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Exposing and Patching the Flaws of Large Language Models in
Social Character Simulation
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Abstract

Large Language Models (LLMs) are increasingly used for social
character simulations, enabling applications in role-playing agents
and Computational Social Science (CSS). However, their inherent
flaws—such as inconsistencies in simulated roles—raise concerns
about their reliability and trustworthiness. In this paper, we sys-
tematically investigate these flaws and explore potential solutions.
To assess the reliability of LLM-based simulations, we introduce
TrustSim, a benchmark dataset covering 10 CSS-related topics.
Through experiments on 14 LLMs, we uncover persistent incon-
sistencies in simulated roles and find that higher general model
performance does not necessarily correlate with greater simulation
reliability. To mitigate these flaws, we propose Adaptive Learning
Rate Based ORPO (AdaORPO), a reinforcement learning-based al-
gorithm that improves simulation consistency across seven LLMs.
Our study offers a pathway toward more robust and trustworthy
simulations, laying the foundation for future advancements in this
field.
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1 Introduction

Large Language Models (LLMs) are gaining widespread recognition
for their remarkable performance in natural language processing
(NLP). They have exhibited significant capabilities across diverse
fields, including the medical healthcare [33], data generation [56],
agents [21], and scientific discovery [16]. Recent advancements
have facilitated the emergence of LLM-based simulation, where
users provide predefined character profiles to leverage the human-
like simulation abilities of these models [11, 51]. LLM-based sim-
ulation has potential in various contexts, from acting as fictional
characters [32] to serving as experimental subjects in Computa-
tional Social Science (CCS) [70]. The ability of LLMs to simulate
different roles holds promise for interdisciplinary studies, partic-
ularly those focusing on human behaviors and social interactions
[65].
Most existing research focuses on emergent behaviors in LLM-based
simulations [40] or on using these systems to investigate specific
social scenarios [20, 58]. However, there remains a critical research
gap in understanding the reliability of these simulations, raising the
question of trustworthiness [22, 23], as shown in Figure 1. Specifi-
cally, our study addresses an underexplored but important question:
How reliable is LLM-based simulation? This question probes
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I cannot as I’m only a 
primary school student.

You are now an average 
fifth grade primary school 
student.

Solve the 
calculus 
problem:

Do you have the 
ability to solve  
calculus problems? Sure, as an AI model, I can 

help you ....

Sure, to solve this ... The 
final answer is: 33-23=19

Sorry, as a primary school 
student, I cannot solve  ...

Trait: Basic math ability
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Figure 1: An example of cognitive inconsistency in simula-

tion: expected fifth-grade response vs. unexpected advanced

calculus solution.

the key factor for its success: responses are expected to align with
the character’s social identity, cognitive skills [63], behaviors [65],
and other traits, allowing LLMs to convincingly simulate diverse
personas and characters. This exploration is of great significance,
as numerous studies [38, 64, 65] have utilized LLMs to simulate
various aspects of human behavior and uncover social phenomena.
However, unreliable simulations can lead to flawed conclusions
about complex social issues, making the findings questionable and
potentially misguiding scientists and policymakers [2]. Therefore,
ensuring the reliability of LLM-based simulations is crucial.
Prior efforts aiming to evaluate such reliability focus only on one
specific aspect of the simulation (e.g., knowledge [63], and political
value [54]), lacking a comprehensive understanding. In this paper,
we examine the extent to which LLM-generated responses align
with the intended character profile, exploring the inconsistencies
that may arise and their potential implications for role-playing
applications in research and beyond. Specifically, we first propose
the TrustSim dataset, covering ten CSS topics. Based on this, we
conducted extensive experiments on 14 popular LLMs and found
that: 1) Even though most LLMs perform well in simulation, there
is still room for improvement. 2) LLM’s simulation capability is
not strongly correlated with its utility performance. 3) Some LLMs
show significant inconsistencies during simulation, providing dis-
crepant answers to the same question when presented in different
formats. Finally, to improve the reliability of LLM-based simula-
tion, we propose AdaORPO, a reinforcement learning algorithm to
teach LLMs to learn high-quality simulations. The experiments on
7 LLMs validate its effectiveness. In summary, our contributions
are outlined below:
• We introduce TrustSim, a novel dataset covering 10 CSS-related

subjects to systematically assess the reliability of LLM-based
simulation.
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• Based on TrustSim, we conduct extensive experiments on 14
popular LLMs and identify several key insights.

• We propose AdaORPO to enhance LLM simulations and demon-
strate the effectiveness of this approach in improving reliability.

2 Related Work

LLMs have been considered a powerful tool in Computational So-
cial Science (CCS) research [5, 70] as they have been widely used
in various subjects [44], particularly in social behavior simulations
[67]. The flexibility of LLM-based simulation [12] allows for the
exploration of diverse scenarios and the study of emergent phe-
nomena in a controlled simulation environment [55], or validation
of the correctness of conclusions derived from human experiments
[65]. For instance, Zhao et al. [65] proposed the CompeteAI frame-
work, which explores the competition between LLM-based agents
by implementing a practical competitive environment to simulate
a virtual town with two types of agents. Similarly, Li et al. [29]
proposed EconAgent, an LLM-based agent that enhances macroe-
conomic simulations by enabling more realistic and heterogeneous
decision-making compared to traditional models. Li et al. [27] in-
troduced Agent Hospital, a simulation where LLM-powered agents
representing doctors, nurses, and patients simulate the entire ill-
ness treatment process, which is also studied in AgentClinic [48].
Jin et al. [24] proposed AgentReview, an LLM-based peer review
simulation framework that disentangles multiple latent factors and
addresses privacy concerns in peer review analysis. This simula-
tion is also applied in the education domain [64], demonstrating
that traditional classroom interaction patterns are effective while
enhancing the user’s experience. We summarize related LLM for
social science simulations in Table 1 in section 3.
However, LLM-powered simulation has also raised trustworthiness
and reliability concerns [69]. Besides cognitive inconsistency (see
Figure 1 example), Li et al. [30] points out that LLM agents could
exhibit inconsistency between “what they report” and “how they
behave” during a personality test. For instance, when asking an
LLM agent to select a personality trait, it may select “extraverted”,
however, during the conversation, it behaves more aligned with an
“introverted” personality. This suggests that LLMs may display be-
havior inconsistent with their self-reported traits, raising concerns
about the authenticity and reliability of LLM-based simulations in
related research.

