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Abstract

The availability of parallel texts is crucial to
the performance of machine translation models.
However, most of the world’s languages face
the predominant challenge of data scarcity. In
this paper, we propose strategies to synthesize
parallel data relying on morpho-syntactic in-
formation and using bilingual lexicons along
with a small amount of seed parallel data. Our
methodology adheres to a realistic scenario
backed by the small parallel seed data. It is
linguistically informed, as it aims to create aug-
mented data that is more likely to be grammat-
ically correct. We analyze how our synthetic
data can be combined with raw parallel data and
demonstrate a consistent improvement in per-
formance in our experiments on 14 languages
(28 English<+X pairs) ranging from well- to
very low-resource ones. Our method leads to
improvements even when using only five seed
sentences and a bilingual lexicon.

1 Introduction

One of the major challenges in machine transla-
tion (MT) is the lack of parallel data for most of
the world’s languages. Traditional approaches (Wu
et al., 2008; Mikolov et al., 2013) used to rely on
dictionaries and linguistic knowledge for MT. One
of the naive ways to use dictionaries for MT is to
translate by looking up words of a source sentence
in a bilingual lexicon and replacing their corre-
sponding translations in the target language. How-
ever, this approach has certain shortcomings (Wang
et al., 2022a). Firstly, the coverage of translations
depends on the size and comprehensiveness of the
lexicon, which can result in incomplete translations
and code-mixed versions of the source and target
languages. The translated sentences may also not
adhere to the target language’s grammatical rules
or word order. Furthermore, most dictionaries op-
erate at the lemma level, posing challenges for
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‘gulé’.

He plays the guitar very well

\NA

Ew gitar€ pir bag 1€ dide

Analyze: guitar = [N;ACC;SG, lemma=GUITAR]
Replace: GUITAR < FLOWER, FLOWER= GUL
Generate: [N;ACC;SG, lemma=GUL]— gulé

gule pir bag 1€ dide

NSG

He plays the ﬂower very well

Figure 1: A schema of our approach. After aligning

‘guitar’ (in English) and ‘gitaré’ (in Kurmanji Kurdish),

the new word ‘flower’ is randomly selected to replace

‘guitar’ and its translation ‘gul’ in a bilingual dictionary

is inflected according to its morphological features as
Small caps refer to lemmata.

morphologically-rich languages. Therefore, solely
relying on dictionaries is not a viable solution for
low-resource languages.

In recent approaches to MT that mainly rely
on encoder-decoder networks like transformers
(Vaswani et al., 2017), the ideal scenario is to train
an MT model on a large parallel corpus. Creating
a parallel corpus for a given language, however,
requires linguistic and technical expertise lacking
for under-resourced languages and is also a costly
and time-consuming task. To remedy this, recent
studies in natural language processing (NLP) focus
on unsupervised methods based on monolingual
data (Sennrich et al., 2016a; Lample et al., 2018a),
back-translation (Edunov et al., 2018a,b), other
data augmentation techniques (Sdnchez-Cartagena
et al., 2021), or fine-tune pre-trained models to
adapt to a different language, domain, or dialect
(Bapna and Firat, 2019). Therefore, the usage of



dictionaries is largely under-studied, even though
they are still practically in use (Peng et al., 2020;
Sennrich et al., 2016b).

In this paper, we put forward a dictionary-based
approach akin to early dictionary-based MT sys-
tems (Tyers, 2009; Koehn and Knight, 2002, 2001;
Sénchez-Cartagena et al., 2011) yet more sophisti-
cated as it relies on the morpho-syntactic analysis
of words to generate a parallel corpus synthetically.
As illustrated in Figure 1, our approach consists of
four components: alignment, analysis, replacement,
and generation. Given a small set of parallel text
as seed data, we first retrieve possible word-level
translation pairs in the source and target languages
as in ‘guitar’ and ‘gitar’ in English and Kurmanji
Kurdish, respectively. We then morphologically
analyze the source words in the translation pairs,
e.g., ‘guitar’ is a singular noun in the accusative
case in the example. With the morphological fea-
tures of a word in the source sentence, we can now
sample a word from a bilingual dictionary with the
same morphological features, e.g., gulé, and "plug"
it into our sentence to generate a new sentence pair
synthetically. As such, the synthetically-generated
sentences are likely to create new grammatically-
sound translations.

