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Abstract

Data valuation plays a pivotal role in ensuring data quality and equitably compensating
data contributors. Existing game-theoretic data valuation techniques mostly rely on the
availability of a high-quality validation set for their e�cacy. However, the feasibility of ob-
taining a clean validation set drawn from the test distribution may be limited in practice.
In this work, we show that the choice of validation set can significantly impact the final
data value scores. In order to mitigate this, we introduce a general paradigm that converts
a traditional validation-based game-theoretic data valuation method into a validation-free
alternative. Specifically, we utilize the cross-validation error as a surrogate for to evaluate
the model’s performance on a validation set. As computing the cross-validation error can be
computationally expensive, we propose using the cross-validation error of a kernel regression
model as an e�ective and e�cient surrogate for the true performance score on the popula-
tion. We compare the performance of the validation-free variant of existing data valuation
techniques with their original validation-based counterparts. Our results indicate that the
validation-free variants generally match or often significantly surpass the performance of
their validation-based counterparts.

1 Introduction

Data valuation aims to measure the contribution of individual data instances to the training of machine
learning models. The task of data valuation is crucial not only in data marketplaces where it ensures equitable
compensation for data providers, but also in the realm of explainable machine learning - where it identifies
influential training data points that are responsible for certain model behavior. The importance of data
valuation research is underlined by legal e�orts such as the DASHBOARD Act (Foster, 2019) and Data
Dividend Project (Project, 2020), mandating companies to assess the economic value of user data.

The Shapley value is a well-known solution concept in cooperative game theory (CGT) that fairly divides
total revenue among players. Originally proposed by Jia et al. (2019b) and Ghorbani & Zou (2019), the
Shapley value has become one of the most popular approaches for data valuation. Specifically, each training
data point is considered a “player” in a coalitional game, and the Shapley value is used to fairly evaluate the
contribution of each player. The technique is often termed “Data Shapley”. Other CGT-based approaches
have been developed, including Beta Shapley (Kwon & Zou, 2021), Data Banzhaf (Wang & Jia, 2023a), etc.
The primary reason for the success of Data Shapley and the other CGT-based approaches is their axiomatic
formulations, which intuitively resonate with the fairness requirements inherent in data valuation. They have
been adopted in various use cases such as improving dataset quality (Tang et al., 2021; Pandl et al., 2021),
incentive mechanism design (Liu et al., 2020; Wei et al., 2020), data debugging (Karlaö et al., 2022).

A key issue that is often overlooked in data valuation research is the dependency on a well-curated valida-
tion data. The choice of validation data can often greatly impact the outcome of data valuation, potentially
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Figure 1: Overview of our proposed approach vs. traditional data valuation approaches.

leading to varying results. Moreover, procuring a clean, representative validation set is often a challenging
task, and in many real-world scenarios, the size of the available validation set is limited. In addition, data
valuation’s sensitive nature, specifically concerning profit sharing, introduces additional complexities. If cer-
tain individuals possess insider knowledge about the validation set, they might strategically optimize their
contribution to the training data. This could potentially skew the profit distribution in their favor, thereby
introducing unfairness.

In this paper, we uncover the risks of using validation data for data valuation, and propose a general
paradigm that converts the many existing validation-dependent data valuation approaches into validation-
free approaches. Our technical contributions are listed as follows:

Uncovering the potential vulnerabilities of validation-based data valuation techniques. Through
a series of experiments, we demonstrate that the choice and quality of the validation set can significantly
a�ect data values. The size of the validation set directly impacts the ranking of these values. Moreover, we
show that even minor class-imbalance within the validation set can substantially alter data values. Finally,
we highlight that these valuation systems can be gamed and become unfair if a malicious data provider gains
access to information about the validation set. Our findings underscore the need for caution when using
these techniques, due to the potential for significant variations and vulnerabilities.

A validation-free paradigm for data valuation using Leave-One-Out Cross-Validation
(LOOCV). Recognizing the limitations of validation-based data valuation techniques, we propose a novel
validation-free approach using Leave-One-Out Cross-Validation (LOOCV) to estimate performance scores on
the population. Cross-Validation (CV) is a classic technique for estimating model performance scores when
a validation set is unavailable. LOOCV’s deterministic nature makes it an ideal alternative utility function
in data valuation. To reduce the computational demands associated with LOOCV, we propose to use Reg-
ularized Least Squares (RLS) as an e�cient proxy model tailored for validation-free data valuation. This is
due to the special property of RLS in having a computational shortcut for LOOCV. While proxy models
are frequently being used to overcome computational challenges in data valuation (Jia et al., 2019a; Kwon
& Zou, 2023), the existing proxy models yield limited advantages in our context, primarily because their
associated LOOCV computation is still ine�cient. Our novelty lies in developing an e�cient validation-free
data valuation algorithm based on appropriate proxy models. We complement our method with an error
analysis for using LOOCV as utility scores. Figure 1 shows the overview of the proposed paradigm.