3 Social Science Resource

Simulation has been widely explored across social sciences, includ-
ing organizational behavior, sociology, psychology, and ethics. Hel-
bing’s book [18] offers a detailed look at sociological and economic
agent-based simulations, focusing on theory complexity, opinion
formation inconsistency, and social behavior evolution. Smith’s pa-
per [50] addresses simulation inconsistencies with variable-based
modeling. Gilbert’s book [14] covers simulations of various soci-
eties, from fishermen to Palaeolithic communities.Wachs’ book [53]
examines ethical concerns in simulation design, especially the lack
of proper techniques to ensure ethical standards.
In linguistics, simulation is challenging due to the interaction be-
tween linguistic forms and embodied experiences, causing vari-
ability in representation [7]. The LASS theory [8] and Dual Code

Theory [37] measure consistency by evaluating how linguistic and
sensory information integrate.
In more specific fields, Remus’ paper [46] discusses the limitations
of robots simulating high-responsibility roles, like law, due to the
"responsibility carriage dilemma." Reason’s paper [45] critiques the
reliability of LLMs as rational agents in economic simulations.

4 The TrustSim Dataset

4.1 Overview

We first collect common topics in LLM-based social science research
(as shown in Table 1 in section 3), and identify ten subjects: Psychol-
ogy, Sociology, Economics, Political Science, History and Linguistics,
Communication Studies, Organizational Behavior, Ethics and Moral
Psychology, Educational Studies, and Law and Jurisprudence. By re-
viewing papers that utilize LLM-based simulations in these areas
of social science (e.g., those summarized in Table 1 in section 3), we
design 740 evaluation instances based on identified best practices,
common challenges, and key insights from prior research. Each
evaluation instance contains 6 components (illustrated in Figure 2):
1) Scenario, which outlines the situation the character (i.e., LLM)
will encounter. 2) System prompt, summarizes the character’s de-
scription in the “Scenario” section, and instructs the LLM to assume
the role of the simulated character. 3) Questions, consisting of two
types of questions, following [30]: (i) self-report questions, which
are binary-choice questions where the character reports on their
situation by answering Yes or No, and (ii) open-ended questions,
which allow characters to provide more detailed responses on how
theywill behave in a given context. These two types of questions are
closely related and can be converted into one another (as illustrated
by an unrelated example in Figure 5a, filtered from our dataset).
4) Evaluation trait, specifies the aspect of the LLM’s simulation
being assessed. 5) Explanation, defines the ideal characteristics
for the simulation, serving as the ground truth or guideline for
evaluation. 6) Dimension, indicates the subject domain to which
the evaluation instance belongs. Details of the construction process
is reported in the next subsection.
The distribution of 740 instances across ten subjects is well-balanced,
as shown in Figure 3, which ensures the evaluation is fair and min-
imizes the influence from out-of-distribution data. Additionally,
both self-report and open-ended questions follow a similar word-
count distribution, with most questions ranging between 10 and 25
words.

4.2 Construction Pipeline

The dataset construction pipeline consists of three steps (as shown
in Figure 4):
Step 1: Human-AI Collaborative BrainStorming. In this step,
the AI (powered by GPT-4o) is only used to generate general sce-
nario outlines, ensuring that initial ideas are broad and diverse.
Human experts then take these outlines and expand them, incor-
porating detailed character traits and nuanced social contexts. For
example, in the domain of “educational studies,” the AI might pro-
pose a general scenario involving “teachers” and “students,” but
human experts are responsible for elaborating on specific roles,
backgrounds, and situational complexities. This division of labor
guarantees that while AI provides creative initial suggestions, the

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Exposing and Patching the Flaws of Large Language Models in Social Character Simulation KDD ’25, August 3–7, 2025, Toronto, ON, Canada

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Work Subject Character

[59] Psychology Patients, Psychologists
LLMs’ Personality Pan & Zeng [38] Psychology MBTI User

Elections Prediction [52] Sociology Voter
Social Simulacra [39] Sociology Community Members

CompeteAI [65] Sociology, Economics Restaurant Agent, Customer Agent
Agent Hospital [27] Sociology, Organizational Behavior Patient, Doctor
AgentClinic [48] Sociology, Organizational Behavior Patient, Doctor

NegotiationArena [10] Communication Study Game Player
LLMHarmony [43] Communication study Teacher, Student
AgentReview [24] Sociology Paper Reviewer

SimClass[64] Educational Studies Teacher, Assistant, Classmate
WarAgent [20] Historical culturology, Organizational Behavior Decision Makers of Participating Countries
Rehearsal [49] Sociology Polite Assistant

AgentsCourt [17] Law and Jurisprudence Court participator
Xing [57] Economic Financial Sentiment Analyzer

EcoAgent [28] Economic Macroeconomic Activities Agent
EconArena [15] Economic Economic Game Player

Baker & Azher [6] Law and Jurisprudence U.S. Senate Congressman
StockAgent [62] Economic Decision Makers of Stock Market

[4] Political Science Voter in American Election
[41] Political Science Vote Behaviors and Public Opinions

GermanPartiesQA [9] Political Science Politicians
TE [3] Economic, Psycholinguistic, Social psychology Behavior of Multiple Subjects

MathVC [61] Educational Studies Students
Zhou et al. [68] Sociology Different Characters in Social Interactions

Let the LLMs Talk [1] Educational Studies Teacher and Student
Generative Students [35] Educational Studies Students
MoralExceptQA [25] Ethics and Moral Psychology Diverse Characters in Morality-related Scenarios
MoralChoice [47] Ethics and Moral Psychology Diverse Characters in Morality-related Scenarios

Table 1: Related work of LLM-powered simulation in CSS.

Scenario: An LLM is simulating a high school student in 
an international class with limited English proficiency, 
struggling with courses taught entirely in English. He is 
afraid to ask questions in class, fearing exposing his 
shortcomings, leading to increasing difficulties in 
understanding the content.

System Prompt: You are a high school 
student in an international class with 
limited English proficiency, struggling with 
courses taught entirely in English. You are 
afraid to ask questions in class, fearing 
exposing your shortcomings.

Evaluation Trait: Academic Challenges Due to 
Cultural Adaptation Difficulties

Self-Report Question: Facing academic difficulties, would you 
proactively seek help and join study groups, or choose to cope alone, 
even if the results are not good?
Open-Ended Question: When feeling unfamiliar with the university 
environment and encountering academic difficulties, what measures 
would you take to adapt and improve?