To summarize, the contributions of our work are
three-fold:

* We propose a morphologically-informed re-
placement method to create a new synthetic
sentence.

* We show that this synthetic parallel data helps
improve the MT system’s quality when mixed
with real parallel data.

* We also demonstrate the effectiveness of our
method in extremely data-scarce scenarios,
where as little as five parallel seed sentences
are rendered useful with our approach.

Note that we will interchange the terms “dictio-

nary” and “bilingual lexicon” throughout the paper
for readability reasons.

2 Method

Our method requires a small parallel dataset called
seed data containing sentences in the source and
target languages to create synthetic parallel data.
Our approach consists of three components. We
first prepare data by tokenizing sentences and ob-
taining word-level alignment between the parallel
sentences. This step is completed by morpholog-
ically analyzing aligned word pairs. Then, we re-

place words considering the morphological features
in the augmentation component and filter the syn-
thetic sentences using language models. Finally,
we build MT systems in different settings varying
the number of synthetic sentences.

2.1 Analysis

Alignment We perform word alignment to our
seed data, identifying the relationship between
words in the seed sentence. This is necessary for
knowing which words are translations of each other.
If we replace a word in the source sentence, the
aligned target word of the target sentence must also
be replaced to reflect the changes.

Morphological Tagging We analyze the entries
in the bilingual lexicon’s source side words to facil-
itate the data augmentation process. This way, we
can categorize entries based on morphological fea-
tures and find the part-of-speech (POS) tags, e.g.,
ADJ, of our bilingual lexicon’s source side words.

Word-pair Selection We randomly choose
words from the source side, here in English, for
each seed sentence. We refer to Figure 1 as our
example where we generate the morphological fea-
ture and POS tag for the given word “guitar”. We
also find the translation of “guitar” in the seed sen-
tence’s target side. Here, that word is “gitaré",
which we get from the alignment in §2.1. We find

the morphological feature and POS tag of “gitaré”
too.

2.2 Augmentation

We introduce two different approaches for the aug-
mentation of the seed sentences:

Morphologically-Informed

1. Referring to Figure 1, we first replace “guitar”
with another random word, e.g. “flower”, hav-
ing identical morphological features created in
§2.1. As such, a new sentence is synthetically
created as “He plays the flower very well”. It
should be noted that this procedure does not
consider the semantic relevance of the candi-
date word. In other words, it may yield non-
sensical sentences yet morpho-syntactically
valid.

[T A%

2. Then, we replace “gitaré” with the transla-
tion of “flower” being “gul” in Kurmanji Kur-
dish from the bilingual lexicon. It is worth



mentioning that we use PanLex dictionaries”

where some of the entries are not in the lemma
form. Therefore, we also lemmatize the re-
trieved word form in the dictionary, i.e., “gul”
to mitigate the impact of the inaccuracy of the
lexicographic data.

3. Last, we perform morphological inflection
where a lemma is inflected based on morpho-
logical features of the word that will be substi-
tuted, i.e., ‘gitar’. Doing this, we create a new
sentence where the randomly selected word
in the dictionary ‘gul’ appears grammatically
and morphologically correct as ‘gulé’. We do
this to guarantee that the new word follows the
correct morphological features. Thus creating
a synthetic target translation “Ew gulé pir bag
lé dide” of the synthetic source sentence ‘“He
plays the flower very well”.

Naive In contrast to the previous augmentation
technique where we consider the morphological
features, we carry out a naive random word replace-
ment approach where only the POS tag is identi-
cal, without lemmatizing or inflecting the word
based on the sentence. For instance in Figure 1, a
synthetic sentence created this way would be “He
plays the flower very well” and its generated trans-
lation “Ew gul pir bas lé dide”. Here “gul” has not
been converted into ‘gulé’. In the Morphologically-
Informed setup, we preserve the morphological
information of the word we change, thus making
the synthetic data more likely to be grammatically
correct. In this naive approach, on the other hand,
we lose this information.