Empirical Evaluation. We demonstrate the e�ectiveness of LOOCV-based data valuation techniques on
important downstream tasks. Compared with validation-based techniques, we show that LOOCV-based data
valuation techniques achieve comparable performance on the weighted accuracy task and (often) superior
performance on noisy label detection task. We also show that RLS with Gaussian kernel as a proxy model is
an e�ective proxy model for valuation, the computed data value scores have a better performance on these
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downstream tasks than the validation-based counterparts. We explain this behavior using the locality-aware
nature of Gaussian kernels that we use in our RLS implementation.

Overall, our work provides a robust solution to the challenges posed by validation-set dependencies in data
valuation, and takes one step further towards a more fair and practical approach to assessing data value.

2 Background

In this section, we introduce the problem and setup of data valuation in the context of machine learning,
and we provide a brief overview of the Shapley value and other related work.

Valuing Data for Machine Learning Applications. Consider a dataset D = {zi}N
i=1 where each zi =

(xi, yi) œ (X ◊ Y) for data space X and label space Y. The aim of data valuation is to assign an importance
score to each data point in a dataset, reflecting its value in training the model. The “contribution” of a data
point is typically assessed based on a utility function U : fiŒ

n=0(X ◊Y)n æ R. This function assigns a score to
any set of training data points, indicating its utility. Ideally, one would like to select U as the test performance
of the model trained on a given dataset and evaluated on the population distribution P. However, in practical
scenarios, the population might not be known at the time of training. Consequently, model performance is
commonly assessed on a validation set Dval that is drawn from P. Formally, for any dataset S, we define
UDval(S) := PerfDval(A(S)), where A is a learning algorithm that takes dataset S as input and returns
model trained on it, and PerfDval denotes the validation performance of the given model evaluated on the
validation set Dval. We also denote UP(S) := PerfP(A(S)) as the model performance evaluated on the
population distribution. Given a dataset D = {zi}N

i=1, the ultimate objective of data valuation is to compute
a score vector („zi(UP))ziœD, where each „zi(UP) signifies the importance of data point zi to the resulting
model performance evaluated on the population distribution. In practice, however, one usually use UDval to
approximate UP and thus compute the score vector as („zi(UDval))ziœD.

Data Shapley. The Shapley value (Shapley, 1953) is a classic concept in cooperative game theory to
attribute the total gains generated by the coalition of all players. At a high level, it appraises each point
based on the (weighted) average utility change caused by adding the point into di�erent subsets. Given a
utility function U(·) and a dataset D = {zi}N

i=1, the Shapley value of a data point zi œ D is defined as

„
shap
zi

(U) := 1
N

Nÿ

k=1

3
N ≠ 1
k ≠ 1

4≠1 ÿ

S™D\{zi},|S|=k≠1
[U(S fi {i}) ≠ U(S)]

The popularity of the Shapley value is attributable to the fact that it is the unique data value notion
satisfying certain reasonable axioms (Shapley, 1953). We refer the readers to Ghorbani & Zou (2019); Jia
et al. (2019b) and the references therein for the description and discussion about these axioms in the ML
context.

Data Banzhaf. The Banzhaf value (Banzhaf III, 1964) is another classic concept in cooperative game theory
to attribute the total gains to individual players. The Banzhaf value averages the marginal contribution across
all subsets. Formally, given a utility function U(·) and a dataset D = {zi}N

i=1, the Banzhaf value of a data
point zi œ D is defined as

„
banz
zi

(U) := 1
2N≠1

ÿ

S™D\{zi}

[U(S fi {i}) ≠ U(S)]

Recently, Wang & Jia (2023a) discovered that the Banzhaf value is the most robust data value notion among
the class of semivalues (Dubey et al., 1981), and thus is suitable for data valuation especially when the
underlying learning algorithm is stochastic.

Related work. Multiple recent works have been carried out to relax the assumptions and stringent re-
quirements of the Data Shapley framework. Wu et al. (2022); Just et al. (2023); Nohyun et al. (2022); Jia
et al. (2019a); Kwon & Zou (2023); Yoon et al. (2020) propose di�erent data valuation paradigms that do
not require training neural networks multiple times, sidestepping the often cumbersome model re-training
processes. For instance, methods like KNN-Shapley (Jia et al., 2019a) and Data-OOB (Kwon & Zou, 2023)
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Figure 2: (a) Box plot depicts the data values(using Data Shapley) for 20 points randomly sampled from
the Census Dataset over 5 di�erent validation sets of equal size. The mislabeled points are in red. (b) The
performance on noisy label detection (quantified by AUROC scores) with di�erent validation set sizes.