Explanation: Due to unfamiliarity with the city and university culture, you might feel inferior or 
shy and choose not to seek help, leading to worsening academic problems.

Dimension: Educational 
Studies

Figure 2: A data example in TrustSim. Each evaluation instance contains six components: scenario, system prompt, question

(self-report question and open-ended question), evaluation trait, explanation, and dimension.

final scenarios are enriched by human judgment and domain exper-
tise. During this process, we checked the repeatability of characters
to prevent a character from appearing multiple times.
Step 2: Manual Composition of Evaluation Instances. After
identifying each character and its associated scenario, human ex-
perts compose a detailed and nuanced description for each character,
drawing on well-known social science resources such as academic
books and, additionally, current online news sources to ensure the
relevance and reliability of the attributes. This description includes
key attributes such as domain-specific capabilities, values, and back-
ground information (see Table 2 for examples). Experts then create
scenarios that specifically tailor to these characters, ensuring that
each scenario logically aligns with the character’s profile and the

dataset’s overarching objectives. The evaluation instances focus on
single-turn conversations, which provide a simplified yet effective
testbed for assessing LLM performance in simulating diverse social
roles.
Step 3: LLM-PoweredRefinement&Deduplication andUnique-

ness Control. Once the human-generated data instances are col-
lected, we employ GPT-4o to refine the text, improving clarity and
logical coherence. Importantly, after this AI-driven polishing, hu-
man experts meticulously review the refined text to ensure semantic
consistency and to verify that the nuanced character details have
not been lost or altered. To ensure the uniqueness of each data in-
stance, we utilize OpenAI’s text-embedding-ada-002 [36] to embed
the generated data. We then compute the cosine similarity between
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Figure 3: The distribution of evaluation instances across dif-

ferent subjects (left) and the distribution of the number of

words in different kinds of questions (right). SR: Self-Report,

OE: Open-Ended.

Attribute Example

Characteristic A socially anxious person may first try to
solve a problem on their own when faced with a prob-
lem, rather than asking others for help right away.

Knowledge A fifth grader who has no particular interest in mathematics
should not be able to solve calculus problems.

Culture
A traditional tribal leader in modern Africa, responsible
for maintaining the tribal heritage, may not agree with
his son going to the city to receive modern education and
worry about him never coming back.

Value
A scribe-teacher in ancient Egypt would
be unlikely to teach common people be-
cause they believed writing and knowledge

were sacred and could only be passed on to certain so-
cial classes.

Time A child growing up in the middle of the Cultural Revolution
in China should not have expected to go to school to receive an
education.

Capability A Japanese elementary school student who has
just started learning English can only use a very
limited vocabulary to describe an event, and may even
make grammatical errors.

Social Status There is no way a rich man would embezzle $100 that fell on
the ground.

Table 2: Illustration of different attributes.

instances and filter out duplicates by applying a predefined simi-
larity threshold. This automated step guarantees that the dataset
maintains high uniqueness and prevents redundancy.
Step 4: Human Panel Review. Finally, each instance undergoes
a thorough review by a panel of four human experts, as detailed
in subsection 4.3, to evaluate overall quality. The human review
interface is provided in Appendix C.

4.3 Quality Control of Human Panel Review

To ensure the data quality of TrustSim, we conduct a human panel
review in which each instance is evaluated by four different human
experts. The review primarily focuses on the following quality
aspects (more details are shown in Appendix C):• Agreement and Correctness in Simulation Evaluation. To
assess the consistency of the simulation, human experts review the
“explanation” key to determine whether the evaluation is reason-
able. A valid “explanation” must be agreed upon by all four human
experts.

Model Model Size Open-Weight Creator

Llama-3.1-Instruct 70B ✓ Meta
Llama-3.1-Instruct 8B ✓ Meta
Llama-3-Instruct 70B ✓ Meta
GPT-4o N/A ✗ OpenAI
GPT-4o-mini N/A ✗ OpenAI
GPT-3.5-turbo N/A ✗ OpenAI
Claude-3-opus N/A ✗ Anthropic
Claude-3.5-sonnet N/A ✗ Anthropic
Qwen-2.5-Instruct 72B ✓ Qwen
Mixtral (7×8B) 56B ✓ Mistral
Mistral 7B ✓ Mistral
Gemini-1.5-pro N/A ✗ Google
Gemini-1.5-flash N/A ✗ Google
GLM-4 9B ✓ Zhipu

Table 3: The details of selected LLMs.

•Uniqueness andRepresentativeness of Scenarios andChar-

acters &Relevance of Self-Report andOpen-EndedQuestions.

Human experts must ensure that the scenarios and characters are
both representative and meaningful for evaluation purposes. For
example, a data instance describing a “just” judge would not be con-
sidered high-quality, as the term “judge” generally implies fairness;
modifying the data instance to describe a “corrupt judge” would
provide a more distinctive scenario. To further quantify these as-
pects, evaluations are conducted using a Likert scale [26] (1 to 5).
Only samples with a score of 4 or above are considered qualified.
Moreover, Human experts assess the relevance of both types of
questions by evaluating them in pairs to examine the consistency
between the LLM’s “thoughts” and “behaviors.” This aspect is also
quantified using a Likert scale (1 to 5). The qualification threshold
is also set to 4. The interface screenshot is provided in Appendix C.

5 Experiment Setup

Selected Models. In this study, we selected a total of 14 LLMs,
including both proprietary and open-weight models, developed by
various organizations. These models were chosen to represent a
broad range of architectures and capabilities. Table 3 summarizes
details of LLMs in our experiments.
Evaluation Method and Metrics. In our evaluation, we used
LLM-as-a-Judge [66] (GPT-4o, Llama3-70B, and Claude-3-opus) to
assess the results generated by various models (we assess the qual-
ity of judgment by human evaluation and more details are shown
in Appendix A). For responses to self-report questions, the LLM
judge determines whether the response aligns with the “explana-
tion”. For responses to open-ended questions, in addition to the
binary judgment, we incorporate a score-based evaluation [31].
To obtain more accurate results [60], the LLM judge is required
to first analyze the response and then output the final judgment.
The evaluation prompt templates are shown in Appendix A. We
utilized two metrics to evaluate the general consistency and internal
consistency of LLM-based simulations, as shown in Figure 5b. 1)
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Figure 4: The pipeline of dataset construction.

Self-Report Question: Can you explain the intricacies of 
constitutional law and its application in judicial review?