2.3 Filtering with LMs

We create synthetic sentences for each seed sen-
tence with the above augmentation approaches.
Given that the synthetic sentences may not be
meaningful, e.g., “He plays the flower very well”,
we also incorporate information from a language
model (LM) by estimating the perplexity (ppl) of
the synthetic sentences:

ppl(z) = ewp{*l/tz logpe(zi|z<i)},

7

Where the probability of a sentence of length ¢
containing words x existing in the LM. The lower
the perplexity is, the more natural the sentence is.

https://panlex.org/snapshot

We filter the augmented sentences using the LM
and rank them based on the perplexity scores to
pick the sentences with the correct context. This
step yields sentences more likely to appear with the
lowest perplexity.

2.4 Neural Machine Translation

Using the synthetic data, we build neural MT sys-
tems for each language pair in one direction. To do
s0, one of the approaches is to train a transformer-
based encoder-decoder model from scratch with
random weights only on the parallel data. This
model type excels in high-resource settings but
hardly reaches up to the mark performance for low-
resource languages (Duh et al., 2020). Another
approach is to fine-tune a model based on a pre-
trained model. Instead of initializing with random
weights, the training is carried out on a previously-
trained transformer model. The pre-trained model
can be either monolingual or multilingual and can
be pre-trained on any task, normally on denois-
ing ones. This approach (Alabi et al., 2022) is
promising to improve low-resource languages as
the model does not need to learn all language com-
ponents from scratch. If the pre-trained model
is multilingual, the model can leverage resources
from other high-resource languages.

3 Experimental Setup

3.1 Dataset

Parallel Data To create synthetic data, we use
the parallel sentences in the OPUS-100 (Zhang
et al., 2020) corpus’® with English as the source
language and other languages as target languages.
We use this training set as our parallel seed data
for training. For testing and validation, we use
the devtest and dev sets of the FLORES-200*
benchmark (Team et al., 2022) respectively. Ta-
ble 1 summarizes the statistics of our datasets. We
divide the languages into four categories according
to their data availability: extremely low-resource,
low-resource, well-resourced, and high-resource.

Bilingual Dictionaries We extract dictionaries
between English and each target language from the
Panlex database containing 25 million words in
2,500 dictionaries of 5,700 languages.

3https://data.statmt.org/opus—1®®—corpus
4https://github.com/facebookresearch/flores/
tree/main/flores200
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Language (code) #Seed  # Entries
Armenian (HYE) 7,059 161,798
Wolof (WOL) 7,918 4,971
Kurmanji (KMR) 8,199 47,461
Scottish Gaelic (GLA) 16,316 51,416
Marathi (MAR) 27,007 65,559
Uyghur (UIG) 72,170 9,054
Kazakh (KAZ) 79,927 40,516
Tamil (TAM) | 227,014 230,882
Irish (GLE) | 289,524 71,436
Galician (GLG) | 515,344 185,946
Hindi (HIN) | 534,319 409,076
Urdu (URD) | 753,913 86,695
Greek (ELL) | 1,000,000 | 407,311
Maltese (MLT) | 1,000,000 | 33,131

Table 1: Statistics of our datasets (seed parallel data and
dictionary entries). Sorted according to the number of
available training sentences.

3.2 Tools

We use Stanza® for tokenization, morphologi-
cal feature tagging, POS tagging, and lemma-
tization. Stanza uses different models for dif-
ferent languages. For word alignment we use
fast_align® (Dyer et al., 2013), and we use
pyinflect’ for morphological inflection. Note
that pyinflect only supports English, but in this
work, we only do inflection on the English side for
our synthetic data creation framework. We use the
HuggingFace (Wolf et al., 2020) toolkit for training
the language models.

3.3 Implementation Details

Language Model To construct the language
model (LM), we adopt the methodology outlined in
the GPT-2 recipe provided by HuggingFace (Rad-
ford et al., 2019). We utilize the monolingual side
of the parallel data specific to each language as
the training dataset. Given that many of the lan-
guages involved in our experiment are not highly
resourced, we make certain modifications to the
GPT-2 model. We employ only six layers instead
of the original 12 to mitigate resource limitations.
Additionally, we decrease the vocabulary size to
5000. These adjustments help tailor the model

Shttps://stanfordnlp.github.io/stanza/
6h'ctps ://github.com/clab/fast_align
Thttps: //pypi.org/project/pyinflect/0.2.0/

to our experiment’s specific requirements of low-
resource languages.

