64.8±0.6	348 72.4±0.6	349 65.5
344 SD-ViT Sultana et al. (2022)	345 DeiT-Small _(22M)	346 48.2±2.5	347 69.6±1.5	348 63.9±1.3	349 65.0±1.7	350 61.8
345 SD-ViT Sultana et al. (2022)	346 T2T-14 _(21.5M)	347 46.5±0.8	348 71.1±0.7	349 63.9±0.9	350 71.4±0.2	351 63.2
346 PSD-ViT Jayanga et al. (2023)	347 DeiT-Small _(22M)	348 51.6±1.1	349 73.3±0.4	350 64.0±1.4	351 72.9±0.1	352 65.5
347 PSD-ViT Jayanga et al. (2023)	348 T2T-14 _(21.5M)	349 50.0±2.8	350 73.6±0.3	351 65.2±0.3	352 73.3±0.2	353 65.5
348 PSD-ViT Jayanga et al. (2023)	350 CvT-13 _(20M)	351 51.7±1.2	352 73.3±0.2	353 64.8±0.6	354 72.4±0.6	355 65.5
353 ViT (Ours)	354 Vit _(22M)	355 50.1±1.7	356 69.4±0.3	357 58.13±3.8	358 67.1±1.7	359 61.18
354 ViT +KL (Ours)	355 Vit _(21.5M)	356 53.1±1.7	357 72.2±0.3	358 51.3±3.8	359 56.2±1.7	360 58.4
355 KL (Ours)	356 Knowledge _(20M)	357 60.70±1.2	358 68.45±0.2	359 58.67±0.6	360 67.66±0.6	361 63.67

353
 354 (SDG), wherein the model is trained on a single domain and evaluated on the remaining three
 355 domains, and Multi-Domain Generalization (MDG), where training is performed on three domains
 356 with evaluation conducted on a separate unseen domain.

357
 358 For preprocessing, all images were uniformly resized to 224×224 pixels and subjected to data
 359 augmentations including center cropping, horizontal flipping, color jittering, and grayscale conversion
 360 to mimic realistic variability and prevent dataset-specific biases. To ensure a robust and unbiased
 361 evaluation, early stopping was applied based on validation accuracy computed on the training
 362 domain(s).

363 4.2 BASELINE MODELS

364
 365 We evaluated our KG-DG framework against several competitive baseline methods representative
 366 of both convolutional neural network (CNN)-based and transformer-based domain generalization
 367 strategies. For convolutional architectures, we included Empirical Risk Minimization (ERM) with
 368 ResNet-50 He et al. (2016), a strong baseline under fair evaluation standards Gulrajani & Lopez-Paz
 369 (2021). Additionally, we compared against Invariant Risk Minimization (IRM) Arjovsky et al.
 370 (2019), Group Distributionally Robust Optimization (GroupDRO) Sagawa et al. (2020), Fishr Rame
 371 et al. (2022), and Adaptive Risk Minimization (ARM) Zhang et al. (2021), each employing distinct
 372 strategies to enforce robustness and domain invariance.

373 Transformer-based models considered included ERM-ViT with DeiT-Small Touvron et al. (2021b),
 374 CvT-13 Wu et al. (2021), and T2T-ViT Yuan et al. (2021a). We further included state-of-the-art
 375 transformer-based domain generalization models, SD-ViT Sultana et al. (2022) and PSD-ViT
 376 Jayanga et al. (2023), which utilize semantic alignment and pseudo-labeling to enhance robustness.
 377 Lastly, we compared against DRGen Atwany & Yaqub (2022), a DR-specific DG method leveraging
 378 adversarial and contrastive learning.

378 The evaluation of our framework and comparative methods was performed using multiple metrics
 379 designed to comprehensively assess the models’ performance under domain shift. Cross-domain
 380 accuracy was employed as the primary metric to gauge generalization effectiveness on unseen datasets.
 381 To address inherent class imbalance common in diabetic retinopathy classification tasks, we reported
 382 the Macro F1-score, which provides a balanced measure across all DR severity classes. Additionally,
 383 we calculated the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), offering
 384 insights into sensitivity-specificity trade-offs critical in medical diagnostics.

385 To quantify distributional alignment across domains, we employed KL divergence between
 386 domain-specific embeddings. Lastly, the quality and reliability of our symbolic lesion detection
 387 modules were assessed through Intersection-over-Union (IoU) scores against expert annotations,
 388 ensuring clinical relevance and interpretability of the symbolic knowledge incorporated into our
 389 framework.