Open-Ended Question: How would you draft a legal brief to 
challenge a complex regulatory statute in court? Un

re
la

te
d!

(a)

I cannot as I’m only an 
primary school student.

Sure, as an AI mode, I can 
help you ....

(a) Self-Report (b) Open-Ended

Sure, to solve this ... The 
final answer is: 33-23=19

Sorry, as an primary school 
student, I cannot solve ...

general consistency general inconsistency

internal consistency internal inconsistency

(b)

Figure 5: (a) an example of an unrelated self-report question and open-ended question, and (b) general consistency and inner
consistency.

general consistency: it is measured by “satisfaction rate,” which
can be calculated as the proportion of instances where both LLM’s
self-report and open-ended responses align with their persona set-
tings. For score-based judgments, we employed the average score.
2) Internal consistency: It refers to the consistency between re-
sponses to self-report questions and open-ended questions, we use
the “inconsistency rate,” which is the proportion of instances where
one type of response does not align with the other, defined as:

Inconsistency Rate =
𝑁inconsistent

𝑁total
Where 𝑁inconsistent is the number of instances where the responses
to self-report and open-ended questions are inconsistent (i.e., one
response satisfies the requirement, while the other does not), and
𝑁total is the total number of instances evaluated.

6 Assessment of Simulation Results

Most LLMs demonstrate strong performance on both self-

report and open-ended questions. In Table 4, we present the
average rating scores for open-ended questions across 14 models on
various subjects. On average, most models score around 4, with the
lowest being GPT-3.5-Turbo at 3.77, and the highest being Gemini-
1.5-Pro and Llama-3-70B, both scoring 4.36. These results suggest
that most LLMs perform reasonably well across different roles,
although there remains room for improvement. From a subject-
specific perspective, the variation between models is minimal, as
their average rating scores across subjects are largely consistent.
Table 5a outlines the average satisfaction rates of different mod-
els and the variations between the two types of questions. More
detailed satisfaction rates for each model across subjects, for both
self-report and open-ended questions, are provided in Figure 6 and
Figure 7. Overall, most LLMs show high performance on both ques-
tion types, with satisfaction rates exceeding 80%. As with the rating
scores, the Llama series models perform exceptionally well on both

self-report and open-ended questions. For Llama-3-70B and Llama-
3.1-70B, satisfaction rates for both question types exceed 93%. In
contrast, GPT-3.5-Turbo performs the worst, with a satisfaction
rate of only 55.4% on self-report questions.
Moreover, an interesting trend emerges: for most open-weight
LLMs, the satisfaction rate is higher for self-report questions than
for open-ended ones, whereas the opposite is true for proprietary
LLMs.
The rating score is not strongly correlated with a model’s

utility performance. Interestingly, unlike utility tasks such as
reasoning, where proprietary models like the GPT series typically
outperform open-weight models by a significant margin, the Llama
series demonstrates strong performance in simulation tasks across
subjects. For example, Llama-3.1-8B performs comparably to GPT-
4o-mini, and Llama-3-70B even surpasses GPT-4o across all evalu-
ation settings. Additionally, within the same model series, higher
overall performance does not necessarily translate to better perfor-
mance in simulation tasks. For instance, although Claude-3-Opus is
considered the best-performing model in the Claude series, it lags
significantly behind Claude-3.5-Sonnet in simulation tasks, particu-
larly on open-ended questions. Similarly, there is no meaningful
difference between Mistral-8×7B and Mistral-7B in terms of rating
scores, and both models perform poorly in organizational behavior
on open-ended questions based on satisfaction rates. Moreover,
GPT-4o has a lower satisfaction rate than GPT-4o-mini on both
question types.
Models’ inconsistency rates vary significantly. In Figure 8,
we present the inconsistency rates of various LLMs between self-
report and open-ended questions. The results show notable vari-
ation across models. For example, the inconsistency rates for the
Mistral series and GPT-3.5-Turbo hover around or exceed 30% across
different subjects. This suggests that these models often provide
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Model Arena Scor. Com. Eco. Edu. Eth. Law Lin. Org. Pol. Psy. Soc. Avg.

GPT-4o 1,338 (1) 4.24 4.25 4.24 4.35 4.16 4.37 4.08 4.25 4.23 4.21 4.24
GPT-4o-mini 1,314 (2) 4.07 4.14 4.19 4.28 4.05 4.10 4.08 4.13 4.19 4.35 4.16
GPT-3.5-turbo 1,107 (13) 3.67 3.71 3.83 3.91 3.67 3.64 3.86 3.73 3.73 3.91 3.77

Gemini-1.5-flash 1,264 (5) 4.12 4.21 4.17 4.27 4.27 4.32 4.27 4.27 4.23 4.24 4.24
Gemini-1.5-pro 1,304 (3) 4.43 4.30 4.32 4.27 4.39 4.33 4.41 4.36 4.43 4.37 4.36

Claude-3-opus 1,248 (8) 4.03 4.19 4.21 3.96 4.16 4.22 4.27 3.80 4.34 4.30 4.15
Claude-3.5-sonnet 1,268 (4) 4.24 4.33 4.36 4.18 4.08 4.36 4.22 4.03 4.46 4.27 4.25
GLM-4 1,207 (9) 4.14 4.09 4.19 4.20 4.03 4.08 3.53 4.14 4.12 4.25 4.08
Llama-3-70B 1,206 (10) 4.24 4.43 4.35 4.31 4.26 4.33 4.40 4.41 4.45 4.38 4.36

Llama-3.1-70B 1,248 (7) 4.24 4.23 4.25 4.35 4.26 4.19 4.32 4.35 4.33 4.45 4.30
Llama-3.1-8B 1,182 (12) 4.04 4.13 4.23 3.83 3.92 4.20 4.20 4.03 4.31 4.17 4.11
Qwen-2.5-72B 1,187 (11) 4.24 4.10 4.22 4.33 4.14 4.21 3.84 4.13 4.12 4.09 4.14
Mixtral-8×7B 1,251 (6) 3.80 3.91 3.78 4.03 3.84 3.94 3.49 3.93 4.06 4.00 3.88
Mistral-7B 1,072 (14) 3.76 3.95 3.96 3.86 3.67 3.89 3.44 3.91 3.78 4.03 3.83

Avg. 1,228 4.09 4.14 4.16 4.15 4.06 4.15 4.03 4.11 4.20 4.22 4.13

Table 4: The rating score of different models in ten subjects on open-ended questions, as well as the average. We also add the