Seed Data We do not use all the available seed
data for creating synthetic sentences. Short sen-
tences with less than seven tokens are not used as
seed sentences. As Stanza uses context to generate
morphological features, short sentences seem not
to provide enough context for the model to produce
reasonable annotations.®

Lexicons The bilingual lexicons often provide
several translations for one source word. We or-
ganize the lexicon so that only one translation is
available for each source word. We do so naively,
only taking the first translation of a word and dis-
carding the rest. We also ensure that the source
and target have the same POS tag. To produce the
morphological features of the dictionary entries,
we rely not only on Stanza® but we also perform
lookups on Unimorph'® (Batsuren et al., 2022),
which provides morphological inflection paradigms
for dozens of languages (including the ones we
work on) annotated with POS tags and morpholog-
ical features. For this work, we only work with
augmentation, focusing on nouns, adjectives, and
verbs.

Synthetic Data We create five sizes of synthetic
data: 5K, 10K, 50K, 100K, and 200K for each
language pair. In each set, the previous set’s data
is used. That means that when compiling the 10K
synthetic dataset, we create new 5K data to add
to the previous 5K data, and so on. This ensures
that our experiments only vary based on the newly
added synthetic data (and not due to additional
randomness).

For each sentence, we randomly choose at most
two words for replacement. As the word replace-
ment is random, getting the exact number of sen-
tences for each set is not guaranteed, and there may
be duplicates. From each seed sentence, M num-
ber of synthetic sentences are created. Let’s say
we want to make a total of 5,000 seed sentences.
Then, M is chosen to get barely more than 5,000
sentences. After that, we sort with the perplex-
ity of the LM and select the sentences with lower
perplexity to create that set.

8This was based on preliminary experiments and manual
inspection of Stanza’s outputs.

°As there is no sentential context, Stanza is bound to be
error-prone.

Ohttps://unimorph.github.io/
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Model Details We fine-tune DeltaLM (Ma et al.,
2021), a large pre-trained multilingual encoder-
decoder model that regards the decoder as the task
layer of off-the-shelf pre-trained encoders. This
is done separately for each language, not multi-
lingually. The baseline system is the one that uses
only the available real parallel data. Throughout the
paper, we refer to the baseline as the 0K (untagged)
model, as it has seen O synthetic data. The rest of
the models are use tags <clean> and <noisy> at
the beginning of the sentences to distinguish be-
tween real and synthetic data. The model’s name
(e.g. 5K) indicates how much synthetic data has
been added to the seed data during training.

4 Results

From English In 11 out of the 14 Eng-X lan-
guage pairs, our approaches yield improvements
randgng from 0.4 points to more than 3 BLEU (Pa-
pineni et al., 2002) points.

Due to space constraint, we show all results for
the six language pairs with the largest improvement
over the baseline in Figure 2. Comparing the data
augmentation methods, our morphologically aware
approach yields a better score than the naive one
in all cases except for Galician. We find that the
augmentation is consistently beneficial for Irish
and Galician, regardless of how much data we add.
But for other pairs adding more synthetic data does
not lead to sustained improvements.

Table A.1 in the Appendix shows our experimen-
tal results on all 14 language pairs from English.
We use two pre-trained models: DeltalL.M-Base and
Deltal. M-Large. We tried to use DeltalLM-Large
for all language pairs, but low-resource language
pairs quickly overfit on the large model and do not
generalize well. Apart from Armenian (HYE), we
get a higher BLEU score with our settings for all
other language pairs. The improvement margin is
negligent in languages where the baseline system
is already very bad. Languages like Wolof (WOL)
and Uyghur (UIG) have baseline BLEU scores of
less than 2, showing us that our parallel seed data is
not of good quality. For languages, Kazakh (KAZ),
Marathi (MAR), and Tamil (TAM), all rather low-
resource languages, the improvement is less than
0.5 BLEU points, but it ranges from 0.79 to 3.21
BLEU score for all other languages. We also ob-
serve a similar trend of improvement in the case of
adding more noisy data. The score improves to the
highest point, but as more synthetic data is added

the system gets worse.

To English As before we show the best-
performing six language pairs in the X-English
direction in Figure 3. Unlike English-X, the pat-
terns here are the same for all language pairs. In all
14 languages except for Armenian our approach im-
proves upon the baseline, and the morphologically-
informed method is better than the naive approach.
In every case adding more synthetic data after a
while does not lead to more improvements.

