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Abstract

Explainable Artificial Intelligence has emerged,
aiming to enhance the trustworthiness of black box
models by devising explanation methods that clar-
ify their inner workings. However, prevalent expla-
nation techniques predominantly leverage correla-
tion and association rather than employing causal-
ity, a significant aspect of human comprehension.
We propose a novel explanation method grounded
in causal inference tailored specifically for Graph
Neural Networks. Our approach seeks to illumi-
nate the decision-making process of Graph Neural
Networks, thereby augmenting their transparency
and trustworthiness. We apply our method to the
medical referral problem in healthcare.

1 INTRODUCTION

The use of Deep Learning (DL) models in the medical refer-
ral system [Valdeira et al., 2023, Wee et al., 2022, Duarte
et al., 2021, Han et al., 2018] as helpers could significantly
improve it, but most are black box models that do not ex-
plain how they arrived at their predictions. Hence, they
cannot be deployed in the actual system because of the lack
of transparency necessary for DL model usage in critical
environments like healthcare. Thus, explainability becomes
a key factor in gaining confidence in the predictions of the
model.

However, even though most explanation methods provide
transparent and comprehensible explanations, the inherent
nature of the explanation mechanism is based on identifying
associations and correlations in the data to explain black
box predictions. While associations and correlations are im-
portant, they might not provide a complete understanding of
the underlying mechanisms in a model because "correlation
does not imply causation".

We propose CIExplainer, an explanation method that goes
beyond simple associations and delves into causality to
help identify the cause-and-effect relationships driving the
decisions of a black box model. We specifically focus on a
Graph Neural Network (GNN) model, which takes as input
a graph and returns an embedding of an element of the graph
that can be used down the pipeline in other tasks like node
classification or link prediction.

2 METHODOLOGY

CIExplainer is a local explanation method dedicated to gen-
erating causal inference explanations. By leveraging CIEx-
plainer, we aspire to enhance the interpretability and trans-
parency of GNN-based link prediction models, thereby en-
abling their trustful deployment in critical decision-making
environments like healthcare.

Given a pair of nodes (v, w) extracted from a graph G, a
trained GNN model f , and a link prediction probability ŷp
generated by f for that particular pair by sampling a K-hop
neighborhood NeK = (VN , EN ) of the nodes, CIExplainer
yields a subgraph GEXP = (VEXP , EEXP ) as an expla-
nation for ŷ, denoting the infered link or not by analysing
ŷp. This subgraph contains the top l nodes and the edges
between those nodes that caused f to output ŷp. Specifi-
cally, VEXP ⊆ VN , EEXP ⊆ EN , and |VEXP | = l, where
l ∈ {1, 2, ..., |VN |} is a hyperparameter enforcing the re-
turned explanation to be concise and informative. Our pro-
posed method, CIExplainer, selects the top l nodes by eval-
uating the causal effect that each node in NeK exerts on
the prediction ŷ, then prioritizing the l nodes with the high-
est causal effect values. This computation of causal effects
leverages the potential outcome framework for causal infer-
ence at the unit level [Holland, 1986]. In order to address
the Fundamental Problem of Causal Inference, we make the
assumptions of Temporal Stability and Causal Transience
[Holland, 1986].

Let u denote the link prediction ŷ that says if there is a link



or not between the nodes v and w. Let S be a binary variable
representing the cause, t or c, to which u is exposed. We
note that to generate a link prediction probability ŷp, a GNN
model f only needs the sampled K-hop neighborhood NeK
from the pair of nodes (v, w). As such, manipulating u con-
sists of manipulating NeK . Hence, let c denote the absence
of manipulation of NeK and let t denote the manipulation of
NeK , specifically, manipulating the feature values of a node
in NeK . Maintaining the original NeK used to generate ŷ is
denoted by S(u) = c and it represents the actual outcome,
while, manipulating the features of nodes in NeK is denoted
by S(u) = t and it represents the counterfactual outcome.
Let Y denote the link prediction probability generated by
f for some sampled K-hop neighborhood. Then, Yc(u) de-
notes the link prediction probability when u is exposed to
c, that is, it denotes the original or actual link prediction
probability ŷp. Whereas, Yt(u) denotes the link prediction
probability when u is exposed to t, that is, counterfactual
link prediction probability obtained by constructing a coun-
terfactual K-hop neighborhood.

In this context, the Temporal Stability assumption holds be-
cause the output produced by the model f remains consistent
regardless of when the input is provided to f . Essentially,
the value Yc(u) remains unchanged irrespective of the tim-
ing of exposing c to u and measuring Yc(u). Similarly, the
Causal Transience assumption is valid because exposing c
to u does not alter the overall network structure of NeK ,
and computing the output of f for NeK does not change the
weights of the f . Consequently, when computing the out-
put for the original network configuration NeK , denoted as
Yt(u), prior exposure of u to c does not influence the result.
Therefore, the causal effect CE of altering the feature value
of a node in NeK on the predicted outcome ŷ, as assessed by
Y , can be determined using CE = Yt(u)−Yc(u) [Holland,
1986].