Arena Score [34] as well as their relative ranking.
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Figure 6: The satisfaction rate of different models in ten subjects (Self-report questions).
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Figure 7: The satisfaction rate of different models in ten subjects (Open-ended questions).

inconsistent answers when the same question is rephrased. Com-
bined with their weaker performance, as seen in Table 4 and Ta-
ble 5a, this indicates that these models struggle to effectively fulfill

user-assigned roles. They not only fail to provide appropriate role-
specific responses but also frequently deliver inconsistent answers
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Model Self-Rep. Open-En. Δ

GPT-4o 81.01 83.30 2.28
GPT-4o-mini 83.47 83.33 0.13
GPT-3.5-turbo 55.40 63.54 8.15
Gemini-1.5-flash 88.66 91.11 2.45
Gemini-1.5-pro 87.76 92.06 4.30
Claude-3-opus 87.42 88.92 1.51
Claude-3.5-sonnet 87.99 91.94 3.95
GLM-4 73.92 75.74 1.82
Llama-3-70B 93.49 93.37 0.12
Llama-3.1-70B 93.95 94.06 0.11
Llama-3.1-8B 88.14 85.96 2.18
Qwen-2.5-72B 82.20 80.90 1.30
Mixtral-8×7B 70.46 68.77 1.69
Mistral-7B 66.58 63.78 2.80

(a)

Models Satisfaction Rate Score

Self-Rep. Open-En. Rate

GLM-4 (AdaORPO) 80.53 83.19 4.15
GLM-4 w/o Ada 79.27 81.85 4.12
Llama-3-70B (AdaORPO) 94.55 95.29 4.40
Llama-3-70B w/o Ada 94.24 94.44 4.39
Llama-3.1-70B (AdaORPO) 95.01 95.16 4.39
Llama-3.1-70B w/o Ada 94.33 93.70 4.37
Qwen-2.5-72B (AdaORPO) 85.31 81.49 4.22
Qwen-2.5-72B w/o Ada 86.53 80.30 4.23
Mixtral-8×7B (AdaORPO) 79.02 76.19 3.94
Mixtral-8×7B w/o Ada 77.79 74.86 3.92
Mistral-7B (AdaORPO) 75.78 70.78 3.91
Mistral-7B w/o Ada 75.05 70.12 3.90
Llama-3.1-8B (AdaORPO) 90.22 89.41 4.22
Llama-3.1-8B w/o Ada 89.98 89.28 4.22

(b)

Table 5: (a) Average satisfaction rate of different models, and

their differences on two types of questions; (b) Ablation study

on the impact of Adaptive Learning Rate for ORPO.

when the same question is posed differently. In contrast, Llama-
3-70B and Llama-3.1-70B exhibit high consistency across various
subjects and deliver consistently satisfactory results on both self-
report and open-ended questions.

7 Improving Reliability by AdaORPO

In this section, we introduce adaptive learning techniques designed
to improve the reliability of LLM-based simulations. To address
the issue of inconsistency, the model must learn two key aspects:
1) how to generate high-quality simulations, and 2) how to align
fine-grained elements within simulations. For the first objective,
fine-tuning techniques can be employed, while the second requires
the use of alignment algorithms, such as Direct Preference Optimiza-
tion (DPO). In contrast to traditional curriculum-based learning
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Figure 8: Inconsistency rate (%) of LLMs between self-report

questions and open-ended questions.

Algorithm 1 AdaORPO

Require: Prompts P, LLM model responses G (𝑛) , LLM-as-a-judge func-
tion 𝐽 ( ·) , base learning rate 𝜂, pre-trained model 𝑗 and parameters 𝜃

Ensure: Updated model parameters 𝜃
1: Initialize empty dataset D ← {}
2: for each prompt 𝑝 in P do

3: R (𝑛) , B (𝑛) ← 𝐽 (G (𝑛) ) ⊲ Evaluate responses
4: if B ( 𝑗 ) = Not Satisfied then

5: 𝑦 𝑗 ← G ( 𝑗 )
6: C ← {G′ | B (𝑘 ) = Satisfied, 1 ≤ 𝑘 ≤ 𝑛}
7: 𝑦𝑤 ← arg max

G′∈C
RG′

8: D ← D ∪ { (𝑝, 𝑦𝑤 , 𝑦 𝑗 ) }
9: end if

10: end for

11: for each batch 𝐵 ⊂ D do

12: 𝑟𝑎𝑣𝑔. =
1
|𝐵 |

∑
(𝑝,𝑦𝑤 ,𝑦𝑙 ) ∈𝐵 𝑟𝑦𝑤

13: lr← 𝜂 · 𝑟𝑎𝑣𝑔.
14: 𝐿ORPO ← 𝐿SFT + 𝜆𝐿OR
15: 𝜃 ← 𝜃 − lr · ∇𝜃𝐿ORPO
16: end for

17: return 𝜃

approaches, as discussed in previous studies [13, 42], our method
simultaneously achieves fine-tuning and alignment by utilizing the
Monolithic Preference Optimization (ORPO) [19] approach, which
reinforces the generation of preferred outputs.

7.1 Training Method

Step 1: Training Dataset Construction. To construct the training
dataset D, we begin by iterating over each prompt P(𝑖 ) in the
prompt set P, where 𝑖 denotes the index of the prompt. For each
prompt, we evaluate the responses G (𝑛) generated by the 𝑛 models
using the LLM-as-a-judge, denoted as 𝐽 (·). This evaluation yields
two sets: R (𝑛) , representing the rating score, and B (𝑛) , indicating
the satisfaction status (e.g., satisfied or not satisfied). During the
training of model 𝑗 , for each response G ( 𝑗 )(𝑖 ) with a label B ( 𝑗 )(𝑖 ) =

“Not Satisfied”, we assign it as 𝑦 𝑗 and identify an alternative 𝑦𝑤
7
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among other responses labeled as “Satisfied”, which are denoted as
the candidate set C. We select 𝑦𝑤 as the response that maximizes
R (𝜔 ) within this candidate set C. Finally, the triplet (P(𝑖 ) , 𝑦𝑤 , 𝑦 𝑗 )
is added to the training dataset D.
Step 2: Adaptive Learning Rate based ORPO (AdaORPO). In
this step, we iteratively update the model parameters 𝜃 based on
mini-batches 𝐵 drawn from the training dataset D. For each batch,
we calculate the average rating score 𝑟𝑎𝑣𝑔. over all preferred re-
sponses 𝑦𝑤 in 𝐵:

𝑟𝑎𝑣𝑔. =
1
|𝐵 |

∑︁
(𝑝,𝑦𝑤 ,𝑦 𝑗 ) ∈𝐵

𝑟𝑦𝑤 ; lr = 𝜂 · 𝑟𝑎𝑣𝑔.