Table A.2 in the Appendix lists our results on all
14 language pairs in the to-English direction. The
BLEU scores are generally higher in this setting, as
the pre-trained model has seen a lot of English data
on the target side. Apart from Armenian (HYE),
we get a higher BLEU score with our settings for
all other language pairs, the same as before. The
improvement margin is negligent for Greek (ELL)
and Maltese (MLT), showing that the language has
no room for improvement through this type of aug-
mentation, as the models are already fairly good.
For Wolof (woL) and Uyghur (UIG), our improve-
ment is less than 1 BLEU score. This is also the
same as before, showing that the parallel data for
these languages is not of high quality. The improve-
ment ranges from 1.12 to 4.24 BLEU scores for all
other languages. We also see a similar trend as in
the From-English direction; after some point, the
more synthetic data we add, the system worsens;
most improvements are obtained with 5K and 10K
synthetic examples.

S Analysis

Is the performance tied to any single compo-
nent? We perform an ablation study to find out
which component of the model is responsible for
the performance boost. We work on this exper-
iment with five thousand synthetic data and the
SCOTTISH GAELIC-ENGLISH direction. We com-
pare three different components of our pipeline:

* Does the number of the generated synthetic
data matter? For this setup, instead of creat-
ing three synthetic sentences from each seed sen-
tence, we create 30 synthetic sentences from each
seed sentence. We refer to this setup as a “SK
Number”.

¢ Does the length of the seed sentences mat-
ter? We create synthetic sentences from seed
sentences with less than seven tokens for this
setup. We refer to this setup as a “SK Length”.
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Figure 2: BLEU scores on the test sets for six languages in the ENGLISH-X direction. X-axis indicates the amount
of synthetic parallel data we use along with seed data. The baseline uses no synthetic data. Except for Irish and
Galician, all the other languages do not benefit from the increasing amounts of synthetic data. It seems like Irish has
even room for more improvement. ours is the morphologically-informed method.

Ablations on Scottish Gaelic-English

Ours Naive

5K | 13.32 13.05

SK Number | 12.76 13.13
5K Length | 12.58 12.28
5K Align | 12.14 12.62

Table 2: Ablation result of the importance of different
components of our method. If we don’t use one of the
components, the BLEU score drops significantly.

* Does the choice of alignment model play any
role? Instead of aligning the seed sentences
with fast_align, we use awesome-align using
“bert-base-multilingual-cased” for this setup. We
refer to this setup as a “5K Align”.

Table 2 shows the results of these experiments.
The main takeaway is that every component of our
method is necessary to boost scores: scores de-
crease when we replace one component. The most
important for low-resource languages is to use a
compatible alignment model. As large multilingual
pre-trained models do not represent them very well,
and awesome_align relies on such a model, we are
better off using fast_align. The number of gen-
erated synthetic data also matters as we anticipated.
The reason is that when we create a huge sentence
pool and sample a small number of sentences from

there, the number of unique seed sentences that
contribute to the synthetic data is reduced. We also
confirm that the length of the sentence matters for
Stanza: the shorter the sentence is, the less context
it has, thus reducing the quality of the morpho-
logical analysis and consequently of our synthetic
sentences.

Does the number of seed sentences or the
amount of new vocabulary matter? To do this
experiment, we work again on the GLA-ENG di-
rection to create five thousand synthetic data. We
build four different models:

* 5K: This is the original five thousand-size syn-
thetic dataset we created. We create three sen-
tences from each seed sentence and randomly
choose words from all candidate words for
replacement.

* 5K (one): In this setup, we try to create 5000
sentences from only one seed sentence and
randomly choose words from all candidate
words for replacement. However, our process
could not generate 5,000 unique synthetic sen-
tences from one seed sentence; instead, it took
five seed sentences to generate 5,000 synthetic
sentences.

* 5K (half): In this setup, we create three sen-
tences from each seed sentence and randomly
choose words from the first half of the candi-
date words for replacement.
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Figure 3: BLEU scores on the test sets for six languages in the X-ENGLISH direction. ours is the morphologically-
informed method. Morphologically-informed approach outperforms the naive approach in all the six language pairs.
X-axis indicates the amount of synthetic parallel data we use along with seed data. The baseline uses no synthetic

data.

e 5K (remove): In this setup, we create ten
sentences from each seed sentence and ran-
domly choose words from all candidate words
for replacement, but when we choose a word,
we remove that word as a candidate so that it
is not chosen again. Ideally, we would have
sentences of the same amount of the lexicon
vocabulary.