390

391 4.3 ABLATION STUDY

392

393 **Ablation Study I: APTOS-Trained Domain Generalization** To understand the individual and
 394 combined contributions of neural and symbolic components in our framework, we conducted a
 395 focused ablation study using the APTOS dataset as the source domain. Table 8 reports the accuracy
 396 performance on three unseen target domains—EyePACS, Messidor-1 and Messidor-2 when models
 397 were trained solely on APTOS.

398 The neural-only baseline using Vision Transformer (ViT) achieves a modest average accuracy of
 399 53.9%, indicating limited generalization under domain shift. The symbolic-only model, based on
 400 knowledge-driven lesion features (KL), improves the average accuracy to 56.6%, highlighting the
 401 value of structured clinical priors. The best performance is observed when combining both neural
 402 and symbolic reasoning. In particular, the non-weighted fusion approach yields the highest average
 403 accuracy of 59.9%, outperforming both standalone models. This result demonstrates the strength
 404 of the proposed neuro-symbolic integration in improving robustness and domain generalization in
 405 diabetic retinopathy classification.

406

407 Table 8: Ablation study comparing neural-only (ViT), symbolic-only (KL), and fused (DL+KL)
 408 models, trained on the APTOS dataset and evaluated on unseen domains. Neuro-symbolic fusion
 409 achieves the highest average generalization accuracy.

410

Setting	EyePACS	Messidor	Messidor2
Neural Only (ViT)	66.6	46.4	48.9
Symbolic Only (KL)	66.4	49.6	53.9
Neural + Symbolic (Non-Weighted)	72.8	50.6	54.3
Neural + Symbolic (Weighted)	67.4	49.6	53.9

416

417

418 **Table 9: Ablation Study on Symbolic Lesion Biomarkers with and without Retinal Vein Features.**
 419 The first section evaluates performance with lesion biomarkers alone *exudates, hard hemorrhages,*
 420 *soft hemorrhages, and cotton wool spots* on the APTOS dataset; the second includes additional retinal
 421 vein morphology features (e.g., tortuosity, caliber, branching angles).

422

Model	Feature Set	Accuracy	F1-Score	Precision	Recall	Exudate Score	Hemorrhage Score	AUC
Logistic Regression	Lesions Only	0.7732	0.7322	0.59	0.49	0.77	0.75	0.74
Random Forest	Lesions Only	0.8169	0.8115	0.82	0.80	0.80	0.78	0.81
SVM	Lesions Only	0.7814	0.7432	0.59	0.50	0.77	0.75	0.76
Gradient Boosting	Lesions Only	0.8465	0.8412	0.82	0.76	0.83	0.80	0.84
K-Nearest Neighbors	Lesions Only	0.7814	0.7896	0.63	0.56	0.78	0.76	0.77
Logistic Regression	Lesions + Vein	0.6424	0.6019	0.25	0.33	0.55	0.58	0.58
Random Forest	Lesions + Vein	0.7384	0.7038	0.55	0.47	0.71	0.71	0.70
SVM	Lesions + Vein	0.6556	0.6083	0.26	0.34	0.56	0.59	0.58
Gradient Boosting	Lesions + Vein	0.7252	0.7389	0.51	0.44	0.70	0.70	0.69
K-Nearest Neighbors	Lesions + Vein	0.6987	0.6369	0.43	0.44	0.65	0.67	0.66

432 **Ablation Study II: Performance of Symbolic Lesion Biomarkers with and without Retinal Vein**
 433 **Features.** This experiment evaluates the discriminative capacity of structured symbolic features
 434 extracted from retinal images, focusing on four clinically validated lesion types: *exudates, hard*
 435 *hemorrhages, soft hemorrhages, and cotton wool spots*. The first group of results in Table 9 includes
 436 only lesion-based features, while the second incorporates additional vascular information derived
 437 from retinal vein morphology—such as tortuosity, caliber, and branching angles.

438 Across all classifiers, models trained solely on lesion features consistently outperform those that
 439 include both lesions and vein information. Gradient Boosting achieves the highest accuracy (84.65%)
 440 and macro F1-score (84.12%), confirming the strong discriminative value of lesion-level biomarkers.
 441 In contrast, the addition of vein-based features leads to performance degradation, indicating that
 442 vessel morphology introduces domain-sensitive variability that hampers generalization.

443 Accordingly, our main KG-DG framework prioritizes lesion biomarkers as the most reliable symbolic
 444 inputs, while vein features are treated as optional. This design choice also strengthens interpretability:
 445 lesion counts and distributions directly align with established clinical diagnostic protocols, whereas
 446 vessel morphology requires context-specific calibration and exhibits less transferability across
 447 domains.