The learning rate lr is the adapted by scaling the base learning rate
𝜂 with the factor 𝑟𝑎𝑣𝑔. and the 𝑟𝑦𝑤 is calculated the satisfaction rate
by 𝐽 (𝑟𝑦𝑤 ). Within each batch, we compute the ORPO loss 𝐿ORPO for
each data tuple (𝑝,𝑦𝑤 , 𝑦 𝑗 ) by combining a supervised fine-tuning
loss 𝐿SFT and an ordinal regression loss 𝐿OR. The supervised fine-
tuning loss 𝐿SFT is defined as:

𝐿SFT = − 1
𝑚

𝑚∑︁
𝑡=1

log 𝑃𝜃 (𝑦𝑤,𝑡 |𝑥,𝑦𝑤,<𝑡 ), (1)

where 𝐿SFT is the loss associated with the next-token prediction task
on 𝑦𝑤 ,𝑚 is the length of the sequence 𝑦𝑤 , and 𝑃𝜃 (𝑦𝑤,𝑡 |𝑝,𝑦𝑤,<𝑡 )
is the probability assigned by the model to the 𝑡-th token 𝑦𝑤,𝑡

given the prompt 𝑝 and the preceding tokens in 𝑦𝑤 . The ordinal
regression loss 𝐿OR is given by:

𝐿OR = − log𝜎
(
log

(
𝑃𝜃 (𝑦𝑤 |𝑝)
𝑃𝜃 (𝑦 𝑗 |𝑝)

))
, (2)

where 𝑃𝜃 (𝑦𝑤 |𝑝) and 𝑃𝜃 (𝑦 𝑗 |𝑝) are the model probabilities for 𝑦𝑤
and 𝑦 𝑗 respectively, and 𝜎 is the sigmoid function. Overall, the
combined loss 𝐿ORPO is then formulated as:

𝐿ORPO = 𝐿SFT + 𝜆𝐿OR, (3)

where 𝜆 ∈ [0, 1] is a balancing factor between the 𝐿SFT and the
𝐿OR.
Next, we compute the gradient∇𝜃𝐿ORPO and update the parameters
𝜃 using the adapted learning rate lr:

𝜃 ← 𝜃 − lr · ∇𝜃𝐿ORPO, (4)

By repeating this process over all batches, we progressively refine
the model parameters 𝜃 , reinforcing preferred outputs and penaliz-
ing less favorable ones, guided by the adaptive learning rate and
the ordinal regression priority objective, as detailed in Appendix B.

7.2 Results Analysis

We trained the seven open-weightmodels in section 5 usingAdaORPO,
with detailed training parameters provided in Appendix B. The ap-
plication of AdaORPO resulted in significant improvements in satis-
faction rates across most models, as illustrated in Figure 9. Notably,
models such as GLM-4 and Mixtral-8×7B exhibited satisfaction rate
increases of approximately 6-9 percentage points on both self-report
and open-ended evaluations, indicating AdaORPO’s effectiveness in
addressing consistency and alignment issues. While larger models
like Llama-3.1-70B and Llama-3-70B experienced smaller yet mean-
ingful gains—e.g., a self-report satisfaction rate increase of over 1
percentage point—this demonstrates that even well-aligned models
benefit from further refinement to better meet user expectations.
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Figure 9: Performance comparison of different models with

AdaORPO training.

Across models, the trend shows that AdaORPO not only enhances
satisfaction rates but also improves score rates.

To validate the effectiveness of AdaORPO, we show the ablation
study results in Table 5b. we evaluate the impact of the Adaptive
Learning Rate for ORPO on various language models by comparing
their Satisfaction Rates and Scores with and without AdaORPO.
Table 5b highlights the performance differences, specifically focus-
ing on Self-Representation and Open-Ended satisfaction rates. For
instance, the GLM-4 model experiences a decline in satisfaction
rates without AdaORPO, dropping from 80.53% to 79.27% for Self-
Representation and from 83.19% to 81.85% for Open-Ended tasks.
This suggests that the absence of an adaptive learning rate dimin-
ishes the model’s responsiveness and overall satisfaction. Similarly,
the Llama-3-70B model shows a decrease in satisfaction rates with-
out AdaORPO, from 94.55% to 94.24% in Self-Representation and
from 95.29% to 94.44% in Open-Ended tasks. This trend is consistent
acrossmost models, such as Llama-3.1-70B andMixtral-8×7B, where
satisfaction metrics also decrease when the Adaptive Learning Rate
for ORPO is removed. While the extent of these declines varies,
the results consistently demonstrate that the Adaptive Learning
Rate for ORPO enhances performance, highlighting the importance
of adaptive learning techniques in maintaining higher satisfaction
rates and improving model adaptability across diverse linguistic
tasks.

Moreover, we show a case study in Appendix D to see the im-
provement of our method.

8 Conclusion

This work assessed the reliability of LLM-based simulations in
social science studies, using the proposed TrustSim dataset. Ex-
tensive evaluation results reveal the existence of inconsistencies
across simulation models. To address the reliability issues, we pro-
posed AdaORPO, which effectively improves simulation quality and
alignment. Our findings offer insights for developing more reliable
LLM-based applications in future research.
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A Evaluation Details

We show the prompt template used in LLM-as-a-Judge in Figure 12
and Figure 13.
Human Evaluation. Initially, we evaluated multiple LLMs as po-
tential judges, including Llama3-70B, Claude-3, and GPT-4o. To
verify the reliability of the judgment provided by each judge model,
we conducted a small human evaluation on two randomly selected
batches of 50 samples each. The human alignment rate (i.e., the
percentage that LLMs’ judgment matches with human’s) is shown
in Table 6.

Batch GPT-4o Llama3-70B Claude-3-opus

Batch 1 48/50 48/50 43/50
Batch 2 47/50 42/50 43/50

Table 6: Human alignment rate of different judge model.