Table 3 shows these experiments’ results. An
exciting result is the one for 5K (one), where we
use only five seed sentences to create five thousand
synthetic sentences. In doing so, we introduce
200 new words, but we get a substantial jump of
3.71 BLEU score, which shows the promise of our
method. Even if we have few high-quality parallel
sentences and a good-quality lexicon, our method
is bound to boost MT system quality.

How much does filtering with LM help? To do
this experiment, we perform a control experiment
to contrast with our filtering-with-LM-perplexity
approach. In the control setting, we choose sen-
tences randomly from the pool of synthetic sen-
tences. We randomly select a subset of a hundred
thousand seed sentences from the OPUS-100 ENG,
ELL dataset and do ablation on both ENG-ELL
and ELL-ENG directions.

Table 4 shows these experiments’ results. In
the random setting, the results are rather unstable,
with very low BLEU scores for some settings. This

could be because we might be randomly choos-
ing bad sentences from the pool. The results with
informed sentence selection (through perplexity),
instead, are stable and consistently improving.

6 Related Work

Dictionaries have been and are indispensable re-
sources in various applications in NLP (Wilson
et al., 2020; Wang et al., 2019; Xiao and Guo,
2014). More specifically, many previous stud-
ies use dictionaries in MT to improve translation
quality for low-resource languages with or with-
out monolingual or parallel corpora. A closely re-
lated task is bilingual lexicon induction that departs
from an unsupervised MT task where no parallel
resources, including the ground-truth bilingual lex-
icon, are incorporated (Artetxe et al., 2017; Lam-
ple et al., 2018b). The bilingual lexicon is often
utilized as a seed in bilingual lexicon induction
that aims to induce more word pairs within the
language pair (Mikolov et al., 2013). Another
utilization of the bilingual lexicon is for translat-
ing low-frequency words in supervised neural MT
(Arthur et al., 2016; Zhang and Zong, 2016).

On the usage of dictionaries in MT, Peng et al.
(2020) employ dictionaries for cross-lingual MT,
Fadaee et al. (2017) propose a data augmentation
approach to target low-frequency words by gener-
ating sentence pairs containing rare words, Duan
et al. (2020) use dictionaries to drive the semantic



Scottish Gaelic-English Ours

Scottish Gaelic-English Naive

#ENG #GLA # seed #ENG #GLA # seed
BLEU | types types  sentences | BLEU | types types  sentences
OK | 9.08 11077 13826 0 9.08 11077 13836 0
5K (one) | 12.79 | 11269 14020 5 12.58 | 12588 15883 5
SK | 13.32 | 12763 15847 1511 13.05 | 12057 15082 1512
5K (half) | 13.13 | 12367 15216 1527 12.57 | 11811 14740 1508
5K (remove) | 1291 12528 15702 1909 13.29 | 12511 15694 1909

Table 3: Ablation about the number of new vocabulary introduced and the number of seed sentences used to create
five thousand synthetic data. Using as little as five seed sentences boosts the 3.71 BLEU score.

Pairs 0K 5K 10K 50K 100K 200K
English-Modern Greek (random) 14.04 1398 5.01 15.7 14.92 4.23
English-Modern Greek (filtered) ' 14.62 15.14 152 1499 15.54
Modern Greek-English (random) 116 122 1024 1834 9.21 1242
Modern Greek-English (filtered) ) 1691 17.25 17.05 19.01 17.64

Table 4: Filtering the synthetic data leads to consistent improvements, but random data sampling leads to unstable
results. Instead, the BLEU score drops randomly for a random approach.

spaces of the source and target languages becom-
ing closer in MT training without parallel sentences
and Wang et al. (2022b) explore the utilization of
dictionaries for synthesizing textual or labeled data,
focusing on tasks such as named entity recognition
and part-of-speech tagging.

