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Abstract

The availability of parallel texts is crucial to001
the performance of machine translation models.002
However, most of the world’s languages face003
the predominant challenge of data scarcity. In004
this paper, we propose strategies to synthesize005
parallel data relying on morpho-syntactic in-006
formation and using bilingual lexicons along007
with a small amount of seed parallel data. Our008
methodology adheres to a realistic scenario009
backed by the small parallel seed data. It is010
linguistically informed, as it aims to create aug-011
mented data that is more likely to be grammat-012
ically correct. We analyze how our synthetic013
data can be combined with raw parallel data and014
demonstrate a consistent improvement in per-015
formance in our experiments on 14 languages016
(28 English↔X pairs) ranging from well- to017
very low-resource ones. Our method leads to018
improvements even when using only five seed019
sentences and a bilingual lexicon.1020

1 Introduction021

One of the major challenges in machine transla-022

tion (MT) is the lack of parallel data for most of023

the world’s languages. Traditional approaches (Wu024

et al., 2008; Mikolov et al., 2013) used to rely on025

dictionaries and linguistic knowledge for MT. One026

of the naive ways to use dictionaries for MT is to027

translate by looking up words of a source sentence028

in a bilingual lexicon and replacing their corre-029

sponding translations in the target language. How-030

ever, this approach has certain shortcomings (Wang031

et al., 2022a). Firstly, the coverage of translations032

depends on the size and comprehensiveness of the033

lexicon, which can result in incomplete translations034

and code-mixed versions of the source and target035

languages. The translated sentences may also not036

adhere to the target language’s grammatical rules037

or word order. Furthermore, most dictionaries op-038

erate at the lemma level, posing challenges for039

1Data and code will be publicly released upon acceptance.

Ew gîtarê pir baş lê dide

He plays the guitar very well

Analyze: guitar = [N;ACC;SG, lemma=GUITAR]
Replace: GUITAR← FLOWER, FLOWER= GUL

Generate: [N;ACC;SG, lemma=GUL]→ gulê

He plays the flower very well

Ew gulê pir baş lê dide

Figure 1: A schema of our approach. After aligning
‘guitar’ (in English) and ‘gîtarê’ (in Kurmanji Kurdish),
the new word ‘flower’ is randomly selected to replace
‘guitar’ and its translation ‘gul’ in a bilingual dictionary
is inflected according to its morphological features as
‘gulê’. Small caps refer to lemmata.

morphologically-rich languages. Therefore, solely 040

relying on dictionaries is not a viable solution for 041

low-resource languages. 042

In recent approaches to MT that mainly rely 043

on encoder-decoder networks like transformers 044

(Vaswani et al., 2017), the ideal scenario is to train 045

an MT model on a large parallel corpus. Creating 046

a parallel corpus for a given language, however, 047

requires linguistic and technical expertise lacking 048

for under-resourced languages and is also a costly 049

and time-consuming task. To remedy this, recent 050

studies in natural language processing (NLP) focus 051

on unsupervised methods based on monolingual 052

data (Sennrich et al., 2016a; Lample et al., 2018a), 053

back-translation (Edunov et al., 2018a,b), other 054

data augmentation techniques (Sánchez-Cartagena 055

et al., 2021), or fine-tune pre-trained models to 056

adapt to a different language, domain, or dialect 057

(Bapna and Firat, 2019). Therefore, the usage of 058
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dictionaries is largely under-studied, even though059