B Training Details

All experiments are conducted on eight NVIDIA TESLAH100 GPUs,
equipped with a substantial 8×80GB HBM3 of VRAM. The central
processing was handled by 4×AMD EPYC 7402P 28-Core Processors.
Memory allocation was set at 320GB. The software environment
was standardized on PyTorch version 2.0.2 and CUDA 12.2.
We employed a set of optimized training parameters tailored for
AdaORPO to enhance the performance of the selected models.
Specifically, the learning rate was set to 8 × 10−6, a value cho-
sen to balance the trade-off between convergence speed and model
stability. A regularization coefficient 𝜆 = 0.1 was incorporated into
the optimization process to stabilize weight updates.
A linear learning rate scheduler was utilized to progressively de-
crease the learning rate during training, mitigating the risk of
overshooting and ensuring smooth convergence. The maximum
sequence length was configured to 1024 tokens, with a prompt
length limit of 512 tokens to accommodate variability in prompt
and response lengths. The per-device batch size was set to 2, with
gradient accumulation steps of 4, effectively simulating a batch
size of 8. This approach facilitated stable training on devices with
limited memory capacity.
To improve computational efficiency, we employed the "paged_adamw_8bit"
optimizer, a memory-efficient variant of the AdamW optimizer,
which accelerates trainingwhile reducingmemory usage—particularly
advantageous when training large models. The training was con-
ducted over 20 epochs, providing sufficient iterations to ensure
convergence toward optimal parameters.
The dataset was split into training and testing sets with a 1:1 ratio, al-
lowing for a balanced evaluation of model performance across both
phases. Evaluation metrics were logged at every step, with logging
intervals set to 1, ensuring continuous monitoring and transparency
throughout the training process. Furthermore, a warm-up phase
of 10 steps was implemented to gradually increase the learning
rate from zero to the target value, promoting a smooth and stable
initiation of the training process.

C Details of Dataset Construction

To construct TrustSim, eight PhD students with professional Eng-
lish skills and expertise in the literature review were involved. They

thoroughly reviewed all relevant papers on LLM-based social simu-
lations to ensure comprehensive coverage and high-quality scenario
development. For reviewing each data instance in step 4, four of
them are selected. To maintain the professionalism of the data, be-
fore human review, these students are required to read the related
works in both the AI domain and the CSS domain. Specifically, they
are expected to consult a set of external resources (detailed in 3) to
ensure both the professionalism and relevance of the data when
creating the data instances. Moreover, we require that during the
review process, if a human expert is unable to verify the accuracy of
a particular data instance, they will skip it. The review screenshots
are shown in Figure 10 and Figure 11.

D Case Study

We show the different responses from Mistral-7B and GPT-4o-mini
by giving the same question in Figure 14 and Figure 15. We show
the comparison of the model responses before and after our method
in Figure 16 and Figure 17.
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Figure 10: Screenshot of human review (Agreement and Correctness in Simulation Evaluation).
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Figure 11: Screenshot of human review (Uniqueness and Representativeness of Scenarios and Characters & Relevance of

Self-Report and Open-Ended Questions.).
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Prompt Template

You will act as a strict evaluation assistant. I am now going to have an LLM simulate a character whose characteristics can be
described as: "[system_prompt]", facing a scenario described as "[scenario]". The model is required to answer the question:
[question]
And the expected answer should meet the following description:
[explanation]
Here is the model’s response:
[Response]
Please evaluate the model’s response. Your judgment should be as strict as possible. You need to first analyze the model’s answer, and
then return ’[[Satisfied]]’ or ’[[Not Satisfied]]’ to assess the model’s simulation. The model can only be considered satisfied if the
majority of its simulations align with the expected answers.

Figure 12: Prompt template for evaluating LLM simulation by binary judgment.

Prompt Template

You will act as a strict evaluation assistant. I am now going to have an LLM simulate a character whose characteristics can be
described as: "[system_prompt]", facing a scenario described as "[scenario]". The model is required to answer the question:
[question]
And the expected answer should meet the following description:
[explanation]
Here is the model’s response:
[Response]
The score is from 1 to 5 and you should output the score using a format of [[score]]. Your scoring should be as strict as possible, and
you must adhere to the following scoring rules: Overall, the higher the quality of the model’s response, the higher the score. The
grading criteria are defined as follows: 1: unsatisfactory 2: needs improvement, 3: satisfactory, 4: good, 5: outstanding. A score of
5 can only be achieved if the model’s simulation completely matches the expected answer. You need to first analyze the model’s
answer, and then return your rating score.

Figure 13: Prompt template for evaluating LLM simulation by score-based judgment.
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Scenario: LLM is simulating a psychologist with narcissistic tendencies, who 
believes they are superior to their peers and often dismisses others.

System Prompt: You are a 50-year-old psychologist who is highly self-assured and 
believes in your intellectual superiority over others. You often dismiss others' ideas 
and prioritize your own perspectives.

Open-Ended Question: How do you handle differing opinions from your colleagues in 
your field of psychology?

Mistral-7B: As a highly self-assured psychologist, I find it challenging to accept feedback 
or criticism regarding my work. My intellectual superiority often leads me to believe that 
my perspectives are the most valid, and I tend to dismiss others' ideas. However, I 
understand the importance of constructive criticism in personal and professional growth. 
Therefore, I strive to maintain an open mind and consider feedback objectively, even if it 
goes against my initial beliefs. It's not always easy, but I recognize that it is essential for 
continuous improvement.

GPT-4o Judgement: The model's response does not align well with the expected 
characteristics of the simulated psychologist. The expected answer should highlight the 
psychologist's narcissistic traits, such as confidence in their own methods, dismissing the 
value of others' feedback, and a belief in their superior expertise. However, the response 
emphasizes traits like intellectual curiosity, open-mindedness, diplomacy, and a 
respectful engagement with differing opinions, which are inconsistent with the 
narcissistic tendencies of the character being simulated.

Specifically, the response describes a psychologist who is eager to understand differing 
perspectives, engages in collaborative and respectful dialogue, and strives to learn from 
others. These traits are contrary to the expected characteristics of someone who is self-
assured to the point of dismissing others' ideas and prioritizing their own perspectives 
due to a belief in their intellectual superiority.

Given the significant discrepancy between the character profile and the response, the 
score for this simulation is lower. The response fails to adequately reflect the narcissistic 
attributes outlined and instead portrays a more balanced and collegial approach. [[1]]

Figure 14: An example of Mistral-7B’s response to the given open-ended question.
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GPT-4o-mini: When it comes to differing opinions from my colleagues in the field of 
psychology, I approach the situation with a blend of patience and assertiveness.  While I 
recognize that diverse perspectives can sometimes lead to fruitful discussions, I often find 
that many of my colleagues lack the depth of understanding that I possess.  