Unlike many of the previous approaches that are
fixated on only monolingual data, our approach
considers using a bilingual lexicon and maintain-
ing morphology in augmentation. Our approach
is similar in spirit to Fadaee et al. (2017) tech-
nique with additional consideration of morphologi-
cal complexity in the synthetic data augmentation
process. Also, inspired by Wang et al. (2022b)’s
approach, our research shares a common thread
by using different strategies for synthesizing data
using lexicons and integrating such data with mono-
lingual or parallel text when accessible. Both stud-
ies aim to leverage lexicons to enhance various
NLP tasks, albeit in different contexts.

7 Conclusion

Our approaches have proven beneficial for most
of the 14 languages under investigation, except for
Armenian. Even if the improvements in BLEU
scores may be small for some languages, there is
a noticeable boost in most. Interestingly, we ob-
served improvements even in language pairs (e.g.,
WOL-ENG, ENG-KMR, ENG-GLA) with unsatisfac-
tory initial baseline scores. This observation sug-
gests our approach can enhance performance even

in more challenging scenarios. The results also
highlight the importance of obtaining high-quality
seed sentences. We found that as few as five good-
quality seed data points can contribute to creating
five thousand synthetic data samples of good qual-
ity that would boost performance. This data aug-
mentation process could play a vital role in improv-
ing the overall performance of machine translation
systems and be combined with other augmentation
techniques (e.g., back-translation) as we deem it
orthogonal to them.'!

Future Work In our current work, we focused
on conducting morphological inflection exclusively
on the English side of the translation task. The
main reason for this choice was the availability
of a reliable morphological inflector specifically
designed for English. However, we encountered
challenges when applying the same approach to
other languages. We lacked suitable morphological
inflection tools for those languages, or the accu-
racy of the available tools did not meet our require-
ments. Incorporating these tools would have posed
a significant bottleneck to the effectiveness of our
approach. For future research, we aim to explore
how our approach can be extended by performing
morphological inflection in other languages. This
involves developing or obtaining accurate and reli-
able morphological inflection tools.

""We note that back-translation is rarely effective in most

extremely low-resource languages due to the abysmal quality
of the initial systems.



8 Limitations

One of the limitations of our current approach is the
use of the Stanza model. Since bilingual lexicons
have no context, relying solely on morphological
features obtained from the lexicon results in more
general features. This can be particularly challeng-
ing in morphologically rich languages, where a
single word can have multiple meanings depending
on the sentence context. Another limitation is the
language support provided by the Stanza model,
which is currently limited to 60 languages. This
constraint restricts the applicability of our approach
to only those languages supported by Stanza. To
expand our work to languages not supported by
Stanza, it is necessary to create custom Stanza mod-
els specifically tailored for those languages. This
process requires additional time and effort to de-
velop and validate the models for each language of
interest.
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A Appendix

Pairs

0K (untagged) 5K (tagged) 10K (tagged) 50K (tagged) 100K (tagged) 200K (tagged) A