use smaller proxy models as the surrogate for the original learning algorithms, which e�ectively optimize the
computational e�ciency of the valuation process. While being computationally e�cient, this line of work re-
quires a clean validation set that is drawn from the target distribution. In contrast, our research introduces a
novel proxy model tailored for an e�cient extension to a validation-free setting. Another line of works Kwon
& Zou (2021); Wang & Jia (2023a); Lin et al. (2022); Yan & Procaccia (2020) have sought to relax certain
axioms intrinsic to the Shapley value, and these techniques turn out to outperform Data Shapley in certain
aspects such as the reproducibility. Xu et al. (2021) also aim at removing the assumption of the availability of
a clean, representative validation set for data valuation, and are the most relevant to our study. It leverages
the diversity of the dataset (quantified by the determinant of the data matrix) to assess data value. How-
ever, this approach harbors a notable drawback that it does not incorporate label information. Hence, this
technique will be ine�ective for crucial applications such as detecting mislabeled data. Data-OOB (Kwon &
Zou, 2023) is particularly good at detecting mislabeled data, and also does incorporates label information
, making it relevant to our work. It is important to note that our method di�ers in the ability to convert
existing game-theoretic valuation frameworks into a validation-free one, while these methods do not satisfy
the axioms that Shapley-based values or semi-values do.

3 The Achilles’ heel of Validation-Based Data Valuation

Validation-based data valuation approaches can provide fair and intrinsic value given access to a clean,
unbiased, and relatively large validation set. However, this validation set needs to be sourced independently
from the training data, which is often di�cult in practice. A common strategy to deal with this issue is to
take a piece of training set as the hold-out validation set. However, this can cause a large variance in the
final performance score due to the randomness in the partition. Moreover, it is hard to ensure all edge cases
are fairly represented in this validation set. If the validation set is shifted from the population distribution,
certain training points may unfairly get higher or lower values. Procurement of the validation data is not
the only challenge. Even when a clean and unbiased validation set is available, the choice of validation set
can be a big factor in determining the values obtained. Preparation of such a validation set for valuation
can become a bottleneck. In this section, we highlight situations when the choice of validation set a�ects
the nature of values obtained. Specifically, we study the e�ect of (1) Choice, (2) Size and (3) Class
Distribution of the underlying validation data on data valuation. We also study the e�ects of gaming
the valuation framework given access to validation data. For all experiments, we consider multiple datasets,
presenting one in the main paper and deferring the rest to Appendix B.2 due to the similar nature of results.

Choice of Validation Set. This experiment tries to show how the choice of a fixed-size validation set can
a�ect the quality of data values obtained. We attempt to value a 1000-sized subset of the Census Dataset
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Figure 3: (a) Box plots show how data values for samples are influenced by the class distribution of the
underlying validation set. (b) Risk of gaming dataset valuation is shown by choosing a validation set that
matches Dataset 4.

from the UCI Repository (Dua & Gra�, 2017). We randomly sample the test set without replacement to
obtain 5 distinct 200-sized validation sets, drawn from the same distribution. We examine two popular
existing data valuation frameworks, the Data Shapley (Ghorbani & Zou, 2019) and KNN-Shapley (Jia et al.,
2019a). Data Shapley is the most famous model-dependent data valuation technique, and KNN-Shapley
has been recognized as the most practical training-free data valuation technique. From Fig. 2 (a) and
Appendix B.2, we observe that values vary, sometimes significantly, depending on the validation set used,
despite the validation sets being drawn from the same distribution. Many points are valued positively
under one validation set, and negatively under another. We also observe that clean and mislabeled points
are equally a�ected by the choice of validation data. The variance of their values is substantial enough
that the order of their values varies based on di�erent validation sets. Thus, the typical mislabeled
detection task by removing the lowest-valued points can perform di�erently with di�erent sampled
validation sets. While it is unsurprising that the value depends on the validation choice, the fact that even
independently drawn validation sets from the same distribution significantly a�ect the order of data values
is concerning. The reason for this instability of ranking is that the data values for individual points di�er
only by a small magnitude.

Size of Validation Set. For this experiment, we take a 1000-size subset of the Credit Card Data (Yeh &
Lien, 2009) and vary the size of validation set. We study the performance of data values in a mislabeled
detection task. We use KNN-Shapley for valuation since it performs well for this dataset. It is expected that
with more validation data, we get better detection rates as we can see from Fig. 2 (c). Choosing the size
of validation set depends on the availability of data. When validation data is not available in abundance,
obtained values may not be optimal.