449

450 4.4 DISCUSSION AND LIMITATIONS

451 The KG-DG framework achieves consistent generalization across unseen domains by combining
 452 symbolic clinical knowledge with deep visual features, though several limitations remain. Its
 453 reliance on accurate lesion-level annotations and pre-trained modules like YOLOv11 and retinal vein
 454 segmentation introduces dependency on expert-verified data, which may not be available for other
 455 medical imaging tasks. The symbolic classifier may miss complex visual cues, and fusion performance
 456 varies with confidence-weighting strategies, highlighting a need for more adaptive mechanisms.
 457 Across SDG and MDG tasks, maximum cross-domain improvement reaches 5.2% (Messidor2 →
 458 APTOS), with average gains around 2–3%, indicating steady but not uniform dominance. Feature
 459 importance analysis shows lesion features such as “exudates count” and “hemorrhage density” align
 460 with clinical practice, supporting human-aligned decision-making. Future work could explore
 461 dynamic neuro-symbolic reasoning, integrate temporal clinical data, and extend KG-DG to other
 462 modalities like OCT or histopathology.

463 5 CONCLUSIONS

464 This paper introduces KG-DG, an improved knowledge-guided domain generalization framework
 465 specifically tailored for medical imaging applications, as exemplified by diabetic retinopathy
 466 classification. KG-DG integrates symbolic clinical reasoning and deep visual representations through
 467 a confidence-weighted fusion approach, significantly enhancing robustness and interpretability.
 468 Comprehensive experimental results on four diverse DR datasets demonstrated that KG-DG
 469 consistently achieved superior performance compared to strong baselines of domain generalization
 470 methods, achieving notable improvements in both single-source and multi-source generalization
 471 settings, with gains of up to 5.2% accuracy in cross-domain accuracy.

472 Our findings underscore the importance of embedding structured clinical knowledge within deep
 473 learning models, thereby significantly improving generalization and trustworthiness in clinical settings.
 474 Future directions include adapting the KG-DG framework to additional medical imaging modalities,
 475 such as optical coherence tomography and histopathology, and further integrating dynamic symbolic
 476 reasoning via neuro-symbolic architectures, enhancing real-time decision support capabilities in
 477 medical AI deployments. **Insights:** Our observations indicate that the integration of symbolic clinical
 478 knowledge into traditional architectures—whether Vision Transformers (ViTs) or domain-specific
 479 models such as DeepXSOZ Shama et al. (2023)—consistently leads to significant improvements in
 480 classification accuracy. Furthermore, this knowledge imputation enhances both domain generalization
 481 and the explainability of model behavior, addressing critical challenges in clinical deployment.

486 REFERENCES
487

488 Martin Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
489 *arXiv preprint*, arXiv:1907.02893, 2019.

490 Mohammad Atwany and Mohammad Yaqub. Drgen: Domain generalization in diabetic retinopathy
491 classification. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, pp.
492 635–644, 2022.

493 Yaman Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain
494 generalization using meta-regularization. In *Proceedings of the 32nd International Conference on*
495 *Neural Information Processing Systems (NeurIPS)*, pp. 1006–1016, 2018.

496 Gilles Blanchard, Géraldine Lee, and Clayton Scott. Generalizing from several related classification
497 tasks to a new unlabeled sample. In *Proceedings of the 24th International Conference on Neural*
498 *Information Processing Systems (NeurIPS)*, pp. 2178–2186, 2011.

499 Jeongsoo Cha et al. Swad: Domain generalization by seeking flat minima. In *Proceedings of the 35th*
500 *International Conference on Neural Information Processing Systems (NeurIPS)*, pp. 22405–22418,
501 2021.

502 E. Decencière et al. Feedback on a publicly distributed image database: The messidor database.
503 Image Analysis and Stereology, 2014.

504 Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at
505 scale. In *International Conference on Learning Representations (ICLR)*, 2021.

506 Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via
507 model-agnostic learning of semantic features. In *Advances in Neural Information Processing*
508 *Systems (NeurIPS)*, volume 32, pp. 579–589, 2019. arXiv:1901.10184.

509 Robert N. Frank. Diabetic retinopathy. *New England Journal of Medicine*, 350(1):48–58, 2004.

510 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
511 Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
512 In *Journal of Machine Learning Research*, volume 17, pp. 2096–2030, 2016.

513 ETDRS Research Group. Grading diabetic retinopathy and estimating its progression. *Ophthalmology*,
514 98(5):786–806, 1991.

515 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In *International*
516 *Conference on Learning Representations (ICLR)*, 2021.

517 Siyuan Han, Jiaqi Wang, Jie Luo, and Dong Liu. Neuro-symbolic generative model for medical report
518 generation with prior knowledge. *IEEE Transactions on Medical Imaging*, 40(12):3436–3447,
519 2021.