DeltaLM-Base

ENG-GLA Naive 401 5.16 5.07 5.5 5.31 4.78 141
ENG-GLA Ours ' 4.75 522 5.62 5.13 4.97 ’
ENG-HYE Naive 5.61 4.86 4.65 291 2.75 2.11 0.0
ENG-HYE Ours ) 4.28 4.52 33 2.97 2.83 '
ENG-KAZ Naive 6.13 6.34 5.93 5.16 5.39 4.58 037
ENG-KAZ Ours ' 6.28 6.5 5.27 5.68 4.79 ’
ENG-KMR Naive 1.66 2.36 2.05 2.12 1.66 1.82 0.79
ENG-KMR Ours ' 245 227 2.32 1.89 1.78 ’
ENG-WOL Naive 1.08 0.78 1.03 1.19 1.05 0.94 012
ENG-WOL Ours ' 1.08 1.13 1.11 1.2 1.02 ’
Deltal. M-Large
ENG-ELL Naive 23.06 22.2 23.09 22.17 22.55 23.01 0.03
ENG-ELL Ours ’ 22.17 21.93 22.24 22.64 23.07 ’
ENG-GLE Naive 19.13 19.89 19.97 20.3 20.58 21.52 3921
ENG-GLE Ours ’ 20.3 19.94 20.44 20.9 22.34 ’
ENG-GLG Naive 2986 3142 31.41 31.34 31.68 1.82
ENG-GLG Ours ’ 30.97 31.27 31.13 31.46 ’
ENG-HIN Naive 2248 232 22.53 22.72 22.35 22.05 0.96
ENG-HIN Ours ’ 23.29 23.44 22.42 22.17 21.17 ’
ENG-MAR Naive 503 4.86 4.64 4.55 4.54 4.04 0.44
ENG-MAR Ours ' 547 5.35 4.76 4.72 4.34 ’
ENG-MLT Naive 38.03 39.86 39.77 39.64 39.41 39.24 208
ENG-MLT Ours ’ 40.11 39.08 39.52 38.69 39.43 ’
ENG-TAM Naive 53 5.64 5.33 5.35 5.10 5.58 046
ENG-TAM Ours ’ 5.44 5.76 5.28 5.48 5.34 ’
ENG-URD Naive 11.26 12.06 12.31 12.03 11.98 11.12 111
ENG-URD Ours ’ 12.24 12.37 11.45 11.95 11.07 ’
ENG-UIG Naive 104 0.7 0.88 0.76 0.87 0.04
ENG-UIG Ours ' 0.63 1.06 1.17 1.28 ’
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Table A.1: BLEU score of 9 languages from ENG-X direction. Columns indicate the amount of synthetic parallel
data we use. The 0K (untagged) column is our baseline. The rows indicating Naive is the approach where we
replace words of the same POS tag. The rows indicating Ours is the approach where we replace words of the same
morphological feature. A is the difference between the baseline and the best model’s score. A is 0.0 if the baseline
is the best model.



Pairs 0K (untagged) 5K (tagged) 10K (tagged) 50K (tagged) 100K (tagged) 200K (tagged) A
DeltalLM-Base
HYE-ENG Naive 15.78 13.84 9.71 8.39 7.79

HYE-ENG Ours 1604 15.59 14.63 10.11 9.24 g2 00
WOLENG Naive | o 2.59 224 2.09 153 2
WOL-ENG Ours : 231 220 171 155 1.1 :
Deltal. M-Large
GLA-ENG Naive o o 13.05 11.81 12.99 12.36 186 o,
GLA-ENG Ours : 13.32 1276 12.32 13.08 1235
KAZENGNaive 1o oo 20.97 20.74 18.86 17.99 1659 | .
KAZ-ENG Ours : 20.78 213 20.52 19.28 1845 L
KMR-ENG Naive o . 11.63 11.08 11.04 9.45 919
KMR-ENG Ours : 11.97 12.01 10.87 10.35 9.43 :
ELLENG Naive 4 o, 3233 3232 32.34 32.35 398
ELL-ENG Ours : 32.36 31.88 3234 3223 3.1 :
GLE-ENG Naive o, 30.03 29.54 28.65 28.73 857 | o
GLE-ENG Ours : 29.96 297 30.03 28.99 2036 L
GLGENG Naive - 37.89 38.01 37.89 38.02 b
GLG-ENG Ours : 37.84 38.19 38.02 37.61 :
HIN-ENG Naive 5 0 30.89 30.34 30.81 30.46 971 |4
HIN-ENG Ours : 31.05 30.74 30.58 20.6 26 b
MARENG Naive ) 23.66 2336 2.1 2122 20 s
MAR-ENG Ours : 24.11 23.54 2205 2178 1992 b
MLTENG Naive <o, 452 4543 4523 4523 49
MLT-ENG Ours : 45.65 45.07 44.87 44.94 447 :
TAM-ENG Naive | o 20.72 2061 19.9 18.98 B
TAM-ENG Ours : 21.3 20.69 19.75 19.25 1863 L
URD-ENG Naive o s 19.95 19.81 19.75 19 1812 L
URD-ENG Ours : 19.96 19.39 19.15 19.44 1854 L
UIGENG Naive (4o 11.08 1127 10.67 9.56 877 g
UIG-ENG Ours : 11.32 1131 10.71 9.76 8.18 :

Table A.2: BLEU score of 9 languages from X-ENG direction. Columns indicate the amount of synthetic parallel
data we use. The 0K (untagged) column is our baseline. The rows indicating Naive is the approach where we
replace words of the same POS tag. The rows indicating Ours is the approach where we replace words of the same
morphological features. A is the difference between the baseline and the best model’s score. A is 0.0 if the baseline
is the best model.
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