Class-imbalance in Validation Set. In this setup, we assume a balanced training class distribution and
a varying validation class distribution. We demonstrate how sensitive data values are to small changes
in class ratio - and how that can be harmful for valuation. We perform this experiment on a 200-sized
Census dataset and vary the class ratio in the validation set, using Data Shapley as the choice of valu-
ation framework. As we can see from Fig. 3 (a), for a size 200 validation set, with a realistic class ra-
tio of 105:95 we see the majority class samples getting higher values on average. This problem is mag-
nified if the ratio is further increased. The true class distribution of the Census data is actually quite
skewed (since most people have income below 50K). The dilemma on whether to remain true to the actual
distribution or attempt a balanced validation set (creating feasibility issues). The takeaway here is that
choice of validation set is not simple and design choices play a significant part in values obtained.

Risk of Gaming a Data Valuation System. An important task of data valuation is to attribute equitable
payo� to multiple data sources in collaborative learning (Jia et al., 2019b). Fig. 3(b) shows a toy experiment
suggesting how manipulation of validation data can game the valuation framework. We have 5 data sources
(D1-D5), each with varying data size - randomly split from the Census dataset. The valuation framework
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used is Data Shapley- since it can be easily extended to dataset valuation. To simulate gaming the validation
set, we have selected a percentage of D-4 (in red) to match the validation set. When the validation data is
independently sourced (0% match with D-4), we see that dataset D-3 (which contributes the largest number
of data points) is rightly attributed the highest value. However, when 50% of the validation set matches
D-4, we see that D-3 has a very low value (suggesting that it should be discarded). Moreover, D-2 and D-5
suddenly see a sharp increase in importance and are likely to be selected over D-3. When a higher percentage
(75% and 100%) of D-4 matches with the validation set, we see that D-4 has a very high data value.

This experiment is a naive e�ort to show that if a malicious data provider has information about the
validation set, they can manipulate their data to ensure selection, which can adversely a�ect the expected
payo� to other providers. When validation data is limited and not necessarily private, it can risk gaming the
valuation framework.

4 Proposed Approach

To address the challenges associated with the choice of validation data for data valuation, we propose a
general paradigm that leverages cross-validation (CV), a widely adopted method in statistical machine
learning. CV is renowned for its ability to provide reliable estimates of model performance, even in the
absence of a dedicated validation set. By substituting the traditional validation accuracy with the CV
error, we eliminate the necessity for a clean, representative validation set. This e�ectively transforms the
conventional validation-based game-theoretic data valuation framework into a validation-free
alternative. By removing this dependence on the choice of the validation set, we avoid the aforementioned
issues associated with the quality, size, and bias of the validation set. Moreover, it reduces the risks of having
malicious players gaming with the validation set.

4.1 Cross Validation as Utility Function

Cross-validation (CV) is a widely-used technique in statistical machine learning for estimating the generaliz-
ability of a trained model to the population distribution. In a K-fold CV, data is randomly partitioned into
K equal-sized subsets. The model is trained on K ≠ 1 subsets and tested on the remaining one, repeating
this process K times and averaging the validation performance over the remaining subset. Leave-one-out
cross-validation (LOOCV) is a special case of K-fold where K equals the total sample size. That is, it trains
the model on all data points except one, and repeats this for each data point. Compared with other K-fold
CV, LOOCV is often preferred due to its deterministic nature and the elimination of the need to tune K.

Given LOOCV’s ability to provide reliable estimates of model performance without the need for validation
data, it emerges as a natural choice for use as an alternative utility function in the context of data valuation
without a dedicated validation set. Formally, for a pre-specified learning algorithm A, we define the utility
function that uses LOOCV as ULOOCV(S) := 1

|S|
q

iœS Perfzi(A({zj}jœS\i)).

Computational Challenge of using LOOCV as Utility Functions. The challenge of using (3) as
the utility function is the substantial computational overhead that the calculation of LOOCV introduces.
While validation-based utility functions UDval(S) require training a single model on the input dataset S,
each evaluation of ULOOCV(S) necessitates training a model for each subset of S \ zi, for each i œ S. This is
computationally prohibitive for modern learning algorithms such as neural networks.

4.2 E�cient LOOCV Computation for Regularized Least Square (RLS)

Proxy Model Approach for Data Valuation. A prevalent strategy in data valuation for improving
computational e�ciency is to utilize proxy models that allow e�cient evaluation of utility functions. A
prominent example is the KNN-Shapley (Jia et al., 2019a), which uses K-Nearest Neighbors (KNN) as a
proxy model with a closed-form solution for exact Shapley value computation. While justifying the use of
KNN as a proxy model for data valuation on theoretical grounds remains challenging, KNN-Shapley has
been recognized as one of the most practical data valuation techniques due to its computational e�ciency
and e�ectiveness in distinguishing data quality. Drawing inspiration from this, we turn to Regularized Least
Squares (RLS) as our proxy model, given its unique property of having an e�cient formula for computing
LOOCV (Pahikkala et al., 2006).
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Regularized Least Squares (RLS). Formally, given a dataset D = {(x1, y1), . . . , (xN , yN )} œ (X ◊Rp)N