they are still practically in use (Peng et al., 2020;060

Sennrich et al., 2016b).061

In this paper, we put forward a dictionary-based062

approach akin to early dictionary-based MT sys-063

tems (Tyers, 2009; Koehn and Knight, 2002, 2001;064

Sánchez-Cartagena et al., 2011) yet more sophisti-065

cated as it relies on the morpho-syntactic analysis066

of words to generate a parallel corpus synthetically.067

As illustrated in Figure 1, our approach consists of068

four components: alignment, analysis, replacement,069

and generation. Given a small set of parallel text070

as seed data, we first retrieve possible word-level071

translation pairs in the source and target languages072

as in ‘guitar’ and ‘gîtar’ in English and Kurmanji073

Kurdish, respectively. We then morphologically074

analyze the source words in the translation pairs,075

e.g., ‘guitar’ is a singular noun in the accusative076

case in the example. With the morphological fea-077

tures of a word in the source sentence, we can now078

sample a word from a bilingual dictionary with the079

same morphological features, e.g., gulê, and "plug"080

it into our sentence to generate a new sentence pair081

synthetically. As such, the synthetically-generated082

sentences are likely to create new grammatically-083

sound translations.084

To summarize, the contributions of our work are085

three-fold:086

• We propose a morphologically-informed re-087

placement method to create a new synthetic088

sentence.089

• We show that this synthetic parallel data helps090

improve the MT system’s quality when mixed091

with real parallel data.092

• We also demonstrate the effectiveness of our093

method in extremely data-scarce scenarios,094

where as little as five parallel seed sentences095

are rendered useful with our approach.096

Note that we will interchange the terms “dictio-097

nary” and “bilingual lexicon” throughout the paper098

for readability reasons.099

2 Method100

Our method requires a small parallel dataset called101

seed data containing sentences in the source and102

target languages to create synthetic parallel data.103

Our approach consists of three components. We104

first prepare data by tokenizing sentences and ob-105

taining word-level alignment between the parallel106

sentences. This step is completed by morpholog-107

ically analyzing aligned word pairs. Then, we re-108

place words considering the morphological features 109

in the augmentation component and filter the syn- 110

thetic sentences using language models. Finally, 111

we build MT systems in different settings varying 112

the number of synthetic sentences. 113

2.1 Analysis 114

Alignment We perform word alignment to our 115

seed data, identifying the relationship between 116

words in the seed sentence. This is necessary for 117

knowing which words are translations of each other. 118

If we replace a word in the source sentence, the 119

aligned target word of the target sentence must also 120

be replaced to reflect the changes. 121

Morphological Tagging We analyze the entries 122

in the bilingual lexicon’s source side words to facil- 123

itate the data augmentation process. This way, we 124

can categorize entries based on morphological fea- 125

tures and find the part-of-speech (POS) tags, e.g., 126

ADJ, of our bilingual lexicon’s source side words. 127

Word-pair Selection We randomly choose 128

words from the source side, here in English, for 129

each seed sentence. We refer to Figure 1 as our 130

example where we generate the morphological fea- 131

ture and POS tag for the given word “guitar”. We 132

also find the translation of “guitar” in the seed sen- 133

tence’s target side. Here, that word is “gîtarê", 134

which we get from the alignment in §2.1. We find 135

the morphological feature and POS tag of “gîtarê” 136

too. 137

2.2 Augmentation 138

We introduce two different approaches for the aug- 139

mentation of the seed sentences: 140

Morphologically-Informed 141

1. Referring to Figure 1, we first replace “guitar” 142

with another random word, e.g. “flower”, hav- 143

ing identical morphological features created in 144

§2.1. As such, a new sentence is synthetically 145

created as “He plays the flower very well”. It 146

should be noted that this procedure does not 147

consider the semantic relevance of the candi- 148

date word. In other words, it may yield non- 149

sensical sentences yet morpho-syntactically 150

valid. 151

2. Then, we replace “gîtarê” with the transla- 152

tion of “flower” being “gul” in Kurmanji Kur- 153

dish from the bilingual lexicon. It is worth 154
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mentioning that we use PanLex dictionaries2155