520 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
521 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
522 (*CVPR*), pp. 770–778, 2016.

523 Chandima Jayanga, Garvin Kuruppu, and M. H. Khan. Generalizing to unseen domains in diabetic
524 retinopathy classification. *arXiv preprint*, arXiv:2311.01673, 2023.

525 Kaggle. Diabetic retinopathy detection. <https://www.kaggle.com/c/diabeticretinopathy-detection>, 2015.

526 Tom Kauppi et al. The aptos 2019 blindness detection dataset. Kaggle, 2019. <https://www.kaggle.com/c/aptos2019-blindness-detection>.

527 Amit Khandelwal, Rizwan Siyal, Yujia Xu, and Anand Bhaskaran. Graphdr: Lesion ontology
528 guided graph convolution for diabetic retinopathy classification. In *Medical Image Computing and*
529 *Computer-Assisted Intervention (MICCAI)*, 2023.

540 Da Li, Yang Yang, Yuchao Song, and Timothy M. Hospedales. Deeper, broader and artier domain
 541 generalization. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*,
 542 pp. 5543–5551, 2017.

543

544 Da Li, Yang Yang, Yuchao Song, and Timothy M. Hospedales. Learning to generalize: Meta-learning
 545 for domain generalization. In *Proceedings of the 32nd AAAI Conference on Artificial Intelligence
 546 (AAAI)*, volume 32, pp. 427–434, 2018a.

547 Haifeng Li, Shuicheng Pan, Shuo Wang, and Alex C. Kot. Domain generalization with adversarial
 548 feature learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 549 Recognition (CVPR)*, pp. 5400–5409, 2018b.

550

551 Yang Li, Xin Tian, Ming Gong, Yi Liu, Tao Liu, Ke Zhang, and Dacheng Tao. Deep domain
 552 generalization via conditional invariant adversarial networks. In *European Conference on Computer
 553 Vision (ECCV)*, 2018c.

554 Yanghao Li, Yang Yang, Weisheng Zhou, and Timothy M. Hospedales. Feature-critic networks for
 555 heterogeneous domain generalization. In *Proceedings of the 36th International Conference on
 556 Machine Learning (ICML)*, pp. 3915–3924, 2019.

557 Yanghao Li et al. Deep domain generalization via conditional invariant adversarial networks. In
 558 *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 647–663, 2018d.

559

560 Qi Liu, Qi Dou, and Pheng-Ann Heng. Shape-aware meta-learning for generalizing prostate mri
 561 segmentation to unseen domains. In *Medical Image Computing and Computer-Assisted Intervention
 562 (MICCAI)*, pp. 475–485, 2020a.

563

564 Qi Liu, Qi Dou, Lequan Yu, and Pheng-Ann Heng. Ms-net: Multi-site network for improving
 565 prostate segmentation with heterogeneous mri data. *IEEE Transactions on Medical Imaging*, 39
 566 (9):2713–2724, September 2020b.

567

568 Divyam Mahajan, Siddharth Tople, and Ambedkar Sharma. Domain generalization using causal
 569 matching. In *International Conference on Machine Learning (ICML)*, pp. 7313–7324, 2021.

570

571 Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
 572 feature representation. In *Proceedings of the 30th International Conference on Machine Learning
 573 (ICML)*, pp. I-10–I-18, 2013.

574

575 American Academy of Ophthalmology. Diabetic retinopathy preferred practice
 576 pattern, 2023. [https://www.aoa.org/preferred-practice-pattern/
 577 diabetic-retinopathy-ppp](https://www.aoa.org/preferred-practice-pattern/diabetic-retinopathy-ppp), 2023.

578

579 Eren Ozkan and Xavier Boix. On the benefits of multi-domain training for medical image analysis.
 580 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 581 pp. 12456–12466, 2024.

582

583 StatPearls Publishing. Diabetic retinopathy. [https://www.ncbi.nlm.nih.gov/books/
 584 NBK560805/](https://www.ncbi.nlm.nih.gov/books/NBK560805/), 2024.

585

586 Alice Rame, Charline Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for
 587 out-of-distribution generalization. In *International Conference on Machine Learning (ICML)*,
 588 2022.

589

590 Shiori Sagawa, Pang Wei Koh, Tsuyoshi Hashimoto, and Percy Liang. Distributionally robust neural
 591 networks for group shifts. In *International Conference on Learning Representations (ICLR)*, 2020.