Given the aforementioned input conditions, and considering
each node possesses n features, our method CIExplainer
generates an explanation following Algorithm 1. Concern-
ing binary features, generating counterfactual nodes is rel-
atively straightforward—simply switch the feature value
to its opposite state. For a continuous feature with value
v, as an initial approach, the counterfactual node can be
obtained by changing the value v by a value contained in
the set C = { c | c ∈ S ∧ abs(v− c) ∈ D}, where S is a set
containing all the possible values from the data set for that
feature, abs() is a function that returns the absolute value
of the argument and D is a set containing the top d furthest
values of S from v as measured by abs(). For example, for
{1, 2, 3} ∈ S and v = 0 the top 2 furthest values are 3
and 2 because abs(0 − 3) > abs(0 − 2) > abs(0 − 1),
then D = {3, 2}. However, when dealing with continuous
feature values, there are several challenges, necessitating
careful consideration and analysis. As such, we also aim to
address these challenges in our ongoing work.

3 RESULTS

We applied CIExplainer to explain the link predictions re-
turned by a GNN model, specifically, GraphSAGE [Hamil-
ton et al., 2017]. The GNN model was trained on a weighted
bipartite referral graph connecting 294 general physicians
to 839 specialty care doctors through 34 241 edges. The
feature set of each node of the graph was composed of the
gender and age of the doctor. The weights of the edges corre-
spond to the number of different patients a general physician
referred to a specialist.

For l = 9, CIExplainer generates the explanation subgraph
represented in 1 when the GraphSAGE model predicted
a probability of 0.9233932 for a link between the nodes
colored in green.

Figure 1: Node description: Age, Gender, Causal Effect.

Observing the explanation subgraph, we see that the spe-
cialty care doctor has more direct neighbors than the general
physician in the pair given for link prediction. This means
they have a bigger impact on the prediction, even though
the node with the biggest causal effect is a direct neighbor
of the general physician. Another observation is that the
node with the biggest causal effect is a senior doctor with
big edge weights, meaning he is highly referred to. Since he
shares his gender with the specialty care doctor in the pair
given for link prediction, he is expected to have a big causal
effect on the link prediction.

A plot showing the effects of different values of l is shown
in the supplementary material B in figure 2.

For future work, we plan to compare CIExplainer against the
existing explanation techniques for GNNs to discern their
relative efficacy. As such, both quantitative and qualitative
evaluations will be conducted to gauge the effectiveness and
comprehensibility of our approach, providing insights into
its utility and potential for enhancing the interpretability of
GNN-based systems. We will also apply our explanation
method to space surveillance awareness.
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A CIEXPLAINER ALGORITHM

The algorithm used by the CIExplainer explanation method:

Input: pair of nodes (v, w), GNN model f , link prediction ŷ for (v, w)
Output: explanation subgraph GEXP containing the nodes that caused ŷp
Sample a K-hop neighborhood NeK of (v, w);
Compute a link prediction probability for (v, w) in accordance with ŷ using f and NeK ;
for each node v of NeK do

for each feature xi of v do
Generate a counterfactual node by changing the feature value;
Compute the causal effect CEi of changing the feature value;

end
The causal effect CE of the node is given by CE = max

i∈{1,2,...,n}
CEi;

end
Return a subgraph of NeK containing the top l nodes with the highest CE and the edges between those nodes;

Algorithm 1: CIExplainer explanation generation algorithm

B MEAN SQUARED ERROR BY THE NUMBER OF NODES IN THE EXPLANATION
SUBGRAPH

CIExplainer computes the causal effect for all the nodes of the K-hop neighborhood of the pair of nodes given for link
prediction. As such, the hyperparameter l used in CIExplainer controls the number of nodes in the explanation subgraph in
order to mantain the subgraph relevant and informative by choosing only the most influential nodes.

The true accuracy of the explanations should ideally be evaluated by doctors. However, we calculated the Mean Squared
Error (MSE) of the explanations provided by CIExplainer by generating a link prediction using only the explanation
subgraph and then comparing it to the original link prediction using the original test graph. The MSE is defined as:

MSE =
1

n

n∑
i=1

(f(GTEST )− f(GEXP ))
2 (1)

where n is the number of node pairs in the test set, GTEST is the test graph and GEXP is the explanation subgraph.

Figure 2 shows how the MSE changes according to different values of l when n = 21.

Observing figure 2 we note that the MSE decreases when l increases indicating that bigger explanation subgraphs are more
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Figure 2: MSE according to he number of nodes in the explanation subgraph.

accurate than smaller explanation subgraphs. However, as the MSE is very low (smaller than 0.5) smaller explanations are
preferred considering that they are more informative.
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