where some of the entries are not in the lemma156

form. Therefore, we also lemmatize the re-157

trieved word form in the dictionary, i.e., “gul”158

to mitigate the impact of the inaccuracy of the159

lexicographic data.160

3. Last, we perform morphological inflection161

where a lemma is inflected based on morpho-162

logical features of the word that will be substi-163

tuted, i.e., ‘gîtar’. Doing this, we create a new164

sentence where the randomly selected word165

in the dictionary ‘gul’ appears grammatically166

and morphologically correct as ‘gulê’. We do167

this to guarantee that the new word follows the168

correct morphological features. Thus creating169

a synthetic target translation “Ew gulê pir baş170

lê dide” of the synthetic source sentence “He171

plays the flower very well”.172

Naive In contrast to the previous augmentation173

technique where we consider the morphological174

features, we carry out a naive random word replace-175

ment approach where only the POS tag is identi-176

cal, without lemmatizing or inflecting the word177

based on the sentence. For instance in Figure 1, a178

synthetic sentence created this way would be “He179

plays the flower very well” and its generated trans-180

lation “Ew gul pir baş lê dide”. Here “gul” has not181

been converted into ‘gulê’. In the Morphologically-182

Informed setup, we preserve the morphological183

information of the word we change, thus making184

the synthetic data more likely to be grammatically185

correct. In this naive approach, on the other hand,186

we lose this information.187

2.3 Filtering with LMs188

We create synthetic sentences for each seed sen-189

tence with the above augmentation approaches.190

Given that the synthetic sentences may not be191

meaningful, e.g., “He plays the flower very well”,192

we also incorporate information from a language193

model (LM) by estimating the perplexity (ppl) of194

the synthetic sentences:195

ppl(x) = exp{−1/t
t∑
i

logpθ(xi|x<i)},196

Where the probability of a sentence of length t197

containing words x existing in the LM. The lower198

the perplexity is, the more natural the sentence is.199

2https://panlex.org/snapshot

We filter the augmented sentences using the LM 200

and rank them based on the perplexity scores to 201

pick the sentences with the correct context. This 202

step yields sentences more likely to appear with the 203

lowest perplexity. 204

2.4 Neural Machine Translation 205

Using the synthetic data, we build neural MT sys- 206

tems for each language pair in one direction. To do 207

so, one of the approaches is to train a transformer- 208

based encoder-decoder model from scratch with 209

random weights only on the parallel data. This 210

model type excels in high-resource settings but 211

hardly reaches up to the mark performance for low- 212

resource languages (Duh et al., 2020). Another 213

approach is to fine-tune a model based on a pre- 214

trained model. Instead of initializing with random 215

weights, the training is carried out on a previously- 216

trained transformer model. The pre-trained model 217

can be either monolingual or multilingual and can 218

be pre-trained on any task, normally on denois- 219

ing ones. This approach (Alabi et al., 2022) is 220

promising to improve low-resource languages as 221

the model does not need to learn all language com- 222

ponents from scratch. If the pre-trained model 223

is multilingual, the model can leverage resources 224

from other high-resource languages. 225

3 Experimental Setup 226

3.1 Dataset 227

Parallel Data To create synthetic data, we use 228

the parallel sentences in the OPUS-100 (Zhang 229

et al., 2020) corpus3 with English as the source 230

language and other languages as target languages. 231

We use this training set as our parallel seed data 232

for training. For testing and validation, we use 233

the devtest and dev sets of the FLORES-2004 234

benchmark (Team et al., 2022) respectively. Ta- 235

ble 1 summarizes the statistics of our datasets. We 236

divide the languages into four categories according 237

to their data availability: extremely low-resource, 238

low-resource, well-resourced, and high-resource. 239

Bilingual Dictionaries We extract dictionaries 240

between English and each target language from the 241

PanLex database containing 25 million words in 242

2,500 dictionaries of 5,700 languages. 243

3https://data.statmt.org/opus-100-corpus
4https://github.com/facebookresearch/flores/

tree/main/flores200

3
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Language (code) # Seed # Entries

Armenian (HYE) 7,059 161,798
Wolof (WOL) 7,918 4,971

Kurmanji (KMR) 8,199 47,461
Scottish Gaelic (GLA) 16,316 51,416

Marathi (MAR) 27,007 65,559
Uyghur (UIG) 72,170 9,054
Kazakh (KAZ) 79,927 40,516

Tamil (TAM) 227,014 230,882
Irish (GLE) 289,524 71,436

Galician (GLG) 515,344 185,946
Hindi (HIN) 534,319 409,076

Urdu (URD) 753,913 86,695
Greek (ELL) 1,000,000 407,311

Maltese (MLT) 1,000,000 33,131

Table 1: Statistics of our datasets (seed parallel data and
dictionary entries). Sorted according to the number of
available training sentences.

3.2 Tools244

We use Stanza5 for tokenization, morphologi-245

cal feature tagging, POS tagging, and lemma-246

tization. Stanza uses different models for dif-247

ferent languages. For word alignment we use248

fast_align6 (Dyer et al., 2013), and we use249

pyinflect7 for morphological inflection. Note250

that pyinflect only supports English, but in this251

work, we only do inflection on the English side for252

our synthetic data creation framework. We use the253

HuggingFace (Wolf et al., 2020) toolkit for training254

the language models.255

3.3 Implementation Details256

Language Model To construct the language257

model (LM), we adopt the methodology outlined in258

the GPT-2 recipe provided by HuggingFace (Rad-259

ford et al., 2019). We utilize the monolingual side260

of the parallel data specific to each language as261

the training dataset. Given that many of the lan-262

guages involved in our experiment are not highly263

resourced, we make certain modifications to the264

GPT-2 model. We employ only six layers instead265

of the original 12 to mitigate resource limitations.266

Additionally, we decrease the vocabulary size to267

5000. These adjustments help tailor the model268

5https://stanfordnlp.github.io/stanza/
6https://github.com/clab/fast_align
7https://pypi.org/project/pyinflect/0.2.0/