and a kernel function k(·, ·), a regularized least squares kernel regression seeks to minimize the following
objective:

min
f

Nÿ

i=1
(yi ≠ f(xi))2 + ⁄ ÎfÎ2

k (1)

where f : X æ Rp, ⁄ > 0 is a regularization coe�cient, and Î·Îk is a norm in a Reproducing Kernel Hilbert
Space (RKHS) associated with the kernel k(·, ·). Let K œ RN◊N be the kernel matrix with Kij = k(xi, xj),
and let Y = [y1, . . . , yN ]T . Let G := (K + ⁄IN )≠1 where IN is the identity matrix. Because the kernel
function from which the kernel matrix is generated is positive definite, the matrix K + ⁄IN is invertible
when ⁄ > 0. The solution to this optimization problem can be expressed as f(x) = k(x)T

GY where k(x) :=
[k(x, x1), . . . , k(x, xN )]T .

E�cient Computation of LOOCV for RLS. One of the well-known results of RLS is its short-cut
formula for computing the leave-one-out model directly from the model trained on the full dataset. This
result leads to an e�cient computation method for LOOCV. Specifically, denote the matrix A := KG, and
let ai := [IiKGI

T
i ] be the i-th diagonal element of matrix A, where Ii is the i-th row of identity matrix

IN . At a high level, the shortcut for RLS’s LOOCV formula exists because of the combined e�ects of the
linear nature of RLS’s predictions and the structure provided by the hat matrix, which together allows for
e�ciently computing the change in predictions when a training data point is omitted and being evaluated
on.

Theorem 1 (Pahikkala et al. (2006)). Let f denote the model of RLS trained on dataset S, and f≠i denote
the model of RLS trained on the leave-one-out dataset S \ (xi, yi). Then we have

f≠i(x) = f(xi) ≠ aiyi

1 ≠ ai
(2)

Leveraging this e�cient computation of the leave-one-out model, we can compute the LOOCV score for
RLS with any utility metric. The main advantage we gain by using this LOOCV linear formulation is
that we can evaluate the utility of a set once and e�ciently obtain the leave-one-out models (and the
marginal contributions) without the need for re-training. Hence, we eliminate the additional matrix inversion
operations that are otherwise necessary to train these leave-one-out models-making our method a desirable
candidate for many data valuation frameworks.

Corollary 2 (LOOCV Formula for RLS for arbitrary utility metric (Pahikkala et al., 2006)). Let f denote
the model of RLS trained on dataset S. The LOOCV error for RLS on dataset S can be computed using the
following formula:

ULOOCV(S) := 1
|S|

ÿ

iœS

Perfzi
(f≠i) (3)

where f≠i can be e�ciently computed via (2).

This corollary allows us to e�ciently compute the LOOCV error, which is a key component of our proposed
utility function for data valuation. Additionally, it opens the potential for parallel computation of f≠i for all i

via GPU operations, though we do not explore this setup in this work. This utility metric can be instantiated
for both regression and classification tasks by choosing the appropriate (task-specific) performance metric
function Perf. Extending f to classification tasks further involves a one-hot style label encoding using ±1.

Remark 3 (Computational e�ciency). When using ULOOCV as the alternative utility function for computing
Data Shapley and other CGT-based values (such as Data Banzhaf (Wang & Jia, 2023a)), the computational
overhead with respect to the number of models trained (that is, the number of linear regressions to fit) remains
identical to the case when using regular utility functions. We refer the readers to Wang & Jia (2023b;a) for
the detailed sample complexity results for di�erent types of Monte Carlo estimators. Additionally, once the
regression model is fit, the computation of LOOCV only requires model predictions, an operation which, in
terms of computational demand, is negligible compared with model fitting. In Appendix B.7, we discuss the
FLOPS analysis and runtime advantage for ULOOCV when compared to its re-training based alternatives.
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4.3 Error Analysis

Recall that the objective in data valuation is to compute the data value score „zi(UP), where UP(·) is the
utility function defined by the model’s performance evaluated on the population distribution P. In this
section, we provide an error analysis for the use of UDval and ULOOCV as replacements for UP in computing
the celebrated Shapley value, specifically for the case of linear regression models. That is, for a random
dataset D drawn from the population distribution P, we analyze the expected deviation from „z1(UP) when
using UDval or ULOOCV to compute the Shapley value of a data point z1 œ D. We use „z1(UP ; D) to stress the
underlying dataset for computing the data value score.

Our first result shows that, if the validation set Dval is sampled from P and has a size of k, then the deviation
|„z1(UDval) ≠ „z1(UP)| is upper bounded by O(1/

Ô
k) on expectation.