592

593 D. M. Shama, J. Jing, and A. Venkataraman. Deepsoz: A robust deep model for joint temporal and
 594 spatial seizure onset localization from multichannel eeg data. In *Medical Image Computing and
 595 Computer-Assisted Intervention (MICCAI)*, pp. 183–193, 2023.

596

597 Subramanya Shankar, Vikas Piratla, Sujay Chakrabarti, Suraj Chaudhuri, Pranav Jyothi, and Sunita
 598 Sarawagi. Generalizing across domains via cross-gradient training. In *International Conference
 599 on Learning Representations (ICLR)*, 2018.

594 Yuxin Shi, Jamie Seely, Philip H. S. Torr, Niki Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel
 595 Synnaeve. Gradient matching for domain generalization. *arXiv preprint*, arXiv:2104.09937, 2021.
 596

597 Unnati V. Shukla and Koushik Tripathy. Diabetic retinopathy, 2025. Updated August 25, 2023,
 598 <https://www.ncbi.nlm.nih.gov/books/NBK560805/>.

599 Mariam Sultana, Munawar Naseer, Salman Khan, and Faisal Khan. Self-distilled vision transformer
 600 for domain generalization. In *Asian Conference on Computer Vision (ACCV)*, 2022.
 601

602 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
 603 *European Conference on Computer Vision (ECCV)*, pp. 443–450. Springer, 2016.

604 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 605 Jégou. Training data-efficient image transformers & distillation through attention. In *Proceedings
 606 of the 38th International Conference on Machine Learning (ICML)*, 2021a.
 607

608 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 609 Jégou. Training data-efficient image transformers & distillation through attention. In *International
 610 Conference on Machine Learning (ICML)*, 2021b.

611 Vladimir Vapnik. *The Nature of Statistical Learning Theory*. Springer Science & Business Media,
 612 1999.
 613

614 Roberto Volpi and Vittorio Murino. Addressing model vulnerability to distributional shifts over image
 615 transformation sets. In *Proceedings of the IEEE/CVF International Conference on Computer
 616 Vision (ICCV)*, pp. 7979–7988, 2019.

617 Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable
 618 bag-of-freebies sets new state-of-the-art for real-time object detectors. *arXiv preprint*,
 619 arXiv:2207.02696, 2022.
 620

621 Yicheng Wang, Zhen Zhang, and Xuhui Li. Diffusion-based domain augmentation for robust medical
 622 image analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 623 Recognition (CVPR)*, pp. 12345–12355, 2024.

624 Charles P. Wilkinson, Frederick L. Ferris, Ronald E. Klein, Peter P. Lee, Carl-David Agardh, Mark
 625 Davis, and Hans-Peter Hammes. Proposed international clinical diabetic retinopathy and diabetic
 626 macular edema disease severity scales. *Ophthalmology*, 110(9):1677–1682, 2003.
 627

628 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
 629 Introducing convolutions to vision transformers. *arXiv preprint*, arXiv:2103.15808, 2021.

630 Shaoxin Yan, Hongxu Song, Nannan Li, Lei Zou, and Lichao Ren. Improve unsupervised domain
 631 adaptation with mixup training. In *arXiv preprint*, volume arXiv:2001.00677, 2020.
 632

633 Myron Yanoff and Jay S. Duker. *Ophthalmology*. Elsevier, 5th edition, 2019.

634 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis E. H. Tay, Jiashi
 635 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
 636 imangenet. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 637 2021a.
 638

639 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis E. H. Tay, Jiashi
 640 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
 641 imangenet. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 642 2021b.

643 Meng Zhang, Henrik Marklund, Nikil Dhawan, Abhijit Gupta, Sergey Levine, and Chelsea Finn.
 644 Adaptive risk minimization: Learning to adapt to domain shift. In *Advances in Neural Information
 645 Processing Systems (NeurIPS)*, 2021.

646 Ling Zhao, Zhi Yu, and Guoying Chen. Ddr: A diverse dataset for diabetic retinopathy classification.
 647 In *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, pp. 234–245, 2022.

648 Kede Zhou, Yuhang Yang, Timothy M. Hospedales, and Tao Xiang. Deep domain-adversarial image
649 generation for domain generalisation. In *Proceedings of the 34th AAAI Conference on Artificial*
650 *Intelligence (AAAI)*, pp. 13025–13032, 2020a.

651 Kede Zhou, Yuhang Yang, Timothy M. Hospedales, and Tao Xiang. Learning to generate novel
652 domains for domain generalization. In *Proceedings of the European Conference on Computer*
653 *Vision (ECCV)*, pp. 561–578, 2020b.

654 Kede Zhou, Yuhang Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
655 *International Conference on Learning Representations (ICLR)*, 2021. arXiv:2012.03641.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701