to our experiment’s specific requirements of low- 269

resource languages. 270

Seed Data We do not use all the available seed 271

data for creating synthetic sentences. Short sen- 272

tences with less than seven tokens are not used as 273

seed sentences. As Stanza uses context to generate 274

morphological features, short sentences seem not 275

to provide enough context for the model to produce 276

reasonable annotations.8 277

Lexicons The bilingual lexicons often provide 278

several translations for one source word. We or- 279

ganize the lexicon so that only one translation is 280

available for each source word. We do so naively, 281

only taking the first translation of a word and dis- 282

carding the rest. We also ensure that the source 283

and target have the same POS tag. To produce the 284

morphological features of the dictionary entries, 285

we rely not only on Stanza9 but we also perform 286

lookups on Unimorph10 (Batsuren et al., 2022), 287

which provides morphological inflection paradigms 288

for dozens of languages (including the ones we 289

work on) annotated with POS tags and morpholog- 290

ical features. For this work, we only work with 291

augmentation, focusing on nouns, adjectives, and 292

verbs. 293

Synthetic Data We create five sizes of synthetic 294

data: 5K, 10K, 50K, 100K, and 200K for each 295

language pair. In each set, the previous set’s data 296

is used. That means that when compiling the 10K 297

synthetic dataset, we create new 5K data to add 298

to the previous 5K data, and so on. This ensures 299

that our experiments only vary based on the newly 300

added synthetic data (and not due to additional 301

randomness). 302

For each sentence, we randomly choose at most 303

two words for replacement. As the word replace- 304

ment is random, getting the exact number of sen- 305

tences for each set is not guaranteed, and there may 306

be duplicates. From each seed sentence, M num- 307

ber of synthetic sentences are created. Let’s say 308

we want to make a total of 5,000 seed sentences. 309

Then, M is chosen to get barely more than 5,000 310

sentences. After that, we sort with the perplex- 311

ity of the LM and select the sentences with lower 312

perplexity to create that set. 313

8This was based on preliminary experiments and manual
inspection of Stanza’s outputs.

9As there is no sentential context, Stanza is bound to be
error-prone.

10https://unimorph.github.io/
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Model Details We fine-tune DeltaLM (Ma et al.,314