Theorem 4 (Expected Error Bound for „z1(UDval)). If both UP and UDval have bounded range, then we
have

ED≥PN ,Dval≥Pk [|„z1 (UDval ; D) ≠ „z1 (UP ; D)|] Æ O

3
1Ô
k

4

Theorem 4 is based on the fact that if UP are bounded, then for any training set S, we have
EDval≥Pk [|UP(S) ≠ UDval(S)|] Æ O

1
1/

Ô
k

2
which is the standard sample error bound.

Next, we show that at least for the case when the utility means the (negative of) mean squared loss of RLS,
„z1(ULOOCV) can achieve a similar guarantee.

Theorem 5 (Expected Error Bound for „z1(ULOOCV)). If both UP and ULOOCV are average absolute prediction
error and have a bounded range, then for linear regression models, we have

ED≥PN [|„z1(ULOOCV; D) ≠ „z1(UP ; D)|] Æ O

3
1Ô
N

4

Theorem 5 is based on the previous result for the LOOCV guarantee ED≥PN [|UP(S) ≠ ULOOCV(S)|] Æ
O

1
1/

Ô
N

2
for linear regression models (Tian et al., 2007). It tells us that, at least for the case of lin-

ear regression, when the size of available validation data k is significantly less than the training set size N ,
the Shapley value derived from ULOOCV can be closer to the ground truth compared with the Shapley value
derived from UDval .

Remark 6 (Further discussion about Theorem 5). (1) Applicability. Although Theorem 5 is stated
specifically for the case of linear regression, this bound is also applicable to other learning algorithms where
there have been previous results on the error bound of LOOCV, such as Ridge regularized logistic regression
(Rad et al., 2020). (2) Error of using RLS as proxy model. It is important to note that our error
analysis does not account for using RLS as a proxy model for the primary learning algorithm. The closeness
between the utility scores from di�erent learning algorithms, however, is generally challenging to analyze and
has been noted in the literature (Coleman et al., 2019). (3) Error of sampling from an alternative
distribution. In our error analysis for Theorem 5, we have assumed that the training data D is drawn
from P. However, in practical scenarios, there may be a distribution shift, i.e., D may be sampled from an
alternative distribution P Õ. This scenario can be analyzed using theoretical results from domain adaptation,
and such a distribution will introduce an additional error term characterized by the distance between P and
P Õ, which is independent of the size of the training data. See Appendix A for details.

5 Evaluation

We have evaluated our method to answer the following questions: (1) Can our Kernel Regression-based
LOOCV method transform existing game-theoretic (validation-based) valuation techniques into a validation-
free framework, while retaining performance on standard valuation tasks? (2) How does our method compare
to existing validation-free approaches or naive solutions? If our method performs at par with existing vali-
dation methods, we also o�er insight into why Kernel Regression is a suitable candidate for valuation.
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Data Banzhaf Data Shapley
Dataset LOOCV Self Eval Val Based LOOCV Self Eval Val Based

CIFAR10 0.6992 0.5088 0.5872 0.5664 0.5216 0.574
MNIST 0.965 0.6419 0.7209 0.8507 0.8426 0.87
Census 0.883 0.58 0.587 0.803 0.668 0.595

Phoneme 0.862 0.5178 0.537 0.739 0.7396 0.7269
Apsfail 0.8905 0.8762 0.7711 0.8042 0.7752 0.8458

cpu 0.9233 0.9016 0.846 0.915 0.8969 0.9233
Fraud 0.9694 0.9808 0.883 0.9735 0.9838 0.9855

Pol 0.8969 0.3922 0.9330 0.8969 0.6734 0.9583
vehicle 0.6983 0.6896 0.753 0.6747 0.6668 0.7469

Table 1: AUROC score of mislabeled points detection using di�erent data valuation techniques on 9 datasets.
We highlight the best results of validation-free approaches.

Data Banzhaf Data Shapley
Dataset LOOCV Self Eval Val Based LOOCV Self Eval Val Based

CIFAR10 0.7375 0.6915 0.742 0.7275 0.704 0.739
MNIST 0.7986 0.785 0.803 0.7992 0.7899 0.76
Census 0.806 0.8179 0.7915 0.812 0.8017 0.805
Phoneme 0.7635 0.7625 0.7647 0.76 0.76 0.7618
Apsfail 0.9115 0.9098 0.9086 0.9076 0.9066 0.9073
cpu 0.8899 0.8885 0.8935 0.8903 0.888 0.8905
Fraud 0.9258 0.929 0.931 0.923 0.928 0.926
Pol 0.8356 0.835 0.859 0.836 0.84 0.847
vehicle 0.807 0.815 0.816 0.806 0.816 0.8164

Table 2: Accuracy comparison of models trained with samples weighted by di�erent data valuation techniques.
We highlight the best results of validation-free approaches.