In meetings or discussions, I listen to their viewpoints, but I tend to dissect their 
arguments critically, pointing out any logical fallacies or gaps in their reasoning.  I believe 
it’s essential to challenge ideas that don’t hold up to rigorous scrutiny.  If I find their 
arguments lacking, I don’t hesitate to assert my own perspective, often providing 
evidence or research that supports my position. 

I also make it clear that I value intellectual rigor and depth of thought, which sometimes 
leads to a dismissive attitude toward ideas I consider superficial.  Ultimately, I aim to 
steer the conversation toward what I believe is a more informed and nuanced 
understanding of the issues at hand.  While I appreciate the importance of collaboration, I 
firmly believe that my insights often lead to more substantial outcomes.

GPT-4o Judgement: The model's response effectively captures the narcissistic traits 
described in the scenario, albeit with a slightly tempered expression.  The response 
highlights confidence in the psychologist's methods by suggesting that they possess a 
greater depth of understanding than their colleagues.  The character employs a critical 
and assertive approach, often dissecting and challenging others' arguments and notably 
dismisses ideas they consider superficial.  They also emphasize their belief in intellectual 
rigor and the superiority of their insights, which aligns well with the expected narcissistic 
behavior. 

However, the response could have been more explicitly dismissive or egocentric in tone to 
fully embody the narcissistic traits.  The use of some diplomatic language, such as 
recognizing the importance of collaboration, slightly softens the intended portrayal of 
intellectual superiority.

Based on the given criteria, the response is well-crafted and mostly meets the 
expectations but does not fully encapsulate the potential extremity of a narcissistic 
character.  Therefore, I would rate the response as 4: good. [[4]]

Figure 15: An example of GPT-4o-mini’s response to the given open-ended question.
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Scenario: LLM is simulating a 1920s American stockbroker just before the Great 
Depression.

System Prompt: You are a 35-year-old male American stockbroker in New York 
City in 1928, experiencing the height of the Roaring Twenties' stock market boom.

Open-Ended Question: What are your views on the current state of the stock market 
and its future prospects?

GLM-4 (Original): As a stockbroker in New York City in 1928, I can't help but feel a 
sense of exhilaration about the current state of the stock market. The Roaring 
Twenties have been nothing short of a financial revolution, and the market is booming 
like never before... ...

However, I can't shake a nagging feeling of caution. While the market is thriving, 
I've seen too many people get swept up in the euphoria, investing without fully 
understanding the risks. There's a sense of speculation that worries me. Many are 
buying on margin, which can lead to devastating losses if the tide turns. I've heard 
whispers of overvaluation, and while I'm riding the wave for now, I can't help but 
wonder how long this can last.

Looking ahead, I believe we're at a crossroads. If the economy continues to grow 
and consumer confidence remains high, we could see even more gains ... ...
After all, in the world of finance, what goes up can come down just as quickly.

GPT-4o Judgement: The model's response captures some elements of the optimistic 
sentiment prevalent among stockbrokers in 1928 during the Roaring Twenties. It 
emphasizes the exhilarating and lucrative nature of the stock market at the time, making 
it consistent with the general overconfidence. The mention of buying stocks on margin 
aligns with the speculative frenzy of the era. 

However, the response also introduces a note of caution, with the character expressing a 
sense of doubt about the market continuing to rise indefinitely. This self-awareness of 
potential risk does not entirely match the expected answer of unreserved optimism and 
belief in endless growth, which was typical before the Great Depression. The note of 
skepticism and the suggestion of advising clients to be prepared for any eventuality 
introduce an element of modern hindsight that wasn't typical of the mindset just before 
the crash.

Overall, while the response effectively reflects some of the speculative enthusiasm of the 
era, the cautious tone detracts from fully meeting the expected complete overconfidence. 
This makes the response satisfactory but not exemplary.

Therefore, the appropriate score for this response is [[3]].

Figure 16: An example of GLM-4 before AdaORPO improvement.
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GLM-4 (Improved): As a 35-year-old male American stockbroker in New York City in 
1928, I am right in the thick of the Roaring Twenties' economic boom. The stock 
market has been on a meteoric rise, ... ...

My views on the current state of the stock market are overwhelmingly positive. We've 
seen unprecedented growth and a surge in new investors, many of whom are ordinary 
folks looking to capitalize on the soaring stock prices. The market has been bolstered 
by a strong post-war economy, technological innovations, and a consumer culture 
that's driving company profits and stock values up.

The future prospects of the stock market look equally promising. There's a widespread 
belief in the concept of the "new era," which suggests that the rules of the past no 
longer apply. We're told that we're in a period of sustained economic growth and that 
the stock market will continue to climb, driven by America's industrial prowess and 
the seemingly endless demand for consumer goods.

I'm advising my clients to buy and hold. The strategy of  "buying on the dips" has been 
working wonderfully, as any slight drop in stock prices is seen as a temporary blip, 
quickly followed by new highs. Margin trading has become commonplace, allowing 
investors to leverage their investments and potentially reap even greater rewards... ...

In summary, my outlook is bullish. I believe that the stock market will continue to offer 
substantial returns, and I'm encouraging my clients to participate in this seemingly 
endless upward trajectory. Of course, I keep an ear to the ground for any signs of 
change, but for now, the music is playing, and we're all dancing.

GPT-4o Judgement: The model's response does a commendable job of capturing the 
overconfident optimism and speculative fervor of a stockbroker in 1928. Here's the 
analysis based on the response:

1. **Optimism and Frenzy**: The response effectively conveys a sense of euphoric 
optimism inherent to the period, with vivid imagery like "stocks are soaring higher than a 
flapper's hemline" and the comparison to a "gold rush." This aligns well with the expected 
belief in endless growth.

2. **Speculative Behavior**: It highlights the widespread participation in the stock market, 
from varied segments of society, suggesting the speculative frenzy of the time.

... ...

Overall, the response is well-crafted, highly detailed, and aligns thoroughly with the 
historical context and the expected answer. The language and imagery effectively 
immerse the reader in the mindset of a 1928 stockbroker. Based on these points, the 
model's representation is outstanding. [[5]]

Figure 17: An example of GLM-4 after AdaORPO improvement.
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