2021), a large pre-trained multilingual encoder-315

decoder model that regards the decoder as the task316

layer of off-the-shelf pre-trained encoders. This317

is done separately for each language, not multi-318

lingually. The baseline system is the one that uses319

only the available real parallel data. Throughout the320

paper, we refer to the baseline as the 0K (untagged)321

model, as it has seen 0 synthetic data. The rest of322

the models are use tags <clean> and <noisy> at323

the beginning of the sentences to distinguish be-324

tween real and synthetic data. The model’s name325

(e.g. 5K) indicates how much synthetic data has326

been added to the seed data during training.327

4 Results328

From English In 11 out of the 14 Eng-X lan-329

guage pairs, our approaches yield improvements330

randgng from 0.4 points to more than 3 BLEU (Pa-331

pineni et al., 2002) points.332

Due to space constraint, we show all results for333

the six language pairs with the largest improvement334

over the baseline in Figure 2. Comparing the data335

augmentation methods, our morphologically aware336

approach yields a better score than the naive one337

in all cases except for Galician. We find that the338

augmentation is consistently beneficial for Irish339

and Galician, regardless of how much data we add.340

But for other pairs adding more synthetic data does341

not lead to sustained improvements.342

Table A.1 in the Appendix shows our experimen-343

tal results on all 14 language pairs from English.344

We use two pre-trained models: DeltaLM-Base and345

DeltaLM-Large. We tried to use DeltaLM-Large346

for all language pairs, but low-resource language347

pairs quickly overfit on the large model and do not348

generalize well. Apart from Armenian (HYE), we349

get a higher BLEU score with our settings for all350

other language pairs. The improvement margin is351

negligent in languages where the baseline system352

is already very bad. Languages like Wolof (WOL)353

and Uyghur (UIG) have baseline BLEU scores of354

less than 2, showing us that our parallel seed data is355

not of good quality. For languages, Kazakh (KAZ),356

Marathi (MAR), and Tamil (TAM), all rather low-357

resource languages, the improvement is less than358

0.5 BLEU points, but it ranges from 0.79 to 3.21359

BLEU score for all other languages. We also ob-360

serve a similar trend of improvement in the case of361

adding more noisy data. The score improves to the362

highest point, but as more synthetic data is added363

the system gets worse. 364

To English As before we show the best- 365

performing six language pairs in the X-English 366

direction in Figure 3. Unlike English-X, the pat- 367

terns here are the same for all language pairs. In all 368

14 languages except for Armenian our approach im- 369

proves upon the baseline, and the morphologically- 370

informed method is better than the naive approach. 371

In every case adding more synthetic data after a 372

while does not lead to more improvements. 373

Table A.2 in the Appendix lists our results on all 374

14 language pairs in the to-English direction. The 375

BLEU scores are generally higher in this setting, as 376

the pre-trained model has seen a lot of English data 377

on the target side. Apart from Armenian (HYE), 378

we get a higher BLEU score with our settings for 379

all other language pairs, the same as before. The 380

improvement margin is negligent for Greek (ELL) 381

and Maltese (MLT), showing that the language has 382

no room for improvement through this type of aug- 383

mentation, as the models are already fairly good. 384

For Wolof (WOL) and Uyghur (UIG), our improve- 385

ment is less than 1 BLEU score. This is also the 386

same as before, showing that the parallel data for 387

these languages is not of high quality. The improve- 388

ment ranges from 1.12 to 4.24 BLEU scores for all 389

other languages. We also see a similar trend as in 390

the From-English direction; after some point, the 391

more synthetic data we add, the system worsens; 392

most improvements are obtained with 5K and 10K 393

synthetic examples. 394

5 Analysis 395

Is the performance tied to any single compo- 396

nent? We perform an ablation study to find out 397

which component of the model is responsible for 398

the performance boost. We work on this exper- 399

iment with five thousand synthetic data and the 400

SCOTTISH GAELIC-ENGLISH direction. We com- 401

pare three different components of our pipeline: 402

• Does the number of the generated synthetic 403

data matter? For this setup, instead of creat- 404

ing three synthetic sentences from each seed sen- 405

tence, we create 30 synthetic sentences from each 406

seed sentence. We refer to this setup as a “5K 407

Number”. 408

• Does the length of the seed sentences mat- 409

ter? We create synthetic sentences from seed 410

sentences with less than seven tokens for this 411

setup. We refer to this setup as a “5K Length”. 412
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Figure 2: BLEU scores on the test sets for six languages in the ENGLISH-X direction. X-axis indicates the amount
of synthetic parallel data we use along with seed data. The baseline uses no synthetic data. Except for Irish and
Galician, all the other languages do not benefit from the increasing amounts of synthetic data. It seems like Irish has
even room for more improvement. ours is the morphologically-informed method.

Ablations on Scottish Gaelic-English

Ours Naive

5K 13.32 13.05
5K Number 12.76 13.13
5K Length 12.58 12.28

5K Align 12.14 12.62

Table 2: Ablation result of the importance of different
components of our method. If we don’t use one of the
components, the BLEU score drops significantly.

• Does the choice of alignment model play any413

role? Instead of aligning the seed sentences414

with fast_align, we use awesome-align using415

“bert-base-multilingual-cased” for this setup. We416

refer to this setup as a “5K Align”.417

Table 2 shows the results of these experiments.418

The main takeaway is that every component of our419

method is necessary to boost scores: scores de-420

crease when we replace one component. The most421

important for low-resource languages is to use a422

compatible alignment model. As large multilingual423

pre-trained models do not represent them very well,424

and awesome_align relies on such a model, we are425

better off using fast_align. The number of gen-426

erated synthetic data also matters as we anticipated.427

The reason is that when we create a huge sentence428

pool and sample a small number of sentences from429

there, the number of unique seed sentences that 430

contribute to the synthetic data is reduced. We also 431

confirm that the length of the sentence matters for 432

Stanza: the shorter the sentence is, the less context 433

it has, thus reducing the quality of the morpho- 434

logical analysis and consequently of our synthetic 435

sentences. 436

Does the number of seed sentences or the 437

amount of new vocabulary matter? To do this 438

experiment, we work again on the GLA-ENG di- 439

rection to create five thousand synthetic data. We 440

build four different models: 441

• 5K: This is the original five thousand-size syn- 442

thetic dataset we created. We create three sen- 443

tences from each seed sentence and randomly 444

choose words from all candidate words for 445

replacement. 446

• 5K (one): In this setup, we try to create 5000 447

sentences from only one seed sentence and 448

randomly choose words from all candidate 449

words for replacement. However, our process 450

could not generate 5,000 unique synthetic sen- 451

tences from one seed sentence; instead, it took 452

five seed sentences to generate 5,000 synthetic 453

sentences. 454

• 5K (half): In this setup, we create three sen- 455

tences from each seed sentence and randomly 456

choose words from the first half of the candi- 457

date words for replacement. 458
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Figure 3: BLEU scores on the test sets for six languages in the X-ENGLISH direction. ours is the morphologically-
informed method. Morphologically-informed approach outperforms the naive approach in all the six language pairs.
X-axis indicates the amount of synthetic parallel data we use along with seed data. The baseline uses no synthetic
data.