5.1 Experimental Setup

We summarize important experiment settings here, and additional details are available in Appendix B.

Data valuation frameworks. We apply LOOCV to existing CGT-based data valuation frameworks to
render them validation-independent. Our goal is to understand how this process a�ects the usefulness of the
derived data values. We consider two commonly used CGT-based frameworks - Data Shapley (Ghorbani &
Zou, 2019) and Data Banzhaf (Wang & Jia, 2023a). We use the state-of-the-art approximation algorithms
for these two frameworks (see Appendix B for details). We also include a comparison with Beta Shapley
(Kwon & Zou, 2021) in Appendix B.3. Our method is not compatible with KNN-Shapley ( a special instance
of Data Shapley), hence we do not test it with our method.

Implementation details. We evaluate data values over 9 classification datasets popularly used in data
valuation literature (refer Appendix B.1). For each comparison study, validation-based baselines use standard
models (either binary MLP or logistic regression) that initially perform the best on a select held-out validation
set. LOOCV calculation (outlined in Theorem 2) involves computing the e�cient cross-validation accuracy
(using Theorem 5) on an RLS model (⁄ = 0.1) with a Gaussian Kernel. Additionally, we perform an ablation
study on the e�ect of changing parameter ⁄ in Appendix B.6.

Baselines. A novel baseline that we explore is the usage of the whole training set as a substitute for
the validation set. This naive approach (henceforth mentioned as Self-Eval) helps us verify the superior
performance that cross-validation can provide over simply using the whole training dataset as the validation
set for attribution. The Self-Eval baseline also uses the RLS model. Our second baseline is the validation-
dependent version of the same data valuation framework, where we set the size of the validation set the
same as the size of the training set. Note that this baseline assumes more knowledge than our approach
and Self-Eval and thus their results are not directly comparable. Nevertheless, having this baseline helps us
to evaluate whether game-theoretic validation-free valuation approaches can yield results as competitive as
those from validation-based approaches.
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Figure 5: Comparison between LOOCV and Volume (Xu et al., 2021) on a dataset addition experiment
(highest valued dataset added first) with (a)- Census Dataset, (b) Fraud Dataset and (c) Phoneme Dataset.

5.2 Quality of Values Obtained

We study the quality of data values obtained using two di�erent criteria- the first is performance (AUROC)
on the noisy label detection task. In all experiments, labels have been randomly flipped with a fixed poison
ratio of 10%. A higher AUC of the detection rate suggests better detection performance, which in turn
supports the quality of values obtained. Our second criterion to assess quality is learning with weighted
samples. Comparison with a validation-based baseline will test if LOOCV can provide equally useful data
values. In comparing with Self-Eval, we test how di�erent designs of validation-free schemes a�ect utility of
derived values.

Figure 4: Comparison of AUROC on misla-
beled detection task with di�erent data val-
uation techniques as the size of the dataset
increases.

Mislabeled Data Detection. Table 1 shows the results for
mislabeled detection. We found that LOOCV can get compara-
ble and often superior performance from traditional validation-
based approaches. Noisy label detection is quite challenging
and the strong performance reinforces that our data values can
compete with validation-based counterparts.

Fig. 4 shows how the AUROC varied when we increased
the dataset size for the OpenML Phoneme speech-recognition
dataset. We see that for this dataset, LOOCV can achieve high
performance for larger sizes but self-eval performance notice-
ably drops.

We perform an ablation study varying the mislabeled ratio
and evaluating AUROC scores on LOOCV, Self-Eval, and
Validation-based methods in Appendix B.6. As per intuition,
we find that there is a slight decrease in AUROC scores as the
noisy label ratio increases to 20%- since our method relies on
training data for evaluation. However, our AUROC scores were
always higher than those obtained from validation-based coun-
terparts. Additional evaluation (using Beta Shapley framework
in Table 5) and settings can be found in Appendix B.

Weighted Accuracy. We further conduct a weighted training experiment in Table 2. We weigh the dataset
with the data value obtained from Data Shapley and Data Banzhaf. After obtaining data values, we test the
performance on an independent test set that was not used during valuation. We observe that test accuracies
obtained using LOOCV closely track their validation-based counterparts.

5.3 Comparison with Existing Validation-free Frameworks

Comparison with Volume-based data valuation (Xu et al., 2021). In Appendix B.4 we conduct a
comparison with Volume (Xu et al., 2021), a label-agnostic and validation-free valuation method. We find
that it is unable to perform well on mislabeled-detection tasks (due to its label-agnostic nature) and our
weighted accuracies usually perform better than Volume on the standard datasets. We note that Volume is
designed for Dataset Valuation and we conduct an experiment for comparing LOOCV and Volume in that
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Dataset AUCROC
LOOCV

AUCROC
Data-OOB

Weighted Acc.
LOOCV

Weighted Acc.
Data-OOB

Census 0.8830 0.9429 0.8060 0.7533
Phoneme 0.8620 0.8992 0.7635 0.7542
Apsfail 0.891 0.976 0.9115 0.9232
CPU 0.9233 0.9362 0.8899 0.8792
Fraud 0.9694 0.9814 0.9258 0.8899

Pol 0.8969 0.9486 0.8356 0.8319
Vehicle 0.6983 0.8566 0.8105 0.7843

Table 3: Comparison between LOOCV with Data Banzhaf and Data-OOB valuation frameworks for misla-
beled detection (AUCROC) and weighted accuracy tasks.

Figure 6: Data Removal Experiment- Test Accuracies of Logistic Regression models when data points are
removed from the highest-valued, according to data values from LOOCV, Data-OOB and a Random Baseline.

setting. We consider experiments on three datasets- Adult Census data, Fraud Dataset and the Phoneme
Dataset. These datasets were split into 8 datasets of size 50 each and the highest valued dataset was added
first, following the experimental setup in Xu et al. (2021). The results from Figure 5 indicate that LOOCV
performed better at this selection task. We include additional settings and setup in Appendix B.4.

Comparison with Data-OOB valuation framework (Kwon & Zou, 2023): Data-OOB (Out-Of-
Bag) valuation framework proposes a valuation strategy that utilizes the out of bag error estimate from a
bagging model (random forest). We conduct both mislabeled detection and weighted accuracy experiments
on 7 datasets in Table 3. Our choice of label noise is 20% and we choose Data Banzhaf as the valuation
framework for LOOCV. Data-OOB was proposed as a strong candidate for identifying outliers and noisy
points present in the training set, and we find that it indeed performs better than LOOCV at assigning low
values to these points. It is important to note that LOOCV based detection is quite strong on its own, as seen
in Table 1. Interestingly, we find that LOOCV results in better weighted accuracies compared to Data-OOB,
suggesting that LOOCV assigned higher weights to important points. In order to solidify this observation, we
conduct a data removal experiment where a new logistic regression model is fit to the resulting dataset each
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Figure 7: Heatmap of data values. x-axis: Data points with index 0-14 are valued using RLS (left) and logistic
regression (right). y-axis: Individual test points.

time a data point is removed. We remove the highest valued data point first. It is expected that on removal
of high-valued points the accuracy should decrease. We observe in Figure 6 that LOOCV performs better
than Data-OOB in reducing the accuracy across all 6 datasets. Data-OOB performance is slightly worse
than Random baseline in 3 of the datasets. This confirms that LOOCV is proficient in finding pivotal points,
while also demonstrating a strong performance in detecting noisy points. We also conduct an ablation study
for the data-removal experiment in Appendix B.5 where we assume clean label information and observe a
similar trend in Figure 10. Additional settings and experimental setup is outline in Appendix B.5.

5.4 Why the choice of kernel regression is a powerful one?

We provide potential reasons for why RLS with Gaussian kernel is a strong proxy model for valuation.
Logistic Regression is frequently used in past literature for model-based data valuation (Ghorbani & Zou,
2019; Kwon & Zou, 2021). Meanwhile, Kernel Regression is rarely used in this setting. Our values indicate
strong performance by kernel regression, often superior (on noisy-label detection task) than values obtained
from validation-based methods using Logistic Regression. We conduct a data valuation experiment on the
Census Dataset using individual test points one at a time. We perform data valuation using Data Banzhaf
framework for each test point using RLS and logistic regression. 15 training data points are selected at
random from the whole set. We visualize a heatmap of their value estimates in Fig. 7. We observe that
the values for each training point are much more sensitive for the RLS-based model than for their logistic
regression-based equivalent. A possible reason for this behavior is the use of Gaussian Kernels in RLS which
are more sensitive to localized change (or similarity) in the distance between two points - resulting in better
detection of mislabeled samples as seen in Table 1. Meanwhile, models like logistic regression on average
were not as sensitive to individual test points.

6 Conclusion & Limitations

In this work, we tackled the challenge of data valuation in the absence of a representative validation set. We
examined the current validation-based data valuation techniques and identified their limitations. In response,
we proposed a novel validation-free data valuation approach using LOOCV, and we propose to use RLS as
proxy model. Our work o�ers a potential solution for scenarios where a clean, representative validation set
is not available.

Limitations. Although we leverage RLS to make LOOCV computationally e�cient, computing the exact
Data Shapley (or other CGT-based approaches) is still computationally prohibitive as it requires computing
LOOCV for all 2N data subsets. An interesting future work is to explore potential learning algorithms where
the exact Shapley value can be computed e�ciently based on the performance scores from LOOCV (analogue
to the famous KNN-Shapley (Jia et al., 2019a; Wang & Jia, 2023c)).
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