• 5K (remove): In this setup, we create ten459

sentences from each seed sentence and ran-460

domly choose words from all candidate words461

for replacement, but when we choose a word,462

we remove that word as a candidate so that it463

is not chosen again. Ideally, we would have464

sentences of the same amount of the lexicon465

vocabulary.466

Table 3 shows these experiments’ results. An467

exciting result is the one for 5K (one), where we468

use only five seed sentences to create five thousand469

synthetic sentences. In doing so, we introduce470

200 new words, but we get a substantial jump of471

3.71 BLEU score, which shows the promise of our472

method. Even if we have few high-quality parallel473

sentences and a good-quality lexicon, our method474

is bound to boost MT system quality.475

How much does filtering with LM help? To do476

this experiment, we perform a control experiment477

to contrast with our filtering-with-LM-perplexity478

approach. In the control setting, we choose sen-479

tences randomly from the pool of synthetic sen-480

tences. We randomly select a subset of a hundred481

thousand seed sentences from the OPUS-100 ENG,482

ELL dataset and do ablation on both ENG-ELL483

and ELL-ENG directions.484

Table 4 shows these experiments’ results. In485

the random setting, the results are rather unstable,486

with very low BLEU scores for some settings. This487

could be because we might be randomly choos- 488

ing bad sentences from the pool. The results with 489

informed sentence selection (through perplexity), 490

instead, are stable and consistently improving. 491

6 Related Work 492

Dictionaries have been and are indispensable re- 493

sources in various applications in NLP (Wilson 494

et al., 2020; Wang et al., 2019; Xiao and Guo, 495

2014). More specifically, many previous stud- 496

ies use dictionaries in MT to improve translation 497

quality for low-resource languages with or with- 498

out monolingual or parallel corpora. A closely re- 499

lated task is bilingual lexicon induction that departs 500

from an unsupervised MT task where no parallel 501

resources, including the ground-truth bilingual lex- 502

icon, are incorporated (Artetxe et al., 2017; Lam- 503

ple et al., 2018b). The bilingual lexicon is often 504

utilized as a seed in bilingual lexicon induction 505

that aims to induce more word pairs within the 506

language pair (Mikolov et al., 2013). Another 507

utilization of the bilingual lexicon is for translat- 508

ing low-frequency words in supervised neural MT 509

(Arthur et al., 2016; Zhang and Zong, 2016). 510

On the usage of dictionaries in MT, Peng et al. 511

(2020) employ dictionaries for cross-lingual MT, 512

Fadaee et al. (2017) propose a data augmentation 513

approach to target low-frequency words by gener- 514

ating sentence pairs containing rare words, Duan 515

et al. (2020) use dictionaries to drive the semantic 516
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Scottish Gaelic-English Ours Scottish Gaelic-English Naive
# ENG # GLA # seed # ENG # GLA # seed

BLEU types types sentences BLEU types types sentences

0K 9.08 11077 13826 0 9.08 11077 13836 0
5K (one) 12.79 11269 14020 5 12.58 12588 15883 5

5K 13.32 12763 15847 1511 13.05 12057 15082 1512
5K (half) 13.13 12367 15216 1527 12.57 11811 14740 1508

5K (remove) 12.91 12528 15702 1909 13.29 12511 15694 1909

Table 3: Ablation about the number of new vocabulary introduced and the number of seed sentences used to create
five thousand synthetic data. Using as little as five seed sentences boosts the 3.71 BLEU score.

Pairs 0K 5K 10K 50K 100K 200K

English-Modern Greek (random)
14.24

13.98 5.01 15.7 14.92 4.23
English-Modern Greek (filtered) 14.62 15.14 15.2 14.99 15.54

Modern Greek-English (random)
11.6

12.2 10.24 18.34 9.21 12.42
Modern Greek-English (filtered) 16.91 17.25 17.05 19.01 17.64

Table 4: Filtering the synthetic data leads to consistent improvements, but random data sampling leads to unstable
results. Instead, the BLEU score drops randomly for a random approach.

spaces of the source and target languages becom-517

ing closer in MT training without parallel sentences518

and Wang et al. (2022b) explore the utilization of519

dictionaries for synthesizing textual or labeled data,520

focusing on tasks such as named entity recognition521

and part-of-speech tagging.522

Unlike many of the previous approaches that are523

fixated on only monolingual data, our approach524

considers using a bilingual lexicon and maintain-525

ing morphology in augmentation. Our approach526

is similar in spirit to Fadaee et al. (2017) tech-527

nique with additional consideration of morphologi-528

cal complexity in the synthetic data augmentation529

process. Also, inspired by Wang et al. (2022b)’s530

approach, our research shares a common thread531

by using different strategies for synthesizing data532

using lexicons and integrating such data with mono-533

lingual or parallel text when accessible. Both stud-534

ies aim to leverage lexicons to enhance various535

NLP tasks, albeit in different contexts.536

7 Conclusion537

Our approaches have proven beneficial for most538

of the 14 languages under investigation, except for539

Armenian. Even if the improvements in BLEU540

scores may be small for some languages, there is541

a noticeable boost in most. Interestingly, we ob-542

served improvements even in language pairs (e.g.,543

WOL-ENG, ENG-KMR, ENG-GLA) with unsatisfac-544

tory initial baseline scores. This observation sug-545

gests our approach can enhance performance even546

in more challenging scenarios. The results also 547

highlight the importance of obtaining high-quality 548

seed sentences. We found that as few as five good- 549

quality seed data points can contribute to creating 550

five thousand synthetic data samples of good qual- 551

ity that would boost performance. This data aug- 552

mentation process could play a vital role in improv- 553

ing the overall performance of machine translation 554

systems and be combined with other augmentation 555

techniques (e.g., back-translation) as we deem it 556

orthogonal to them.11 557

Future Work In our current work, we focused 558

on conducting morphological inflection exclusively 559

on the English side of the translation task. The 560

main reason for this choice was the availability 561

of a reliable morphological inflector specifically 562

designed for English. However, we encountered 563

challenges when applying the same approach to 564

other languages. We lacked suitable morphological 565

inflection tools for those languages, or the accu- 566

racy of the available tools did not meet our require- 567

ments. Incorporating these tools would have posed 568

a significant bottleneck to the effectiveness of our 569

approach. For future research, we aim to explore 570

how our approach can be extended by performing 571

morphological inflection in other languages. This 572

involves developing or obtaining accurate and reli- 573

able morphological inflection tools. 574

11We note that back-translation is rarely effective in most
extremely low-resource languages due to the abysmal quality
of the initial systems.
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8 Limitations575

One of the limitations of our current approach is the576

use of the Stanza model. Since bilingual lexicons577

have no context, relying solely on morphological578

features obtained from the lexicon results in more579

general features. This can be particularly challeng-580

ing in morphologically rich languages, where a581

single word can have multiple meanings depending582

on the sentence context. Another limitation is the583

language support provided by the Stanza model,584

which is currently limited to 60 languages. This585

constraint restricts the applicability of our approach586

to only those languages supported by Stanza. To587

expand our work to languages not supported by588

Stanza, it is necessary to create custom Stanza mod-589

els specifically tailored for those languages. This590

process requires additional time and effort to de-591

velop and validate the models for each language of592

interest.593
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A Appendix853

Pairs 0K (untagged) 5K (tagged) 10K (tagged) 50K (tagged) 100K (tagged) 200K (tagged) ∆

DeltaLM-Base

ENG-GLA Naive 4.21 5.16 5.07 5.5 5.31 4.78 1.41ENG-GLA Ours 4.75 5.22 5.62 5.13 4.97

ENG-HYE Naive 5.61 4.86 4.65 2.91 2.75 2.11 0.0ENG-HYE Ours 4.28 4.52 3.3 2.97 2.83

ENG-KAZ Naive 6.13 6.34 5.93 5.16 5.39 4.58 0.37ENG-KAZ Ours 6.28 6.5 5.27 5.68 4.79

ENG-KMR Naive 1.66 2.36 2.05 2.12 1.66 1.82 0.79ENG-KMR Ours 2.45 2.27 2.32 1.89 1.78

ENG-WOL Naive 1.08 0.78 1.03 1.19 1.05 0.94 0.12ENG-WOL Ours 1.08 1.13 1.11 1.2 1.02

DeltaLM-Large

ENG-ELL Naive 23.06 22.2 23.09 22.17 22.55 23.01 0.03ENG-ELL Ours 22.17 21.93 22.24 22.64 23.07

ENG-GLE Naive 19.13 19.89 19.97 20.3 20.58 21.52 3.21ENG-GLE Ours 20.3 19.94 20.44 20.9 22.34

ENG-GLG Naive 29.86 31.42 31.41 31.34 31.68 1.82ENG-GLG Ours 30.97 31.27 31.13 31.46

ENG-HIN Naive 22.48 23.2 22.53 22.72 22.35 22.05 0.96ENG-HIN Ours 23.29 23.44 22.42 22.17 21.17

ENG-MAR Naive 5.03 4.86 4.64 4.55 4.54 4.04 0.44ENG-MAR Ours 5.47 5.35 4.76 4.72 4.34

ENG-MLT Naive 38.03 39.86 39.77 39.64 39.41 39.24 2.08ENG-MLT Ours 40.11 39.08 39.52 38.69 39.43

ENG-TAM Naive 5.3 5.64 5.33 5.35 5.10 5.58 0.46ENG-TAM Ours 5.44 5.76 5.28 5.48 5.34

ENG-URD Naive 11.26 12.06 12.31 12.03 11.98 11.12 1.11ENG-URD Ours 12.24 12.37 11.45 11.95 11.07

ENG-UIG Naive 1.24 0.7 0.88 0.76 0.87 0.04ENG-UIG Ours 0.63 1.06 1.17 1.28

Table A.1: BLEU score of 9 languages from ENG-X direction. Columns indicate the amount of synthetic parallel
data we use. The 0K (untagged) column is our baseline. The rows indicating Naive is the approach where we
replace words of the same POS tag. The rows indicating Ours is the approach where we replace words of the same
morphological feature. ∆ is the difference between the baseline and the best model’s score. ∆ is 0.0 if the baseline
is the best model.
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Pairs 0K (untagged) 5K (tagged) 10K (tagged) 50K (tagged) 100K (tagged) 200K (tagged) ∆

DeltaLM-Base

HYE-ENG Naive 16.04 15.78 13.84 9.71 8.39 7.79 0.0HYE-ENG Ours 15.59 14.63 10.11 9.24 8.72

WOL-ENG Naive 1.83 2.59 2.24 2.09 1.53 1.21 0.76WOL-ENG Ours 2.31 2.22 1.71 1.55 1.1

DeltaLM-Large

GLA-ENG Naive 9.08 13.05 11.81 12.99 12.36 11.86 4.24GLA-ENG Ours 13.32 12.76 12.32 13.08 12.35

KAZ-ENG Naive 19.58 20.97 20.74 18.86 17.99 16.59 1.72KAZ-ENG Ours 20.78 21.3 20.52 19.28 18.45

KMR-ENG Naive 9.73 11.63 11.08 11.04 9.45 9.19 2.28KMR-ENG Ours 11.97 12.01 10.87 10.35 9.43

ELL-ENG Naive 31.94 32.33 32.32 32.34 32.35 31.98 0.42ELL-ENG Ours 32.36 31.88 32.34 32.23 32.1

GLE-ENG Naive 28.71 30.03 29.54 28.65 28.73 28.57 1.32GLE-ENG Ours 29.96 29.7 30.03 28.99 29.36

GLG-ENG Naive 37.07 37.89 38.01 37.89 38.02 1.12GLG-ENG Ours 37.84 38.19 38.02 37.61

HIN-ENG Naive 29.09 30.89 30.34 30.81 30.46 29.71 1.96HIN-ENG Ours 31.05 30.74 30.58 29.6 29.62

MAR-ENG Naive 22.96 23.66 23.36 22.1 21.22 20 1.15MAR-ENG Ours 24.11 23.54 22.05 21.78 19.92

MLT-ENG Naive 45.21 45.2 45.43 45.23 45.23 44.9 0.44MLT-ENG Ours 45.65 45.07 44.87 44.94 44.7

TAM-ENG Naive 19.83 20.72 20.61 19.9 18.98 18.11 1.47TAM-ENG Ours 21.3 20.69 19.75 19.25 18.63

URD-ENG Naive 18.63 19.95 19.81 19.75 19 18.12 1.33URD-ENG Ours 19.96 19.39 19.15 19.44 18.54

UIG-ENG Naive 10.49 11.08 11.27 10.67 9.56 8.77 0.83UIG-ENG Ours 11.32 11.31 10.71 9.76 8.18

Table A.2: BLEU score of 9 languages from X-ENG direction. Columns indicate the amount of synthetic parallel
data we use. The 0K (untagged) column is our baseline. The rows indicating Naive is the approach where we
replace words of the same POS tag. The rows indicating Ours is the approach where we replace words of the same
morphological features. ∆ is the difference between the baseline and the best model’s score. ∆ is 0.0 if the baseline
is the best model.
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